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ABSTRACT
In the 21st century, the skills of computational thinking complement
those of traditional math teaching. In order to gain the knowledge
required to teach these skills, a cohort of math teachers participated
in an in-service training scheme conducted as a massive open online
course (MOOC). This paper analyses the success of this training
scheme and uses the results of the study to focus on the skills of
computational thinking, and to explore howmath teachers expect to
integrate computing into the K-12 math syllabus. The coursework
and feedback from the MOOC course indicate that they readily
associate computational thinking with problem solving in math. In
addition, some of the teachers are inspired by the new opportunities
to be creative in their teaching. However, the set of programming
concepts they refer to in their essays is insubstantial and unfocused,
so these concepts are consolidated here to form a hypothetical
learning trajectory for computational thinking.
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1 INTRODUCTION
The rapid digitalization of society and the demand for a technologi-
cally fluent workforce for the 21st century means that our education
system has had to adapt. Computational thinking (CT) skills com-
prise a significant portion of the new qualities that make up the
resulting updated K-12 curriculum. Curricula, syllabi and learning
trajectories are the essential components in making computational
thinking accessible. The Finnish National Curriculum was modified
in 2014 to include algorithmic thinking (a subset of computational
thinking) and computing as the emergent parts of the math syl-
labus [13]. These changes were first introduced at the primary
level and have been in effect since autumn 2016. However, exactly
how computational thinking should be taught has still not been
clearly defined, which has created an arena for various learning
experiments, further research and speculation.

Educators need to agree on a clear theoretical perspective in
order to establish the evaluation criteria for computational thinking.
In addition, math teachers need to review the computing skills that
they now require in order to implement CT in their courses. In
order to respond to this need, in the autumn of 2015, a group of
volunteer teachers informally launched the Code ABC MOOC with
several tracks, one of which is the Racket track examined here.
The Code ABC MOOC is aimed at providing teachers with the CT
skills required by the new curriculum. In addition to introducing
the basics of computing, it emphasizes creativity and the ability
of teachers to integrate computing into their math lessons in a
pedagogically justified manner.

The additions to the curriculum can be divided into two comple-
mentary parts: the basics of computing and computational thinking.
In this article, we examine the views of the Racket MOOC partici-
pants by analyzing their essays (N=206). In this analysis, we focus
on computational thinking and how the teachers expect to apply
it in their teaching. The ideas and proposals in their essays are
combined to form a learning trajectory for math that extends into
the area of computational thinking. The main emphasis in this
work is not on the basics of computing, but on how computational
thinking is interwoven into teaching math. In the analysis, we focus
on computational thinking and how the teachers expect to apply
it in their teaching. The aim is to sketch out as smooth a learning
trajectory as possible by streamlining the transfer between math
and computing. More precisely, we seek to answer the following
research questions:
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• How do the teachers define computational thinking?
• How do they integrate computing with math?
• What kind of a learning trajectory for computational think-
ing can be constructed from the teachers’ essays?

This article proceeds as follows. Section 2 reviews published
work on computational thinking (CT) and learning trajectories
(LT). Section 3 describes the research method. Section 4 provides
the results: the teachers’ views on both CT and computing are
represented and generalized as a new enhanced LT of math that
expands into the area of CT. Section 5 gives conclusions.

2 RELATEDWORK
2.1 Definitions and models of CT
CT has emerged as a consequence of the increased prominence
of computing as a new school subject. In particular, it refers to
the skills that programmers need in their work. Wing introduced
the term CT in 2006 in her seminal article [38]. Although there is
still no absolute consensus on the definition of CT, most experts
accept Wing’s later description from 2010, that CT is, “The thought
processes involved in formulating problems and their solutions so
that the solutions are represented in a form that can be carried out
by an information-processing agent” [39]. Attempts to define what
exactly constitutes CT can be traced back to 1996, when Papert
stated that, "Computer science develops students’ computational and
critical thinking skills and shows them how to create, not simply use,
new technologies. This fundamental knowledge is needed to prepare
students for the 21st century, regardless of their ultimate field of study
or occupation" [29]. Papert’s observation that CT is a creative skill
underpins much of the now accepted definition of the discipline.

The commonly accepted cornerstones of computational think-
ing include: data collection, data analysis and data representation,
problem decomposition, abstraction, algorithms, automation, par-
allel code and simulation, as defined by Barr and Stephenson [5].
This model defines three classes for data, thus emphasizing its im-
portance. In addition, it should be noted that parallel code and
simulation are not commensurate with abstraction and automation,
as the former tend to be more concerned with the implementation
specifics.

Although a number of models enumerating the contents of CT
have been proposed, see e.g. [5, 9, 36], in our opinion, the model
introduced by Cuny, Snyder and Wing [10] encompasses all the
essential components of CT and nothing superfluous, and it still
has enough resolution power to categorize the Racket MOOC par-
ticipants’ views. It is capable of covering most of the teachers’ CT
characterizations under the following three categories:

• abstractions (e.g. pattern generalizations, symbol systems
and representations, and structured problem decomposition
e.g. as functions) that indicate the design-orientedness of a
participant;

• automation (the control flow realized with the help of control
structures and information processing); and,

• analysis (e.g. debugging and systematic error detection, op-
timizing performance and efficiency)

2.2 Integrating computing into K-12 curricula
A significant number of European countries have recently intro-
duced computing as a new addition to their K-12 curricula [3, 16].
Although most of these countries have introduced computing as
a separate subject, Finland has chosen to integrate CT into the
curriculum mainly with math and crafts, see Table 1. Math provides
a theoretical basis for the concept, while crafts gives the pupils an
opportunity to apply their newly-learned skills by creating digital
artifacts, such as robots. Compared with computing, math has a
well-established learning trajectory that has endured the test of
time, and has survived a number of regenerations, such as that
inspired by the New Math movement [21]. In Finland, the teaching
of Craft has developed along with changes in technology, and has
long included computing as one of its components. Here, we aim to
examine how best to exploit this synergy between the two topics.

Integrating computing with math is not risk-free. A recent OECD
study [26] concluded that the more technology was merged with
the math syllabus, the poorer were the results. Nevertheless, Hem-
mendinger [17] reminds us that algorithmic thinking is not any-
thing new: the origin of the term "algorithm" lies in 12th-century
Persia. Similarly, Tedre and Denning [37] states that the history of
CT can easily be traced back to the 1950s. However, rather than
enumerating the many advantages of CT, these authors prefer to
explore the results of previous learning experiments with the sub-
ject, in order to avoid repeating the same mistakes again and again.
Indeed, they question the transferability of algorithmic thinking,
which has hardly ever been integrated successfully into other sub-
jects, despite high expectations.

We proceed under the assumption that integrating computing
into math will inevitably move the center of gravity of the math
syllabus towards CT, but that this will merely strengthen the ex-
isting link between math and computing. Along with adapting
appropriate thinking patterns, CT also requires a student to learn
the necessary computing skills. Conceptually, the transfer between
math and computing fits best withwith the functional programming
paradigm. In particular, it is claimed that learning the functions of
algebra is easiest with functional languages [24, 35].

Math-integrated computing has a remarkably long history with
the functional programming paradigm, starting with the LOGO
learning environment [14, 23, 28], and continuing with the recent
Racket and Haskell experiments [2]. Although it has been argued
that Haskell has some pedagogical advantages over Racket, such
as strong typing and symbolic notation closer to math, the Racket
camp in the USA has consistently reported good, stable results [11,
12, 34, 35]. The successful experiments with Racket have focused on
the transfer between computing and algebra, whereas the results
with the LOGO experiments are harder to pin down [23].

Felleisen and Krishnamurthi [12] propose the paradigm of imagi-
native programming, by which they mean inventive exploitation of
the media (image) rich Racket programming language. In contrast
to other popular functional languages, Racket supports images as
first-class values, which means that they can be inserted into text
and manipulated in a similar fashion as numbers, e.g. in DrRacket
editor. The authors note, however, that integrating computing into
other subjects is fraught with difficulties, and they emphasise that
the programming language should be as close to the language and



Years 1–2 Years 3–6 Years 7–9
Digital competence using digital media, technological fluency impact of technology, tech-integration
Math step-by-step instructions visual programming algorithmic thinking,

good computing conventions
Crafts robots, automation embedded systems,

own artifacts
Table 1: Computing-related additions to the Finnish Curriculum, 2014. (Typically a student is 6–7 years old, when starting
Year 1.)

concepts of the school math syllabus as possible. This complies
with the near transfer principle, which states that the more similar
the topics are, the easier is the learning [32].

2.3 Co-constructing LT
Learning trajectories (LT) have made an important contribution to
curriculum development and research. They are a part of a larger
theoretical framework referred to as hierarchic interactionalism
[33] , which synthesizes aspects of both Piagetian constructivism
and Vygotsky’s Zone of Proximal Development. The theory states
that children actively and iteratively construct knowledge that is
ordered as "hierarchic constructs", or mental structures. Although
originally concerned with early education, hierarchic learning can
also be applied to adult education, especially in such cases where
any previous learning experiences are missing. For such adult learn-
ing developments, hierarchic interactionalism introduces the con-
cept of non-genetic levels of cognitive development, in contrast to
the traditional genetic levels of cognitive development ascribed to
infants [8].

To ensure the smooth integration of CT, a well-grounded LT
should determine consistent progress in the same way that the
more established math syllabus does. In the context of comput-
ing and CT, the cohort of teachers in this Racket MOOC study
have enough computing experience and understanding to reflect
on what they have learned. It is their reflections on their experience
of Racket MOOC that are elaborated on here in order to construct a
hypothetical Learning Trajectory for the development of CT in the
Finnish school curriculum. In this study, the test subjects (profes-
sional math teachers) are, on the whole, older than the participants
in many other LT studies. According to Piagetian genetic epistemol-
ogy, they are well above the age at which children begin handling
formal operations, i.e. twelve and above [31].

Although adults can think more abstractly than children, the
Piagetian cycles still apply to adult learning, even though some
sensory-motoric cycles may be quicker, while others may have
ceased to exist. In this particular study, it is also anticipated that
the transfer will influence the learning: the closer the subjects,
the easier is the transfer, and this seems to be true of the transfer
between math and computing. However, there is little doubt that
adult learners face different challenges than elementary school stu-
dents. For instance, the brain’s plasticity slows down in adulthood,
which affects learning. In addition, although it may sound counter-
intuitive, an adult learner’s gained expertise may not always be an
advantage, as a way of thinking that has become too entrenched
can pose problems for the adult. As [4] points out, entrenched and

therefore less sensitive mental structures may result in possible
error signals failing to induce direct changes in the mental system.

On the other hand, as experts in both the pedagogy and substance
of teaching math, math teachers are able to utilise a variety of
strategies for efficient learning. A meaningful instructional set-
up and well-justified LT facilitate explicit abstraction and transfer
between prior knowledge and new concepts [32]. Given the various
advantages and constraints, the math teachers who are the subject
of this research can be regarded as valid representatives for the
ultimate target group, elementary school students.

3 METHOD
3.1 Context of the Study
Up to 540 teachers participated in the Code ABC MOOC during
the research period of autumn 2015 and spring 2016 [30]. One of
the authors of this article was the instructor of the Racket track.
The first design principle of the MOOC was to use multiple visually
interesting image/Turtle/animation exercises to enable creativity
in order to appeal to elementary school students. The second de-
sign principle was to prove the applicability of computing in the
context of elementary school mathematics. Math teachers need to
be convinced of the benefits of adopting CT and computing into
their classes without feeling that time is diverted from math studies.
Therefore, the programming exercises had a multitude of mathe-
matical concepts woven in, such as geometrical shapes, angles and
measures, the coordinate system, rounding decimals, and functions
to calculate percentage/price/area/volume and to solve triangle
problems, for instance, by utilizing Pythagoras’ theorem.

The Code ABC MOOC consisted of six programming exercises
and a pedagogical essay as the last item. The details of the course
content and how it was organized can be found in [30]. To complete
the course, 80 % of the coursework had to be accomplished, thus
only a part (38 %) of the participants (N=130 in autumn 2015, N=76
in spring 2016, total of N=206) returned the final reflective essay. In
the essays, the participants reflected on the curriculum, sketched
out appropriate LTs for CT, and provided many instructive ideas
and lesson plans. This study applies mixed methods: the essays
written by the course participants are analyzed both qualitatively
and quantitatively. In the qualitative analysis, the definition of CT
and linking computing with math are extracted, and the most de-
scriptive quotations are selected to give a voice to the teachers. The
quantitative analysis synthesizes the teachers’ views as statistical
charts and finally as the crowd-sourced LTs of CT.

The teachers’ CT views were categorized into three super-classes
based on the model by Cuny et al. [10]: abstraction, automation, and



analysis. In order to examine the teachers’ views about abstraction,
the design-orientation (measured as the amount and level of detail
related to the abstractions) of each teacher was estimated on a Likert
scale (1-5). The score illustrates the structuredness of the comput-
ing process as a whole. The phases of planning, documenting and
testing are counted as indications of design-orientation.

The Racket MOOC applied the staircase Design Recipe for Func-
tions model [11] , which divides programming into the following
steps:

(1) think what a function is supposed to do, specify the purpose
(2) name the function descriptively, figure out needed and re-

turned info, specify the signature
(3) write the function stub, use descriptive parameter names

and set a placeholder for a return value
(4) implement and run tests (check-expect) with concrete values
(5) lastly, implement the function body

It was mandatory to successfully complete the MOOC exercises
and writing unit tests with check-expect (item four above).

The teachers’ compliance with this recipe was one criterion used
to arrive at the Likert-scale score of design-orientedness. The oc-
currence frequencies of computing concepts were recorded from
the content, whereas the CT related topics found in essays were
grouped to fit their respective category in the CT model. The most
frequent topics are visible in the dendrogram (1b), such as decom-
position, problem solving and functions as identifiers of abstraction.
Even if the data itself is qualitative, it is quantitatively analyzed.
Mixing qualitative and quantitative approaches within or across
the stages of the research process is referred to as the mixed model
[20].

4 RESULTS AND DISCUSSION
This section introduces the results based on the pedagogical essays
written by the teachers. In trying to integrate CT with math, the
teachers were particularly concerned with the pedagogical view-
points. We will examine how they perceive CT and decompose it as
the general capability needed in programming. After the CT results,
the affordances of those parts of the math syllabus which are most
conducive to computing are investigated in more detail, as the math
teachers describe which math areas, in their opinion, best suited
for computational interventions. To make the results more general-
isable, the teachers’ views are combined into one crowd-sourced,
math-integrated LT for CT.

4.1 Components of the CT model
Overwhelmingly, the teachers showed that they had internalized
the concept of CT, see Figure 1. All the needed components, ab-
stractions (41,9 %), automation (34,9 %), and analysis (7,0 %), were
present in proportion to their share in the MOOC content. In addi-
tion to the main components of the CT model, teachers emphasized
such qualities as logic and creativity. Figure 1a lists the sub-items
of each CT area with their percentages. The following subsections
will illustrate the teachers’ views with selected quotes.

4.1.1 Abstraction. The teachers described abstraction as: mak-
ing generalizations and finding regularities; being able to make
abstractions, design and model systems; writing documentation,

(a) CT categories decomposed

(b) Percentages of categories

Figure 1: CT key areas by math teachers as a decomposed
dendrogram (a), and a pie chart (b). Percentages illustrate the
relative frequencies of the concepts in the essays; however,
values less than 1 % are omitted.

Figure 2: Computing should be taught by concentrating
more on theory, concepts and design than creative hands-on
experiments (N=206)



and following good coding conventions. While contemplating var-
ious aspects of CT, teachers reflected on the advantages of good
problem solving skills in general, as the following response shows:
Highlighting problem solving skills is a welcome addition in any
subject. Everybody benefits from decomposing problems into sub-
problems and solving them step-by-step. In computing, like in math,
problem-solving starts with decomposing the problem into smaller
tasks, i.e., functions.

4.1.2 Automation. Within the automation category, the teach-
ers regarded algorithmic thinking as the most important CT skill.
Furthermore, designed functions need to be sequenced into sepa-
rate commands. During function implementation, a student must
employ iterations, conditional logic, and all the other syntactic
means in order to accomplish the task. So, in addition to basic
syntax, the control structures must have been internalized as well.
Algorithmic thinking produces such routines that facilitate and speed
up our everyday actions. Natural language provides an efficient
tool in problem decomposition and deeper understanding: In my
teaching, I emphasize the path to the solution; the plain answer is
nothing in lieu of intermediate steps to the solution and assessing
the soundness of the answer. Computing supports the development of
algorithmic thinking, which justifies its inclusion in the curriculum
of the elementary school.

4.1.3 Analysis. After the design and implementation, it is time
to evaluate achievements. In math, the evaluation phase means e.g.
ensuring that the result of a calculation is reasonable. In comput-
ing, the program must pass tests. If not, the functionality will be
debugged and errors fixed until the tests are passed; as one teacher
puts it: Debugging separates the wheat from the chaff.

At a more sophisticated level, the analysis covers aspects of
efficiency and resource usage. The bottlenecks of execution may
be determined by profiling the code. In algorithm development,
the benchmarking of speed, for instance, enables comparisons of
different solutions. From the angle of project management, this is
the phase during which the quality of the product is assessed, i.e.,
whether a client is happy and there is completion of definition-of-
done requirements.

4.1.4 Logic. Logic was mentioned the most frequently out of
the uncategorized responses. In this context, logic is understood
both as the skill of handling conditions and their truth values in
iterations and selections, and as logical thinking skills. These skills
comprise the clarity of abstractions, problem solving, seeing com-
mon patterns, and proceeding consistently step-by-step.

4.1.5 Creativity. Conceptions of teaching computing on the axis
of creativity-vs-design-orientation varied remarkably, although on
the whole they were more creativity-weighted, see Figure 2. The
conceptions range from one extreme of seeing creativity in all
computing phases to observing no creativity at all. For example:
I think computing is not creative at all! Not adhering strictly to the
rules will be penalized. Creativity can not be taught by program-
ming. Teaching programming may be reduced to merely teaching
the theory. Self-evidently, highlighting the design phase illustrates
design-orientation: It is crucial to learn the importance of planning.
It is important that a student will be able to think about the program

and its functionality even without knowing how to code. Thus, I con-
sider design as the most important skill. Once the design is clear, it is
easy to implement the program.

The MOOC course emphasized planning functions beforehand
and including unit tests and documentation as a part of the process.
At the beginning, the need for documentation was questioned:
While coding, documentation seemed very stupid: of course you know
what you are currently doing. Still afterwards, when writing more
code, written comments started to feel precious. In addition, the proper
naming of functions helped understanding.

Some teachers favored experimental learning, expressing them-
selves as follows: Playing and experimenting is well suited for learn-
ing programming. There is not only one correct way to solve the
problem with code. Let us try, dare to fail, tolerate uncertainty and
finally experience the joy of success, when the code works as expected.
And: I enjoy such tasks the most that allow playing and experiment-
ing. When starting with a completely new group, I would teach this
way, not so much going through the pile of different concepts. And
one comment, where Dewey’s view is well internalized: Learning
by doing!, Programming is 90 % creativity, 10 % theory. In the middle
of the creativity-vs-design continuum, we encountered opinions,
such as: creativity and theory, they go hand in hand; once basis and
commands are clear and internalized, experiments / play are needed;
and the lack of theoretical knowledge limits creativity.

Some participants noted the two-sided nature of creativity: In
computing, creativity does not manifest itself in such richness that
we are used to. On the contrary, finding the shortest and the most
optimized way of writing code demonstrates creativity. This teacher
broadens the definition of creativity even further, that is, being able
to prepare for faulty input and to step out of the current situation
and anticipate easy maintenance in future: Creativity is that your
code works even if a user gives a faulty input. Moreover, creativity is
writing such easy-to-read code that a person who modifies it gets the
idea with ease. Even though this teacher is capable of combining
creativity with design-orientedness, the majority of the teachers
echoed the opinion quoted at the start of this section, which con-
trasts creativity with design.

Another teacher became particularly inspired with the open-
ended nature of programming tasks, and the opportunity to be
creative: Here is my owl. I wanted to include it here, because while
doing it I was inspired like a child. The whole world of coding, its
opportunities and creativity opened to me. I was capable of doing
this and the result was unique! Being creative equals tinkering, the
philosophy behind which has also been referred to as having ’a
maker mindset’.

4.1.6 Complemented CT Model. Figure 3 merges the CT model
components of Cuny et al. [10] that were unambiguously present
in the teachers’ replies with the new CT complements of logic and
creativity.



Figure 3: CT model enhanced with logic and creativity

Inminor quantities, the teachers emphasize such personal charac-
teristics as perseverance and preciseness. A number of them worry
about their students’ lack of motivation and perseverance regard-
ing science-technology-engineering-maths (STEM) subjects that
need hard work and an undaunted attitude in the face of difficulties.
Being precise is tested, for instance, when a student is struggling
with the syntax of textual programming languages, where adding a
semi-colon or right indentation may do the trick. Many teachers
proposed the students’ own projects to prepare them for collabora-
tion and working life. Project work necessitates paying attention
to the schedule and the process in its entirety from the beginning
of the design-phase to the very end of testing, documenting and
finalizing the product.

4.2 Math integration
In integrating computing intomath, geometry was themost popular
subject: the red slice of the pie (54.7 %) in Figure 4. The majority of
the Racket MOOC participants sketched out geometry-oriented les-
son plans. In addition, the teachers envisioned integrative projects
with art and crafts: math-integrated computing would provide the
needed design skills, which could be exploited in practice by im-
plementing designs for posters, stencils, or 3D printing. Based on
their answers, the serendipity of the outcome due to automation
and iterations seemed to enthuse a number of teachers. In addi-
tion, Racket’s capability of handling images as first-class values
facilitates the programming of graphs and images with ease.

The prominence of geometry is still surprising, as concept-wise
it is not central. It may rather be interpreted as an area where a
student can apply computing skills. For example: a programmermay
visualize both plane and solid geometric shapes and calculate their
areas and volumes. Even though Turtle is not part of any specific
math syllabus area, the teachers frequently mention it. Turtle is
a movable figure that can be used as a drawing tool. For its part,
Turtle scaffolds forthcoming steps of visualizations in geometry
and functions of algebra, and fosters CT. It might also turn into a
precursor to computing as one teacher points out - her students
consider computing as guiding some dude along a certain route.

(a) Math categories decomposed

(b) Percentages of categories

Figure 4: Syllabus areas fit for computing (N=206). The per-
centages are based on the relative frequency of exercise pro-
posals of the teachers. Percentages illustrate the relative fre-
quencies of the math syllabus areas connected to the exer-
cises. Values less than 1 % were omitted.

Figure 4 shows the most popular syllabus areas fit for computing:
geometry, algebra, arithmetic, and logic. Algebra and arithmetic
got clearly fewer votes even though they are more fundamental
theory-wise in understanding programming basics: chronological
and consistent progressing necessitates devising basic operations
and the order of arithmetic operations before expressions and equa-
tions, followed consistently by algebraic fundamentals, variables
and functions. In computing, statements are divided into the prim-
itive assignments of variables, and function calls, which requires
familiarity with these two fundamentals.



4.3 The learning trajectory of computational
thinking

This section outlines the crowd-sourced LT as a means to generalize
the teachers’ views on CT. We merge the exercise proposals and
syllabus ideas of the teachers’ essays as LTs grouped under the
corresponding syllabus areas. The majority of the proposals were
highly compliant with the Finnish National Curriculum 2014, which
forms the skeletal LT that is to be determined more in detail with
exercise proposals and by linking selected computing concepts to
corresponding math concepts.

According to the teachers, computing should be started already
in primary school (Years 1–6) with a graphical environment, such as
Scratch. Turtle is regarded as a good intermediate tool for bridging
the gap between Scratch and textual programming, such as Racket.
In addition, Turtle facilitates breaking the task down into smaller
sub-tasks, for example, when constructing figures from simpler
shapes. This is a kick-start to decomposing problems into smaller
parts, hence it is good preparation for programming.

In the school grades (Years 7–9), students should preferably con-
tinue with textual programming. In Year 7, a student must learn how
to execute basic mathematical operations. In algebra, expressions
and equations support this topic as well, and built-in functions of
the computational system demonstrate how to exploit functions.
These calculations can be executed in the prompt as simple com-
mand line commands, so it is not necessary to write an actual
program in this phase. In geometry, however, a student could start
exercises in drawing various geometrical shapes. In order to modify
and demonstrate the achievements, the results may be saved as
programs. The teachers sketched the following examples:

• Turtle for examining shapes, angles, symmetry and mirror-
ing that belong to the wider domain of transformations

• programming formulas
• quizzes for e.g. identifying geometric shapes

The teachers anticipate an easier engagement with visually appeal-
ing computer graphics than with calculations. In addition to static
geometric exercises, the MOOC rehearsed animations as a dynamic
extension. However, the animation exercises were not frequently
referred to in the essays.

In Year 8, students start with percentages. These calculations
are fit for functions, such as calculating reductions in prices. The
algebraic fundamentals, variable and function, are introduced in
this phase. In geometry, these algebraic fundamentals are exploited
by defining functions for area and volume. The side length of a
quadrangle implemented as a function parameter would enable easy
experimenting. After plane geometry, drawings continue with the
more advanced 3D shapes of cube, cone and cylinder. The teachers’
exercises covered the following topics:

• equations and inequalities, formulas for e.g. percentages,
areas, and other STEM subjects as well, in particular physics

• (simple) calculator application
• drawing plane and solid geometry shapes

In Year 9, percentages continue further and functions are visu-
alized as graphs, which facilitates analyzing their behavior, such
as finding solutions, and minima and maxima. In analyzing the
data, visualization in general could be used in math and STEM. In

this phase, the teachers were willing to gradually move to more
complex tasks and to give more freedom to the students in topic
selection:

• functions and simultaneous equations, solving and analyzing
behavior

• problem solving, being able to decompose a bigger task into
smaller functions

• own projects, learning to take responsibility

The teachers had mature and instructive opinions on how to
apply CT to typical problem-solving in math. Practices such as
problem decomposition, finding the optimal solution, analyzing the
end result and representing the solution to others by verbalizing
the phases, were categorised as CT. However, when moving on
to actual computing, the teachers’ views were more rudimentary,
often being rather shallow in concept and concerned with minor
details rather than striving for the bigger picture. Although most
teachers were familiar with the computing requirements of the
Finnish National Curriculum 2014, and tried to elaborate on them
further to fill the gaps, there were surprisingly few totally original
suggestions.

In addition to the National Curriculum requirements, the CS syl-
labus also covers the majority of computing fundamentals such as
variables, functions, and statements, although type was rarely men-
tioned in the essays. The absence of type also reflects the MOOC
content which is based on Racket’s implicit typing. A couple of the
more experienced computing teachers listed variables, function,
selection and iteration as the target concepts, which, as a proper
subset of gathered CS1 fundamentals, implies that consensus con-
cepts might be found quite effortlessly. Table 2 shows that each of
the syllabus areas received several exercise proposals.

The math teachers are remarkably faithful to the Finnish Na-
tional Curriculum in following its guidelines and schedule. Hence,
the curriculum sets the basis for the learning trajectories of each
syllabus area. However, theory-wise only a few of these areas are
closely linked to computing fundamentals. Figure 5 visualizes the
connections between computing concepts extracted from the es-
says and the respective areas in the math syllabus. The upper
part of Figure 5 depicts the LT of mathematics in Years 1–2, Years
3–6, and Years 7–9, where the solid arrows illustrate prerequisite
relationships of math concepts.

The lower part of Figure 5 shows the necessary computing con-
cepts and their prerequisite relationships. Computing concepts are
clearly separated to avoid confusion. The concepts extracted from
in the teachers’ essays were validated against the basic computing
concepts in Section 4.4. The concepts divide into abstraction, au-
tomation, and analysis. This grouping complies with the CT model
explained in Section 4.1.We have not outlined the exact schedule for
teaching these concepts. However, the dashed lines in Figure 5 ex-
tend LT into the area of CT, thus implying the timing to be followed
provided that the corresponding concepts have been introduced in
sync.

Type and data structure belong to abstraction because they refer
to abstract data types. Even integers can be considered abstract,
as their implementation is hidden. Variables are abstractions of
real world items. Functions can be seen as command abstractions.
As an abstraction tool, Design Recipe by Felleisen et al. facilitates



the planning of well-designed functions [11]. Recall from the list
at the top of Page 2 that automation contains control flow, as the
automation nodes of the Figure. Our analysis illustrates that the
reflective part of the process complies with the test-driven emphasis
of the Racket MOOC.

Concepts of geometry do not link to fundamental computing
concepts (e.g. variable, function, and type) in the CT box below.
Thus, geometry-related exercises do not limit or constrain the CT
teaching schedule. However, various topics in geometry provide
suitable applications to practice programming and, in particular,
its automation role with Turtle and computer graphics. If affective
aspects of learning are emphasized, these exercises seem to inspire
a number of MOOC participants.

4.4 Validity considerations
In qualitative research, data, method and researcher triangulation
are the main means of improving validity [22]. Although this arti-
cle is based only on the data of essays, previous work which also
utilized survey data produced similar results to the findings here.
The mixed research model exploits both qualitative and quantita-
tive phases: qualitative information is first coded or occurrences
are counted, after which the data is quantitatively handled. Re-
searcher triangulation would have improved the quality of catego-
rizing of the CT components and coding of creativity vs. design-
orientedness in Chapter 4.1.5. However, due to time pressures, only
one researcher was available to read, categorize and code the essays.

Overall, the taught topics taught in the MOOC were reflected in
the teachers’ essays, which is to be expected. Thus, the extracted
concepts do not spring from a vacuum, but are an echo of the course
content. For example, algorithmic thinking was in focus instead
of computational thinking, because of the wording of the Finnish
National Curriculum. This may partly explain, why the concept of
algorithm was so central (11%), see Figure 1b.

In order to ensure the validity of the concepts in the depicted LT,
the teachers’ concepts were compared with the concepts retrieved
from other sources that define the central concepts at the higher
education level. In the university course "Principles of Program-
ming Languages", Harsu [15] rationalized the consistent approach
of introducing the fundamental concepts. The priority of certain
computing fundamentals was clear:

• Functions together with variables are the most essential
concepts.

• Variables and function parameters may define a type. Data
structures (e.g. containers: arrays, lists), i.e. advanced types,
are elementary in e.g. search and sort algorithms, or more
generally in filtering or accumulating the data

• Managing the control flow with selection and iteration pro-
vides the rest of the means for successful computing

The analysis of the first computer science courses (CS1) of Finnish
universities and ACM computer science course requirements [1]
gives a statistically-based rationale for opting for these very same
concepts. The only exception is the prominence of the concept
"algorithm". In frequency, it is comparable with the fundamentals
of function and variable. In general, algorithms and data structures
are of a significant importance [1][e.g. ACM-SDF, ACM-AL]. Here,
the central role of data structures highlights the prominence of type

concept. In contrast, type was not in focused on in the teachers’
essays. Selected language and paradigm also warrants its own nu-
ances for the concept set. E.g. if object-oriented, then object and
class are among the top ten, but in the case of functional paradigms,
recursion and higher-order functions become more important.

Software-engineering-wise, implanting awell-structured process
of design-implementation-testing (the order is not fixed, as e.g.
in test-driven development) as well as highlighting good coding
conventions, such as modularity and appropriate naming, were also
considered topical right from the beginning in Finnish CS1 courses.

5 CONCLUSIONS
How do the teachers define CT? When the teachers considered
the skills and concepts that are the most important in learning com-
putational thinking in Years 7–9, they mentioned topics that fit the
categories of abstraction, automation, and analysis. In automation,
algorithms were highlighted in particular. In addition, logic and
creativity were frequently quoted; logic both as the competence of
thinking consistently, and solving the truth values of conditions.
Regarding the MOOC content, the CT part was especially well in-
ternalized, which is natural, since practices analogous to CT are
applied in problem solving throughout the elementary school math
syllabus.

How do they integrate computing with math?
The teachers regarded geometry as the syllabus area with the

most potential due to options for creativity. Geometry was favored
at the expense of the more conceptually-adjusted area of algebra
(function, variable) and arithmetic (basic operations, the right order,
condition primers). The visually educational, showy and sometimes
serendipitous outcomes in geometry are found to be appealing.
Controversially, a few teachers considered any math integration to
be problematic in itself. Their reasoning was that math as a school
subject has a reputation of being a hard subject, and its reputation
for difficulty may readily taint any introduction to computing as
well. This attitude was exemplified by the following quotation:
Current youth have no interest in math because of too much work
(and complexity). Hence, first programming experiences should be as
remote to math as possible.

What kind of LT for CT can be depicted?
Our hypothetical LT, based on the MOOC participants’ essays,

is well rounded and contains all the essential fundamentals. In par-
ticular, variable and function were emphasized, although it must be
recognised that type was hardly mentioned. The most common con-
trol structures, selection and iteration, were also well represented.
However, higher-order functions and recursion as an emphasized
iteration method of a functional paradigm were regarded as be-
ing significantly more complex and were thus seen as candidates
for differentiation. The LT will give a consistent and solid base
for assessing progress in CT and computing. However, in order
to help teachers discern the similarities and differences between
math and computing and in order to boost their confidence, it is
clear that they need more in-service training and reinforcement
of their knowledge of the theoretical basis of computing. Some
of the most fundamental concepts in these two disciplines differ
quite dramatically, as is the case for the concept of variable, for
instance. A variable in computer science has a very complex nature



Table 2: Computing exercises that the teachers integrated in the math syllabus

Year Area Exercises for computational thinking and basic programming concepts
Y1–6 all "unplugged" exercises, following instructions, hands-on experiments in graphical environment
Y7 N basic operations, order of calculations

A expressions, equations
G drawing 2D shapes of plane geometry (triangle, square, circle), practising angles

Y8 N percentages
A variables and functions
G calculating areas of basic shapes, Pythagoras, circle

Y9 N percentages cont.
A visualizing and analyzing function behavior
G volume calculations, trigonometry, 3D shapes of solid geometry (cube, cone, cylinder)

Y7–9 L logical thinking, Boolean values and operators, truth tables
Y6–8 Turtle creative exercises related mainly to geometry
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coordinates
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Turtlecomputer
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reals comparison
operators

truth values

logical
operators

condition

selection iteration

variable

variable

problem
decomp.

expression
equation

inequality

function

functiontype, data
structure

recur-
sion

higher-
order
func.

container

array
list

Pythag.
trig.

point,line angle

transfor-
mations

graphs 3D
shapes

Design Recipe for Functions

Algebra (A)Arithmetic (N) Geometry (G)

Abstraction

Automation

Y1-2

Y3-6

Y7-9

testing, debugging, optimizingAnalysis

Logic(L) Creativity

CT

Figure 5: Hypothetical learning trajectories of CT



compared with its simplicity in math, being an entity of at least
a name, value, type, location in the memory, scope and life time.
The same applies to functions, e.g. the function in math outputs is
always the same value for the same input, but this is not necessarily
the case in computing, cf side-effects. If ignored, these fundamental
differences can easily lead to misconceptions. However, at present
it seems that probably only a few math teachers are aware of such
details.

As a part of a wider range of thinking skills, CT emerges out of a
reciprocal relationship between math and computing. Correspond-
ingly, the math teachers easily transferred their problem-solving
procedures to form a basis for CT. In addition, they were capable of
sketching a number of exercise proposals even though they were
missing some fundamental CS concepts. The math teachers’ prior
knowledge maps well with CT, although computing basics need
more emphasis. However functional the linkage between math and
computing might be, the curriculum should still reserve space for,
e.g., philosophy, language, and art as alternate angles of approach
to CT, and thinking skills in general.

Industry and educators have requested better CS-equipped stu-
dents to fulfill the need of the future workforce [6, 7, 18, 19, 25, 27].
As an emergent new subject, computing provides novel opportuni-
ties to outfit future students with the required skills. In constructing
computing knowledge, the Finnish National Curriculum needs fur-
ther elaboration, since the 2014 version only gives relatively cursory
guidelines for the teaching of CT. Regardless of the programming
language or tools selected, the learned computational thinking skills
and computing concepts should be the same for all students fin-
ishing elementary school, i.e. standardized. In refining the most
crucial concepts, the Racket MOOC has made a valuable contribu-
tion towards this end. Raising the lower-end of the bar enables the
learning targets at the top end of the educational bar to be raised
as well, which is obviously the next step.
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