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Abstract 

Many tree species are predicted to shift their geographic ranges with changing climate, but 
the extents, timing, and magnitude of these shifts remain uncertain. Comparing various 
modeling strategies is crucial for reducing uncertainty related to these responses and for 
guiding the interpretation of model results. Here we compared outputs of a dynamic 
vegetation model (DVM) and an ensemble of statistical bioclimatic envelope models (BEMs) 
in predicting range shifts of 14 representative tree species in continental Europe. Expanding 
the number of species and geographic extent compared to previous model comparisons, we 
found that the DVM produced more conservative range shift estimates, even in long-term 
equilibrium simulations. The differences in range shift projections were greatest for 
Mediterranean species, whose expansion northwards was inhibited in the DVM by more 
competitive prevailing temperate species. In contrast to our expectation, competitive traits 
of the species studied did not consistently affect the differences. The agreement between 
BEM and DVM results was highest in boreal species, suggesting that BEMs are an efficient 
method for modeling species under strong control of abiotic factors. BEMs produced 
substantially larger range contractions at the southern edge of distribution, in contrary to 
the DVM, where contractions were more modest. Despite these differences, both 
approaches also yielded consistent northwards shifts of forest types, which may have 
substantial negative impacts on forest economy, and alter species composition in natural 
forest stands.  
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1. Introduction 

Climate change may become a major threat to global biodiversity (Bellard et al. 2012; 
Thomas et al. 2004), and warming over past decades has already caused substantial range 
shifts and abundance changes in a wide range of species (Chen et al. 2011; Jump and 
Penuelas 2005; Parmesan and Yohe 2003). Substantial future range shifts and local 
extinctions have been projected for the future (Cheung et al. 2009; Lawler et al. 2009; 
Thuiller et al. 2008).  

Assessing the potential impact of climate change on terrestrial ecosystems requires detailed 
estimates of vegetation responses, trees in particular, which also provide a variety of 
habitats and ecosystem services (Ellison et al. 2005; Linder et al. 2012). Many tree species 
have long generation times, and their genetic and phenotypic adaptive capacity may be 
exceeded by rapid climate change (Jump and Penuelas 2005; Lindner et al. 2010). These 
factors emphasize the importance of studying range shift potentials for many tree species.  

Two modeling methodologies are commonly used for projecting climate change impacts on 
trees: statistical bioclimatic envelope models (hereafter BEMs), and process-based models, 
such as dynamic vegetation models (hereafter DVMs) and forest growth models (Landsberg 
2003; Landsberg and Waring 1997; Schelhaas et al. 2007). 

BEMs construct a statistical relationship between species’ observed distributions and 
climatic variables, and this relationship may be used to predict species distributions in space 
and time (Elith and Leathwick 2009; Pearson and Dawson 2003). Applications include 
estimation of potential geographic distributions of species and projections into the past 
and/or future e.g. under climate change. Although biologically simplistic, BEMs have the 
advantage of relative ease of use, and data sets describing species distributions, and current 
and potential future climates have become increasingly available (Elith and Leathwick 2009). 
However, the reliability of future projections by BEMs has been questioned because the 
used underlying statistical relationships do not necessarily imply causation and may 
therefore not hold when extrapolated, e.g. under climate change (Dormann et al. 2012). 
Furthermore, various algorithms simulating current distributions similarly well have been 
observed to produce widely differing future projections (Araújo and Guisan 2006; Araújo and 
New 2007; Buisson et al. 2010). 

Within the DVM category, forest growth models commonly focus on simulating tree growth 
and forest yields (Landsberg 2003), while other DVM approaches combine aspects of forest 
growth with competition for resources, population dynamics (succession), and range shifts. 
The latter include Dynamic Global Vegetation Models (DGVMs), which only use bioclimatic 
limits related to a particular physiological mechanism and are based on broadly defined 
Plant Functional Types (PFTs, Prentice et al. (2007)). Process-based models may be 
considered biologically more realistic, but they are also “data hungry” (Guisan and Thuiller 
2005), requiring detailed input data, which is often available only for well-studied species or 
PFTs.  

Despite both BEMs and process-based DVMs being widely applied in modeling tree species 
distributions (e.g.Benito Garzón et al. 2008; Hickler et al. 2012; Kramer et al. 2012; Snell et 
al. 2014; Thuiller et al. 2005), few studies have systematically compared these two 
approaches. Results comparisons from various modeling approaches, with the identification 
of results that are robust across model types and exploration of reasons for differences in 
the results is important to guide the interpretation of model projections. With limited sets of 
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species, various modeling approaches have yielded similar results under present-day 
conditions (Gritti et al. 2013). Under climate change, DVMs have projected more 
conservative range contractions compared to BEMs, because they also simulate additional 
processes such as the physiological effects of carbon dioxide (CO2) (Cheaib et al. 2012; 
Hickler et al. 2015; Keenan et al. 2011) and phenotypic plasticity or local adaptation (Morin 
and Thuiller 2009). Kramer et al. (2010 and 2012) also found substantially smaller simulated 
range shifts for European beech (Fagus sylvatica) when using the DVM LPJ-GUESS platform, 
compared to projections with the BEM approach using the BIOMOD platform (Thuiller et al. 
2009b). Generally, this result is expected because DVMs account for successional lags in 
range shifts, even if assuming unlimited dispersal (Hickler et al. 2012), while BEMs assume 
that species distributions are in climatic equilibrium and do not address the question of how 
long it will take for the species to establish viable populations in areas projected to be 
suitable in the future (but see Engler and Guisan 2009; Engler et al. 2009 for approaches that 
account for dispersal limitation). However, most comparisons have been conducted with 
limited geographic coverage, or with 1–3 species. Therefore, to fully understand the 
implications of using various approaches, we still lack comparisons in continental-scale 
Europe with a broad set of species with different characteristics in different biogeographic 
regions.  

In our study, we compare current and future projections of a widely used DVM (LPJ-GUESS, 
Smith et al. 2001, parameterized for major European tree species, and PFTs for shrubs by 
Hickler et al. 2012) with a widely used BEM approach (BIOMOD platform, Thuiller et al. 
2009b) for 14 common tree species across Europe. Thereby, we cover a larger geographic 
extent than earlier comparison studies, and more tree species. The large extent is important 
because model performance may depend on biogeographic region, as BEMs have high 
predictive performance when modeling species at range margins (Luoto et al. 2005). Cold 
tolerance imposes stricter control on species distributions compared to drought limits in the 
south (Normand et al. 2009), and thermal niches also tend to be more conserved in relation 
to cold tolerance (Pellissier et al. 2013). This means that abiotic control on geographic 
distribution may be stronger in cold boreal environments compared to that in the south, 
which may manifest as improved model predictive performance. Both the Mediterranean 
and Northern Europe are projected to be subjected to severe velocities of climate change 
(Giorgi and Coppola 2009; Giorgi and Lionello, 2008), and thus quantifying the model 
agreement by biogeographic region is important for pinpointing potential uncertainties.  

Furthermore, LPJ-GUESS simulates tree population dynamics, competition for resources, and 
succession at a higher level of detail than the other DVMs that have been the focus of earlier 
model comparisons (Cheaib et al. 2012; Gritti et al. 2013; Keenan et al. 2011; Morin and 
Thuiller 2009). Only this detail makes it possible to parameterize major tree species in a 
generalized modeling framework that can be applied with PFTs at the global scale (Hickler et 
al. 2012). LPJ-GUESS, for example, accounts for differences in shade tolerance (life history 
strategy) between tree species, which might be important for successional dynamics and lag 
times under climate change. Early successional species often have high growth rates, good 
dispersal abilities, but limited competitive power (Tilman 1994), suggesting that they would 
be able to track the shifting climate efficiently, but would later be outcompeted from 
suitable climatic areas by more competitive, late successional species, which often have 
higher competitive ability (Meier et al. 2012). LPJ-GUESS explicitly simulates these processes 
(except dispersal limitations, but assumes a higher establishment rate for pioneer tree 
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species after disturbance) while BEMs do not. Therefore, the BEM and DVM results are 
potentially most in agreement for the present climate and for species with high competitive 
ability (i.e. late successional species), and have lower agreement for early successional 
species. This trend may be reversed in the future, as early successional species would be first 
to reach dominance in a new climatically suitable habitat. Analyzing and understanding 
these differences between model results is crucial for interpreting the results. Following this 
reasoning, we hypothesized that  

1. The BEM approach would project greater range shifts than DVM, but the differences 
would level out when the DVM projections are given more time to reach equilibrium 
with the changing climate 

2. Late successional species with good competitive abilities (high individual longevity and 
high shade tolerance) will show higher agreement between the models (both in baseline 
climate and equilibrium scenario) than early successional species, as dominant 
competitors may outcompete early successional, inferior species from climatically 
suitable space 

3. Early successional species with inferior competitive ability (low longevity and low shade 
tolerance) will show relatively higher agreement at the end of the century under climate 
change (non-equilibrium situation), as they will be able to become substantially 
abundant in climatically suitable areas more quickly in the DVM framework 

4. The agreement between the two approaches will vary geographically and be higher for 
boreal species.  
 
 
2. Material and Methods 

 
2.1.  Climate and species distribution data sets 

Baseline and future climate data for Europe (described in Fronzek et al. 2012) were obtained 
from the EU project ALARM. The data set covers the years 1901–2100 with 10’ x 10’ spatial 
resolution and consists of monthly values for temperature, cloud cover, and precipitation. 
The climate data for 2001–2100 were derived from the HadCM3 model, driven by the SRES 
A2 emission scenario. Historical (1901–1998) atmospheric CO2 concentrations for DVM were 
obtained from McGuire et al. (2001) and Keeling and Whorf (2009) for years 1999 and 2000. 
Projected (2001–2100) CO2 concentrations were obtained from the Intergovernmental Panel 
on Climate Change (IPCC) (Prentice et al. 2001, Appendix II). 

For BEM parameterization, five bioclimatic variables were used, determining vegetation 
distribution on a continental scale: total annual growing degree days (GDD5) (Sykes et al. 
1996; Woodward 1987), mean temperature of coldest month (MTC) (Prentice and 
Helmisaari 1991; Thuiller et al. 2005), annual thermal oscillation (García-López and Allué 
2011), summer (JJA) precipitation (Benito Garzón et al. 2011; Czúcz et al. 2011; Ruiz-
Labourdette et al. 2012), and the moisture index (Hobbins et al. 2001; Svenning and Skov 
2004). For BEM modeling, averages for 1961–1990 (“baseline”), 2021–2050, and 2071–2100 
were calculated from the climate data. A more detailed description of the variables is given 
in Table S1. The derivation of bioclimatic limits for the DVM is described in the model 
description of LPJ-GUESS (see below).  

Distribution data of 14 common European tree species (Abies alba, Betula pendula, Betula 
pubescens,  Carpinus betulus, Juniperus oxycedrus, Pinus halepensis, Quercus pubescens, 
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Quercus ilex, Quercus coccifera, Corylus avellana, Quercus robur, Picea abies, Pinus sylvestris, 
and Fagus sylvatica) were obtained from Atlas Florae Europaeae (hereafter AFE) on an 
approximately 50 x 50km grid. AFE is an ongoing project (began in 1965) mapping the 
distribution of vascular plants in Europe, coordinated by the Finnish Museum of Natural 
History (http://luomus.fi/en/atlas-florae-europaeae-afe-distribution-vascular-plants-
europe), and maps of species distributions have been published in several volumes between 
1972 and 2013. For our study, data sets of species’ distributions were obtained in electric 
grid format from the AFE secretariat (see supplementary figures S7–S20 for visualization of 
distribution data). 

 

2.2.  Bioclimatic Envelope Models 

We produced an ensemble of bioclimatic envelope models using seven modeling algorithms 
available in the BIOMOD platform (Thuiller et al. 2009b): generalized linear models, 
generalized additive models, classification tree analysis, flexible discriminant analysis, 
artificial neural networks, multiple adaptive regression splines, and random forests. These 
are models frequently utilized in BEM modeling studies (França and Cabral 2015; Heikkinen 
et al. 2012; Marmion et al. 2009; Meller et al. 2014).  

We built a consensus projection from all individual model runs to account for variability in 
individual model projections (Araújo and New 2007; Ranjitkar et al. 2016) for our study area 
grid cells with the future climate data. Consensus (or ensemble) projections also perform 
better when modeling range-shifting species (Araújo et al. 2005; Araújo and New 2007). We 
used the consensus to project species’ distributions in the current climate (1961–1990, 
“baseline”) and in two future time periods: 2021–2050 and 2071–2100 with A2 SRES 
scenario. We used the models built on the 50 x 50km resolution to project species 
distributions to the 10’ x 10’ grid (Meller et al. 2014; Thuiller et al. 2005). Variable 
importance in the BIOMOD consensus prediction was evaluated with a permutation 
procedure (see Thuiller et al. 2009b for details). Additional details of the BEM 
parameterization can be found in the electronic supplementary material.  

 

 2.3 Dynamic Vegetation Model: LPJ-GUESS 

LPJ-GUESS (Smith et al. 2001) is a flexible modeling framework for simulating the distribution 
of PFTs or tree species, vegetation types and dynamics (succession adopting a forest gap 
model approach), and biogeochemical cycles (carbon, water and, recently for the global 
version with PFTs but not included here, nitrogen (Smith et al., 2014)). It is process-based, as 
the competition between trees (PFTs or species), shrubs, and grasses emerges from their 
functional traits (Hickler et al. 2012). It shares many ecophysiological process 
representations with the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model 
(LPJ-DGVM, Sitch et al. 2003), but vegetation dynamics and vegetation structure are 
simulated at a higher level of detail, which makes it possible to parameterize the model for 
particular tree species, at least in relatively species-poor temperate and boreal regions 
(Hickler et al. 2012, 2004).  

Simulated plant-physiological processes include photosynthesis and plant respiration, and 
carbon allocation along with the exchange of carbon and water between the vegetation, soil, 
and atmosphere. The model also includes disturbances by fire and a generic patch-

http://luomus.fi/en/atlas-florae-europaeae-afe-distribution-vascular-plants-europe
http://luomus.fi/en/atlas-florae-europaeae-afe-distribution-vascular-plants-europe
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destroying disturbance, representing, e.g., pest attacks and the effects of windstorms. To 
represent the vegetation of a model grid cell (homogenous climate and soil texture input), 
the results of a number of replicate patches (which differ from each other because of 
stochastic tree establishment, mortality, and patch-destroying disturbance; each 0.1 ha 
large) are averaged, here 200.  

We used the results from a version parameterized for major European tree species and PFTs 
by Hickler et al. (2012), who provide details about the model version and setup used here. 
Bioclimatic limits determine which species can occur in a model grid cell (environmental 
filtering), and these were fitted by visually comparing continental-scale species distributions 
with the geographic variation in the bioclimatic variables (Hickler et al. 2012). The following 
limits were used: minimum growing degree day sum above 5°C (GDD) for establishment (the 
effective GDD for broadleaved species is also affected by delayed budburst to avoid spring 
frosts), the minimum mean monthly temperature for survival, and the minimum growing 
season average fraction of plant-available soil moisture in the upper soil layer for 
establishment. 

If tree species can coexist based on their bioclimatic limits, competition between trees, 
shrubs, and herbaceous vegetation is simulated adopting a forest gap model approach. Main 
plant traits that determine the competition between tree species in this model version are 
e.g. the shade-tolerance class, phenology (evergreen versus summergreen), root distribution 
across the two soil layers, and the maximum non-stressed longevity. There is a trade-off 
between high establishment under favorable conditions at the forest floor (such as after 
disturbance) and high growth rates for shade-intolerant species (such as B. pubescens) on 
one hand and establishment under conditions of low light availability and survival with low 
growth rates (such as P. abies) on the other. Tree dispersal was unlimited in the model, but 
transient responses of tree succession are captured (Hickler et al. 2012).  

The modeling protocol is fully described in Hickler et al. (2012), and followed a standard 
setup for LPJ-GUESS. In short, the simulation began from bare ground, and the model was 
spun up for 400 years to reach approximate equilibrium with the climate and CO2 
concentration at the beginning of the 20th century, before using historical and future climate 
scenarios and CO2 data as model input. For this spin-up period, historical climate data from 
the first 30 years of the century were used repeatedly, detrended for temperature. The 
same approach was used for the long-term equilibrium simulation, repeatedly using the last 
30 years of the climate model output (2071–2100) and the average CO2 concentration of 
that period for 400 additional years after 2100. 

 

2. 4. Model comparison 

 We compared the model predictions in four different time frames: “baseline” (1961–1990), 
and two time windows in the future: 2021–2050 and 2071–2100. In addition to these, DVM 
end-of century projections were compared to equilibrium simulation results to assess how 
much of the potential differences during the 21st century were caused by successional 
processes, modeled in the DVM but not in the BEMs.  
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2.4.1. Overall agreement 

The predictive performances of both approaches under baseline climate were estimated 
against AFE distribution data. Next, a general agreement for all time periods and species was 
estimated by comparing leaf area index (LAI) values from LPJ-GUESS with occurrence 
probability from the BEMs. Finally, a general agreement for all time periods was estimated 
by comparing the summed presence-absence projections of all species. The magnitude of 
projected range shifts was compared by calculating latitudinal range centroids and shifts in 
their distribution. These analyses are detailed below.  

Model predictive performance under baseline climate was evaluated with True Skill Statistic 
(TSS), sensitivity and specificity against AFE data. Sensitivity is the proportion of correctly 
predicted presences, and specificity is the proportion of correctly predicted absences. TSS is 
defined as sensitivity + specificity -1, and, contrary to Cohen’s Kappa, is independent of the 
prevalence of  presence observations in the input data (Allouche et al. 2006). For calculating 
validation statistics, the BEM ensemble was used to project species distributions to the AFE 
grid. The predicted probabilities of species occurrence in a grid cell were converted to 
presence-absence predictions using cut-off levels maximizing ensemble performance when 
evaluated using the TSS score (Supporting information, section 1.5). To assess DVM 
performance, LAI values were scaled to 0–1 (see below) and transferred to the AFE grid by 
taking the maximum LAI for each species in each grid cell. Subsequently, the cut-off 
threshold maximizing TSS was defined for each species, and using this threshold, the LAI 
predictions were converted to presence-absence. Species-specific cut-off levels were used, 
as different species tend to have very different LAI values (Supporting information, section 
1.5.2.).  

We investigated the overall agreement between the models by comparing the occurrence 
probabilities from the BEMs to LAI values from LPJ-GUESS, as these two may be interpreted 
as surrogates of abundance, reflecting relative suitability of each grid cell for a particular 
species. Occurrence probability is a reasonable proxy of local abundance (Thuiller et al. 
2014; Weber et al. 2016), although not for population growth rate or site carrying capacity 
(Thuiller et al. 2014). LAI describes the ratio of one-sided leaf surface area to ground surface 
area, and has been used as a successful proxy for the distribution of potential natural 
vegetation on undisturbed sites (Hickler et al. 2012; Sitch et al. 2003) and species 
distributions (Gritti et al. 2013; Kramer et al. 2012, 2010). LAI values were averaged from 
annual LPJ-GUESS LAI outputs for the study periods for each species.  

We compared the projected abundances during the different time periods by calculating 
Spearman correlation scores for each species. A single correlation score was calculated for a 
species to represent “overall agreement” between the two models. Spearman’s rank 
correlation was applied as the LAI, and occurrence probabilities did not show linear 
relationship under graphical inspection (data not shown). As the BEM probability values 
range from 0 to 1, for comparison purposes we also scaled LAI values to range from 0 to 1 
for each species, so that LAI was scaled between 0 and the maximum species-specific LAI 
value in all grid cells.  

We calculated the summed agreement of presence-absence predictions for all 14 species in 
all four time frames to highlight the spatial distribution of agreement or disagreement of 
BEMs and DVMs. If both models predicted presence or absence, a cell was designated a 
value of 1. If model predictions differed, the cell was given a value of 0. These values were 
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summed across all species, consequently a score of 14 indicating high agreement between 
BEM and DVM, and 0 a very low agreement.  

To compare the magnitude of projected range shifts, we calculated the range centroids 
projected by both models with Equation (1.), following Cheung et al. (2009): 

𝑀𝐿 =
 ∑ 𝐴𝑖×𝐿𝑎𝑡𝑖

𝑁
𝑖=1

∑ 𝐴𝑖
𝑁
𝑖=1

  (Equation 1) 

where ML is the calculated range centroid, Ai is the predicted abundance (probability of 
occurrence or LAI value) in the ith grid cell and Lati is the latitude of the ith grid cell, where 
predicted abundance > 0. The magnitude of the projected range shift in each time frame was 
calculated as the difference between the latitude of future and baseline range centroids for 
each species. Significance of the differences in the range shifts projected by the two models 
was analyzed with the Wilcoxon signed-rank test, as the range shift values were not normally 
distributed. Pairwise comparisons were performed because we considered reasonable that 
the two modeling approaches applied for each species should be considered as two related 
samples.  

 

2.4.2. Assessing model agreement by species traits and ecosystems 

We tested whether the correlations between BEM and DVM projected abundances in the 
different time frames would depend on species-specific competitive traits (shade tolerance 
and longevity) or geographic distribution (Table S3) with ANOVA, following backwards 
stepwise model selection, with a p-value of 0.05 as the acceptance threshold for the variable 
into the model. Residual patterns were visually investigated to identify heteroscedasticity. In 
such cases, residual variance structures were applied with generalized least squares 
regression using Restricted Maximum Likelihood (REML) estimation (Zuur et al. 2007). Model 
improvement was investigated with likelihood ratio tests (Zuur et al. 2009), but as none of 
the residual variance structures significantly increased model performance, ANOVA analyses 
was applied.  

In addition, we investigated whether the successional lags in the DVM framework 
(differences in projected range centroids (latitudes) between 2071–2100 and equilibrium) 
would be greater for late successional species with good competitive abilities (i.e. high shade 
tolerance). To investigate this, we analyzed successional lag as a function of shade tolerance 
for each species with ANOVA, however, as in this case REML estimation indicated substantial 
(p < 0.01) improvement in model performance, variance structures for each shade tolerance 
classes were applied. The significance of the main effects (shade tolerance) was investigated 
with likelihood ratio tests.  

 

2.4.3. Comparing climatic niche width  

To investigate how the models describe the species’ climatic tolerances, and how severely 
the species would be subjected to possibly adverse climatic conditions in the future, we 
quantified the projected bioclimatic niches under baseline and future climate, consisting of 
two of the input variables known to control the northward and high altitude tree 
distributions at a continental scale (Prentice and Helmisaari 1991; Woodward 1987): annual 
GDD5 and mean temperature of the coldest month, and examined the climatic niche width 
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along with the potential shift in climatic niche under future climate change (see 
supplementary information section 2.3. and 2.4. for details).  

 

3. Results 
 

3.1. Model agreement under baseline (1961-1990) climate  

The BEMs had higher predictive performance (TSS score) than the DVM (LPJ-GUESS) when 
validated against the AFE distribution data (Table 1), rising mostly from higher sensitivity 
values in the BEMs. This was caused by the DVM generally producing more restricted 
geographic distributions than the BEMs (Figs S7–S20, Table S3).  

BEM and DVM projections under baseline climate diverged most for A. alba and Q. robur 
(Table S3), which were also species with low predictive performance in the DVM (Table 1). 
Annual GDD5 and mean temperature of the coldest month were the variables with the 
highest importance across all species in the BEMs (Supplementary information section 1.3).  

  



11 
 

 

Table 1. TSS, sensitivity, and specificity of BEMs and the DVM under baseline climate (1961-
1990). Abi_alb = Abies alba, Bet_pen = Betula pendula, Bet_pub = Betula pubescens, Car_bet 
= Carpinus betulus, Jun_oxy = Juniperus oxycedrus, Pin_hal = Pinus halepensis, Que_pub = 
Quercus pubescens, Que_ile = Quercus ilex, Que_coc = Quercus coccifera, Cor_ave = Corylus 
avellana, Que_rob = Quercus robur, Pic_abi = Picea abies, Pin_syl  = Pinus sylvestris ,Fag_syl 
= Fagus sylvatica. BEMs: Bioclimatic Envelope Models, DVM: Dynamic Vegetation Model 
(LPJ-GUESS). 

 BEM DVM 

Species Sensitivity Specificity TSS Sensitivity Specificity TSS 

Abi_alb 0.949 0.827 0.776 0.578 0.85 0.429 

Bet_pen 0.965 0.765 0.730 0.877 0.781 0.658 

Bet_pub 0.972 0.696 0.669 0.862 0.69 0.551 

Car_bet 0.963 0.798 0.762 0.922 0.669 0.592 

Jun_oxy 0.968 0.786 0.754 0.859 0.799 0.658 

Pin_hal 0.990 0.816 0.806 0.903 0.835 0.737 

Que_pub 0.972 0.735 0.707 0.867 0.618 0.486 

Que_ile 0.990 0.775 0.765 0.932 0.723 0.655 

Que_coc 0.973 0.845 0.818 0.951 0.795 0.746 

Cor_ave 0.917 0.763 0.680 0.906 0.592 0.498 

Que_rob 0.976 0.724 0.700 0.879 0.508 0.387 

Pic_abi 0.989 0.825 0.814 0.945 0.839 0.784 

Pin_syl 0.949 0.835 0.784 0.889 0.763 0.652 

Fag_syl 0.970 0.830 0.800 0.727 0.841 0.568 

 

The more restricted geographic distributions predicted by the DVM may also have 
contributed to the BEM range centroids averaging higher projected latitudes under baseline 
climate (Table 2), although the range margin latitudes were similar (Fig. S7–20). Under 
baseline climate, the boreal conifer Pinus sylvestris had the highest divergence in predicted 
latitude of range centroid (Table 2). After this, the highest divergence occurred for Quercus 
ilex and two of the Mediterranean species: Pinus halepensis and Juniperus oxycedrus (Table 
2).  
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Table 2. Differences (BEMs - DVM, in latitudes) of projected range centroids for baseline 
(1961–1990) and equilibrium. Explanations of abbreviations of species names are given in 
the caption of Table 1. BEMs: Bioclimatic Envelope Models, DVM: Dynamic Vegetation 
Model (LPJ-GUESS). 
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Baseline 
(1961 – 1990) 

0.24 0.92 3.17 0.46 0.82 0.44 4.66 2.58 3.95 7.79 3.03 4.40 1.68 2.09 

Equilibrium 4.75 1.41 1.28 0.49 2.25 3.18 7.63 2.45 8.34 6.60 5.89 7.11 2.14 4.95 

 

 

3.2. Magnitude of the projected range shifts 

The BEMs produced significantly greater latitudinal range shifts in the two future time 
periods, 2021–2050 and 2071–2100 (Wilcoxon signed rank sum test, W = 188, p = 1.95 * 10-5 
and W = 186, p = 2.89 * 10-5, n=14, Fig.1a, b). The BEMs produced greater range shifts also in 
the equilibrium situation (W = 159, p = 0.0027, n=14), although overall the differences 
leveled out (Fig. 1c). Mediterranean species showed the highest disagreement in projected 
range centroids between the models in equilibrium (Table 2), which arose mainly due to the 
BEMs predicting larger range expansions along with contractions, whereas contractions 
were much more modest in the DVM (Figs S13, S15, S17–19). The range centroid divergence 
of P. sylvestris (Table 2) arose from low LAI values predicted by the DVM in Central Europe 
(Fig. S21). Despite this, the presence-absence projections between the models were rather 
consistent (Fig. S16).  

The estimated range shift magnitudes for individual BEM models within the ensemble were 
quite consistent, and no similarities or dissimilarities between individual BEM algorithms and 
the DVM projection could be seen across species (Fig. S2). This indicates that differences 
between the two approaches were not caused by averaging the models within the BEM 
approach.  

The range shift estimates were less species-specific in the BEMs, whereas responses were 
more variable in the DVM (Fig. 1a, b). Range shifts projected by the BEMs straightforwardly 
reflect the shift in climatic variable values that the models were fitted to, whereas responses 
were more divergent in the DVM, reflecting the combined effects of climatic shift, 
competition, and successional lags (Fig. 1d). Differences between the models were 
somewhat reduced at equilibrium conditions (Fig. 1c), showing that differences in the two 
preceding time periods (2021–2050 and 2071–2100) were partly caused by successional 
time lags influencing DVM projections. Especially late-successional, shade-tolerant species 
showed long delays in their responses in the DVM (Fig. 1d), but this was not statistically 
significant (L = 3.549, p = 0.169, n = 14).  The temperate Abies alba showed particularly 
pronounced northwards shifts between the end of the century and the equilibrium run. A. 
alba, which is relatively sensitive to low minimum winter temperatures, could expand its 
range northward, as it benefited from warmer winters, but as a shade-tolerant species, the 
response was delayed (Fig. 1b, d). Although the shift in mean latitude of this species was 
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more pronounced in the DVM prediction, both models predicted the presence of A. alba at 
the Baltic Sea coast (Fig. S7), and the BEMs also predicted presence in high-elevation areas 
of Central Europe, whereas the DVM did not (Fig. S7).  

 

3.3. Overall agreement between BEM and DVM results 

When examining the correlation scores between species abundances, the overall agreement 
between the two approaches was highest under baseline climate, declined towards the end 
of the century, and subsequently increased in the equilibrium (Fig. 2a, b). Highest agreement 
was attained in boreal species (Fig. 2a), which showed a consistent pattern through the 
different time frames. The low agreement on Q. robur and C. avellana was caused by BEMs 
projecting higher range expansions and contractions, and the DVM projecting absence of the 
species in the Alps and in high-elevation areas of Scandinavia (Fig. S11, S20).  

When summed presence-absence predictions were examined, the models reached highest 
agreement in boreal areas (Fig. 3a), arising from relatively high agreement for boreal species 
present in these areas (Fig. 2a). With proceeding climate change, model agreement declined 
(Fig. 3b–c), but was again somewhat higher in the equilibrium situation (Fig. 3d). Also, the 
models showed low agreement in mountainous areas such as the Alps. During 2071–2100, 
notable uncertainty was also observable in the transition zones between temperate and 
boreal ecosystems (Fig. 3c), mainly in southern Sweden and Finland, which also persisted in 
the equilibrium scenario (Fig. 3d).  

 

3.4. The effects of competitive traits and geographic range on model agreement 

The competitive traits (shade tolerance and individual longevity) did not have an effect on 
overall model agreement during any time period when assessed with correlation scores (Fig. 
4a-b, table S4). However, boreal species had significantly higher correlation scores in 2071–
2100 (p=0.025) and marginally significant scores (p=0.08) in the equilibrium (Fig. 4c, Table 
S4). In general, the agreement was higher for boreal species (n=3) for all time scales (Fig. 4c). 
This pattern was also confirmed by analyzing presence-absence predictions, which yielded 
similar results (Fig. S4).  

 

3.5. Predicted shifts in biogeographic regions 

Both modeling approaches predicted substantial contraction of the southern distribution of 
the boreal species studied (Fig. 5a–c). B. pendula, classified as a temperate species in our 
study, exhibited a similar pattern (Fig. S8). Both models also predicted northward shifts in 
temperate and Mediterranean ecoregions (Fig. 5e–f, 5h–i), although responses were more 
heterogeneous at the species level. Both models predicted temperate species to shift 
towards areas around the Baltic Sea, and experience range contractions in southern parts of 
their distributions. Range contractions for temperate and Mediterranean species were 
greater in BEMs than in the DVM (Fig. 5e–f, 5h–i ).   

 

4. Discussion 
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Comparison of the two approaches yielded important insights, which can help to guide the 
interpretation of results from the two applied modeling approaches in other studies. 
Although the BEMs performed better in modeling distributions under baseline climate, as 
observed by earlier comparison studies (Cheaib et al. 2012; Kramer et al. 2010), future 
predictions showed divergent patterns, with some consistent features.  

 

4.1. Magnitude of projected range shifts and successional processes 

As hypothesized (hypothesis 1), the BEMs projected larger northward range shifts than the 
DVM, which is in agreement with results from earlier comparison studies (Cheaib et al. 2012; 
Kramer et al. 2012, 2010; Morin and Thuiller 2009). This pattern was consistent for all time 
periods, including the equilibrium scenario. The BEMs projecting generally larger range 
contractions at the southern distribution edge was a main driver behind the pattern in 
equilibrium. As suggested by Kramer et al. (2012), this may be caused by the BEMs assuming 
an equilibrium with baseline geographic distributions and climatic variables, which, when 
extrapolated into the future, may in certain cases yield predicted abundance declines with 
no clear biological causal mechanism (see section 4.3.).  

The increase of model agreement in the equilibrium scenario compared to the end of the 
century highlights the importance of successional processes. Results here suggest that time 
lags are particularly important for late-successional species, which are often important 
ecosystem engineers, and have high numbers of associated species (Ellison et al. 2005). 
Similar slower responses of late-successional species have previously been found by Meier et 
al. (2012), caused by slower growth rates and poorer dispersal abilities than early-
successional species.  

Successional lags are not the only important difference between the two approaches when 
interpreting the simulated range shift magnitudes, because the DVM simulated smaller 
range shifts even during the equilibrium run. These results suggest that complex competitive 
interactions, which are more fully covered in the DVM, may reduce range shifts compared to 
those expected from statistical approaches that relate occurrences to climate alone. 
Physiological CO2 effects are one such potentially important factor (Cheaib et al. 2012; 
Keenan et al. 2011; Reyer 2015), which are only accounted for in the DVM. CO2-driven 
increases in photosynthesis, NPP, and canopy density, for example, disfavor pioneer species. 
However, we did not analyze these effects in detail because their magnitude is uncertain 
(Hickler et al. 2015). In addition, the simulated geographic distributions are rather insensitive 
to physiological CO2 effects in this model version (Hickler et al. 2009). Also, the model may 
not capture between-species differences in its response, as observed in certain cases (e.g. 
Dawes et al. 2010), and how and why tree species differ in their responses is not known. 
(See also section 4.2 below). 

 

4.2. Effects of competition 

We observed no overall consistent effect of competition on the agreement between the two 
modeling approaches, thus our hypotheses 2 and 3, related to the effects of competitive 
traits on model agreement, were not confirmed. However, effects of competition were very 
evident, particularly for shade-intolerant species. The high divergence in the latitudes of 
baseline range centroids in the boreal conifer Pinus sylvestris was caused by the DVM 
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predicting low LAI values for P. sylvestris in Central Europe (Fig. S21), where it was 
outcompeted by more shade-tolerant broad-leaved species. This pattern is consistent with 
the potential natural vegetation of the area (Bohn et al. 2000; Hickler et al. 2012). The 
divergence in Mediterranean species increased in the future, with BEMs predicting 
distribution shifts towards Central Europe, while shifts predicted by the DVM were very 
moderate, which we interpret to arise from competition from prevailing temperate species 
(Fig. 5h–i). Competition also explains the decrease in latitudinal range shift in the DVM 
prediction for P. sylvestris during the 2071–2100 period and in the long-term equilibrium 
results. As a fast-growing species with high colonization potential, P. sylvestris could initially 
expand its range at the northern range margin, but, in the long term, Picea abies, which is 
shade-tolerant, increasingly outcompeted P. sylvestris. P. abies reached the highest 
agreement between the BEM and DVM results of all species in all of the studied time 
periods, because it was simulated to have highly competitive traits, and thus may be 
considered a dominant competitor compared to other species throughout most of its 
potential range. In the DVM (LPJ-GUESS) simulations, other shade-intolerant species, such as 
Betula pendula, also suffered from competition from more shade-tolerant species in the long 
term (equilibrium run), as net primary productivity (NPP) and forest cover increased in a 
warmer climate and because of CO2 fertilization effects. However, as the applied model 
version does not account for nutrient limitations, the real magnitude of the CO2 effect, 
which is highly debated (e.g. Hickler et al. 2015), will be lower than in the model. Elevated 
CO2 did not affect the growth of P. abies in a highly nutrient-limited stand in northern 
Sweden (Kostiainen et al. 2009), and CO2 levels only had a minor effect on the range 
contraction magnitude of P. sylvestris in France (Cheaib et al. 2012). On the other hand, NPP 
will probably increase in many northern forests as nitrogen mineralization rates increase 
with elevated temperature (e.g. Wårlind et al. 2014), and the nutrient status in the soil is 
also one main factor determining the competition between P. abies and P. sylvestris, which 
is not accounted for in the model version applied here. Accounting for nutrient dynamics in 
the model could increase the competitive ability of P. sylvestris, but implementing the 
competition between the two species for nitrogen in a process-based framework would be 
very challenging. The high agreement of both approaches on P. abies suggests that especially 
on dominant species, both models are able to capture ecologically relevant processes which 
exert climatic control on geographic distributions.  

Both modeling approaches applied here model the “realized” environmental niche of the 
species; however, competitive processes are explicitly described in the DVM approach, 
whereas variation due to competitive (and other) effects potentially affecting the present 
distribution will be attributed to climatic factors (the assumption of climatic equilibrium in 
the BEMs, Guisan and Thuiller 2005), which may cause unexpected consequences when 
extrapolating to the future. In this sense, the DVM approach may be considered more 
realistic. However, despite the DVM only relying on bioclimatic tolerance limits based on 
physiological mechanisms thought to be important for absolute range limits, these were also 
calibrated with observed distributions, thus partly suffering from similar limitations.  

 

4.3. Bioclimatic tolerance limits as possible causes for differences 

The way in which the relationship to climatic factors is quantified in each approach is one 
reason for the projection differences between the two models. Bioclimatic limits only define 
absolute limits in LPJ-GUESS. For example, minimum GDD5 for establishment constrains the 
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distribution at the northern range limit and at high altitudes (together with the minimum 
temperature for survival). GDD5 is not used to constrain the distribution southwards, which 
instead is constrained by the maximum winter temperature (chilling requirement) for 
northern species and the simulated available soil water content as a proxy for drought. In 
addition, competition from species that are better adapted to a warmer climate in terms of 
their photosynthetic optima and respiration rates is accounted for. Contrastingly, the BEMs 
estimate species’ tolerances between the current distribution of species and climate (e.g. 
GDD5 values), potentially using each variable to constrain the entire range. At a continental 
scale, growing season length mainly controls the northern distribution edge of species, as 
flowering and seed ripening may be dependent on sufficient accumulated GDD days 
(Woodward 1987, but see Körner 2003). However, as the growing seasons lengthens in the 
future, the BEMs may project the species’ southern distribution edge to contract, as the GDD 
values move out of the climatic niche that was quantified in the model calibration phase, 
thus causing extensive contractions in the southern distribution edge without linking this 
contraction to a specific mechanism (Kramer et al. 2012). Together with competitive 
interactions in the DVM discussed earlier, these differences caused the major discrepancies 
between the models for Mediterranean species. The extrapolation of BEMs into future 
conditions is one of the major uncertainties within this method (Buisson et al. 2010; Pearson 
et al. 2006). In this sense, the DVM projections, which rely on descriptions of specific 
physiological processes, may yield more accurate estimates of causal processes defining 
population dynamics at the contracting edge (Kramer et al. 2012).  

It is interesting that the projections in both modelling approaches were very similar for P. 
abies. Several studies have identified P. abies to highly sensitive to drought and storm 
damage (Altman et al., 2017; Schurman et al., 2018; Vitali et al., 2017). At low elevations, P. 
abies stands are vulnerable to drought, especially when stand age is high (Primicia et al., 
2015; Schurman et al., 2018). The high agreement between BEMs and the DVM arose from 
the two models projecting similar contractions at the southern distribution edge of P. abies. 
This suggests that vulnerability to drought is the major factor controlling the southern 
distribution edge on the continental scale, and that both approaches were able to capture 
this response into the projections, which is in agreement with other projections for P. abies 
under climate change (Dyderski et al., 2018; Hanewinkel et al., 2013).  

Under future climate change, the more conservative geographic range shifts projected by 
the DVM caused the climatic factors to shift in relation to the projected species distributions 
(Fig. S5). This was caused by climatic conditions shifting more rapidly than simulated species 
abundances in the DVM framework, indicating a “climatic debt” (Devictor et al. 2012). As the 
DVM includes a component of population establishment in the predictions, it can yield 
temporally more accurate projections compared to the BEMs, which model instantaneous 
shifts. This means that in the future, local populations will be subjected to climatic 
conditions they are not adapted for, before they have time to migrate to areas of suitable 
climate. It is important to note that although unlimited dispersal was assumed in the DVM, 
because of successional processes, projected distributions still lagged behind the shifting 
climate, causing large shifts in bioclimatic niches. In reality, geographic distribution shifts are 
likely to be even slower due to the time required for dispersal, influenced by dispersal 
barriers such as habitat fragmentation (Meier et al. 2012). Because of this, the bioclimatic 
shifts that European tree species will likely be exposed to in the future are probably even 
larger than estimated here.  
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4.4. Effect of geographic range on model agreement 

Model agreement varied geographically and agreed best on the three boreal species studied, 
confirming hypothesis 4. This higher agreement can be caused by species distributions being 
more strongly under control by abiotic factors in harsher conditions, and on the contrary, 
the competitive biotic interactions to be more important in favorable conditions in the 
south. As BEMs have been shown to be very effective in modeling species distributions at 
the margins of their ranges (Luoto et al. 2005), and on species with restricted distributions, 
i.e. species with distributions strictly controlled by climatic factors (Marmion et al. 2009), the 
higher agreement concerning boreal species could arise from better BEM performance. In 
our study, the BEMs built on boreal species tended to have higher TSS scores than for 
temperate or Mediterranean species.  

Species in boreal ecosystems have limited capability to migrate polewards, as the land mass 
slips into the Arctic Ocean. The geographic ranges of all three boreal species in our study 
extend very far into the Arctic under the baseline and future climate, and thus extensive 
range shifts are not possible. Thus the models would reach reasonable agreement regarding 
the future projections by just quantifying similarly processes at the southern edge of the 
distribution (contracting edge), which explains the higher agreement between the BEMs and 
the DVM on these species during all time periods (Fig. 4c). A similar strong agreement by 
various models on the range shifts of boreal trees has also been reported from the eastern 
United States (Iverson et al. 2017), confirming this interpretation.  

Our study also revealed that model agreement was consistently low under baseline and 
future climate in mountainous areas such as the Alps. Despite model agreement generally 
increasing in the equilibrium scenario, the agreement remained very low in this area. This 
indicates the high uncertainty related to modeling species distributions in such areas, which 
may arise from variable climatic conditions within a small geographic distance along an 
elevation gradient (Huntley et al. 1995). Certain species in mountainous areas, such as A. 
alba, may also be limited by post-glacial dispersal limitation, and are thus presently filling 
only part of their potential climatic niches (Svenning and Skov 2004), making modeling 
efforts challenging. Both our models, especially BEMs, predicted wider potential geographic 
distribution under baseline climate compared to observed distribution (Fig. S7), while also 
predicting a potentially suitable area in Scandinavia. 

 

4.5. Robust results inferred from model comparison  

Despite differences, several coherent patterns emerged across both models. Both 
approaches projected conifer species to mostly disappear from lowland areas of Central 
Europe. This is in agreement with similar results of substantial range contraction of P. 
sylvestris found by Cheaib et al. (2012) for France. Here, the range contraction applies to all 
boreal species in our study throughout Central Europe, indicating a substantial northward 
shift in the southern range of the boreal forest biome. The disappearance of boreal species, 
which are often important for the timber industry, may lead to major economic losses, as 
the more productive species are replaced by southern species with lower timber yields 
(Hanewinkel et al. 2013). Our results support this conclusion for future European forests.   

Although projections regarding distribution shifts with temperate and Mediterranean 
species were more variable, both approaches consistently projected declines of temperate 
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species in Western Europe (southern Britain and France), and their subsequent displacement 
by Mediterranean species, a pattern also identified by Cheaib et al. (2012). Temperate 
species shifted their distributions northeast to Scandinavia and the eastern Baltic Sea, which 
is in agreement with previous studies utilizing BEMs (Hanewinkel et al. 2013) and indicating 
that the structure and functioning of forest vegetation in these areas will be substantially 
altered in the future, with likewise substantial negative impacts on forest economy. 
However, strong climate mitigation policies may result in less intensive climate change than 
what our simulations project (see Hickler et al. 2012 for more details). 

The projections from either approaches or their combinations should not be treated as 
predictions, as both have intrinsic strengths and weaknesses. The model results can 
nevertheless guide adaptive management activities (Meineri et al. 2015), if managers are 
fully aware of the model assumptions and shortcomings (Dormann et al. 2012). Given the 
contrasting background assumptions of the two approaches (Dormann et al. 2012; Meineri 
et al. 2015), common patterns or disagreement may help evaluate the robustness of the 
projections and create more realistic models for particular applications (Connolly et al. 
2017). Thus model comparisons are an important tool for highlighting the differences 
between model types and understanding their implications for future projections and their 
interpretation.  
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Figure legends 

 

Fig. 1. Projected range centroid shifts, compared to range centroids in baseline (1961-1990) 
a): BEMs, (b): DVM; (c): difference of projected shifts between the two approaches (BEM - 
DVM); (d): successional lag in the DVM (difference in latitudes between 2071–2100 and 
equilibrium) by shade-tolerance class. Explanations of abbreviations of species names are 
given in the caption of Table 1. BEMs: Bioclimatic Envelope Models, DVM: Dynamic 
Vegetation Model (LPJ-GUESS). 

 

Fig. 2. Spearman correlation scores between LAI (Leaf Area Index) and probability of 
occurrence, projected for each species (a) and across all species (b). Explanations of 
abbreviations of species names are given in the caption of Table 1. 

 

Fig 3. Summed agreement of BEMs and DVM presence-absence predictions across all species 
during the different time periods. BEMs: Bioclimatic Envelope Models, DVM: Dynamic 
Vegetation Model (LPJ-GUESS). 

 

Fig. 4. Shade tolerance (a), individual longevity (b), and geographic range (c) plotted against 
model agreement (Spearman correlation score) in the baseline (1961-1990), future (2071–
2100) and equilibrium scenarios. 

 

Fig. 5. Shifts in biogeographical regions (species classified to a specific biogeographic region, 
Table S3) in the equilibrium scenario predicted by the two models (middle: BEM = 
Bioclimatic Envelope Models, right: DVM = Dynamic Vegetation Model, LPJ-GUESS) together 
with the baseline (1961 – 1990) observed distributions (left). Top row: boreal (N = 3), middle: 
temperate (N = 6), bottom: Mediterranean (N = 5). Color scale indicates the number of 
species in each grid cell. 
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