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Abstract The FM index (Ferragina & Manzini, J. ACM, 2005) is a widely-used
compressed data structure that stores a string T in a compressed form and also
supports fast pattern matching queries. In this paper, we describe new FM-index
variants that combine nice theoretical properties, simple implementation and improved
practical performance. Our main theoretical result is a new technique called fixed
block compression boosting, which is a simpler and faster alternative to optimal
compression boosting and implicit compression boosting used in previous FM-indexes.
We also describe several new techniques for implementing fixed-block boosting
efficiently, including a new, fast, and space-efficient implementation of wavelet trees.
Our extensive experiments show the new indexes to be consistently fast and small
relative to the state-of-the-art, and thus they make a good “off-the-shelf” choice for
many applications.
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1 Introduction

The FM-index, by Ferragina and Manzini [8], is perhaps the most widely used com-
pressed data structure. It has risen to particular prominence in the field of bioinformat-
ics, where it is now fundamental to all serious pieces of software for DNA sequence
alignment (see, e.g., [21,12]). It is also used for genome assembly [3,2,1] and exten-
sively for the discovery of repetitive structures in genomic data [22]. Elsewhere, in
data compression, it is the index underlying state-of-the-art methods for Lempel-Ziv
factorization [20,18]. The key virtue of the index, in these and other applications, is
that it stores a string T in a compressed form that also supports fast pattern matching
queries. Both compression and search are achieved by exploiting structure present in
the Burrows-Wheeler transform (BWT) of T .

In the 15 years since its discovery, techniques to reduce index size and to provide
faster pattern searches (preferably both at the same time) have been the subject of
many research articles (see, e.g., [7,14] and references therein).

The main components of most FM-indexes are:

– The BWT [4]: an invertible permutation of the text T. A procedure called backward
search [8] turns a pattern matching query on T into a sequence of rank queries on
the BWT.

– The wavelet tree [15]: a representation of the BWT that turns a BWT rank query
into a sequence of rank queries on bitvectors.

– A bitvector rank index, which supports fast rank queries on bitvectors.

The total length of standard wavelet tree bitvectors is equal to the size of the
original, uncompressed text in bits. All other data structures can be made to fit in less
space: asymptotically less in theory, and significantly less in practice. Basic zero-order
compression is achieved either with compressed bitvector rank structures, such as
RRR [30], or Huffman-shaped wavelet trees [16]. For higher order compression, we
can use a technique called compression boosting [6,10], where the BWT is partitioned
into blocks of varying sizes based on the context of symbols in T, and there is a
separate, zero-order compressed wavelet tree for each block. The total size of the
resulting data structure is

nHk(T )+o(n) logσ (1)

bits for small enough k (see Section 3.2), where nHk(T ) is a lower bound on the size
of kth order compressed text.

One can try to improve the compression by carefully choosing the partitioning of
the BWT into blocks. Assuming each block is zero-order compressed and there is a
certain type of overhead per block, the linear time algorithm of Ferragina et al. [6]
finds the optimal partitioning into context blocks. The algorithm has been implemented
and is used in the construction of the Alphabet-Friendly FM-index [9,10]. We call
this approach optimal context-block boosting. Ferragina, Nitto and Venturini [11]
describe an approximation algorithm for arbitrary (non-context) blocks, but to our
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knowledge this approach has never been implemented. Mäkinen and Navarro [24]
show that kth order compression is achieved without partitioning the BWT if the
underlying bitvectors are compressed with RRR [24]. This phenomenon called implicit
compression boosting results from the partitioning of the bitvectors into blocks by the
RRR technique. All of these approaches achieve the size in (1) but do not provide a
general asymptotic improvement.

Main Results. The main theoretical contribution of this article is a technique called
fixed-block compression boosting. It is similar to the context-block boosting mentioned
above, but divides the BWT into blocks of fixed sizes without any regard to the symbol
contexts. Such a division is inoptimal in general, but we show that it cannot be much
worse than the optimal one. In particular, it too achieves the size in (1) with an
appropriate selection of the block size. What we gain by using fixed instead of variable
size blocks is simpler and faster data structures. The RRR-structure underlying implicit
compression boosting uses blocks of fixed size too but the analysis of the boosting
effect based on small blocks on bitvectors does not trivially extend to larger blocks
over larger alphabets.

As a second contribution, we show how to implement fixed-block boosting effi-
ciently in practice, via a number of non-trivial optimizations to the basic scheme. The
goal is to reduce the space overhead per block to as low as possible but without in-
creasing query times. The main components of the overhead are the storage of the rank
of each symbol at the block boundary and the representation of a Huffman-shaped
wavelet tree, which is used as the rank index. We show that storing ranks for the
symbols occurring in a block rather than for all symbols in the alphabet is enough, and
describe a fast new Huffman-shaped wavelet tree variant. We also describe a fast and
effective method for optimising the choice of block size at indexing time.

The resulting indexes represent a new Pareto frontier for query time and index
size in practice on a wide range of data. These new indexes give consistently strong
performance in both time and space dimensions, and thus make a good “off-the-shelf”
choice for most applications.

Roadmap. In the next section we review the main components and operation of the
FM-index. Section 3 then details the ways in which compression can be brought
to the data structure. Section 4 describes and analyses our new technique: fixed-
block compression boosting. Section 5 describes different ways of optimizing the
basic scheme in order to improve practical performance, and provides experimental
justification for these design choices. Finally, in Section 6, we compare the space
usage and pattern matching times of implementations of our new indexes to those of
several baseline schemes on a wide range of data sets.

2 Overview of the FM-Index

Let T = T [0..n) = T [0..n− 1] = T [0]T [1] . . .T [n− 1] be a string of n symbols or
characters drawn from an alphabet Σ = {0,1, ..,σ −1}. We assume that T [n−1] = 0
and 0 does not appear anywhere else in T . In the examples, we use ‘$’ to denote 0 and
latin characters to denote other symbols.
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Fig. 2 Balanced (left) and Huffman-shaped (right) wavelet trees.

Algorithm FM-Count(P[0..m−1])
1: b← 0; e← n
2: for i← m−1 downto 0 do
3: c← P[i]
4: b← C[c]+ rankL(c,b)
5: e← C[c]+ rankL(c,e)
6: if b = e then break
7: return e−b

Fig. 3 Counting pattern occurrences using back-
ward search.

Algorithm WT-Rank(c,r)
1: v← root; q← r
2: while v is not a leaf do
3: if c is in the left subtree of v then
4: q← q− rankB(v)(1,q)
5: v← leftchild(v)
6: else
7: q← rankB(v)(1,q)
8: v← rightchild(v)
9: return q

Fig. 4 Rank using a wavelet tree.

BWT. For any i ∈ {0 . . .n−1}, the string T [i..n)T [0..i) is a rotation of T . Let M be
the n×n matrix whose rows are all the rotations of T in lexicographic order. Let F be
the first and L the last column of M , both taken to be strings of length n. The string L
is the Burrows–Wheeler transform (BWT) of T . An example is given in Figure 1.

Backward Search. The FM-family of compressed text self-indexes is based on a
procedure called backward search, which finds the range of rows in M that begin with
a given pattern P. This range represents the occurrences of P in T . Figure 3 shows how
backward search is used for counting the number of occurrences (the count query). In
the algorithm, C[c] is the position of the first occurrence of the symbol c in F , and the
function rankL is defined as

rankL(c, j) :=
∣∣{i | i < j and L[i] = c}

∣∣ .
The primary difference between the members of the FM-family of indexes is how they
implement the rankL-function. The standard way is to use a wavelet tree.

Wavelet Tree. A wavelet tree of a string X over an alphabet Σ is a binary tree with
leaves labelled by the symbols of Σ . Each node v is associated with the subsequence
of X consisting of those symbols that appear in the subtree rooted at v. The associated
strings are not stored; instead each internal node v stores a bitvector B(v) that tells
for each character in the associated string whether it is in the left or right subtree
of v. Figure 2 shows examples of the two commonly used variants of wavelet trees,
the balanced and the Huffman-shaped (further described in Section 3 below). In a
balanced wavelet tree the total length of the bitvectors is between |X |blog |Σ |c and
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|X |dlog |Σ |e. The latter is exactly the length of X in bits using a standard representation
of symbols. Notice that the symbol at any position in the string X can be recovered
from the wavelet tree and thus there is no need to store X in any other form. A rank
query rankX (c,r) over a wavelet tree is evaluated by a traversal from the root to the
leaf labelled by c, as shown in Figure 4. The procedure involves rank queries over the
bitvectors stored on the root-to-leaf path.

Bitvector Rank. There are many data structures for representing bitvectors so that rank
queries can be answered in constant time. The simplest ones add a small data structure
on top of the bitvector. The space overhead can be made asymptotically sublinear, and
is a few percent of the bitvector size in practical implementations.

Summary. The simple FM-index described above needs n logσ bits of space for
the wavelet tree bitvectors, o(n logσ) bits for the bitvector rank data structures and
O(σ logn) bits for the C array and the wavelet tree structure. It can answer a count
query for a pattern of length m in O(m logσ) time.

3 Compressing the FM-Index

We will next look at how the space needed by the FM-index can be reduced further by
compression.

3.1 Zero-Order Entropy

Recall that T is a string of length n over an alphabet Σ of size σ . For each c ∈ Σ , let
nc denote the number of occurrences of c in T . The zero-order empirical entropy [26]
of T is

H0(T ) = ∑
c∈Σ

nc

n
log

n
nc

= logn− 1
n ∑

c∈Σ

nc lognc. (2)

The value nH0(T ) represents a lower bound on the number of bits needed to encode T
by any compressor that encodes a symbol without regarding the context in which the
symbol appears. Since the BWT L is a permutation of T , we have H0(L) = H0(T ).

Huffman coding is a text compression method that encodes each symbol with a
bitstring whose length depends on the symbol frequencies: more frequent symbols are
encoded with shorter bitstrings. The length of a Huffman coded string X is less than
|X |(H0(X)+ 1). In a Huffman-shaped wavelet tree, the Huffman code of a symbol
describes the path from the root to the leaf representing that symbol. Thus the total
length of the bitvectors in a Huffman-shaped wavelet tree of a string is the same as its
Huffman coded size.

An alternative way to achieve zero-order compression is to compress the bitvectors.
The best-known compressed bitvector rank data structure, RRR, stores a bitvector B
in |B|H0(B)+o(|B|) bits and supports constant time rank queries. The bitvectors of a
balanced wavelet tree compressed using RRR have size nH0(T )+o(n) logσ [9].
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3.2 Higher Order Entropy

Let nw be the number of occurrences of a string w in T , and let T |w be the subsequence
of T consisting of those characters that appear in the (right) context of w, i.e., that
are immediately followed by w. Here T is taken to be a cyclic string, so that each
character has a context of every length. The kth order empirical entropy is

Hk(T ) = ∑
w∈Σ k

nw

n
H0(T |w) =

1
n

(
∑

w∈Σ k

nw lognw− ∑
w∈Σ k+1

nw lognw

)
The value nHk(T ) represents a lower bound on the number of bits needed to encode T
by any compressor that considers a context of size at most k when encoding a symbol.
Note that Hk+1(T )≤ Hk(T )≤ logσ for all k.

A remarkable property of L, the BWT of T , is that all symbol of T |w appear as a
contiguous substring of L for any w (recall that entropy is not affected by permuting
the order of symbols); we call this substring of L the w-context block of L. For example,
if T = BANANA$, then T |A= BNN and L[1..3] = NNB (see Figure 1). Thus we get the
following result.

Lemma 1 ([26]) For any k ≥ 0, there exists a partitioning of L1L2 · · ·L` = L of the
BWT L of T into `≤ σ k blocks so that

`

∑
i=1
|Li|H0(Li) = nHk(T ) .

In other words, by compressing each BWT block to zero-order entropy level, we
obtain kth order entropy compression for the whole text. This is called compression
boosting [6].

The above compression technique translates directly to the compression of the FM-
index: Divide the BWT into context blocks using context of length k and implement
a separate wavelet tree for each block. There is an additional space overhead of
O(σ logn) bits per block from having many blocks and wavelet trees instead of just
one. The total overhead is o(n) bits for k≤ ((1−ε) logσ n)−1 and any constant ε > 0.

It may not be optimal to use the same context length in all parts of L. Ferragina et
al. [6] show how to find an optimal partitioning with varying context length in linear
time. The resulting compression is at least as good as with any fixed k.

Mäkinen and Navarro [24] show that the boosting effect is achieved with the RRR
bitvector rank index without any explicit context partitioning. This is called implicit
compression boosting. First, they observe that instead of partitioning the BWT, we
could partition the bitvectors and obtain the same boosting effect. Second, the RRR
technique partitions the bitvectors into blocks of size b = (logn)/2 and compresses
each independently. The RRR partitioning is not optimal, but Mäkinen and Navarro
show that the overhead due to the inoptimality is at most 2σ`b≤ σ k+1 logn = o(n)
under the assumptions mentioned above.

Theorem 2 ([10,24]) The FM-index either with explicit boosting and optimal parti-
tioning [10] or with implicit boosting [24] can be implemented in nHk(T )+o(n) logσ

bits of space for any k ≤ ((1− ε) logσ n)−1 and any constant ε > 0.
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3.3 Repetitive Texts

The compressibility of highly repetitive texts, such as collections of similar genomes
or multiple versions of the same document, is not captured by the kth order entropy for
small values of k. For example, Hk(T h)≈ Hk(T ) for any h > 1 and any k < |T | while
it is clear that T h is much more compressible than T . The long repeats in a highly
repetitive text manifest as short runs of the same character in the BWT [25].

These short runs can be effectively compressed using run-length encoding. This
can be done either at the BWT level as described in [25] or at the bitvector level.

The two methods of encoding bitvectors that efficiently handle runs of equal
symbols are RRR [30] (with large block size) and so-called hybrid bitvectors, de-
scribed in [17]. The RRR bitvectors use small block sizes that are often small enough
to compress those short runs, whereas hybrid bitvectors explicitly use run-length
encoding.

However, RRR and hybrid bitvectors have an overhead of about 10% of the
uncompressed bitvector size below which they cannot be compressed. Because of
this, they are often best used in combination with compression boosting and Huffman-
shaped wavelet trees that first reduce the size of the uncompressed bitvectors.

4 Fixed Block Compression Boosting

In this section, we show that the compression boosting effect can also be achieved by
partitioning the BWT into blocks of fixed sizes without any regard to symbol context.

Let H(x,y) = |B|H0(B), where B is a bitvector containing x 0’s and y 1’s. Let
|X |c denote the number of occurrences of a symbol c in a string X . The following
lemma shows what can happen to the total zero-order entropy when two strings are
concatenated.

Lemma 3 For any two strings X and Y over an alphabet Σ ,

0≤ |XY |H0(XY )−|X |H0(X)−|Y |H0(Y )

= H(|X |, |Y |)−∑
c∈Σ

H(|X |c , |Y |c)≤ H(|X |, |Y |)≤ |XY | .

Proof The last two inequalities are trivial and the first is a standard application of
Gibb’s inequality. We will prove the equality part. For brevity, we write x = |X |,
y = |Y |, xc = |X |c and yc = |Y |c. Using (2), we can write the left-hand side terms as
follows

(x+ y)H0(XY ) = (x+ y) log(x+ y)−∑
c∈Σ

(xc + yc) log(xc + yc)

xH0(X) = x logx−∑
c∈Σ

xc logxc

yH0(Y ) = y logy−∑
c∈Σ

yc logyc,
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and the right-hand side terms as follows

H(x,y) = (x+ y) log(x+ y)− x logx− y logy

H(xc,yc) = (xc + yc) log(xc + yc)− xc logxc− yc logyc.

From this it is easy to see that the terms on both sides match. ut

In other words, the concatenation cannot reduce the total entropy, and the entropy can
increase by at most one bit per character. Furthermore, the maximum increase happens
only if the two strings have the same length and no common symbols.

Using the above lemma we can bound the increase in entropy when we switch
from a context-block partitioning to a fixed block partitioning.

Lemma 4 Let X1X2 · · ·X` = X be a string partitioned arbitrarily into ` blocks. Let
Xb

1 Xb
2 · · ·Xb

m = X be a partition of X into blocks of size at most b. Then

m

∑
i=1
|Xb

i |H0(Xb
i )≤

`

∑
i=1
|Xi|H0(Xi)+(`−1)b .

Proof Consider a process, where we start with the first partitioning, add the block
boundaries of the second partitioning, one by one, and then remove the block bound-
aries points of the first partitioning (that are not block boundaries in the second). By
Lemma 3, adding block boundaries cannot increase the total entropy, and removing
each block boundary can increase the entropy by at most b bits. ut

If we assume the same number of blocks in the two partitionings, the very worst case
increase in the entropy is n−b bits.

This increase in entropy can be reduced by reducing the block size in the fixed
block partitioning (thus increasing the number of blocks). In particular, if we set the
block size to b = σ(logn)2, we obtain the following result.

Theorem 5 The FM-index with explicit boosting and blocks of fixed sizes can be
implemented in nHk(T )+o(n) logσ bits of space for any k≤ ((1−ε) logσ n)−1 and
any constant ε > 0.

Proof Using context block boosting with fixed context length k and RRR to compress
the bitvectors, the size of the FM-index is nHk(T )+o(n) logσ bits. When we switch
from context blocks to fixed blocks with block size b = σ(logn)2, we must add two
types of overhead. First, by Lemma 4, the total entropy increases by at most σ kb =
σ k+1(logn)2 ≤ n1−ε(logn)2 = o(n) bits. Second, the space needed for everything else
but the bitvector rank indexes is O(σ logn) bits per block. In total, this is O(n/ logn) =
o(n) bits. Thus the total increase in the size of the FM index is o(n) bits. ut

Thus, we have the same theoretical result as with context block boosting or implicit
boosting.

The advantages of fixed block boosting compared to context block boosting are:

– To compute rankL(c,r), we have to find the block containing the position r. With
fixed blocks this is simpler and faster than with varying size context blocks.
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– Computing the optimal partitioning is complicated and expensive in practice. With
fixed blocks, construction is much simpler and faster.

Explicit boosting (with either context blocks or fixed blocks) enables faster queries
than implicit boosting for the following reasons:

– Compressed bitvector rank indexes are slower than uncompressed ones by a
significant constant factor. Explicit boosting can achieve higher-order compression
with Huffman-shaped wavelet trees allowing the use of the faster uncompressed
rank indexes.

– With implicit boosting, i.e., with a single wavelet tree for the whole BWT, the
average count query time for a pattern P is Θ(|P| logσ) with a balanced wavelet
tree and Θ(|P|H0(T )) with a HWT. With explicit boosting and HWTs, the average
query time is reduced down to O(|P|Hk(T )).

5 Engineering the FM-index

In this section we describe a number of techniques used to obtain a small and fast
FM-index based on the fixed block boosting principle.

We will focus on the details of rank queries over BWT. At the highest level,
the index uses backward search without any changes, i.e., the number of pattern
occurrences in a text is computed by repeatedly asking rank queries on the wavelet
tree(s) of the BWT. Similarly, we do not assume any particular encoding of bitvectors
in the wavelet trees, i.e., any of the compressed (RRR, hybrid), or uncompressed
encoding could be plugged in, resulting in a different time-space tradeoff.

To implement the above approach, we use the SDSL library1. It contains a generic
implementation of backward search as well as a number of different bitvector rank
implementations.

5.1 Fixed Block Boosting

Having a separate wavelet tree for each block reduces the total size of the bitvectors.
It can also speed up queries because the height of the wavelet trees is smaller. The
smaller the block size, the bigger these advantages are. On the other hand, each block
needs some space in addition to the bitvectors and this overhead increases as the
blocks get smaller. We want to minimize this overhead without sacrificing speed.

Alphabet Mapping. The wavelet tree of a block L j contains a leaf for each symbol
that appears in the block. Let Σ j = [0 . . .σ j) be the block alphabet representing these
symbols in the order of the leaves in the wavelet tree. To implement the rank query,
we need a mapping γ j : Σ → Σ j ∪{⊥} from the global alphabet to the block alphabet,
where ⊥ is a special value indicating that the symbol does not appear in the block. To
implement an access query, we also need the inverse mapping γ

−1
j : Σ j→ Σ .

1 https://github.com/simongog/sdsl-lite
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Algorithm WT-Rank(L, c, i)
1: j← bi / blocksizec
2: s j ← j×blocksize
3: c′← γ j(c)
4: if c′ = 254 and γ

−1
j (254) 6= c then

5: c′← 255
6: return R j[c′]+WT-Rank(L j,c′, i− s j)

Fig. 5 Rank query over BWT implemented as a
wavelet tree with the fixed block boosting technique.
For simplicity we assume there are no superblocks.

The inverse mappings are im-
plemented as separate arrays for
each block. The forward mappings
are implemented as a single two-
dimensional array in symbol-wise or-
der, i.e., for a given symbol c, the val-
ues γ[1..`](c) are stored consecutively.

The implementation assumes a
byte alphabet no larger than 256, and
uses the value 255 for ⊥. If some
block L j happens to contain all 256 possible symbols, we map two symbols to 254.
Whenever γ j(c) = 254, we check if γ

−1
j (254) = c and if not, change the value to 255.

Block Boundary Ranks. Let L j be the block that contains a given position i and let
s j be the starting position of L j in L. Since all blocks have the same size, computing
j and s j is easy. A rank query rankL(c, i) is implemented differently depending on
whether L j contains at least one occurrence of c or not. If it does, we compute the rank
using

rankL(c, i) = rankL(c,s j)+ rankL j(c, i− s j) .

The first term is obtained from an array R j[0..σ j), where R j[γ j(c)] = rankL(c,s j). The
second term is computed using the wavelet tree of L j.

If c does not appear in L j, we find the nearest block Lk, k > j, that contains c by
scanning γ[ j+1..k](c) for the first non-⊥ value. Then

rankL(c, i) = rankL(c,sk) = Rk[γk(c)] .

This approach achieves a potentially significant space saving by storing the value
rankL(c,s j) only if c occurs in L j, since often σ j is much smaller than σ .

The pseudo-code of the rank function is given in Figure 5.

Superblocks. To reduce the space for alphabet mapping, BWT is partitioned into
superblocks each consisting of a number of blocks. Each superblock stores a mapping
from the global alphabet to a superblock alphabet and the ranks at the superblock
boundaries for all symbols. Then, we only need to store the mapping from the su-
perblock alphabet to block alphabet for each block. Since often the superblock alphabet
is significantly smaller than the global alphabet, with appropriate superblock size the
space for the alphabet mapping (including the superblock mapping) is reduced. This
additional level of indirection increases the query time but only very slightly, since the
superblock headers are very small and thus tend to stay entirely in cache.

The separation of the superblock data structures means that they can be constructed
separately offering possibilities for parallel, distributed or (semi)external construction.
For example, if the compressed index fits in RAM but the uncompressed BWT does not,
we need only one superblockful of the BWT in RAM at a time during the construction.
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5.2 Wavelet Tree

A good survey of wavelet tree implementation variants has been made by Claude et
al. [5]. Our implementation is essentially a pointerless wavelet tree based on canonical
Huffman code. However, we store some additional information to achieve the speed
of pointer-based wavelet trees.

Tree Structure. We use a Huffman-shaped wavelet tree based on the canonical Huff-
man code. In such a tree, all the nodes are packed to the right (or to the left in some
versions) without gaps and all the internal nodes are to the right of the leaves on the
same level. Since the number of nodes on level k is twice the number of internal nodes
on level k−1, storing the number of leaves on each level is a complete representation
of the structure.

In a rank query we need to find the path to the ith leaf. Using the above repre-
sentation, it is easy to find the level k that contains the ith leaf. Furthermore, we can
compute an integer j such that the ith leaf would be the node number j on level k if
the tree was a complete binary tree. Then the bits in the k-bit binary representation of
j indicate the turns on the path from the root to the ith leaf.

Bitvectors. All the bitvectors on a level are concatenated together into a single level
bitvector. We also concatenate all the level bitvectors together into a single wavelet
tree bitvector. We store the sizes of the level bitvectors in order to locate them. Further-
more, we also concatenate all the wavelet tree bitvectors within a superblock. Each
block stores the position of its wavelet tree bitvector in the superblock bitvector. The
superblock bitvector can be implemented with any of the SDSL bitvectors supporting
rank and access queries.

Computing a rank query rankB(1, i) requires locating the starting position s of B
in the concatenated bitvector B̂. Then

rankB(1, i) = rankB̂(1,s+ i)− rankB̂(1,s) .

In a pointerless wavelet tree, s is computed without storing any extra information. The
bit vector of a left child starts at the same position on the level bitvector as its parent’s
bitvector on the previous level, where the position is measured as a distance from the
right end of the level bitvector. Similarly, the bitvector of a right child ends at the same
position as its parent’s. The size of each bitvector can be computed by counting the
number of zeros (left child) or ones (right child) in the parent bitvector. The counting
can be done with two rank queries at the bitvector boundaries.

The above procedure requires three bitvector rank queries for each level of the
wavelet tree while a pointer-based wavelet tree needs just one rank query per level.
However, two of the three queries are at the bitvector boundaries. Thus only one rank
query per level is needed if we store the bitvector boundary ranks, which needs less
space than a full pointer-based wavelet tree. We are not aware of a previous wavelet
tree implementation with this type of optimization. To reduce the number of bits
needed, we do not store the absolute rank values but the difference to the rank value at
the parent boundary (already computed during the descent).
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5.3 The Final Data Structure

Let us now summarize the components of the implementation and their sizes. We
assume that the maximum alphabet size is 256, the maximum block size is 216 and the
maximum superblock size is 224.

For each superblock we store:

1. The mapping from the global alphabet to the superblock alphabet (σ bytes).
2. The ranks at the superblock boundaries using 4σ bytes. If the BWT is longer than

232, it is further divided into hyperblocks of size 232.
3. The alphabet mappings from the superblock alphabet to the block alphabets using

σs bytes per block, where σs is the size of the superblock alphabet.
4. The concatenated wavelet tree bitvectors.
5. An array with a variable-sized entry for each block (see below).
6. An array with a 14 byte entry for each block containing the block alphabet size,

the number of wavelet tree levels, the bitvector rank at the start of the wavelet tree
bitvector and pointers to the two arrays above.

The variable-sized block entry for a block with a block alphabet size σb consists of:

5.1 The inverse alphabet mapping using σb bytes.
5.2 The block boundary ranks using 3σb bytes.
5.3 The wavelet tree structure and the level bitvector sizes using three bytes per wavelet

tree level.
5.4 The bitvector boundary ranks using 2(σb−1) bytes.
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Fig. 6 The percentage of the total index size for in-
dividual components of the new wavelet tree (with
hybrid bitvector as a bitvector representation) for dif-
ferent testfiles. The numbers refer to description in
Section 5.3.

The relative sizes of the different
components are shown in Figure 6.
The missing component is the bitvec-
tors implemented with hybrid bitvec-
tors in this experiment. Here as well
as in all of our experiments, the su-
perblock size was fixed to 220.

Perhaps the most important nov-
elty with respect to prior implementa-
tions is that we store only σb instead of
σs boundary ranks per block. Figure 6
shows the effectiveness of this opti-
mization. In the figure, the alphabet
mappings need σs bytes per block and
the block boundary ranks would be
three times larger without the bound-
ary rank optimization. For all files, the
actual space is much smaller.

Another novel optimization is that
we achieve the speed of pointer-based
wavelet trees (one bitvector rank query
per level) using just 2σb bytes of additional space, which was never more than about
2% of the total index size in our experiments.
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Fig. 7 The effect of the block size on the space used by the new wavelet tree using fixed block boosting
technique on english text (example of non-repetitive data) and highly-repetitive kernel input data. FM-FB-
HYB denotes the FM-index using hybrid vector to implement rank over bitvectors, and FM-FB-BVIL is the
FM-index using fast uncompressed bitvector implementation. Also shown is the space usage of the data
structure where each superblock uses optimal block size. The numbers refer to description in Section 5.3.

Construction. A major challenge when building the above data structure is computing
the optimal block size. The tradeoff occurs between the compressibility of bitvectors
and the overhead due to block headers. As demonstrated in Figure 7, the optimal
block size depends on both the type of input data and the chosen bitvector rank
implementation. Furthermore, all the block data structures within a superblock are
implemented completely separately for each superblock and thus each superblock
can use a different block size. As seen in Figure 7, such non-uniform encoding of
superblocks can slightly improve the compression in some cases.

One possible solution when processing a superblock is to try multiple different
block sizes and choose the most space efficient one. This approach requires computing
and compressing all bitvectors for each tried block size and thus slows down the
construction by a factor equal to the number of tested block sizes.

To speed up the construction we use the following observation. Consider two
blocks of text X1 and X2 of equal length over the alphabet {a,b,c,d} and assume that
X1 consists of a roughly equal number of randomly interleaved a’s and b’s, and X2
consists of similarly distributed c’s and d’s. Let B1 and B2 be the bitvectors associated
with the root of the Huffman-shaped wavelet trees of X1 and X2. Consider now the
Huffman-shaped wavelet tree of the concatenation X1X2. Clearly in this case it is a
balanced binary tree, i.e., a root has two children, each of which has exactly two
children. The possible cases are:
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– Symbols a and b are in the same child of a root. Then c and d are the other child
of a root and the bitvector associated with the root consists of two runs of 0’s and
1’s of total length |X1|+ |X2|. The bitvectors associated with the children of the
root are B1 and B2.

– Symbols a and c are in the same child of a root. Then b and d are in the other
child of a root. The bitvector associated with the root is (up to a permutation of
0’s and 1’s) a concatenation of bitvectors B1 and B2, and the bitvectors associated
with children of the root are uniform bitvectors of length |X1| and |X2|.

– Symbols a and d are in the same child of a root. Then b and c are in the other
child of a root. This situations is analogous to previous case.

In all cases, the bitvectors in the wavelet tree of X1X2 are: B1, B2, and two uniform
bitvectors of length |X1| and |X2|. In other words, the bitvectors in the wavelet tree of
a concatenation consist of: (a) shuffled bitvectors from individual wavelet trees and (b)
uniform bitvectors, the length of which depends only on the tree shape (and thus can be
derived from the symbol frequencies). In particular after applying compression (e.g.,
RRR), the total size of (a)-bitvectors does not change when we concatenate X1 and X2,
and the size of (b)-bitvectors is easy to estimate by knowing symbol distribution and
how much a given compression method compresses uniform bitvectors.

While the above reasoning does not easily lend itself to a rigorous formalization, it
prompted us to investigate the following heuristic-method for selecting the best block
size for a given superblock.

We first estimate the compressibility α of a uniform block by taking a large block
of zeros and computing its size after applying a given bitvector compression method.
We then process all potential candidates for block sizes in increasing order. Suppose
we are investigating blocks of size 2k. For every block we maintain an array of σ

integers storing the frequencies of symbols. This information together with α allows
us to compute the total compressed size of (b)-bitvectors. After including the size
of block headers we obtain the total space usage of the superblock encoding for a
given block size excluding the (a)-bitvectors. From the discussion above those occupy
roughly the same space independent of the block size and thus can be ignored when
estimating the space.

To advance the computation to a 2k+1-size block, we only need to update the
symbols frequencies. This is easy to compute, since each block of size 2k+1 is obtained
by merging two blocks of size 2k for which we already computed the frequencies.

While heuristic, the above method works exceptionally well in practice and for all
inputs and, for the compressed bitvector representations we tried, it finds the optimal
block size or the difference in compression is negligibly small. The main benefit is
that it only needs to compute and compress all bitvectors of the wavelet tree once, and
thus achieves the construction speed of a single wavelet tree. We use it as a default
construction method for the experiments in the next section.



Fixed Block Compression Boosting in FM-Indexes: Theory and Practice 15

6 Experimental Comparison

Name σ n/220 n/r n/z

dna 16 200 1.63 15.0
proteins 25 200 1.93 8.5
english 225 200 2.91 15.0
sources 230 200 4.40 18.3
dblp.xml 96 200 7.09 29.9

para 5 410 27 184
influenza 15 148 51 199
w.leaders 89 44 82 267
kernel 227 2048 304 1127
einstein.en 199 1198 707 2420

Table 8 Files used in the experiments. The files
are from the Pizza & Chili corpus (http://
pizzachili.dcc.uchile.cl/). We use larger
versions of kernel and einstein.en testfiles. The val-
ues of n/r (average length of the run in BWT) and
n/z (average length of phrase in the LZ77 factor-
ization) are included as measures of repetitiveness.

Setup. We performed experiments on
a 3.4 GHz Intel Core i7-4770 CPU
equipped with 8 MiB L3 cache and
16 GiB of DDR3 main memory. The ma-
chine had no other significant CPU tasks
running and only a single thread of ex-
ecution was used. The OS was Linux
(Ubuntu 15.04, 64bit) running kernel
4.4.0. All programs were compiled using
g++ version 5.3.1 with -O3 -DNDEBUG
-funroll-loops -msse4.2 options.
All given runtimes were recorded with
the C++11 high_resolution_clock
timer. The statistics of datasets used in
the experiments are presented in Table 8.

Indexes. In our experiments we include
the following indexes:

– FM-FB-*: the new FM-index based on the fixed-block boosting technique. It uses
our method for implementing multiple wavelet trees over a fixed-block partitioned
BWT described in Section 5. This is the main contribution of this paper;

– FM-HF-*: a standard FM-index [8], i.e., a Huffman-shaped wavelet-tree built for
the single-piece BWT. This is the primary baseline in our experiments;

– FM-VB-*: a version of our new FM-index based on fixed-block boosting modified
to handle variable-size blocks within a superblock. We include it to allow for a
proper comparison between the fixed-block and the context-block boosting.

To store bitvectors for each FM-index above we use (1) RRR compressed bitvec-
tors (FM-*-RRR) using block sizes 15, 31, and 63 [30,27,14]; (2) optimized uncom-
pressed bitvectors with interleaved rank samples (FM-*-BVIL) using block sizes 256,
512, and 1024, providing a rank space overhead of 25%, 12.5% and 6.25% respec-
tively; and (3) the hybrid encoding [17] using a superblock size of 16 (FM-*-HYB).

In our experiments we also include the following state-of-the-art indexes:

– AFINDEX: the Alphabet-Friendly FM-index [9], the original implementation
of the FM-index based on explicit context-block boosting technique. This is the
second essential baseline in our experiments;

– FM-RLMN: an FM-index based on a run-length encoded BWT [23]. The index
is designed to perform well for highly compressible strings, and uses a dedicated
bitvector implementation optimized for sparse bitmaps [28];

– RLCSA: Run-Length Compressed Suffix Array [25]. An implementation of a
compressed suffix array that has been optimized for highly repetitive inputs.

All structures not needed for count queries are excluded from space measurements.
All code except AFINDEX (http://pizzachili.dcc.uchile.cl/indexes) and
RLCSA (http://iki.fi/jouni.siren/rlcsa) is part of the SDSL library.
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To allows for a proper comparison of the fixed-block and variable context-block
boosting techniques, we included our own version of context-block boosted wavelet
tree. Namely, we modified our new index based on fixed-block boosting to handle
variable-size blocks within a superblock. We store block sizes in a list and during
query time we scan that list to find the block that contains a given position. To limit
these scans we have a threshold for the maximum number of blocks in a superblock,
and hence also superblocks are of variable size. To locate the superblock containing a
given position we store a list of superblock starting positions, enhanced with a lookup
array that reduces the scanning time. In experiments we refer to this version of explicit
block boosting as FM-VB. To build FM-VB index, we implemented the suffix-tree
based construction algorithm from [6].

Experiments. To measure the performance of the indexes, we replicated the methodol-
ogy of Ferragina et al. [7] which measures mean time to process one symbol during a
single count query over 5×104 queries on 20-length patterns randomly extracted from
the indexed text. The queries were rerun 30 times and numbers reported represent the
time to process one character averaged over all runs and all queries.

The experimental results are presented in Figure 9 and Figure 10.
First we observe that the new fixed-block boosted FM-index achieves superior

performance compared to a single wavelet tree, independently of the underlying
bitvector rank implementation (RRR, BVIL, or HYB) and the type of input (the only
exception is the DNA data which does not benefit from high-order compression). For
example: (1) plugging the high-speed uncompressed BVIL bitvector to our FM-index
sets a new speed record for count queries among FM-indexes, and (2) plugging the
high-compression RRR or HYB bitvector allows reducing the space beyond what is
achievable with a single wavelet-tree.

Next we compare the fixed-block boosted (FM-FB) and variable-block boosted FM-
indexes (FM-VB, AFINDEX). First we observe that our implementation of variable-
block boosting (FM-VB) achieves essentially the same speed as the original imple-
mentation (AFINDEX) but in nearly all cases uses many times less space: a factor of
2–3 on non-repetitive data and 4–10 for highly repetitive data. This improvement is
due to: (1) more space-efficient bitvector implementation, and (2) a different encoding
of multiple wavelet trees (Section 5).

The isolated effect of switching from variable-block into fixed-block boosting can
be observed by comparing FM-VB and FM-FB. While the index size stays essentially
the same, switching to fixed-size blocks significantly improves the query time of the
medium-to-high speed bitvectors: for HYB by a factor 1.15–1.65, for BVIL by 1.6–2.
The query time for RRR bitvector encoding improves by up to 10%. These speedups
are due to the much simpler processing of the blocks in the fixed-block variant. The
difference in speedup between bitvector representations confirm the intuition: rank
queries over wavelet trees with RRR encoding are dominated by the bitvector rank
operations, while rank queries over simpler bitvector encodings (BVIL, HYB) are
much faster, and hence leave the room for upper-level (wavelet tree) optimizations.

The combined effect of our new method for encoding multiple wavelet trees
together with switching to fixed-size blocks results in the combination superior for
variable-block boosting both in time and space. Plugging the HYB encoding into the
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Fig. 9 Time/space tradeoffs on standard (left) and repetitive (right) collections for different index types. We
measured the mean time in microseconds to process one symbol during a single count query over 5×104

queries on 20-length patterns extracted randomly from the indexed text. The queries were rerun 30 times
and numbers reported represent the time in microseconds to process one character averaged over all runs
and all queries. The space is given with respect to the original size of the input text.
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new FM-index results in a particularly effective combination. The resulting index
achieves all-around excellent compression and is almost always faster (and never
much slower) than other indexes at the corresponding compression level. Furthermore,
the construction of explicit variable-block boosted wavelet tree is slow and memory-
consuming (due to the use of suffix tree), while the fixed-block wavelet tree admits a
very simple and space-efficient construction.

Finally, we compare the performance of FM-FB to the two remaining specialized
indexes: WT-RLMN and RLCSA. On extremely repetitive data (kernel, einstein.en),
these indexes compress about three to four times better while offering similar speed
(compare to FM-FB-HYB). However, on moderately repetitive inputs (para, w.leaders)
they are usually already outperformed in query time and space, and on non-repetitive
inputs they become much bigger and up to an order of magnitude slower.

7 Concluding Remarks

We have described new FM-index variants that are are small, have fast query times,
and are easy to construct, both in theory and in practice. Experimentally we have
shown the new indexes to be consistently fast and small on a wide range of data —
they represent a new standard in FM-index based compressed text indexing.

There a numerous avenues for future work on FM indexes. Firstly, extending our
new wavelet tree layouts, and especially their implementations, to deal with large
alphabets would have immediate applications in natural language processing [29].
Perhaps more importantly, we note that a gap still exisits on highly-repetitive data
between our indexes and indexes based on run-length encoding (for example, the
RLCSA). Future work may aim at closing this gap, possibly via a combination of
run-length encoding with the techniques described in this article.
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