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SOLID HULLS AND CORES OF WEIGHTED H∞-SPACES.

JOSÉ BONET, WOLFGANG LUSKY, AND JARI TASKINEN

Abstract. We determine the solid hull and solid core of weighted Banach spaces
H∞

v
of analytic functions functions f such that v|f | is bounded, both in the case of

the holomorphic functions on the disc and on the whole complex plane, for a very
general class of radial weights v. Precise results are presented for concrete weights
on the disc that could not be treated before. It is also shown that if H∞

v
is solid,

then the monomials are an (unconditional) basis of the closure of the polynomials
in H∞

v
. As a consequence H∞

v
does not coincide with its solid hull and core in the

case of the disc. An example shows that this does not hold for weighted spaces of
entire functions.

1. Introduction and preliminaries

The solid hulls of weighted H∞-type Banach spaces H∞
v of analytic functions on

the open unit disc D = {z ∈ C : |z| < 1} were characterized in [8] for a large
class of weight functions v, and a similar study for entire functions was made in
[7]. In Theorem 3.1 we extend the results of [8] by means of the calculations of
certain numerical constants, which yields many novel, concrete examples of solid
hulls. At the same time, we also describe in Theorem 2.4 the solid cores of these
Banach spaces in a similar way as we did in Theorem 2.3 (Theorem 2.1 in [7]) for
the solid hull. Moreover, we prove that in the case of analytic functions on the
disc the Banach space H∞

v is always different from both its solid hull and core; see
Corollary 5.3. However, an example is given in the case of entire functions to show
that H∞

v may coincide with both its solid hull and core, in particular it is a solid
space. We also prove in Theorem 5.2 that if H∞

v coincides with its solid hull, then
the monomials are an (unconditional) basis of the closure of the polynomials in H∞

v .
To describe the results in detail, let us introduce some notation and terminology.

We set R = 1 (for the case of holomorphic functions on the unit disc) and R = +∞
(for the case of entire functions). A weight v is a continuous function v : [0, R[→
]0,∞[, which is non-increasing on [0, R[ and satisfies limr→R rnv(r) = 0 for each
n ∈ N. We extend v to D if R = 1 and to C if R = +∞ by v(z) := v(|z|).
For such a weight v, we study the Banach space H∞

v of analytic functions f on
the disc D (if R = 1) or on the whole complex plane C (if R = +∞) such that
‖f‖v := sup|z|<R v(z)|f(z)| < ∞. For an analytic function f ∈ H({z ∈ C; |z| < R})
and r < R, we denote M(f, r) := max{|f(z)| ; |z| = r}. Using the notation O and
o of Landau, f ∈ H∞

v if and only if M(f, r) = O(1/v(r)), r → R. It is known that
the closure of the polynomials in H∞

v coincides with the Banach space H0
v of all

those analytic functions on {z ∈ C; |z| < R} such that M(f, r) = o(1/v(r)), r → R.
see e.g. [3]. It will be clear from the context in the rest of the article when we refer
to analytic functions on the disc or entire functions. Anyway, if it is necessary to
distinguish at some point, we will use the notations H∞

v (D) and H∞
v (C).

We shall identify an analytic function f(z) =
∑∞

n=0 anz
n with the sequence of its

Taylor coefficients (an)
∞
n=0. Let A, B and H be vector spaces of complex sequences

1

http://arxiv.org/abs/1711.00228v1
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containing the space of all the sequences with finitely many non-zero coordinates.
The space A be is solid if a = (an) ∈ A and |bn| ≤ |an| for each n implies b = (bn) ∈
A. The solid hull of A is

S(A) := {(cn) : ∃(an) ∈ A such that |cn| ≤ |an| ∀n ∈ N}.
It coincides with the smallest solid space containing A.
The solid core of A is

s(A) := {(cn) : (cnan) ∈ A ∀(an) ∈ ℓ∞}.
The set of multipliers form A into B is

(A,B) := {c = (cn) : (cnan) ∈ B ∀(an) ∈ A}.
The following facts are also known, see [1]: 1. A is solid if and only if ℓ∞ ⊂ (A,A);

2. A ⊂ (B,H) if and only if B ⊂ (A,H); 3. the solid core s(A) of A is the largest
solid space contained in A, and moreover s(A) = (ℓ∞, A); 4. the solid hull S(A) of
A is the smallest solid space containing A; 5. If X is solid, (A,X) = (S(A), X) and
(X,A) = (X, s(A)).

The results on [7] and [8] contain a characterization of the solid hull of H∞
v , if v

satisfies a condition (b), see (2.1) below. This general characterization is in terms
of a numerical sequence (mn)

∞
n=0, which depends on the weight and was studied by

the second named author in [16]. However, given a concrete weight on the disc like

v(r) = exp
(

− a/(1− r)b
)

(1.1)

the calculation of the numbers mn is not an easy matter, and in [8], this was only
done in the case 0 < b ≤ 2. In Theorem 3.1 we calculate these numbers and thus
determine the solid hull for weights

v(r) = w(r) exp
(

− a/(1− r)b
)

(1.2)

with any a, b > 0, where w is a differentiable positive function with some growth
restriction. Moreover, the same theorem also contains the analogous characterization
of the solid core. In Section 4 we show how these results can be used also in the
case of the variant

v(r) = exp
(

− a/(1− r2)b
)

(1.3)

of the weight. The general characterization of solid cores for weights satisfying
condition (b) is given in Theorem 2.4. As explained above, further interesting related
results are presented in Section 5.

Bennet, Stegenga and Timoney in their paper [2] determined the solid hull and
the solid core of the weighted spaces H∞

v (D) in the case the weight v is doubling.
Exponential weights v(r) = exp(−a/(1 − r)b) with a, b > 0 are not doubling. Not
much seems to be known about multipliers and solid hulls of weighted spaces of
analytic functions on the unit disc in the case of exponential weights. Hadamard
multipliers of certain weighted space H1

a(α), α > 0, were completely described by
Dostanić in [10] (see also Chapter 13 in [13]). Other aspects of weighted spaces
of analytic functions on the unit disc with exponential weights, like integration
operators or Bergman projections, have been investigated recently by Constantin,
Dostanić, Pau, Pavlović, Peláez and Rättyä, among others; see [9], [11], [17], [18]
and [20]. The solid hull and multipliers on spaces of analytic functions on the disc
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has been investigated by many authors. In addition to [2], we mention for example
[1], [5], [6], [12], the books [13] and [19] and the many references therein.

Spaces of type H∞
v (C) and H∞

v (D) appear in the study of growth conditions of
analytic functions and have been investigated in various articles since the work of
Shields and Williams, see e.g. [3],[4], [15], [16], [21] and the references therein.

In the case of a ”standard” weight vα(z)) = (1 − |z|2)α, where α ≥ 0, we denote
for every H∞

α := H∞
α (D) := H∞

vα. The solid hull S
(

H∞
α

)

of H∞
α is known: it equals

S
(

H∞
α

)

=
{

(bm)
∞
m=0 : sup

n∈N0

(

2n+1−1
∑

m=2n

|bm|2(m+ 1)−2α
)1/2

< ∞
}

.

This is Theorem 8.2.1 of [13]. Moreover, the solid core s
(

H∞
α

)

can also be charac-
terized, see Theorem 8.3.4 of [13]:

s
(

H∞
α

)

=
{

(bm)
∞
m=0 : sup

n∈N0

(

2n+1−1
∑

m=2n

|bm|(m+ 1)−α
)

< ∞
}

.

2. Solid hull and core for weights with condition (b).

In this section we consider the quite large class of weights on D or C satisfying
the regularity condition (b). For such a weight, the solid hull was found in the paper
[8], and we determine the solid core here.

Definition 2.1. Let rn ∈]0, R[ be a global maximum point of the function rmv(r)
for any m > 0. The weight v satisfies the condition (b) if there exist numbers b > 2,
K > b and 0 < m1 < m2 < . . . with limn→∞mn = ∞ such that

b ≤
(

rmn

rmn+1

)mn v(rmn
)

v(rmn+1)
,

(

rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn
)

≤ K.(2.1)

Remark 2.2. (1) The second named author introduced the following condition
(B) on the weight v in [16]:

∀b1 > 0 ∃b2 > 1 ∃c > 0 ∀m,n :
(

rm
rn

)m
v(rm)

v(rn)
≤ b1 and |m− n| ≥ c ⇒

(

rn
rm

)n
v(rn)

v(rm)
≤ b2.

It was observed in Remark 2.7 of [7] that if a weight v satisfies condition (B), then
it also satisfies condition (b) for some b > 2, K > b and 0 < m1 < m2 < . . ..

(2) As a consequence of this observation and Section 2 in [16], the following weights
satisfy condition (b): For R = 1,
(i) v(r) = (1− r)α with α > 0, which are the standard weights on the disc, and
(ii) v(r) = exp(−(1− r)−1).
More examples can be seen in Example 3.3. For R = +∞,
(i) v(r) = exp(−rp) with p > 0,
(ii) v(r) = exp(− exp r), and
(iii) v(r) = exp

(

− (log+ r)p
)

, where p ≥ 2 and log+ r = max(log r, 0).

We recall the result [8], Theorem 2.1 for D, or [7], Theorem 2.5 for entire functions:

Theorem 2.3. If the weight v satisfies (b), we have

S(H∞
v ) =

{

(bm)
∞
m=0 : sup

n
v(rmn

)
(

∑

mn<m≤mn+1

|bm|2r2mmn

)1/2

< ∞
}

.(2.2)
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Now let us prove the following statement.

Theorem 2.4. For a weight v satisfying (b), we have

s(H∞
v ) =

{

(bm)
∞
m=0 : sup

n
v(rmn

)
(

∑

mn<m≤mn+1

|bm|rmmn

)

< ∞
}

.(2.3)

Proof. For a holomorphic function f with f(z) =
∑∞

n=0 anz
n, we let hf denote

the function defined by

hf (z) =
∞
∑

n=0

|an|zn for all z.

It is easy to see that the solid core s(H∞
v ) of H∞

v coincides with the set

{f : f holomorphic, hf ∈ H∞
v }.

Now, let f ∈ H∞
v , f(z) =

∑∞
n=0 bnz

n. If

hf(z) =
∞
∑

n=0

|bn|zn,(2.4)

belongs to H∞
v , it is easily seen that

‖hf‖v = sup
0<r<R

v(r)
∞
∑

n=0

|bn|rn.

This implies

sup
n

v(rmn
)
(

∑

mn<m≤mn+1

|bm|rmmn

)

≤ ‖hf‖v.(2.5)

Thus the solid core is contained in the right-hand side of (2.3). Now we proceed
with the reverse inclusion.

According to [16], Proposition 5.2., there are numbers βm ∈ [0, 1] and a constant
c > 0 (independent of f) such that

‖hf‖v ≤ c sup
n

sup
rmn−1≤|z|≤rmn+1

v(z)
∣

∣

∣

∑

mn−1<m≤mn+1

βm|bm|zm
∣

∣

∣
.

This implies

‖hf‖v ≤ c sup
n

sup
rmn−1≤r≤rmn+1

v(r)
(

∑

mn−1<m≤mn+1

|bm|rm
)

.(2.6)

For rmn−1 ≤ r ≤ rmn+1 we have

v(r)
∑

mn−1<m≤mn

|bm|rm

=
v(r)

v(rmn−1)
v(rmn−1)

∑

mn−1<m≤mn

|bm|rmmn−1

( r

rmn−1

)m

≤
( r

rmn−1

)mn v(r)

v(rmn−1)
v(rmn−1)

∑

mn−1<m≤mn

|bm|rmmn−1

≤
( rmn

rmn−1

)mn v(rmn
)

v(rmn−1)
v(rmn−1)

∑

mn−1<m≤mn

|bm|rmmn−1
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≤ Kv(rmn−1)
∑

mn−1<m≤mn

|bm|rmmn−1
.(2.7)

Here we used that rmn
is a global maximum point for rmnv(r).

Similarly, for rmn−1 ≤ r ≤ rmn
we have

v(r)
∑

mn<m≤mn+1

|bm|rm

=
v(r)

v(rmn
)
v(rmn

)
∑

mn<m≤mn+1

|bm|rmmn

( r

rmn

)m

≤
( r

rmn

)mn v(r)

v(rmn
)
v(rmn

)
∑

mn<m≤mn+1

|bm|rmmn

≤ v(rmn
)

∑

mn<m≤mn+1

|bm|rmmn
.(2.8)

Finally, if rmn
≤ r ≤ rmn+1 then

v(r)
∑

mn<m≤mn+1

|bm|rm

=
v(r)

v(rmn
)
v(rmn

)
∑

mn<m≤mn+1

|bm|rmmn

( r

rmn

)m

≤
( r

rmn

)mn+1 v(r)

v(rmn
)
v(rmn

)
∑

mn<m≤mn+1

|bm|rmmn

≤
(rmn+1

rmn

)mn+1 v(rmm+1)

v(rmn
)
v(rmn

)
∑

mn<m≤mn+1

|bm|rmmn

≤ Kv(rmn
)

∑

mn<m≤mn+1

|bm|rmmn
.(2.9)

Hence, according to (2.6), with (2.7), (2.8) and (2.9),

‖hf‖v ≤ c2K sup
n

v(rmn
)
(

∑

mn<m≤mn+1

|bm|rmmn

)

.

This together with (2.1) yields (2.3). �

3. A weight of the form w(r) exp(−a/(1− r)b).

In this section we only deal with weights defined on the unit disc D. Our purpose
is to improve the results of [8] by calculating the solid hulls and cores for a larger
class of concrete examples, namely, for weights of the form

v(z) = w(r) exp
(

− a

(1− r)b

)

, z ∈ D,(3.1)

where a, b > 0 are given constants and w : [0, 1[→]0,∞[ is a differentiable function,
extended to D by w(z) = w(|z|). We remark the examples in [8] only contain the
case b ≤ 2, w ≡ 1.

We will prove
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Theorem 3.1. Let w′(r)/w(r) be a decreasing function and assume that there are
n0 > 0 and α ∈]0, 1 + b/2[ such that

(1− r)α
w′(r)

w(r)
is bounded on [0, 1[(3.2)

1

e
≤ w(1− ( a

bn2 )
1/b)

w(1− ( a
b(n+1)2

)1/b)
≤ e for n ≥ n0.(3.3)

Then, the solid hull of H∞
v is equal to

{

(bm)
∞
m=0 : sup

n
w
(

1−
( a

bn2

)1/b)

e−bn2

(

∑

m∈N

mn<m≤mn+1

|bm|2
(

1−
( a

bn2

)1/b)2m
)1/2

< ∞
}

,

where

mn = b

(

b

a

)1/b

n2+2/b − bn2 −
(

1−
( a

bn2

)1/b )w′(1−
(

a
bn2

)1/b
)

w(1−
(

a
bn2

)1/b
)

(which reduces to mn = b1+1/ba−1/bn2+2/b − bn2, if w ≡ 1).
Moreover, the solid core of H∞

v is equal to
{

(bm)
∞
m=0 : sup

n
w
(

1−
( a

bn2

)1/b)

e−bn2
∑

m∈N

mn<m≤mn+1

|bm|
(

1−
( a

bn2

)1/b)m

< ∞
}

.

We postpone the proof a bit and consider some remarks and examples. Let us
start with the following quite trivial observation which, however, is very useful to
simplify the presentations of the solid hulls and cores.

Lemma 3.2. Let 1 ≤ p < ∞, and let (Kn)n∈N0, (K̃n)n∈N0, (Lm)n∈N0 and (L̃m)n∈N0

be sequences of positive numbers. Assume that there are given two increasing, un-
bounded sequences (mn)n∈N0 and (m̃n)n∈N0 of positive real numbers such that

mn < m̃n < mn+1 ∀ n ∈ N0(3.4)

and such that for some constants C > c > 0, for all n ∈ N,

cKp
nLm ≤ K̃p

n−1L̃m ≤ CKp
nLm ∀mwith mn < m ≤ m̃n

cKp
nLm ≤ K̃p

nL̃m ≤ CKp
nLm ∀mwith m̃n < m ≤ mn+1.(3.5)

Then, we have
{

(bm)
∞
m=0 : sup

n∈N0

Kn

(

∑

mn<m≤mn+1

|bm|pLm

)1/p

< ∞
}

=
{

(bm)
∞
m=0 : sup

n∈N0

K̃n

(

∑

m̃n<m≤m̃n+1

|bm|pL̃m

)1/p

< ∞
}

(3.6)

Proof. We have, by (3.5),

sup
n∈N0

(

∑

mn<m≤mn+1

Kp
n|bm|pLm

)1/p

≤ sup
n∈N0

(

(

∑

mn<m≤m̃n

Kp
n|bm|pLm

)1/p

+
(

∑

m̃n<m≤mn+1

Kp
n|bm|pLm

)1/p
)
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≤ 1

c
sup
n∈N0

(

(

∑

mn<m≤m̃n

K̃p
n−1|bm|pL̃m

)1/p

+
(

∑

m̃n<m≤mn+1

K̃p
n|bm|pL̃m

)1/p
)

≤ 2

c
sup
n∈N0

(

∑

m̃n<m≤m̃n+1

K̃p
n|bm|pL̃m

)1/p

.

The converse inequality can be shown in the same way, using the other inequalities
in (3.5). �

It is obvious that the representations of the solid hull and core of a weighted space
are by no means unique: the sequence mn and even the coefficients and exponents
can be chosen in many ways. We discuss this in the first example.

Example 3.3. (i): a = b = 1, w = 1. Here mn = n4 − n2. However, in [8] the
representation of this solid hull was found with the more simple numbers m̃n = n4

instead:

S(H∞
v ) =

{

(bm)
∞
m=0 : sup

n
e−n2

(

(n+1)4
∑

m=n4+1

|bm|2
(

1− n−2
)2m

)1/2

< ∞
}

,

s(H∞
v ) =

{

(bm)
∞
m=0 : sup

n
e−n2

(n+1)4
∑

m=n4+1

|bm|
(

1− n−2
)m

< ∞
}

.

Let us verify that the condition (3.5) of Lemma 3.2 is satisfied with p = 2; the proof
for the case p = 1 follows by taking square roots. We may obviously assume n ≥ 2.
For m with mn < m ≤ m̃n, i.e.,

n4 − n2 < m ≤ n4,(3.7)

we have Kn = e−n2
= K̃n, Lm = (1− n−2)2m and L̃m = (1− (n− 1)−2)2m, hence,

K2
nLm = e−2n2

(

1− 1

n2

)2m

≥ e−2n2
(

1− 1

n2

)n22n2

≥ Ce−2n2

e−2n2

= Ce−4n2

,(3.8)

K2
nLm ≤ e−2n2

(

1− 1

n2

)2n4−2n2

≤ e−2n2
(

1− 1

n2

)n22n2(

1− 1

n2

)−2n2

≤ Ce−4n2
(

1− 1

n2

)−2n2

≤ C ′e−4n2

,(3.9)

Furthermore, we write

n4 = (n− 1)4 + 4(n− 1)3 + ρ(n) = (n− 1)2(n− 1)2 + 4(n− 1)3 + ρ(n),

where ρ(n) = 6n2−8n+3. Using the trivial estimates ρ(n)−n2 ≥ −60(n−1)2 and
ρ(n) ≤ 50(n− 1)2 for all n ≥ 2, we obtain

K̃2
n−1L̃m = e−2(n−1)2

(

1− 1

(n− 1)2

)2m

≤ e−2(n−1)2
(

1− 1

(n− 1)2

)2n4−2n2

= e−2(n−1)2
(

1− 1

(n− 1)2

)2(n−1)2(n−1)2+8(n−1)3+2(ρ(n)−n2)
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≤ e−2(n−1)2
(

(

1− 1

(n− 1)2

)(n−1)2
)2(n−1)2+8(n−1)−120

≤ Ce−4(n−1)2e−8(n−1) = Ce−4n2+8n−4e−8(n−1) ≤ C ′e−4n2

.(3.10)

Similarly,

K̃2
n−1L̃m = e−2(n−1)2

(

1− 1

(n− 1)2

)2m

≥ e−2(n−1)2
(

1− 1

(n− 1)2

)2n4

= e−2(n−1)2
(

1− 1

(n− 1)2

)2(n−1)2(n−1)2+8(n−1)3+2ρ(n)

≥ e−2(n−1)2
(

(

1− 1

(n− 1)2

)(n−1)2
)2(n−1)2+8(n−1)+100

≥ Ce−4(n−1)2e−8(n−1) ≥ C ′e−4n2

.(3.11)

We thus see that the first pair of inequalities (3.5) holds. The second one is trivial
since for m̃n < m ≤ mn+1, i.e.,

n4 < m ≤ (n + 1)4 − (n+ 1)2,

we have Lm = (1− n−2)2m = L̃m.

(ii): a = 1, b = 2, w(r) = 1− r. Here

mn = 23/2n3 − 2n2 + 21/2n− 1

and

S(H∞
v ) =

{

(bm)
∞
m=0 : sup

n

e−2n2

√
2n

(

∑

m∈N

mn<m≤mn+1

|bm|2
(

1− (
√
2n)−1

)2m
)1/2

< ∞
}

,

s(H∞
v ) =

{

(bm)
∞
m=0 : sup

n

e−2n2

√
2n

∑

m∈N

mn<m≤mn+1

|bm|
(

1− (
√
2n)−1

)m
< ∞

}

.

(iii): a = b = 1, w(r) = (1− log(1− r))−1. Here, a direct calculation yields

mn = n4 − n2 +
n2 − 1

1 + log(n2)
,(3.12)

but we can again use Lemma 3.2 with m̃n = n4, Kn = e−n2(

1 + log(n2)
)−1

= K̃n,

Lm = (1 − n−2)2m and L̃m = (1 − (n − 1)−2)2m, since the calculation (3.8)–(3.11)

shows that both the expressions K2
nLm and K̃2

n−1Lm are proportional to

e−4n2

(

1 + log(n2)
)2(3.13)

for all m with mn < m ≤ m̃n. (To see this, we observe that in comparison with

(3.8)–(3.11), K̃n only has the new factor
(

1 + log(n2)
)−1

=: gn for which gn and
gn−1 are proportional, and that mn of (3.12) satisfies n4 − n2 < mn < n4 so that m
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in (3.13) falls into the interval considered also in (3.8)–(3.11)). Moreover, of course
K2

nLm = K̃2
nLm for all m with m̃n < m ≤ mn+1. Thus, we have

S(H∞
v ) =

{

(bm)
∞
m=0 : sup

n

e−n2

1 + log(n2)

(

(n+1)4
∑

m=n4+1

|bm|2
(

1− n−2
)2m

)1/2

< ∞
}

,

s(H∞
v ) =

{

(bm)
∞
m=0 : sup

n

e−n2

1 + log(n2)

(n+1)4
∑

m=n4+1

|bm|
(

1− n−2
)m

< ∞
}

.

(iv): a = b = 1, w(r) = exp(− log2(1 − r)). Here we have w′(r)/w(r) = 2(1 −
r)−1 log(1 − r). It is easily seen that (3.2) and (3.3) are satisfied. We obtain mn =
n4 − n2 + 4(n2 − 1) log(n) and

S(H∞
v ) =

{

(bm)
∞
m=0 : sup

n
exp(−4 log2(n)− n2)

(

∑

m∈N

mn<m≤mn+1

|bm|2
(

1− n−2
)2m

)1/2

< ∞
}

,

s(H∞
v ) =

{

(bm)
∞
m=0 : sup

n
exp(−4 log2(n)− n2)

∑

m∈N

mn<m≤mn+1

|bm|
(

1− n−2
)m

< ∞
}

.

Remark 3.4. Fix m > 1 and put

f(r) = rmv(r) = rmw(r) exp
(

− a

(1− r)b

)

.

Due to the continuity of f and the fact that f(0) = f(1) = 0 ≤ f(r), r ∈]0, 1[, the
function f has a global maximum on ]0, 1[. It is easily seen that r ∈]0, 1[ is a zero
of f ′ if and only if

m = ab
r

(1 − r)b+1
− r

w′(r)

w(r)
.(3.14)

Since −rw′(r)/w(r) is assumed to be increasing, the right-hand side of (3.14) is
strictly increasing in r. Hence (3.14) has exactly one solution, denoted by rm, which
is the unique global maximum of f . In particular, if

M = abm1+1/b
(

1−
( 1

m

)1/b)

−
(

1−
( 1

m

)1/b)w
′
(

1−
(

1
m

)1/b)

w
(

1−
(

1
m

)1/b)
(3.15)

for some m > 1, then

rM = 1−
( 1

m

)1/b

.(3.16)

Proof of Theorem 3.1. 1◦. We first consider that case b ≥ 1.
a) Some estimates. If 1 ≤ x ≤ y and 0 < β < 1 then the mean value theorem

yields

yβ − xβ ≤ βxβ−1(y − x) and xβ − yβ ≤ βyβ−1(x− y).(3.17)

Moreover we use

1 + x ≤ ex for all x ∈ R.(3.18)
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Now let 1 < m ≤ k and define M as in (3.15) and K in the same way with k
replacing m. Then

rM = 1− 1

m1/b
and rK = 1− 1

k1/b

and we can rewrite (3.15) as

M = abm1+1/brM − rM
w′(rM)

w(rM)
, K = abk1+1/brK − rK

w′(rK)

w(rK)
.(3.19)

Then, with (3.17), (3.18) we obtain

rK
rM

=
1−

(

1
k

)1/b

1−
(

1
m

)1/b
= 1 +

(

1
m

)1/b −
(

1
k

)1/b

1−
(

1
m

)1/b

≤ exp

(

1

b

(1

k

)1/b−1( 1

m
− 1

k

) 1

rM

)

= exp

(

1

b

k −m

k1/bm

1

rM

)

(3.20)

and

rM
rK

=
1−

(

1
m

)1/b

1−
(

1
k

)1/b
= 1−

(

1
m

)1/b −
(

1
k

)1/b

1−
(

1
k

)1/b

≤ exp

(

− 1

b

k −m

m1+1/b

1

rK

)

.(3.21)

Now we write
( rK
rM

)K v(rK)

v(rM)
= exp

(

K log
( rK
rM

)

)

w(rK)

w(rM)
exp(−a(k −m))

which in view of (3.19), (3.20) is bounded by

w(rK)

w(rM)
exp

(

a
k(k −m)

m

rK
rM

− 1

b

rK
rM

w′(rK)

w(rM)

k −m

k1/bm
− a(k −m)

)

=
w(rK)

w(rM)
exp

(

− a(k −m) + a

(

k − k1−1/b

m−m1−1/b

)

(k −m) + c1(k,m)

=
w(rK)

w(rM)
exp

(

a
(k −m)2

m−m1−1/b

(

1− k1−1/b −m1−1/b

k −m

)

+ c1(k,m)

)

(3.22)

where

c1(k,m) = −1

b

rK
rM

w′(rK)

w(rK)
(1− rK)

k −m

m
.(3.23)

Using (3.21) instead of (3.20) we get with the help of (3.17)
(rM
rK

)K v(rM)

v(rK)

≤ w(rM)

w(rK)
exp

(

a(k −m)− a(k −m)

(

k

m

)1/b

+ c2(k,m)

)

=
w(rM)

w(rK)
exp

(

a(k −m)
(m1/b − k1/b

m1/b

)

+ c2(k,m)

)

≤ w(rM)

w(rK)
exp

(

−a

b
(k −m)2

1

k1−1/bm1/b
+ c2(k,m)

)

(3.24)
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where

c2(k,m) =
1

b

(

1

m

)1/b
w′(rK)

w(rK)

k −m

k
.(3.25)

Similarly, (3.20) implies
( rK
rM

)M v(rK)

v(rM)

≤ w(rK)

w(rM)
exp

(

−a(k −m) + a
(m

k

)1/b

(k −m) + c3(k,m)

)

=
w(rK)

w(rM)
exp

(

−a(k −m)
(k1/b −m1/b

k1/b

)

+ c3(k,m)

)

≤ w(rK)

w(rM)
exp

(

−a

b
(k −m)2

1

k
+ c3(k,m)

)

(3.26)

with

c3(k,m) = −1

b

w′(rM)

w(rM)

k −m

m
(1− rK).(3.27)

Finally, (3.21) implies
(rM
rK

)M v(rM)

v(rK)

=
w(rM)

w(rK)
exp

(

a(k −m)− a
m

k
(k −m)

rM
rK

+ c4(k,m)

)

=
w(rM)

w(rK)
exp

(

a
(k −m)2

k − k1−1/b

(

1− k1−1/b −m1−1/b

k −m

)

+ c4(k,m)

)

(3.28)

with

c4(k,m) =
1

b

rM
rK

w′(rM)

w(rM)

k −m

m1/bk
.(3.29)

b) The parameters mn. Now put for every n ∈ N large enough

jn =
b

a
n2(3.30)

and in the above calculations choose

m = jn , k = jn+1.

We denote the numbers in (3.19) by

mn = M , mn+1 = K

so that the following relations hold, by (3.16):

rmn
= 1− 1

j
1/b
n

= 1−
( a

bn2

)1/b

, rmn+1 = 1−
(

a

b(n + 1)2

)1/b

.

c) Final estimates. With (3.23) we obtain

c1(jn+1, jn) = −1

b

(rmn+1

rmn

)w′(rmn+1)

w(rmn+1)
(1− rmn+1)

2n + 1

n2
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By assumption (3.2) there is d > 0 and 0 < α < 1 + b/2 with

w′(rmn+1)

w(rmn+1)
≤ d

(1− rmn+1)
α
.

Hence

|c1(jn+1, jn)| ≤
d

b

(rmn+1

rmn

)

(1− rmn+1)
1−α

(2n+ 1

n2

)

=
d

b

(rmn+1

rmn

)(a

b

)(1−α)/b

(n+ 1)2(α−1)/b
(2n+ 1

n2

)

.

Since 2(α− 1)/b < 1 we obtain

lim
n→∞

c1(jn+1, jn) = 0

By assumption (3.3) we have w(rmn+1)/w(rmn
) ≤ e. So, using (3.22) and (3.30) we

see that there is a constant K0 with
(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn
)

≤ K0 for all n.(3.31)

This follows from the fact that, for k = jn+1 and m = jn, the expression in (3.22),

(k −m)2

m−m1/b

1− k1−1/b −m1−1/b

k −m
,

remains uniformly bounded for all n.
To obtain a lower estimate of

(

rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn
)

consider (3.24) and (3.25). Exactly as before we see that

lim
n→∞

c2(jn+1, jn) = 0(3.32)

For k = jn+1 and m = jn we obtain
(a

b

) (k −m)2

k1−1/bm1/b
=

(2n+ 1)2

(n+ 1)2−2/bn2/b

which tends to 4 as n → ∞. Together with (3.32) we find n0 such that

−
(a

b

)(jn+1 − jn)
2

j
1−1/b
n+1 j

1/b
n

+ c2(jn+1, jn) ≤ −2 for n ≥ n0.

Since by assumption w(rmn
)/w(rmn+1) ≤ e the estimate (3.24) implies
( rmn

rmn+1

)mn+1 v(rmn
)

v(rmn+1)
≤ 1

e
,

hence

2 < e ≤
(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn
)

for n ≥ n0.(3.33)

Repeating the preceding arguments using (3.26), (3.27), (3.28), (3.29) instead of
(3.22), (3.23), (3.24), (3.25) we see that

lim
n→∞

c3(jn+1, jn) = lim
n→∞

c4(jn+1, jn) = 0
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and there are n1, N1 with

2 < e ≤
( rmn

rmn+1

)mn v(rmn
)

v(rmn+1)
≤ K1 for n ≥ n1.(3.34)

Then the assertion of the theorem in the case b ≥ 1 follows from (3.31), (3.33),
(3.34) and [8], Theorem 2.1.

2◦. We prove Theorem 3.1 in the case 0 < b < 1. Here we use, for γ > 1,
0 ≤ x ≤ y,

yγ − xγ ≤ γyγ−1(y − x) and xγ − yγ ≤ γxγ−1(x− y).

We obtain, instead of (3.20) and (3.20),

1−
(

1
k

)1/b

1−
(

1
m

)1/b
= 1 +

(

1
m

)1/b −
(

1
k

)1/b

1−
(

1
m

)1/b

≤ exp

(

1

b

(

1

m

)1/b
k −m

(

1−
(

1
m

)1/b
)

k

)

and

1−
(

1
m

)1/b

1−
(

1
k

)1/b
= 1−

(

1
m

)1/b −
(

1
k

)1/b

1−
(

1
k

)1/b

≤ exp

(

− 1

b

(1

k

)1/b k −m
(

1−
(

1
k

)1/b
)

m

)

.

Then the theorem follows by repeating the same arguments as in the preceding
section. �

4. A weight of the form v2(z) = exp(−a/(1− r2)b).

As a consequence of the preceding discussion we consider here the weight

v2(z) = exp
( −a

(1− r2)b

)

for given constants a, b > 0. We compare v2 with the weight v1(z) = exp(−a/(1−r)b)
of the preceding section (with w ≡ 1).

Put

A =
{

f ∈ H∞
v2

: f(z) =
∞
∑

k=0

a2kz
2k for some a2k

}

and

B = z · A =
{

g ∈ H∞
v2 : g(z) =

∞
∑

k=0

a2k+1z
2k+1 for some a2k+1

}

.

Moreover, let T1, T2 : H
∞
v1

→ H∞
v2

be the maps with

(T1h)(z) = h(z2) and (T2h)(z) = zh(z2), h ∈ H∞
v1 , z ∈ D.

Proposition 4.1. The operator T1 maps H∞
v1 isometrically onto A. The map T2

is a contractive operator from H∞
v1 onto B. Moreover, we have

H∞
v2

= A⊕ B.



14 JOSÉ BONET, WOLFGANG LUSKY, AND JARI TASKINEN

Proof. The map T1 is certainly an isometry into A and T2 is a contractive operator
into B. To show the surjectivity, let f ∈ B, say

f(z) =
∞
∑

k=0

a2k+1z
2k+1.(4.1)

Then put h(z) =
∑∞

k=0 a2k+1z
k. In view of (4.1), since the series representing f(z)/z

converges uniformly on compact subsets of D, we have

c := sup
|z|≤1/2

|f(z)|
|z| < ∞.

Hence,

‖h‖v1 = sup
|z|<1

|h(z)|v1(z) = sup
|z|<1

|h(z2)|v1(z2) = sup
|z|<1

|f(z)|
|z| v2(z)

= max

(

sup
|z|≤1/2

|f(z)|
|z| v2(z), sup

1/2<|z|<1

|f(z)|
|z| v2(z)

)

(4.2)

We obtain h ∈ H∞
v1 and clearly T2h = f . This shows that T2 maps H∞

v1 onto B.
Similarly we see that T1 maps H∞

v1
onto A.

Now consider the operator P with (Pf)(z) = (f(z) + f(−z))/2 for f ∈ H∞
v2 and

z ∈ D. P is a contractive projection fromH∞
v2 onto A. We clearly get (id−P )(H∞

v2 ) =
B. Hence H∞

v2
= A⊕B. �

Now we take the numbers mn of Theorem 3.1 for w ≡ 1, i.e.

mn =
b1+1/b

a1/b
n2+2/b − bn2.

Let [s] denote the largest integer which is smaller than or equal to s.

Theorem 4.2. The solid hull of H∞
v2

is equal to
{

(bm) : sup
n

e−bn2
(

∑

m∈N

2[mn]+1<m≤2[mn+1]+1

|bm|2
(

1−
( a

bn2

)1/b)2[m/2] )1/2

< ∞
}

.

Moreover, the solid core of H∞
v2 is equal to

{

(bm) : sup
n

e−bn2
∑

m∈N

2[mn]+1<m≤2[mn+1]+1

|bm|
(

1−
( a

bn2

)1/b)[m/2]

< ∞
}

.

Proof. Using Proposition 4.1 and Theorem 3.1 we see that (bm) ∈ S(H∞
v2 ) if and

only if

sup
n

e−bn2
(

∑

m∈N

mn<m≤mn+1

|b2m|2
(

1−
( a

bn2

)1/b)2m)1/2

< ∞(4.3)

and

sup
n

e−bn2
(

∑

m∈N

mn<m≤mn+1

|b2m+1|2
(

1−
( a

bn2

)1/b)2m)1/2

< ∞.(4.4)
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If m ∈ N and mn < m ≤ mn+1 then [mn] + 1 ≤ m ≤ [mn+1]. We obtain 2[mn] + 2 ≤
2m ≤ 2[mn+1] and 2[mn] + 3 ≤ 2m + 1 ≤ 2[mn+1] + 1. Hence (4.3) and (4.4) are
equivalent to

sup
n

e−bn2
(

∑

m∈N

2[mn]+1<m≤2[mn+1]+1

|bm|2
(

1−
( a

bn2

)1/b)2[m/2] )1/2

< ∞.

The proof for the solid core is the same. �

5. Maximal solid cores and minimal solid hulls.

In this section we prove some general results on the relations of Schauder bases
and solid hulls and cores for H∞

v -spaces. We refer the reader to [14] for terminology
about bases in Banach spaces. If the monomials form a Schauder basic sequence in
H∞

v , then obviously the condition of being solid is related with the property of {zm}
being an unconditional basis. Another, related fact will be proven in Theorem 5.2.
We also show the unexpected fact that for some special weights, H∞

v is solid.

Proposition 5.1. We have S(H∞
v ) = H∞

v if and only if s(H∞
v ) = H∞

v .

Proof. If S(H∞
v ) = H∞

v then hf ∈ H∞
v (see (2.4)) for all f ∈ H∞

v . Hence
s(H∞

v ) = H∞
v .

Now assume s(H∞
v ) = H∞

v and take g ∈ S(H∞
v ) with g(z) =

∑∞
k=0 bkz

k. There
is f ∈ H∞

v with f(z) =
∑∞

k=0 akz
k and |bk| ≤ |ak| for all k. Since by assumption

hf ∈ H∞
v we obtain

‖g‖v ≤ sup
r

v(r)

∞
∑

k=0

|ak|rk = ‖hf‖v < ∞

which implies g ∈ H∞
v . Hence S(H∞

v ) = H∞
v . �

Example. Consider the weight v(r) = exp(− log2(r)) on the complex plane C.
According to [15], Theorem 2.5., there is a constant d > 0 such that for every
f ∈ H∞

v with f(z) =
∑∞

k=0 akz
k we have

sup
k
(|ak| exp(k2/4)) ≤ ‖f‖v ≤ d sup

k
(|ak| exp(k2/4)).

Then clearly hf ∈ H∞
v . Indeed, let (hf )n be the partial sums of hf , i.e. (hf )n(z) =

∑n
k=0 |ak|zk. Then (hf)n ∈ H∞

v , (hf)n → hf pointwise on C and

‖hf‖v ≤ sup
n

‖(hf)n‖v ≤ d sup
k
(|ak| exp(k2/4)) ≤ d‖f‖v < ∞.

Hence S(H∞
v ) = H∞

v = s(H∞
v ).

Recall that we denote by H0
v the closure of the polynomials in H∞

v . We put
Λ = {zk : k = 0, 1, 2, . . .}.
Theorem 5.2. If S(H∞

v ) = H∞
v then Λ is a Schauder basis of H0

v .

We prove Theorem 5.2 at the end of this section. At first we state

Corollary 5.3. In the case of analytic functions on the disc D, one always has
S(H∞

v (D)) 6= H∞
v (D) and s(H∞

v (D)) 6= H∞
v (D).
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Proof. According to [15], Theorem 2.2., Λ is never a basis for H0
v (D). This proves

Corollary 5.3 in view of Theorem 5.2 �

For the proof of Theorem 5.2 we need two lemmas.

Lemma 5.4. (i) Fix m ∈ N and ǫ > 0. Then there is r0 < R such that, for every
f with f(z) =

∑m
k=0 akz

k, we have

sup
r0≤|z|<R

|f(z)|v(z) ≤ ǫ‖f‖v.

(ii) Fix 0 ≤ r1 < R and ǫ > 0. Then there is n ∈ N such that, for any g ∈ H∞
v with

g(z) =
∑∞

k=n akz
k, we have

sup
0≤|z|≤r1

|g(z)|v(z) ≤ ǫ‖g‖v.

Proof. (i) Fix r < R. Then we clearly have

|ak| ≤
‖f‖v
rkv(r)

for all k = 0, 1, . . . , m.

We obtain

|f(z)|v(z) ≤
m
∑

k=0

( |z|
r

)k v(|z|)
v(r)

‖f‖v.

Find r0 > 0 such that
( |z|
r

)k v(|z|)
v(r)

≤ ǫ

m+ 1

whenever |z| > r0. This is possible since, by assumption, lim|z|→R |z|kv(|z|) = 0 for
all k. This implies (i).

(ii) Fix r > r1 and consider g(z) =
∑∞

k=n akz
k. We have |ak| ≤ ‖g‖v/(rkv(r)) for all

k. This implies, if |z| ≤ r1,

|g(z)|v(z) ≤
∞
∑

k=n

|z|kv(|z|)
rkv(r)

‖g‖v ≤
∞
∑

k=n

(r1
r

)k v(0)

v(r)
‖g‖v.

We find n so large that
∞
∑

k=n

(r1
r

)k v(0)

v(r)
≤ ǫ

which proves the lemma. �

Lemma 5.5. Let f =
∑∞

j=0 ajz
j be an analytic function on the disc, let m1 < m2 <

. . . be indices and fn(z) =
∑mn+1

j=mn+1 ajz
j. Then there is a subsequence (fnk

)∞k=0 such
that

sup
k∈N

‖fnk
‖v ≤ 2‖

∞
∑

k=0

fnk
‖v.(5.1)

We remark that for any subsequence (fnk
)∞k=0, the sum

∑

k fnk
on the right-hand

side of (5.1) is the Taylor series of an analytic function on the disc, so the sum
converges at least uniformly on compact subsets of D; if the sum does not belong to
H∞

v , its norm is infinity and the inequality (5.1) becomes a triviality.
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Proof. Use Lemma 5.4 and induction to find a subsequence (fnk
) and radii

r1 < r2 < . . . such that |fnk
(z)|v(|z|) ≤ 3−k‖fnk

‖v whenever |z| ≤ rk or |z| ≥ rk+1.
Hence

‖fnk
‖v = sup

rk≤|z|≤rk+1

|fnk
(z)|v(|z|).(5.2)

By the remark above, we may assume that
∑

k fnk
∈ H∞

v . Fix j. If rj ≤ |z| ≤ rj+1

we obtain

‖
∑

k

fnk
‖v ≥ |

∑

k

fnk
(z)|v(z)

≥ |fnj
(z)|v(z)−

∑

k 6=j

|fnk
(z)|v(z)

≥ |fnj
(z)|v(z)−

∑

k 6=j

1

3k
‖fnk

‖v

≥ |fnj
(z)|v(z)− 1

2
sup
k

‖fnk
‖v.

In view of (5.2) this implies

‖
∑

k

fnk
‖v ≥ ‖fnj

‖v −
1

2
sup
k

‖fnk
‖v for all j

and hence

‖
∑

k

fnk
‖v ≥

1

2
sup
k

‖fnk
‖v

which proves the lemma. �

Proof of Theorem 5.2. For any subset N of N, let TN be the operator with
TN (

∑∞
k=0 akz

k) =
∑

k∈N akz
k. If S(H∞

v ) = H∞
v = s(H∞

v ) then TN(H
∞
v ) ⊂ H∞

v .
The closed graph theorem implies that TN is bounded.

Now let Pn be the Dirichlet projections, i.e. Pn(
∑∞

k=0 akz
k) =

∑n
k=0 akz

k. Assume
that Λ is not a basis forH0

v . Then the Pn are not uniformly bounded. By the uniform
boundedness theorem we obtain a function f ∈ H0

v such that supn ‖Pn(f)‖v = ∞.
Hence we can find a subsequence Pnm

with limm→∞ ‖(Pnm+1 −Pnm
)(f)‖v = ∞. Put

fm = (Pnm+1 −Pnm
)(f). Then,

∑

m fm ∈ H∞
v , since this sum is of the form TNf for

some subset N of N. We apply Lemma 5.5 to find a subsequence fmk
such that

sup
k

‖fmk
‖v ≤ 2‖

∑

k

fmk
‖v.

The left hand side of this inequality is infinite while the function on the right-hand
side is again of the form TÑf for some Ñ ⊂ N and thus has finite norm as an element
H∞

v . So we arrive at a contradiction. Therefore Λ is a basis of H0
v . �
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