
Greedy Shortest Common Superstring
Approximation in Compact Space

Jarno Alanko and Tuukka Norri

Department of Computer Science
University of Helsinki

Gustaf Hällströmin katu 2b, 00560 Helsinki, Finland
jarno.alanko@helsinki.fi, tuukka.norri@helsinki.fi

Abstract. Given a set of strings, the shortest common superstring prob-
lem is to find the shortest possible string that contains all the input
strings. The problem is NP-hard, but a lot of work has gone into de-
signing approximation algorithms for solving the problem. We present
the first time and space efficient implementation of the classic greedy
heuristic which merges strings in decreasing order of overlap length. Our
implementation works in O(n log σ) time and bits of space, where n is
the total length of the input strings in characters, and σ is the size of the
alphabet. After index construction, a practical implementation of our
algorithm uses roughly 5n log σ bits of space and reasonable time for a
real dataset that consists of DNA fragments.

Keywords: Greedy, Approximation, Compact, Space-efficient, Burrows-
Wheeler transform, BWT, Shortest Common Superstring, SCS

1 Introduction

Given a set of strings, the shortest common superstring is the shortest string
which contains each of the input strings as a substsring. The problem is NP-hard
[4], but efficient approximation algorithms exist. Perhaps the most practical of
the approximation algorithms is the greedy algorithm first analyzed by Tarhio,
Ukkonen [14] and Turner [15]. The algorithm greedily joins together the pairs
of strings with the longest prefix-suffix overlap, until only one string remains.
In case there are equally long overlaps, the algorithm can make an arbitrary
selection among those. The remaining string is an approximation of the shortest
common superstring. The algorithm has been proven to give a superstring with
length at most 3 1

2 times the optimal length [6]. It was originally conjectured by
Ukkonen and Tarhio [14] that the greedy algorithm never outputs a superstring
that is more than twice as long as the optimal, and the conjecture is still open.

Let m be the number of strings, n be the sum of the lengths of all the strings,
and σ the size of the alphabet. In 1990 Ukkonen showed how to implement
the greedy algorithm in O(n) time and O(n log n) bits of space using the Aho-
Corasick automaton [16]. Since then, research on the problem has focused on
finding algorithms with better provable approximation ratios (see e.g. [9] for a

ar
X

iv
:1

70
7.

07
72

7v
2 

 [
cs

.D
S]

  3
 D

ec
 2

01
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/275655776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J. Alanko and T. Norri

summary). Currently, algorithm with the best proven approximation ratio in
peer reviewed literature is the one by Mucha with an approximation ratio of
2 11
23 [9], and there is a preprint claiming an algorithm with a ratio of 2 11

30 [11].
However, we are not aware of any published algorithm that solves the problem
in better than O(n log n) bits of space. Improving the factor log n to log σ is
important in practice. Many of the largest data sets available come from DNA
strings which have an alphabet of size only 4, while n can be over 109.

We present an algorithm that implements the greedy heuristic in O(n log σ)
time and bits of space. It is based on the FM-index enhanced with a succinct
representation of the topology of the suffix tree. The core of the algorithm is the
iteration of prefix-suffix overlaps of input strings in decreasing order of length
using a technique described in [8] and [13], combined with Ukkonen’s bookkeep-
ing [16] to keep track of the paths formed in the overlap graph of the input
strings. The main technical novelty of this work is the implementation of Ukko-
nen’s bookkeeping in O(n log σ) space. We also have a working implementation
of the algorithm based on the SDSL-library [5]. For practical reasons the imple-
mentation differs slightly from the algorithm presented in this paper, but the
time and space usage should be similar.

2 Preliminaries

Let there be m strings s1, . . . , sm drawn from the alphabet Σ of size σ such that
the sum of the lengths of the strings is

∑m
i=1 |si| = n. We build a single string

by concatenating the m strings, placing a separator character $ 6∈ Σ between
each string. We define that the separator is lexicographically smaller than all
characters in Σ. This gives us the string S = s1$s2$ · · · sm$ of length n + m.
Observe that the set of suffixes that are prefixed by some substring α of S are
adjacent in the lexicographic ordering of the suffixes. We call this interval in the
sorted list of suffixes the lexicographic range of string α. All occurrences of a
substring α can be uniquely represented as a triple (aα, bα, dα), where [aα, bα] is
the lexicographic range of α, and dα is the length of α. A string α is right maximal
in S if and only if there exist two or more distinct characters y, z ∈ Σ∪{$} such
that the strings αy and αz are substrings of S. Our algorithm needs support for
two operations on substrings: left extensions and suffix links. A left extension of
string α with character x is the map (aα, bα, dα) 7→ (axα, bxα, dxα). A suffix link
for the right-maximal string xα is the map (axα, bxα, dxα) 7→ (aα, bα, dα).

3 Overview of the Algorithm

We use Ukkonen’s 1990 algorithm [16] as a basis for our algorithm. Conceptually,
we have a complete directed graph where vertices are the input strings, and the
weight of the edge from string si to string sj is the length of the longest suffix of
si which is also a prefix of sj . If there is no such overlap, the weight of the edge
is zero. The algorithm finds a Hamiltonian path over the graph, and merges the
strings in the order given by the path to form the superstring. We define the



Greedy Shortest Common Superstring Approximation in Compact Space 3

merge of strings si = αβ and sj = βγ, where β is the longest prefix-suffix overlap
of si and sj , as the string αβγ. It is known that the string formed by merging
the strings in the order given by the maximum weight Hamiltonian path gives
a superstring of optimal length [14]. The greedy algorithm tries to heuristically
find a Hamiltonian path with a large total length.

Starting from a graph G where the vertices are the input strings and there
are no edges, the algorithm iterates all prefix-suffix overlaps of pairs of strings
in decreasing order of length. For each pair (si, sj) we add an edge from si to sj
iff the in-degree of sj is zero, the out-degree of si is zero, and adding the edge
would not create a cycle in G. We also consider overlaps of length zero, so every
possible edge is considered and it is easy to see that in the end the added edges
form a Hamiltonian path over G.

4 Algorithm

Observe that if an input string is a proper substring of another input string, then
any valid superstring that contains the longer string also contains the shorter
string, so we can always discard the shorter string. Similarly if there are strings
that occur multiple times, it suffices to keep only one copy of each. This prepro-
cessing can be easily done in O(n log σ) time and space for example by backward
searching all the input strings using the FM-index.

After the preprocessing, we sort the input strings into lexicographic order,
concatenate them placing dollar symbols in between the strings, and build an
index that supports suffix links and left extensions. The sorting can be done
with merge sort such that string comparisons are done O(log(n)) bits at a time
using machine word level parallelism, as allowed by the RAM model. This works
in O(n log σ) time and space if the sorting is implemented so that it does not
move the strings around, but instead manipulates only pointers to the strings.

For notational convenience, from here on si refers to the string with lexico-
graphic rank i among the input strings.

We iterate in decreasing order of length all the suffixes of the input strings
si that occur at least twice in S and for each check whether the suffix is also a
prefix of some other string sj , and if so, we add an edge from si to sj if possible.
To enumerate the prefix-suffix overlaps, we use the key ideas from the algorithm
for reporting all prefix-suffix overlaps to build an overlap graph described in [8]
and [13], adapted to get the overlaps in decreasing order of length.

We maintain an iterator for each of the input strings. An iterator for the
string si is a quadruple (i, `, r, d), where [`, r] is the lexicographic range of the
current suffix α of si and d is the length of α, i.e. the depth of the iterator.
Suffixes of the input strings which are not right maximal in the concatenation
S = s1$ . . . sm$ can never be a prefix of any of the input strings. The reason is
that if α is not right-maximal, then α is always followed by the separator $. This
means that if α is also a prefix of some other string sj , then sj = α, because the
only prefix of sj that is followed by a $ is the whole string sj . But then sj is
a substring of si, which can not happen because all such strings were removed



4 J. Alanko and T. Norri

in the preprocessing stage. Thus, we can safely disregard any suffix α of si that
is not right maximal in S. Furthermore, if a suffix α of si is not right maximal,
then none of the suffixes βα are right-maximal either, so we can disregard those,
too.

We initialize the iterator for each string si by backward searching si using
the FM-index for as long as the current suffix of si is right-maximal. Next we
sort these quadruples in the decreasing order of depth into an array iterators.
When this is done, we start iterating from the iterator with the largest depth,
i.e. the first element of iterators. Suppose the current iterator corresponds to
string i, and the current suffix of string si is α. At each step of the iteration
we check whether α is also a prefix of some string by executing a left extension
with the separator character $. If the lexicographic range [`′, r′] of $α is non-
empty, we know that the suffixes of S in the range [`′, r′] start with a dollar
and are followed by a string that has α as a prefix. We conclude that the input
string with lexicographic rank i among the input strings has a suffix of length
d that matches a prefix of the strings with lexicographic ranks `′, . . . , r′ among
the input strings. This is true because the lexicographic order of the suffixes of
S that start with dollars coincides with the lexicographic ranks of the strings
following the dollars in the concatenation, because the strings are concatenated
in lexicographic order.

Thus, according to the greedy heuristic, we should try to merge si with a
string from the set s`′ , . . . , sr′ , which corresponds to adding an edge from si to
some string from s`′ , . . . , sr′ in the graph G. We describe how we maintain the
graph G in a moment. After updating the graph, we update the current iterator
by decreasing d by one and taking a suffix link of the lexicographic range [`, r].
The iterator with the next largest d can be found in constant time because the
array iterators is initially sorted in descending order of depth. We can maintain
a pointer to the iterator with the largest d. If at some step iterators[k] has
the largest depth, then in the next step either iterators[k+ 1] or iterators[1]
has the largest depth. The pseudocode for the main iteration loop is shown in
Algorithm 1.

Now we describe how we maintain the graph G. The range [`′, r′] now repre-
sents the lexicographical ranks of the input strings that are prefixed by α among
all input strings. Each string sj in this range is a candidate to merge to string
si, but some bookkeeping is needed to keep track of available strings. We use
essentially the same method as Tarhio and Ukkonen [14]. We have bit vectors
leftavailable[1..m] and rightavailable[1..m] such that leftavailable[k] =
1 if and only if string sk is available to use as the left side of a merge, and
rightavailable[k] = 1 if and only if string sk is available as the right side of a
merge. Equivalently, leftavailable[k] = 1 iff the out-degree of sk is zero and
rightavailable[k] = 1 if the in-degree of sk is zero. Also, to prevent the forma-
tion of a cycle, we need arrays leftend[1..m], where leftend[k] gives the left-
most string of the chain of merged strings to the left of sk, and rightend[1..m],
where rightend[k] gives the rightmost string of the chain of merged strings to



Greedy Shortest Common Superstring Approximation in Compact Space 5

Algorithm 1: Iterating all prefix-suffix overlaps

k ← 1
while iterators[k].d ≥ 0 do

(i, [`, r], d)← iterators[k]
[`′, r′]← leftextend([`, r], $)
if [l′, r′] is non empty then

trymerge([l′, r′], i)
end
iterators[k]← (i, suffixlink(`, r), d− 1)
if i = m or (iterators[1].d > iterators[i+ 1].d) then

k ← 1
else

else k ← k + 1
end

end

the right of sk. We initialize leftavailable[k] = rightavailable[k] = 1 and
leftend[k] = rightend[k] = k for all k = 1, . . . ,m.

When we get the interval [`′, r′] such that leftavailable[j] = 1, we try to
find an index j ∈ [`$α, r$α] such that rightavailable[i] = 1 and leftend[j] 6=
i. Luckily we only need to examine at most two indices j and j′ such that
rightavailable[j] = 1 and rightavailable[j′] = 1 because if leftend[j] = i,
then leftend[j′] 6= i, and vice versa. This procedure is named trymerge([l′, r′], i)
in Algorithm 1.

The problem is now to find up to two ones in the bit vector rightavailable
in the interval of indices [`$α, r$α]. To do this efficiently, we maintain for each
index k in rightavailable the index of the first one in rightavailable[k +
1..m], denoted with next one(k). If there are two ones in the interval [`$α, r$α],
then they can be found at next one(`$α − 1) and next one(next one(`$α − 1)).
The question now becomes, how do we maintain this information efficiently?
In general, this is the problem of indexing a bit vector for dynamic successor
queries, for which there does not exist a constant time solution using O(n log σ)
space in the literature. However, in our case the vector rightavailable starts
out filled with ones, and once a one is changed to a zero, it will not change back
for the duration of the algorithm, which allows us to have a simpler and more
efficient data structure.

Initially, next one(k) = k + 1 for all k < m. The last index does not have
a successor, but it can easily be handled as a special case. For clarity and
brevity we describe the rest of the process as if the special case did not ex-
ist. When we update rightavailable(k) := 0, then we need to also update
next one[k′] := next one(k) for all k′ < k such that rightavailable[k′ + 1..k]
contains only zeros. To do this efficiently, we store the value of next one only
once for each sequence of consecutive zeros in rightavailable, which allows us
to update the whole range at once. To keep track of the sequences of consecu-
tive zeros, we can use a union-find data structure. A union-find data structure



6 J. Alanko and T. Norri

maintains a partitioning of a set of elements into disjoint groups. It supports
the operations find(x), which returns the representative of the group contain-
ing x, and union(x, y), which takes two representatives and merges the groups
containing them.

We initialize the union-find structure such that there is an element for every
index in rightavailable, and we also initialize an array next[1..m] such that
next[k] := k+1 for all k = 1, . . .m. When a value at index k is changed to a zero,
we compute q := next[find(k)]. Then we will do union(find(k), find(k − 1))
and if rightavailable[k + 1] = 0, we will do union(find(k), find(k + 1)).
Finally, we update next[find(k)] = q. We can answer queries for next one(k)
with next[find(k)].

Whenever we find a pair of indices i and j such that leftavailable[i] = 1,
rightavailable[j] = 1 and leftend[j] 6= i, we add an edge from si to sj by
recording string j as the successor of string i using arrays successor[1..m] and
overlaplength[1..m]. We set successor[j] = i and overlaplength[j] = di,
where di is the length of the overlap of si and sj , and do the updates:

leftavailable[i] := 0

rightavailable[j] := 0

leftend[rightend[j]] := leftend[i]

rightend[leftend[i]] := rightend[j]

Note that the arrays leftend and rightend are only up to date for the end
points of the paths, but this is fine for the algorithm. Finally we update the
next array with the union-find structure using the process described earlier.
We stop iterating when we have done m − 1 merges. At the end, we have a
Hamiltonian path over G, and we form a superstring by merging the strings in
the order specified by the path.

5 Time and Space Analysis

The following space analysis is in terms of number of bits used. We assume that
the strings are binary encoded such that each character takes dlog2 σe bits. A
crucial observation is that we can afford to store a constant number of O(log n)
bit machine words for each distinct input string.

Lemma 1. Let there be m distinct non-empty strings with combined length n
from an alphabet of size σ > 1. Then m log n ∈ O(n log σ).

Proof. Suppose m ≤
√
n. Then the Lemma is clearly true, because:

m log n ≤
√
n log n ∈ O(n log σ)

We now consider the remaining case m ≥
√
n, or equivalently log n ≤ 2 logm.

This means m log n ≤ 2m logm, so it suffices to show m logm ∈ O(n log σ).



Greedy Shortest Common Superstring Approximation in Compact Space 7

First, note that at least half of the strings have length at least log(m)−1 bits.
This is trivially true when log(m)− 1 ≤ 1. When log(m)− 1 ≥ 2, the number of
distinct binary strings of length at most log(m)− 2 bits is

blog(m)−2c∑
i=1

2i ≤ 2log(m)−1 =
1

2
m

Therefore indeed at least half of the strings have length of at least logm−1 bits.
The total length of the strings is then at least 1

2m(logm−1) bits. Since the binary
representation of all strings combined takes ndlog2 σe bits, we have ndlog2 σe ≥
1
2m(logm− 1), which implies m logm ≤ 2ndlog2 σe+ 1 ∈ O(n log σ).ut

Next, we describe how to implement the suffix links and left extensions. We
will need to build the following data structures for the concatenation of all input
strings separated by a separator character:

– The Burrows-Wheeler transform, represented as a wavelet tree with support
for rank and select queries.

– The C-array, which has length equal to the number of characters in the
concatenation, such that C[i] is the number of occurrences of characters
with lexicographic rank strictly less than i.

– The balanced parenthesis representation of the suffix tree topology with sup-
port for queries for leftmost leaf, rightmost leaf and lowest common ancestor.

Note that in the concatenation of the strings, the alphabet size is increased by
one because of the added separator character, and the total length of the data
in characters is increased by m. However this does not affect the asymptotic size
of the data, because

(n+m) log(σ + 1) ≤ 2n(log σ + 1) ∈ Θ(n log σ)

The three data structures can be built and represented in O(n log σ) time and
space [1]. Using these data structures we can implement the left extension for
lexicographic interval [`, r] with the character c by:

([`, r], c) 7→ [C[c] + rankBWT (`, c), C[c] + rankBWT (r, c)]

We can implement the suffix link for the right maximal string cα with the lexi-
cographic interval [`, r] by first computing

v = lca(selectBWT (c, `− C[c]), selectBWT (c, r − C[c]))

and then
[`, r] 7→ [leftmostleaf(v), rightmostleaf(v)]

This suffix link operation works as required for right-maximal strings by remov-
ing the first character of the string, but the behaviour on non-right-maximal
strings is slightly different. The lexicographic range of a non-right-maximal string
is the same as the lexicographic range of the shortest right-maximal string that



8 J. Alanko and T. Norri

has it as a prefix. In other words, for a non-right-maximal string cα, the op-
eration maps the interval [`cα, rcα] to the lexicographic interval of the string
αβ, where β is the shortest right-extension that makes cαβ right-maximal. This
behaviour allows us to check the right-maximality of a substring cα given the
lexicographic ranges [`α, rα] and [`cα, rcα] in the iterator initialization phase of
the algorithm as follows:

Lemma 2. The substring cα is right maximal if and only if the suffix link of
[`cα, rcα] is [`α, rα].

Proof. As discussed above, the suffix link of [`cα, rcα] maps to the lexicographic
interval of the string αβ where β is the shortest right-extension that makes cαβ
right-maximal. Suppose first that cα is right-maximal. Then [`αβ , rαβ ] = [`α, rα],
because β is an empty string. Suppose on the contrary that cα is not right-
maximal. Then [`αβ , rαβ ] 6= [`α, rα], because αβ and α are distinct right-maximal
strings. �

Now we are ready to prove the time and space complexity of the whole algorithm.

Theorem 3. The algorithm in Section 4 can be implemented in O(n log σ) time
and O(n log σ) bits of space.

Proof. The preprocessing to remove contained and duplicate strings can be done
in O(n log σ) time and space for example by building an FM-index, and backward
searching all input strings.

The algorithm executes O(n) left extensions and suffix links. The time to
take a suffix link is dominated by the time do the select query, which is O(log σ),
and the time to do a left extension is dominated by the time to do a rank-query
which is also O(log σ). For each left extension the algorithm does, it has to
access and modify the union-find structure. Normally this would take amortized
time related to the inverse function of the Ackermann function [2], but in our
case the amortized complexity of the union-find operations can be made linear
using the construction of Gabow and Tarjan [3], because we know that only
elements corresponding to consecutive positions in the array rightavailable

will be joined together. Therefore, the time to do all left extensions, suffix links
and updates to the union-find data structure is O(n log σ).

Let us now turn to consider the space complexity. For each input string,
we have the quadruple (i, `, r, d) of positive integers with value at most n. The
quadruples take space 3m logm + m log n. The union-find structure of Gabow
and Tarjan can be implemented in O(m logm) bits of space [3]. The bit vec-
tors leftavailable and rightavailable take exactly 2m bits, and the arrays
successor, leftend, rightend and next take m logm bits each. The array
overlaplength takes m log n bits of space. Summing up, in addition to the data
structures for the left extensions and contractions, we have only O(m log n) bits
of space, which is O(n log σ) by Lemma 1. ut



Greedy Shortest Common Superstring Approximation in Compact Space 9

C
ST

Fi
rs

t c
hi

ld

FC
 r

an
k 

an
d 

se
le

ct

BW
T

W
avelet tree

Balanced parentheses

BP rank and select

Input string lengths

Fig. 1: Memory breakdown of the data structures used by our implementation.
The plot was generated using the SDSL library. Each sector angle represents
the portion of the memory taken by the data structure of the total memory of
the inner data structure; areas have no special meaning. Abbreviations: CST =
compressed suffix tree, BWT = Burrows-Wheeler Transform, BP = balanced
parenthesis, FC = first child.

6 Implementation

The algorithm was implemented with the SDSL library [5]. A compressed suffix
tree that represents nodes as lexicographic intervals [10] was used to implement
the suffix links and left extensions. Only the required parts of the suffix tree were
built: the FM-index, balanced parentheses support and a bit vector that indi-
cates the leftmost child node of each node. These data structures differ slightly
from the description in Section 5, because they were chosen for convenience
as they were readily available in the SDSL library, and they should give very
similar performance compared to those used in the aforementioned Section. In
particular, the leftmost child vector was needed to support suffix links, but we
could manage without it by using the operations on the balanced parenthesis
support described in Section 5. Our implementation is available at the URL
https://github.com/tsnorri/compact-superstring



10 J. Alanko and T. Norri

●

●

●

●

●

(a) Peak memory

●

●

●

●

●

●

●

●

●

●

(b) Time consumption

Fig. 2: (a) The peak memory usage of our algorithm plotted against a conserva-
tive estimate of 4n log n bits of space needed by Ukkonen’s Aho-Corasick based
method. (b) the time usage of our algorithm for the two phases of the algorithm.
The data points have been fitted with a least-squares linear model, and the
grey band shows the 95% confidence interval (large enough to be visible only
for the second phase). The time and memory usage were measured using the
/usr/bin/time command and the RSS value.

The input strings are first sorted with quicksort. This introduces a log n factor
to the time complexity, but it is fast in practice. The implementation then runs in
two passes. First, exact duplicate strings are removed and the stripped compact
suffix tree is built from the remaining strings. The main algorithm is implemented
in the second part. The previously built stripped suffix tree is loaded into memory
and is used to find the longest right-maximal suffix of each string and to iterate
the prefix-suffix overlaps. Simultaneously, strings that are substrings of other
strings are marked for exclusion from building the superstring.

For testing, we took a metagenomic DNA sample from a human gut microbial
gene catalogue project [12], and sampled DNA fragments to create five datasets
with 226+i characters respectively for i = 0, . . . , 4. The alphabet of the sample
was {A,C,G, T,N}. Time and space usage for all generated datasets for both
the index construction phase and the superstring construction phase are plotted
in Figure 2. The machine used run Ubuntu Linux version 16.04.2 and has 1.5
TB of RAM and four Intel Xeon CPU E7-4830 v3 processors (48 total cores,
2.10 GHz each). A breakdown of the memory needed for the largest dataset for
the different structures comprising the index is shown in Figure 1.

While we don’t have an implementation of Ukkonen’s greedy superstring al-
gorithm, have a conservative estimate for how much space it would take. The
algorithm needs at least the goto- and failure links for the Aho-Corasick au-
tomaton, which take at least 2n log n bits total. The main algorithm uses linked



Greedy Shortest Common Superstring Approximation in Compact Space 11

0 50 100 150 200 250 300 350 400 450 500

Time (seconds)

0

2,000

4,000

6,000

M
em

or
y 

U
sa

ge
 (

M
iB

)

Peak Usage: 6170 MB

(a) Index construction

0 100 200 300 400 500 600 700

Time (seconds)

0

500

1,000

1,500

M
em

or
y 

U
sa

ge
 (

M
iB

)

Peak Usage: 1655 MB

(b) Superstring construction

Fig. 3: Subfigures (a) and (b) show the memory usage as a function of time
for index construction and superstring construction, respectively. The peak in
Figure (a) occurs during suffix array construction, and the peak in Figure (b)
occurs during the iteration of prefix-suffix overlaps.

lists named L and P , which take at least 2n log n bits total. Therefore the space
usage is at the very least 4n log n. This estimate is plotted in Figure 2.

Figure 3 shows the space usage of our algorithm in the largest test dataset
as a function of time reported by the SDSL library. The peak memory usage
of the whole algorithm occurs during index construction, and more specifically
during the construction of a compressed suffix array. The SDSL library used this
data structure to build the BWT and the balanced parenthesis representation,
which makes the space usage unnecessarily high. This could be improved by
using more efficient algorithms to build the BWT and the balanced parenthesis



12 J. Alanko and T. Norri

representation of the suffix tree topology [1]. These could be plugged in to bring
down the index construction memory. The peak memory of the part of the
algorithm which constructs the superstring is only approximately 5 times the
size of the input in bits.

7 Discussion

We have shown a practical way to implement the greedy shortest common super-
string algorithm in O(n log σ) time and bits of space. After index construction,
the algorithm consists of two relatively independent parts: reporting prefix-suffix
overlaps in decreasing order of lengths, and maintaining the overlap graph to
prevent merging a string to one direction more than once and the formation of
cycles. The part which reports the overlaps could also be done in other ways,
such as using compressed suffix trees or arrays, or a succinct representation of
the Aho-Corasick automaton. The only difficult part is to avoid having to hold
Ω(n) integers in memory at any given time. We believe it is possible to engineer
algorithms using these data structures to achieve O(n log σ) space as well.

Regrettably, we could not find any linear time implementations of Ukkonen’s
greedy shortest common superstring algorithm for comparison. There is an inter-
esting implementation by Liu and Sýkora [7], but it is too slow for our purposes
because it involves computing all pairwise overlap lengths of the input strings
to make better choices in resolving ties in the greedy choices. While their exper-
iments indicate that this improves the quality of the approximation, the time
complexity is quadratic in the number of input strings. Zaritsky and Sipper [17]
also have an implementation of the greedy algorithm, but it’s not publicly avail-
able, and the focus of the paper is on approximation quality, not performance.
As future work, it would be interesting to make a careful implementation of
Ukkonen’s greedy algorithm, and compare it to ours experimentally.

Acknowledgements

We would like to thank anonymous reviewers for improving the presentation of
the paper.

References

1. Belazzougui, D.: Linear time construction of compressed text indices in compact
space. In: Proceedings of the 46th Annual ACM Symposium on Theory of Com-
puting. pp. 148–193. ACM (2014)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms,
vol. 6. MIT press Cambridge (2001)

3. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. Journal of computer and system sciences 30(2), 209–221 (1985)

4. Gallant, J., Maier, D., Astorer, J.: On finding minimal length superstrings. Journal
of Computer and System Sciences 20(1), 50–58 (1980)



Greedy Shortest Common Superstring Approximation in Compact Space 13

5. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play
with succinct data structures. In: International Symposium on Experimental Al-
gorithms. pp. 326–337. Springer (2014)

6. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Informa-
tion Processing Letters 93(1), 13–17 (2005)

7. Liu, X., Sỳkora, O.: Sequential and parallel algorithms for the shortest common
superstring problem. In: Proceedings of the International Workshop on Parallel
Numerics. pp. 97–107 (2005)

8. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design. Cambridge University Press (2015)

9. Mucha, M.: Lyndon words and short superstrings. In: Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 958–972. So-
ciety for Industrial and Applied Mathematics (2013)

10. Ohlebusch, E., Fischer, J., Gog, S.: Cst++. In: International Symposium on String
Processing and Information Retrieval. pp. 322–333. Springer (2010)

11. Paluch, K.: Better approximation algorithms for maximum asymmetric traveling
salesman and shortest superstring. arXiv preprint arXiv:1401.3670 (2014)

12. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen,
T., Pons, N., Levenez, F., Yamada, T., et al.: A human gut microbial gene catalogue
established by metagenomic sequencing. Nature 464(7285), 59–65 (2010)

13. Simpson, J.T., Durbin, R.: Efficient construction of an assembly string graph using
the fm-index. Bioinformatics 26(12), i367–i373 (2010)

14. Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing short-
est common superstrings. Theoretical computer science 57(1), 131–145 (1988)

15. Turner, J.S.: Approximation algorithms for the shortest common superstring prob-
lem. Information and computation 83(1), 1–20 (1989)

16. Ukkonen, E.: A linear-time algorithm for finding approximate shortest common
superstrings. Algorithmica 5(1-4), 313–323 (1990)

17. Zaritsky, A., Sipper, M.: The preservation of favored building blocks in the struggle
for fitness: The puzzle algorithm. IEEE Transactions on Evolutionary Computation
8(5), 443–455 (2004)


	Greedy Shortest Common Superstring Approximation in Compact Space

