
Inversion of the Earth’s Bond albedo
from space geodesy

Olli Ihalainen

Supervisors: Karri Muinonen

Olli Wilkman

Censors: Karri Muinonen

Thomas Hackman

Antti Penttilä

University of Helsinki
Department of Physics

Master’s Thesis
Planetary Astronomy

Theoretical and Computational Methods

November 2019



 
Tiedekunta - Fakultet - Faculty 
Faculty of Science 

Laitos - Institution - Department 

Department of Physics 

Tekijä - Författare - Author 
Olli Ihalainen 
Työn nimi - Arbetets titel 
 
Title 
Inversion of the Earth’s Bond albedo from space geodesy 
Oppiaine - Läroämne - Subject 
Astronomy 
Työn laji/ Ohjaaja - Arbetets art/Handledare - 
Level/Instructor 
Master’s thesis / Karri Muinonen, Olli 
Wilkman 

Aika - Datum - Month and 
year 

November 2019 

Sivumäärä - Sidoantal - Number of 
pages 

61 

Tiivistelmä - Referat - Abstract 
 
The Earth’s Bond albedo is the fraction of total reflected radiative flux emerging from the 
Earth’s Top of the Atmosphere (ToA) to the incident solar radiation. As such, it is a crucial 
component in modeling the Earth’s climate. This thesis presents a novel method for estimat-
ing the Earth’s Bond albedo, utilising the dynamical effects of Earth radiation pressure on 
satellite orbits that are directly related to the Bond albedo. Where current methods for esti-
mating the outgoing reflected radiation are based on point measurements of the radiance 
reflected by the Earth taken in the proximity of the planet, the new method presented in this 
thesis makes use of the fact that Global Positioning Satellites (GPS) together view the en-
tirety of the ToA surface. 
 
The theoretical groundwork is laid for this new method starting from the basic principles of 
light scattering, satellite dynamics, and Bayesian inference. The feasibility of the method is 
studied numerically using synthetic data generated from real measurements of GPS satellite 
orbital elements and the imaging data from the Earth Polychromatic Imaging Camera (EP-
IC) aboard the Deep Space Climate Observatory (DSCOVR) spacecraft. 
 
The numerical methods section introduces the methods used for forward modeling the ToA 
outgoing radiation, the Runge-Kutta method for integrating the satellite orbits and the virtual-
observation Markov-chain Monte Carlo methods used for solving the inverse problem. The 
section also describes a simple clustering method used for classifying the ToA from EPIC 
images. 
 
The inverse problem was studied with very simple models for the ToA, the satellites, and 
the satellite dynamics. These initial results were promising as the inverse problem algorithm 
was able to accurately estimate the Bond albedo. Further study of the method is required to 
determine how the inverse problem algorithm works when more realism is added to the 
models. 
 

Avainsanat – Nyckelord 
 

Keywords 
Bond albedo, inverse problems, Earth, radiation pressure, satellite dynamics 

Säilytyspaikka - Förvaringsställe - Where deposited 
Kumpula Kampus library 

Muita tietoja - Övriga uppgifter - Additional information 
 



Table of contents

1 Introduction 1

2 Theory 7
2.1 Geometries and reference frames . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Geocentric inertial frame . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Top of the Atmosphere geometry . . . . . . . . . . . . . . . . . . 8
2.1.3 Surface frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Local orbital frame . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Radiation model for Top of the atmosphere . . . . . . . . . . . . . . . . . 10
2.2.1 Scattered radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Emitted radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Total outgoing radiation . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Satellite dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Complex gravitational field . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Radiation pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 The inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Inversion of the Earth’s Bond albedo . . . . . . . . . . . . . . . . . 27
2.4.2 Markov-chain Monte Carlo methods . . . . . . . . . . . . . . . . . 28

3 Measurements and observations 31
3.1 Earth Polychromatic Imaging Camera images . . . . . . . . . . . . . . . . 31
3.2 Space geodesy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Numerical methods 35
4.1 Forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Discretised Top of the Atmosphere . . . . . . . . . . . . . . . . . . 35
4.1.2 Top of the Atmosphere classification scheme . . . . . . . . . . . . 36



iv Table of contents

4.1.3 View factor ray-tracing . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.4 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Albedo inversion algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Virtual-observation MCMC . . . . . . . . . . . . . . . . . . . . . 41

5 Results and discussion 43
5.1 Forward model verification . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Classified Top of the Atmosphere models . . . . . . . . . . . . . . . . . . 46
5.3 Inverse problem solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions 57

References 59

Appendix A Conventions 63



Chapter 1

Introduction

Defined as the fraction of the total reflected incoming radiation to the incident solar radiation,
the Earth’s Bond albedo, also called the spherical albedo, is a crucial component of the
Earth’s radiation budget (ERB), along with the total outgoing emitted radiation. This energy
budget sets critical constraints to climate models, making accurate estimates of the ERB of
vital importance for studying the impact of anthropogenic forcing on the Earth system. As
it stands, the primary means of estimating the ERB is based on point measurements of the
outgoing radiance, taken in the proximity of the planet by the CERES instrument (Clouds and
Earth’s Radiant Energy System) [1, 2]. This measurement setting gives rise to uncertainties
at the level of 1% to 3% [3, 4], that are difficult to evaluate, since, for example, the cloud
cover evolves in a minute timescale while it takes several hours for the CERES instruments
to scan the entire Earth system.

To significantly lower the uncertainties, this thesis introduces a novel method for es-
timating the Earth’s Bond albedo in near-real time. The principal idea is to collect and
to forward model radiometric imaging data from remote sensing satellites in tandem with
simultaneous high precision space-geodetic observations of the satellite positions, which
are affected by the emerging Earth radiation pressure. Using the forward model, the time
evolution of the ERB along with uncertainties can then be resolved as a global statistical
inverse problem. Ideally, an armada of satellites capable of simultaneous space geodetic
observations and radiometric measurements would be used. But since such an armada does
not yet exist, this thesis focuses on the options currently available. Promising candidates
in this category are Global Positioning System satellites, the constellations of which are
relatively homogeneously spread around the Earth (Fig. 1.1), and the Earth Polychromatic
Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) spacecraft
orbiting at the L1 point from where it always views almost the entire sunlit side of the
Earth’s surface (Fig. 1.2. Although the basis for utilising both radiometric and space geodetic
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observations to solve the global inverse problem is laid in this thesis, only the space geodesy
part of the inverse problem is explored in practice.

Fig. 1.1 GPS constellations.

To stress the importance of accurately estimating the ERB, nearly all of the radiant energy
incident on the Earth, which drives the planet’s climate and weather, comes from the Sun,
with the average amount of solar irradiance on the Earth’s Top of Atmosphere (ToA) being
around 340.2 W/m2. Of this incoming shortwave radiation, approximately 70% is absorbed
by the Earth’s surface, oceans or atmosphere, while the remaining 30% is reflected back to
the surrounding space in all directions. As the Earth system is almost at radiative equilibrium,
the absorbed energy is thermally emitted as outgoing longwave radiation back by the entire
globe in the long-term. Hence, changes in ERB, determined by the balance between the
received solar irradiance and the Earth’s total outgoing radiation, i.e., emitted and reflected
radiation have both direct and long-lasting consequences in the state of the planet’s climate.

For space geodesy, an accurate model of the Earth’s outgoing radiation can also improve
the precision of satellite orbit estimation process. As the non-conservative forces acting
on satellites, such as perturbations due to the Earth’s non-spherical shape, tidal forces,
or gravitational attraction of other solar system bodies are well known, a key factor for
increasing the precision of orbit determination is accurate modeling of non-conservative
forces. For satellites on Medium Earth Orbits (MEOs, 2,000 km to 35,786 km), these are
mainly due to effects of radiation pressure, such as solar radiation pressure, Earth radiation
pressure, thermal re-radiation of energy absorbed by satellite surfaces, or satellite antenna
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thrust (Table 1.1). Besides solar radiation pressure, most orbit determination software rely
on empirical force models to account for other non-conservative forces. However, these
empirical models are dependent on continuous observations of the satellite positions giving
them little or no predictive power over the satellite’s future state.

Table 1.1 Major perturbations acting on GNSS satellites [5, 6]

Perturbation Magnitude (m/s2)

Earth’s two-body attraction 0.59
Earth’s oblateness 5×10−5

Lunar gravitational attraction, 5×10−6

Solar gravitational attraction, 2×10−6

Other Earth’s gravity field terms , 3×10−7

Solar radiation pressure, 5×10−7

Earth radiation pressure, 2×10−9

Fig. 1.2 EPIC view of the Earth at 2019-02-25 11:06:10 UTC. Credit: NASA

While using space geodesy for determining the Bond albedo as an inverse problem is
a previously unstudied approach, the modeling of the radiation pressure forces has been
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extensively studied previously [7–12]. As for utilizing imaging data to estimate the ERB, this
approach has been used almost since the first satellites were launched. In addition to CERES,
other means of estimating the outgoing radiation currently include using Geostationary
satellites for radiometric measurements [13], and the Earthshine, the illumination of the
dark part of the Moon due to Earth’s reflected radiation [14]. Also worth mentioning is the
National Institute of Standards and Technology Advanced Radiometer (NISTAR) aboard
the DSCOVR spacecraft along with EPIC which is taking radiometric measurements of the
global reflected radiation from the Earth’s entire sunlit surface [15]. For future missions,
there has already been interest for global multiangle measurements of the global outgoing
radiation in utilizing CubeSats [16].

Although the discussion here has been about the Earth’s Bond albedo, the methods
developed as part of this research will naturally be applicable to studying any other planetary
object with a well-known shape. In fact, the BepiColombo mission, arriving on its desired
orbit around Mercury on December 5th, 2025, will provide an ideal case study for this
method. The mission contains two probes: the Mercury Magnetospheric Orbiter (Mio) and
the Mercury Planetary Orbiter (Bepi). The science payload on Bepi includes a laser altimeter
for determining the surface shape, a high accuracy accelerometer designed for measuring
the radiative forces due to radiation incident from the Sun and scattered by the planet, and
imaging instruments observing the outgoing radiation over a wide spectral range. Despite the
periherm altitude of the Bepi being only 590 km, the problems that were described with the
CERES measurements do not apply for Bepi, since Mercury has no atmosphere and is tidally
locked in 3/2 spin-orbit resonance with the Sun, that is, the changes in the measurement
conditions are not nearly drastic in the case of the Earth.

To keep the scope of this study within reasonable limits, the following simplifications
are made. Only the scattering, absorption and emission of electromagnetic radiation are
considered. The reflected and emitted ToA radiation is considered be diffuse and isotropic,
and the outgoing ToA radiation is considered to consist of two parts: shortwave reflected
radiation and longwave emitted radiation. A static model of the ToA is used, meaning
that it does not change over time when numerically simulating the inverse problem. The
satellites are assumed to be spherical, and to emit all absorbed radiation immediately back as
thermal re-radiation. When modeling the gravitational forces affecting the satellite motion,
gravitational attraction of other solar system objects is not considered. Also, the model used
for the Earth’s gravitational potential considers only two terms that account for the variations
in the Earth’s density.

The remainder of this thesis is organized as follows. Chapter 2 presents the theory
necessary for understanding the global inverse problem, while Chapter 3 introduces the
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measurements used as data for the inverse problem. Chapter 4 covers the numerical methods
and algorithms used in the software that solves the inverse problem. The results produced by
the software are presented and discussed in Chapter 5, and the conclusions of this study are
drawn in Chapter 6.





Chapter 2

Theory

2.1 Geometries and reference frames

A key element in solving the global inverse problem is determining the amount of electro-
magnetic radiation received by a satellite orbiting the Earth from any point on the ToA. To
fully describe the physics of the problem, a variety of geometries and frames of reference
need to be defined. The rationale and order in which these frames are introduced in this
section are as follows. First, to describe the position of a satellite with respect to the Earth
and the Sun, a geocentric inertial frame is discussed. Second, to describe the ToA scenery
as viewed by the satellite with global spherical coordinates (ϑ , ϕ), a geocentric frame that
rotates along with the Earth’s motion is used. Third, to describe the geometry of, e.g., a small
planar segment of the ToA surface, local spherical coordinates (θ , φ) are used. The fourth
and final frame is a satellite local orbital frame, which is used to describe orientation of a
satellite with respect to the Earth.

2.1.1 Geocentric inertial frame

A geocentric inertial frame of reference is used to describe the motion of satellites orbiting
the Earth. It is defined such that the origin lies at the Earth’s center of mass, the z-axis points
towards the celestial North Pole, while the xy-plane lies on the Earth’s equatorial plane with
the x-axis directed towards the vernal equinox, a reference point where the equatorial and
ecliptic planes intersect (Fig. 2.1). More specifically, this thesis uses the J2000 frame, where
the x-axis points towards the vernal equinox of the Julian date of January 1st, 2000 at 12:00
Terrestrial time.
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Fig. 2.1 Geocentric celestial inertial frame where the blue plane marks the Earth’s equatorial
plane, x-axis points towards the vernal equinox, z-axis is directed towards the celestial north
pole. A satellite’s position vector r⃗ is given by right ascension α and declination δ .

2.1.2 Top of the Atmosphere geometry

The Top of the Atmosphere is a theoretical interface between the space and the Earth’s
atmosphere from which radiation enters and exits the Earth system. To describe the coor-
dinates of a ToA scene seen by a satellite orbiting the Earth at a given moment, it is useful
to define a coordinate system that rotates along with the Earth’s surface. This Earth-fixed
frame is centred on the Earth center of mass with the z-axis directed towards the celestial
north Pole, and the xy-plane coinciding with the Earth’s equatorial plane such that the x-axis
points toward the Prime Meridian. Any point on the ToA can then be described using global
spherical coordinates x

y
z

=

r sin ϑ cos ϕ

r sin ϑ sin ϕ

r cos ϑ

 , (2.1)

where r is the ToA radius, ϑ ∈ [0, π] is the polar angle, and ϕ ∈ [0, 2π] is the azimuth
angle. This study sets the ToA to be at 20 km height from the Earth’s surface, as it has been
estimated to be the optimal reference level for satellite-based measurements of the ToA [17].
As a consequence, an observer might see a different scenery when looking at the same point
of the ToA, depending on their position, as illustrated in Fig. 2.2. However, the satellites that
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are used for this thesis orbit the Earth at heights much greater than that of the ToA, around
2.0×104 km GPS satellites and 1.6×106 km for the DSCOVR satellite. At this scale the
effect is considered to be fairly negligible insofar as the presented thesis is concerned.

θθ′

Earth

Atm
osphere

Fig. 2.2 Top of the Atmosphere Geometry. The height of the atmosphere is not to scale.

2.1.3 Surface frame

To describe the directions of the incoming radiance and the satellite detecting outgoing
radiance with respect to a ToA surface element, local spherical coordinates (θ ,φ) of the
surface are used. In this frame the surface normal, the unit vector pointing towards the sun,
and the unit vector pointing towards the satellite are denoted by n̂, n̂⊙, and n̂sat. Then the
cosines for the angles of incidence and emergence θ0 and θ are given by

µ0 = cosθ0 = n̂ · n̂⊙ (2.2)

µ = cosθ = n̂ · n̂sat, (2.3)

and the phase angle α is given by

cosα = n̂⊙ · n̂sat. (2.4)
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2.1.4 Local orbital frame

The local orbital frame of a satellite provides the orientation of the satellite with respect to
the Earth. The frame is defined by radial, normal, and transverse directions, such that given
the position and velocity vectors r⃗ and v⃗, the unit vectors corresponding to these directions
are given by [18]

êR =
r⃗
|⃗r|

êN =
r⃗× v⃗
|⃗r× v⃗|

êT = êN × êR.

(2.5)

2.2 Radiation model for Top of the atmosphere

The key radiometric quantity for studying the flux of energy through the Earth’s ToA is
the spectral radiance Lλ . It is defined as the differential amount of spectral radiant flux
dΦλ , or radiant power, passing through an infinitesimal surface element dA into or from an
infinitesimal solid angle dΩ

Lλ (θ ,φ) =
dΦλ

dA cosθ dΩ
, (2.6)

where dAcosθ is the projected area of the surface element as seen from the direction (θ ,φ)

of the solid angle element. This thesis assumes that the outgoing radiance from any point in
the ToA originates from a locally plane-parallel surface. The radiance over all wavelengths
can be acquired simply by integrating over the whole spectrum

L(θ ,φ) =
∫

∞

0
Lλ (θ ,φ)dλ (2.7)

Similarly, the irradiance E, or the flux density received by the surface element is given by

E =
∫

∞

0
Eλ dλ =

∫
∞

0

dΦλ

dA
dλ . (2.8)

where Eλ is the spectral irradiance. The disk-integrated brightness can be defined as the flux
density from a surface per unit solid angle

I =
∫

∞

0
Iλ dλ =

∫
∞

0

dΦλ

dΩ
dλ . (2.9)
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If the outgoing radiance as a function over the entire ToA surface is known, the total outgoing
radiant flux is then given by

Φ =
∫

A
J(ϑ ,ϕ)dA, (2.10)

where J is called radiosity, defined as a sum of the outgoing reflected, emitted, and transmitted
flux densities as a function of the global spherical coordinates (ϑ ,ϕ), the ToA surface.

As the largest components of the Earth’s outgoing radiation are the reflected shortwave
(0.1 µm to 2.5 µm) radiation and the emitted longwave (2.5 µm to 100 µm) radiation (Fig.
2.3), the transmitted fluxes are not considered in this study. The following subsections present
the theoretical foundations needed for describing the angular characteristics of the reflected
and emitted radiation from the ToA. Since the following analysis applies for both spectral
and integral radiometric quantities, the word "spectral" and the subscript λ are omitted in the
following unless distinguishing between the two is necessary.

Fig. 2.3 Illustration of the blackbody emission spectra of the Sun’s and the Earth’s emitted
radiation1.

1Image source: http://math.ucr.edu/home/baez/ecological/earth_and_sun_emission.jpg



12 Theory
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Fig. 2.4 The Geometry describing the BRDF.

2.2.1 Scattered radiation

Assuming that the incident solar radiation can be approximated as a collimated beam, the
spectral irradiance is given by

E(µ0) = E0 µ0, (2.11)

where E0 is the solar irradiance, also called the solar "constant", and µ0 is the cosine of
the solar zenith angle θ0. The radiance scattered diffusely from the surface element can be
related to the irradiance via the bidirectional reflectance distribution function (BRDF) R as

L(µ0,µ,φ0,φ) = R(µ0,µ,φ0,φ)E. (2.12)

In essence, the BRDF describes the angular anisotropy of the scattered radiance. Often, it is
safe to assume that the BRDF of a surface has azimuthal symmetry, meaning that only the
difference ∆φ = φ −φ0 in the incident and emergent azimuth angles needs to be accounted
for. By setting φ0 = 0, Eq. (2.12) can thus be re-written as

Lr(µ0,µ,φ) = R(µ0,µ,φ)E. (2.13)
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Within this framework, the phase angle α is given by

α = arccos(cosθ0 cosθ + sinθ0 sinθ cosφ). (2.14)

An example of a surface where the azimuthal symmetry assumption is invalid could
be a crop field where the plants grow in rows. While such a surface can be relevant when
modeling the different land types of the Earth, the resolution of the ToA used for this study
is low enough to obscure such effects. Thus, this thesis considers all surfaces to follow Eq.
(2.13).

A highly reflective surface can be approximated by a Lambertian surface, which reflects
the incident radiation isotropically, meaning that the BRDF is a constant

RL =
pL

π
(2.15)

where pL is a coefficient that describes the percentage of the reflected light. An ideal
Lambertian surface would have pL = 1.0, that is, all incident radiation would be reflected by
it.

The Lommel-Seeliger scattering law can be used to describe the scattering behaviour of
darker surfaces. As shown in [19], the Lommel-Seeliger scattering law assumes that incident
radiation traversing in a semi-infinite layer of scattering media only scatters once and is
attenuated exponentially. The resulting BRDF for this type of scattering is

RLS =
pLS

4π

1
µ +µ0

P(α), (2.16)

where the reflection coefficient pLS is called the single-scattering albedo, α is the phase
angle, and P(α) is a unitless function normalized over 4π called the single-scattering phase
function. For isotropic scattering, the Lommel-Seeliger BRDF simplifies to

RLS =
pLS

4π

1
µ +µ0

. (2.17)

In addition to the Lambert and Lommel-Seeliger BRDFs, there are of course plenty of
more realistic scattering laws, such as the Torrance-Sparrow BRDF [20]. The Lambert and
Lommel-Seeliger scattering laws do however offer a reasonable first approximation for bright
and dark surfaces, making the more complicated BRDFs outside the scope of this thesis.

For the inverse problem, discussed in (see Subsection 2.4), the unknown parameters to be
solved are the coefficients in the BRDFs, such as pL, or pLS in equations (2.15) and (2.17).
But these parameters also include the coefficients of, e.g., the single-scattering phase function
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in Eq. (2.16). However, in the following, all the coefficients are commonly referred to as
reflection coefficients, and are denoted by p.

Having defined the reflected radiance in Eq. (2.13), the irradiance reflected by the surface
can now be written as

E(µ0) =
∫ 2π

φ=0

∫ 1

µ=0
L(µ0,µ,φ)µ dµ dφ (2.18)

The ratio of reflected irradiance to solar irradiance is called the plane albedo Ap of the surface
element, and with the use of (2.13) can be written as

Ap =
∫ 2π

φ=0

∫ 1

µ=0
R(µ0,µ,φ)µ dµ dφ . (2.19)

The geometric albedo can be defined as the ratio of the disk-integrated brightness of
surface at phase angle α = 0◦ divided by the disk-integrated brightness of a purely Lambertian
disk at the same phase angle and with the same cross-sectional area

Ag =
Iλ (0◦)
IL(0◦)

. (2.20)

2.2.2 Emitted radiation

The spectral radiance emitted by a blackbody surface element at temperature T is described
by Planck’s law

Bλ (T ) =
2hc2

λ 5
1

e
hc

λkB T −1
, (2.21)

where h is the Planck constant, c is the speed of light, λ is the wavelength of the radiation,
and kB is the Boltzmann constant. A straightforward integration over the whole spectrum
yields the blackbody radiance as

B(T ) =
2π4 k4

B
15c2 h3 T 4. (2.22)

The radiant exitance, or the flux density emitted by a blackbody is then simply

MB(T ) = σT 4, (2.23)

where σ is the Stefan-Boltzmann constant.
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A blackbody, however, is an idealisation of an object that absorbs all incident radiation
and later emits it isotropically. This idealisation can be remedied by introducing a quantity
called directional emissivity ε , which can be used to relate radiance emitted by a non-ideal
surface LT (µ,φ) to the radiance emitted by a blackbody at the same temperature. Thus, the
thermal radiation from a non-ideal surface can be written as

L(µ,φ) = ε(µ,φ)B(T ). (2.24)

In the case of a Lambertian surface, the thermal radiance is isotropic meaning that the
emissivity is given by

εL =
LT,L

B(T )
=

qL

π
, (2.25)

where qL is a coefficient for Lambertian emission. For this thesis, all surfaces modeled in the
numerical applications are considered to emit radiation isotropically. Similar to the reflection
coefficients p, for directional emissivity the unknown parameters are referred to as emission
coefficients, and are denoted by q.

Using (2.24), the radiant exitance can now be defined as

M =
∫ 2π

φ=0

∫ 1

µ=0
ε(µ,φ)B(T )µ dµ dφ . (2.26)

To describe how efficiently a surface element emits energy into all directions above the
surface element, hemispherical emissivity εp is defined as the ratio of the radiant exitance of
a non-ideal surface to the radiant exitance of a blackbody at the same temperature

εp =
∫ 2π

φ=0

∫ 1

µ=0
ε(µ,φ)µ dµ dφ . (2.27)

2.2.3 Total outgoing radiation

Where the previous subsections (2.2.1) and (2.2.2) discussed the radiative properties of a
single, locally plane-parallel ToA surface element, this section extends the analysis to the
entire ToA surface. Essentially, this means that the BRDF and the directional emissivity
vary as functions of the global spherical coordinates (ϑ ,ϕ). As such, the total outgoing ToA
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radiation described in Eq. (2.10) can now be expressed as

Φ =
∫

A
[Ap(ϑ ,ϕ)E0(µ0)+ εp(ϑ ,ϕ)MB(T,ϑ ,ϕ)] dA

=Φr +ΦT ,
(2.28)

where Φr is the total reflected radiant flux and ΦT is the total emitted radiant flux. By
denoting the incident solar radiant flux with Φ0 and the emitted blackbody radiant flux by
the entire globe with ΦB at the same temperature as ΦT , the Bond albedo AS and global
emissivity εS can then be defined as the fractions

AS =
Φr

Φ0
, (2.29)

εS =
ΦT

ΦB
. (2.30)

These fractions determine the Earth’s radiation budget. Since this thesis assumes that all
surfaces are Lambertian, the Bond albedo and the global emissivity are determined by how
the reflection and emissivity coefficients pL and qL in equations (2.15) and (2.25) vary over
the ToA. This thesis considers two approaches for this matter: one where the ToA surface is
categorised into a set of classes by surface type and cloud cover, and a more analytical one,
where the reflection and emission coefficients are given as square-integrable functions on the
unit sphere.

ToA classification

As the BRDF and directional emissivity can vary depending on the surface type such as
grasslands, deserts, or clouds, a natural approach for describing the ToA surface is to classify
it according to each surface type. In this approach, each class is assigned with a corresponding
BRDF and directional emissivity model. In practical applications, radiometric remote sensing
measurements are used to classify the surface types and to interpolate the models describing
the angular characteristics of the reflected and emitted radiation.

In more detail, the ToA surface is classified by dividing the surface to Nc subsets, or
classes, such that the surface element belonging to the jth class have the same scattering and
emission models and a set of coefficients. Then, the total number of parameters determining
the ToA radiation field is given by

NP =
Nc

∑
j=1

(Np j +Nq j), (2.31)
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where Np, and Nq denote the number of reflection coefficients and emission coefficients,
respectively. As an example, a surface element assigned with a combined Lambert and
isotropic Lommel-Seeliger BRDF and a isotropic directional emission function would have
Np = 2 and Nq = 1.

There exist several land cover classification schemes with varying degrees of detail.
However, for the purposes of this study, a simple classification algorithm was developed for
detecting clouds, oceans, vegetated surfaces, and deserts from EPIC imaging data, which is
presented in Chapter 4.

Spherical harmonics model

The following assumes that the BRDF for each ToA surface element is simple, in the
sense that in can be written as a product between some reflection coefficient and a function
describing the angular dependency of the reflected light. Examples of such BRDFs are
the Lambertian BRDF and the Lommel-Seeliger BRDF for isotropic scattering, where
the reflection coefficients are p = pL and p = pLS, respectively. The same assumption
applies to the directional emissivity of the surface elements. Then, assume that the BRDF
and directional emissivity are the same over the entire ToA, but such that their associated
reflection and emission coefficients p and q vary over the globe. If these coefficients are
square-integrable functions on the unit sphere, they can be represented by the following
series expansions

p(ϑ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

plmYlm(ϑ , ϕ), (2.32)

q(ϑ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

qlmYlm(ϑ , ϕ), (2.33)

where the coefficients plm and qlm are constant and Ylm(ϑ , ϕ) are orthonormal basis functions
on the unit sphere called spherical harmonics

Ylm(ϑ , ϕ) =

√
2l +1

4π

(l −m)!
(l +m)!

Plm(cosϑ)eimϕ . (2.34)

Here the functions Plm(cosϑ) are orthogonal functions called the associated Legendre
functions.
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The simplest model for the ToA is the uniform Lambertian sphere, that is, a model where
only the l = 0 term is non-zero and all outgoing radiation is isotropic

pL(ϑ ,ϕ) = p00Y00(ϑ , ϕ), (2.35)

qL(ϑ ,ϕ) =q00Y00(ϑ , ϕ). (2.36)

Here Y00 = 1√
4π

, meaning that p and q are independent of the coordinates (ϑ , ϕ). the
Bond albedo and the spherical emissivity are then simply AS = pL and εS = qL. In case the
entire surface obeys the Lommel-Seeliger scattering law, the spherical albedo is given by
AS =

3
2(1− ln2)pLS.

A semi-realistic model of the ToA can be achieved by assuming that the reflectivity
and emissivity coefficients vary as functions of latitude, that is, only the m = 0 terms are
non-zero.

p(ϑ) =
∞

∑
l=0

pl Pl(cosϑ), (2.37)

q(ϑ) =
∞

∑
l=0

ql Pl(cosϑ), (2.38)

where the subscript denoting m = 0 has been omitted. A version of this model has been
presented in [9], dubbed here as the polar cap model, where the last non-zero term is l = 2

p(ϑ) = p0 + p1P1(cosϑ)+ p2P2(cosϑ), (2.39)

q(ϑ) = q0 +q1P1(cosϑ)+q2P2(cosϑ). (2.40)

This model accounts for seasonal variability in the ToA reflectivity and emissivity by defining
the first degree terms as

p1 =c0 + c1 cos(ω(JD− t0))+ c2, (2.41)

q1 =k0 + k1 cos(ω(JD− t0))+ k2, (2.42)

where the c0, c1, c2, k0, k1, and k2 are constants, ω = 2π

365.25 , JD is the Julian date, and t0 is
the epoch of the periodic terms.
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2.3 Satellite dynamics

Unperturbed orbit

Where previously the outgoing radiation from the planet Earth was discussed, this section
describes how that radiation affects satellite orbits. But first, consider a satellite orbiting a
perfectly spherically symmetric body. Assuming the satellite’s size and mass are significantly
smaller than that of the spherical body, it can be thought of as a point mass, and the
gravitational attraction is described by Newton’s law of gravitation

⃗̈r =−GM
r3 r⃗, (2.43)

where G is the gravitational constant and M is the mass of the body, which for this thesis
is the Earth’s mass. The solution to Eq. (2.43) describes the motion of a satellite on an
unperturbed orbit, or Keplerian orbit, which can be characterised in terms of the satellite’s
position r⃗(t) and velocity⃗̇r(t) at an arbitrary epoch t.

Often, it is more convenient to describe the orbit using six parameters called the Keplerian
elements (a, e, i,Ω, ω, f (t)), illustrated in Fig. 2.5. The first two of the Keplerian elements
describe the shape of the orbit, with a being the semi-major axis of the orbit and e is its
eccentricity, i.e. how much the orbit deviates from being perfectly circular.

The next three of the Keplerian elements describe various angles relating the orbit to a
given frame of reference, which for this thesis is the J2000 frame, as discussed in section
2.1.1. The inclination i gives the angle between the satellite’s orbital plane and the Earth’s
equatorial plane, marked by two points of reference called ascending nodes. The right
ascension of the ascending node Ω is the angle between some point of reference and the
orbital node which the satellite passes northwards. The vernal equinox is used as the point
of reference in the GCRF frame. The argument of perigeum ω is the angle between the
ascending node and the perigee, the point at which the satellite is closest to the Earth.

Finally, the true anomaly f = f (t) is used to describe the position of the satellite at time
t as the angle between the satellite and the perigee. To describe the geometry between the
satellite, the Earth, and the Sun, it is useful to define the satellite’s argument of latitude
u = ω + f , which gives the angle between the ascending node and the satellite. Then, the
Sun’s argument of latitude, which is determined from its apparent motion around the Earth,
is projected on the satellite’s orbital plane, and denoted by us. The relative position between
the satellite and the Sun is then given by the difference ∆u = u−us, and the Sun’s elevation
angle to the satellite’s orbital plane βs, as shown in Fig. 2.6. These angles are especially
useful when examining the effects of radiation pressure on a satellite’s trajectory.
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Fig. 2.5 The orbital elements of a satellite orbiting the Earth.

Fig. 2.6 Geometry between the Sun, the Earth and the satellite.
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Osculating orbit

In reality, the satellite’s equations of motion are far more complicated than what is described
in Eq. (2.43) as there are various other forces affecting the satellite’s motion. These forces
can be thought of as small perturbation terms a⃗ in addition to the dominating two-body
attraction term

⃗̈r =−GM
r3 r⃗+ a⃗(t ,⃗r,⃗ ṙ,c0, . . . ,cn), (2.44)

where c0, . . . ,cn are parameters that characterize the perturbations [5]. The perturbations
mean that the orbit cannot be determined by the same orbital elements at any given epoch.
Instead, osculating orbital elements are used, which can be defined as follows. Given a
solution to Eq. (2.44), obtained via numerical integration over some time period, a set of
osculating orbital elements {a(t), e(t), i(t),Ω(t), ω(t), f (t)} can be used to determine the
satellite’s trajectory at each epoch t within the integration time interval.

In general, the perturbations can be split into two categories: conservative forces and
non-conservative forces. The first category accounts for all the gravitational effects acting
on the satellite. Of this category, only the perturbations due to the Earth’s non-spherical
shape are considered for the scope of this thesis. As for the non-conservative forces, this
thesis considers the perturbations due to radiation pressure from various sources. Unlike
with gravitational attractions, the shape of the satellite becomes relevant, when calculating
the effects of radiation pressure on the satellite’s trajectory because how each surface of the
satellite absorbs, scatters, and emits radiation can significantly affect the magnitude of the
perturbation. This thesis limits its scope to using a so-called cannonball satellite design,
which assumes that the satellite is shaped as a sphere.

2.3.1 Complex gravitational field

Since the Earth obviously is not perfectly spherically symmetric, but rather resembles an
oblate spheroid (Fig. 2.7), a more realistic model than the one assumed in the two-body
problem is needed. The gravitational potential of an arbitrarily shaped object, provided a
continuous density distribution ρ (⃗r′) at some point r⃗′ within the object, is given by

U (⃗r) =−G
∫

ρ (⃗r′)
|⃗r− r⃗′|

d3r⃗′. (2.45)

As shown in [21], Eq. (2.45) can be expanded using associated Legendre functions Plm(x)
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Fig. 2.7 Earth’s exaggerated deviations from a spherical shape, where red areas are outside
of the sphere and blue areas are inside the sphere. Credit: ESA

U(r, θ , φ) = − G
r

{
1−

∞

∑
l=1

(
R
r

)l

Jl Pl0(cos θ)

= −
∞

∑
l=1

l

∑
m=1

(
R
r

)l

Plm(cosθ)
[
clm cos(mφ)+ slm sin(mφ)

]}
, (2.46)

where θ and φ are the polar angle and the azimuth angle, R is some scale factor and Jl , clm,
and slm are dimensionless coefficients defined as

Jl = − 1
MRl

∫
Pl0(cos θ

′)r′l ρ (⃗r′)d3r⃗′

clm = −2
(l −m)!
(l +m)!

1
MRl

∫
Plm(cos θ

′)r′l cos(mφ
′)ρ (⃗r′)d3r⃗′,

slm = −2
(l −m)!
(l +m)!

1
MRl

∫
Plm(cos θ

′)r′l sin(mφ
′)ρ (⃗r′)d3r⃗′,

(2.47)

where M is the total mass of the object. When l = m = 1 each coefficient can be set to zero
by choosing the center-of-mass frame as the frame of reference, as these coefficients only
describe the object’s center of mass. The coefficients are called zonal coefficients when
m = 0, tesseral coefficients when m < l, and sectorial coefficients when m = n. An example
of each case is depicted in Fig. 2.8.

Mainly three types of indirect observations are used in combination to determine the
coefficients: satellite tracking, surface gravimetry, and altimetric measurements [21]. The
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Fig. 2.8 From left to right: illustration of zonal (l = 3), tesseral (l = 3, m = 2), and sectorial
(l = m = 2) coefficients.

state-of-the-art Earth gravity models such as the Earth Gravity Model 2008 use coefficients
of degree 2190 and order 2159 [22].

Zonal Earth gravity model

By far the largest influence on the Earth’s gravitational field is due to the J2 term which
describes the Earth’s oblateness, whereas coefficients of higher order and degree are several
orders of magnitude smaller [21]. This is to be expected since the difference between the
Earth’s nominal equatorial radius and nominal polar radius is around 21 km while other
deviations from a perfectly spherical shape are much smaller. For this study, a simplified zonal
Earth gravity model, including only the terms J2 and J3, is used, as it provides a somewhat
accurate model of the Earth’s gravitational field, and is easy to implement numerically. Such
a gravitational potential is longitudinally symmetric, meaning that the clm and slm terms
vanish, reducing Eq. (2.46) to

U(r,θ) = − GM⊕
r

[
1−

∞

∑
l=2

(
R
r

)l

Jl Plm(cos θ)

]
, (2.48)

where R is now set to be the Earth’s nominal equatorial radius, M⊕ is the Earth’s total mass,
and the J2000 frame is chosen as the frame of reference. The potential corresponding to the
J2 term is

UJ2(r,θ) =
GM⊕

r3
J2R2

2
(3cos2

θ −1) (2.49)
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The corresponding accelerations in the J2000 frame are

r̈J2,x =µ J2 R2 x
r7

(
6z2 − 3

2
(x2 + y2)

)

r̈J2,y =µ J2 R2 y
r7

(
6z2 − 3

2
(x2 + y2)

)

r̈J2,z =µ J2 R2 z
r7

(
3z2 − 9

2
(x2 + y2)

) (2.50)

The potential corresponding to the J3 term is given by

UJ3(r,θ) =
GM⊕

r4
J3R3

2
cos θ

(
5cos2

θ −3
)
, (2.51)

and the corresponding accelerations are

r̈J3,x =µ J3 R3 xz
r9

(
10z2 − 15

2
(x2 + y2)

)

r̈J3,y =µ J3 R3 yz
r9

(
10z2 − 15

2
(x2 + y2)

)

r̈J3,z =µ J3
R3

r9

(
4z2(z2 −3(x2 + y2)

)
+

3
2
(
x2 + y2)2

)
.

(2.52)

2.3.2 Radiation pressure

Direct source of radiation

The energy of a particle Ee is related to its mass m and momentum p via the relativistic
dispersion relation as

Ee =
√
(pc)2 +(mc2)2 (2.53)

where c is the speed of light in vacuum and subscript "e" is used here to mark the difference
between the symbols for energy and irradiance. Eq. 2.53 shows that even a massless particle,
such as a photon, has momentum. Thus, when interacting with massive particles, a photon
must then transfer its momentum, and as a result of this transfer, the photon mediates an
electromagnetic force on the particle it interacts with. On a macroscopic scale this interaction
causes a radiation pressure PRP on a surface, which for a cross-sectional area depends on the
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irradiance as

PRP =
E
c
. (2.54)

Now, consider a satellite of mass m. Following the analysis in [23], if the surface of the
satellite absorbs part of the radiation, scatters part of it diffusely, and part of it specularly,
the corresponding radiation pressure acceleration is given as

⃗̈rRP =− E
mc

∫
A

êS · êN

[
(1−ρ) êS +2

(
1
3

δ + êS · êN ρ

)
êN

]
dA, (2.55)

where êN is the unit normal of the surface element dA and êS is a unit vector pointing towards
the source of the radiation. The parameters α, δ , and ρ are, respectively, the fractions of
absorbed, diffusely scattered, and specularly scattered radiation, with

α +δ +ρ = 1. (2.56)

When the integral in Eq. (2.55) is carried out over a spherical surface, the radiation pressure
acceleration for a cannonball-shaped satellite of radius R is given by the expression

⃗̈rRP =− E
mc

π R2
[

1+
4
9

δ

]
êS. (2.57)

If the surface of a satellite consists of N planar surfaces, the total acceleration due to radiation
pressure is given by a sum of the accelerations over each surface,

⃗̈rRP =−
N

∑
j=1

E j

mc
A j êS, j · êN, j

[
(1−ρ j) êS, j +2

(
1
3

δ j + êS, j · êN, j ρ j

)
êN, j

]
. (2.58)

The numerical methods used to evaluate the total force due to radiation pressure on a satellite
are covered in Chapter 4.

Thermal re-radiation

As part of the incoming radiation is absorbed by the satellite, this energy will later on be
re-emitted to the surrounding space, which causes a recoil force on the satellite. Modeling
this thermal re-emission would require detailed description of the heat transfer within the
satellite, and therefore of the satellite’s material properties. As this would be computationally
expensive and difficult to implement, some simplifications need to be made. This thesis
assumes that the satellite surfaces immediately re-radiate the absorbed energy isotropically
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into all directions, which results in a thermal recoil force defined as [8]

⃗̈r TR =−α
PRP

m
A

2
3
(êS · êN)êN . (2.59)

Antenna thrust

Another significant radiation induced effect on the satellite is caused by the antenna emission.
This is simply given by

a⃗a =
Φa

mc
êN , (2.60)

where Φa is the radiative power of the antenna, and êN points towards the center of the Earth.
E.g. for a GPS satellite the antenna power is around 77 W [8].

2.4 The inverse problem

Bayesian inversion

The goal of an inverse problem is to find an estimate of some unknown parameters described
by P⃗, given some indirect observations m⃗ and a forward model M describing the relation
between the measurements and the unknowns,

m⃗ = M(⃗P)+ ε, (2.61)

where ε accounts for the measurement uncertainty in the model. This thesis treats the inverse
problem from a Bayesian viewpoint, where the measurement, the unknown parameters, and
the model uncertainty are considered to be random variables. Thus, instead of trying to
find an exact values for the unknown, as done in the framework of regularization theory,
the Bayesian approach is to find an a posteriori probability density of pp(⃗P), which is a
probability of the unknown parameters given an outcome of an experiment. This posterior
distribution is given by the Bayes’ formula

pp(⃗P) =
ppr (⃗P)πε(∆M(⃗P))

π(m⃗)
. (2.62)

Here, ppr (⃗P) and π(m⃗) are the prior and the marginal probability densities of the unknowns
and the measurement, respectively. The likelihood density πε(∆M(⃗P)) expresses the proba-
bility of the experiment outcomes given a realization of the unknown parameters, and ∆M(⃗P)
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is the residual

∆M(⃗P) = m⃗−M(⃗P). (2.63)

Since the marginal distribution acts just as a normalization factor, the behaviour of the
posterior distribution depends on the likelihood and the prior distribution. Indeed, it is often
enough to only consider the following relation

pp(⃗P) ∝ ppr (⃗P)πε(∆M(⃗P)). (2.64)

In practice, the role of the prior is to indicate the a priori degree of belief about the
unknown parameters while the likelihood quantifies the results of the experiments. The
beauty of the Bayesian analysis lies in the fact that the Bayes’ formula allows for the degree
of belief of the unknowns to be updated with the results of the experiment and that a previous
experiment can serve as the a priori information for a subsequent experiment.

2.4.1 Inversion of the Earth’s Bond albedo

Having described all the necessary theory for posing the inverse problem, the statistical
inversion of the Earth’s energy budget can finally be formulated properly. Suppose that at
times {t j} j∈St , with St = {1, 2, . . . , Ns}, a set of observations of the position and velocity of
Ns satellites have been made

Ss = {{[⃗r(t j)1, ˙⃗r(t j)1]
T , . . . , [⃗r(t j)Ns,

˙⃗r(t j)Ns]
T}} j∈St (2.65)

In addition, assume that these satellites simultaneously collect a set of radiometric imaging
observations of the Earth

S f = {{[ f (t j)1,1, . . . , f (t j)Npix,1]
T , . . . , [ f (t j)1,Ns, . . . , f (t j)Npix,Ns ]

T }} j∈St , (2.66)

where f (t j)i,k denotes the ith imaging data pixel from the kth satellite at time t j. Altogether
these measurements are described by the vector

m⃗ = [m⃗(t1)s,1, . . . , m⃗(t1)s,Ns, m⃗(t1) f ,1, . . . , m⃗(t1) f ,Ns, . . . ,

m⃗(tNt )s,1, . . . , m⃗(tNt )s,Ns, m⃗(tNt ) f ,1, . . . , m⃗(tNt ) f ,Ns ]
T ,

(2.67)
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where m⃗(t j)s,k represents the space geodetic observation of the kth satellite at time t j, and
m⃗(t j) f ,k is its radiometric counterpart. The total length of the measurement vector is then
(6+Npix)Ns Nt .

Now, let the vector P⃗ describe the reflection coefficients p(ϑ ,ϕ) and emission coeffi-
cients q(ϑ ,ϕ) of a ToA radiation model at time t j, as defined in (2.2). The observation
uncertainty ε is assumed to be a multivariate Gaussian random variable with zero mean and
a covariance matrix Λε , the off-diagonal elements of which contain the correlations between
the observation uncertainties. Furthermore, let M(⃗P) represent the forward model which
maps the unknowns p and q to the measurement space. On the basis of the central limit
theorem, the likelihood density is often assumed to be Gaussian, and that assumption is made
here as well. Thus, Eq. (2.64) becomes

pp(⃗P) ∝ ppr (⃗P) exp
[
−1

2
χ (⃗P)2

]
, (2.68)

where χ2 is the squared residual of the model and measurement scaled by the model uncer-
tainty, defined as

χ
2 = ∆M(⃗P)T

Λ
−1
ε ∆M(⃗P). (2.69)

To sample the posterior distribution, one can use Markov-chain Monte Carlo (MCMC)
methods.

2.4.2 Markov-chain Monte Carlo methods

To study the posterior distribution given in Eq. (2.62) various numerical methods have been
developed, one of which is the Markov-chain Monte Carlo (MCMC) method. The term
Monte Carlo refers to the numerical methods that rely on the generation of random variables
from well-known probability distributions and a Markov-chain is a sequence of random
variables {X j} j∈Z+ where each state X j+1 depends only on the previous state X j, i.e. the
transition probability satisfies

P(X j+1 = v |X j = u j, X j−1 = u j−1, . . . , X0 = u0)

= P(X j+1 = v |X j = u j), (2.70)

where u and v are here used to denote realization of the random variables.
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This study assumes that the Markov kernel P, which dictates the probability of transition-
ing from one state to another, does not depend on time:

P(X j+1 = v |X j = u) = P(u, v). (2.71)

To sample a target distribution p(X) with a MCMC algorithm, the Markov kernel has to be
invariant, irreducible, and aperiodic. Invariance of the Markov kernel with respect to the
target distribution p(u) means that it satisfies∫

p(u)P(u, v)du = p(v). (2.72)

Irreducibility means that the probability of reaching any state of the target distribution
from some other state in the chain with an arbitrary number of state transitions is non-zero.
Aperiodicity means that the Markov kernel does not generate a chain that remains in a loop
forever.

Metropolis-Hastings kernel

A frequently used method of ensuring invariance is requiring that the Markov kernel satisfies
so-called detailed balance

p(u)P(u, v) = p(v)P(v, u). (2.73)

One of the most common MCMC method is the Metropolis-Hastings (MH) algorithm, which
samples the target distribution p(u) using the Metropolis-Hastings kernel

K(u, v) = a(u, v)q(u, v), (2.74)

where the Markov kernel q is known as the proposal distribution and the transition kernel a
is defined as

a(u, v) = min
(

p(v)q(v, u)
p(u)q(u, v)

, 1
)
. (2.75)

Now the Metropolis-Hastings kernel satisfies the detailed-balance condition in Eq. (2.73). If
the proposal distribution q is symmetric, q(v, u) = q(u, v), then the transition kernel further
simplifies to

a(u, v) = min
(

p(v)
p(u)

, 1
)
. (2.76)
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The numerical implementation based on the MH algorithm is described in Chapter 4.



Chapter 3

Measurements and observations

3.1 Earth Polychromatic Imaging Camera images

The EPIC instrument, mounted on the DSCOVR spacecraft by the National Oceanic and
Atmospheric Administration (NOAA), is a 2048× 2048 resolution CCD camera with 10
narrowband filters ranging from the ultraviolet spectral band (317 nm) to the near-infrared
wavelengths (780 nm). Located at the Lagrange 1 point from where it can see nearly the
entire sunlit surface of the Earth at relatively small phase angles (4.5◦ to 11.5◦), the spatial
resolution of a pixel at nadir is around 18 km. The EPIC instrument takes a new set of images
of the Earth covering its spectral regime 22 times a day during the summer period and 13
times in the winter. These image sets, along with the corresponding geolocation data and
additional metadata, are available on the Atmospheric Science Data Center (ASDC) archive.

The raw EPIC per pixel imaging data ct j ∈ R2048×2048 for each EPIC wavelength band is
in units of counts s−1, which need to be converted to reflectances for the data to be of use
for this study. Here the indexing j = 1, . . . ,10 corresponds to wavelength bands from the
smallest (317 nm) to the highest (780 nm) wavelength. These reflectances are the geometric
albedo Ag (Eq. 2.9) values for each pixel. This conversion of ct j to reflectance ρ j for each
EPIC wavelength band j = 1, . . . ,10 can be done using radiometric calibration factors K j

[24]

Ag, j = ct j K j. (3.1)

The calibration factors acquired, e.g., by comparing the EPIC images to observations made
by other remote sensing satellites, and they are listed in the Table A.

This EPIC reflectance data is used in the ToA radiation model in two ways. First, by
assuming that each pixel in the image is a Lambertian surface, the EPIC reflectance maps
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are used to produce a quasi-realistic ToA model after normalising the values to the range of
[0,1]. This model is ideal for generating synthetic data, as discussed in Section 3.3. Second,
to produce much cruder model of the ToA, the imaging data is used for ToA scene type
classification. The EPIC images as well as all other DSCOVR mission data products are
available for the public at NASA Langley Atmospheric Science Data Center (LASDC). The
EPIC level 1B image dataset epic_1b_20170101112452_02 was used for this thesis.

Table 3.1 EPIC spectral bands, calibration factors, and spectral solar irradiances1.

Wavelength (nm) Calibration factor K j Solar irradiance (W m−2 nm−1)

318 1.216E-04 0.810
325 1.111E-04 0.651
340 1.975E-05 0.965
388 2.685E-05 0.939
443 8.340E-06 1.945
551 6.660E-06 1.865
680 9.300E-06 1.495
688 2.020E-05 1.465
764 2.360E-05 1.230
780 1.435E-05 1.190

Fig. 3.1 EPIC images from each band on 2017-01-01 11:12:52 UTC.

1Source: https://eosweb.larc.nasa.gov/project/dscovr/dscovr_table
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3.2 Space geodesy data

The GPS satellite orbit data products provided by the International GNSS Service (IGS) are
used to serve as the initial observations when modeling the satellite orbits. The IGS has a
network of over 400 globally distributed permanent ground stations for making observations.
The final data product is produced by the Bernese GNSS Software, and consists of sets of
osculating orbital elements for each of the 31 active GPS satellites at the desired epochs
along with their root-mean-square (RMS) deviations. Each of the GPS satellites has a unique
space vehicle number (SVN), which is used for identification. The orbital elements of SVN
63 produced by the Bernese software are shown in Table 3.2.

The software accounts for complex gravitational potential due to the Earth’s non-uniform
density and non-spherical shape up to degree 2190 and order 2159, changes in the potential
due to ocean tides, solid Earth tides along with the pole tides, and general relativistic
corrections. It also includes the gravitational forces due to Mars, Venus, Jupiter, and Sun. An
empirical force model is used to account for non-conservative forces such as the Earth’s and
the Sun’s radiation pressure [5].

Table 3.2 Orbital elements and their uncertainties of SVN 63 at 2017-01-01 00:00:00 UTC.

Orbital element Value RMS

a (m) 26560285.85945 5×10−3

e 0.0060969206 0.0
i (degree) 55.469926174 9×10−9

Ω (degree) 107.195868066 13×10−9

ω (degree) 31.800351190 1.558×10−6

u(t0) (degree) 231.865348301 19×10−9

3.3 Synthetic data

To test the performance of the inverse problem algorithm, synthetic datasets was generated,
as these allow for full control over every parameter in the problem. However, care must be
taken to avoid committing an inverse crime when solving the inverse problem from synthetic
data. In simple terms, an inverse crime is committed if the same model is used to both
generate the data and to solve the inverse problem, as this results in overly optimistic or
even unrealistic results. To avoid such felonies, two steps were taken in this thesis. The first
and the most obvious step was to use a different forward model in generating the data and
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in inverting it. The second step is to use a different discretisation in the inversion and data
generation.

As mentioned in Section 3.1, EPIC reflectance data is ideal for generating a forward
model, as it provides a complex map of the ToA, that cannot be matched with the classification
methods used in this thesis. Of the image dataset depicted in Fig. 3.1, the band 388 nm image
was selected since it shows clouds quite prominently, while oceans and land surfaces are
obscured due to Rayleigh scattering. The reasoning behind this choice was that even simple
ToA models with few to no surface details included could perform well when solving the
inverse problem from data generated using this image. For outgoing longwave radiation, the
Earth was assumed to emit radiation isotropically into all directions with a radiant exitance
of 240 W/m2. Since this thesis uses a static model for the ToA (see Chapter 1), only a single
EPIC image was used when modeling the ToA for. To produce a discrete model of the ToA,
HEALPix scheme (Sec. 4.1.1) was used to subdivide the ToA surface into 12288 segments,
while the inverse problem was solved with a ToA model consisting of 768 segments.

With this ToA model, the orbits of six non-absorbing identical cannonball-shaped satel-
lites were simulated using the GPS orbital elements acquired from the Bernese software as
initial positions, and for modeling measurement uncertainty. The synthetic data consisted
of 30 sets of simulated observations of the orbital elements for each satellite taken every 24
minutes, corresponding to one revolution around the Earth for the satellites, i.e., 12 hours.



Chapter 4

Numerical methods

4.1 Forward model

To solve the inverse problem, a description of the numerical methods for implementing the
forward model M(⃗P) in practice is needed. As part of this study, a software to do so was
developed using Python. This section describes the components of the forward model in
the following order. Discretising and classifying the ToA is presented first, followed by ray
tracing of the radiances from surface to surface. Finally, the numerical integration to obtain
the Bond albedo, and to solve the satellite’s equations of motion is described.

4.1.1 Discretised Top of the Atmosphere

The discrete ToA model is achieved, using the Hierarchical Equal Area isoLatitude Pix-
elization (HEALPix) scheme. The HEALPix tessellation of the sphere partitions it into
twelve diamond-shaped, equal-area base surfaces that can be recursively subdivided into
four similarly shaped equal-area surfaces. These surfaces are distributed along iso-latitude
rings, which allows for a fast evaluation of spherical harmonics [25, 26]. This scheme is a
natural choice for the purpose of this study, as it provides fast analysis of high resolution
spherically mapped data and can easily be implemented with various programming languages.
An additional benefit comes from each surface having an equal area, which speeds up the
computation of irradiances from the discretised ToA to satellite surfaces. The implementation
of the HEALPix scheme for this study was done using healpy Python package.

In practical terms, a HEALPix map is an array of Npix elements, or pixels, such that the
spherical coordinates of the ith pixel (ϑi, ϕi) are at the center of a HEALPix surface element
(Fig. 4.1). These surface elements are assumed to be locally plane-parallel. The numerical
ToA radiation model can hence be implemented by assigning each pixel with a BRDF and
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Fig. 4.1 HEALPix discretisation of a sphere into 192 pixels and the corresponding pixel
centers.

a directional emissivity model with coefficients {pi j} and {qik}, where j and k index the
number of scattering and emissivity coefficients Npi and Nqi of the ith pixel.

4.1.2 Top of the Atmosphere classification scheme

To provide a classified model of the ToA surfaces, an unsupervised classification scheme was
developed. This two-fold scheme first extracts features (clouds, water, etc.) from the images
using independent component analysis (ICA) and then classifies the features using Gaussian
Mixture Model (GMM) clustering. Both of these methods are included in the Python scikit
learn library, which was used for practical implementation of the classification scheme. In
the absence of proper training data, the end product of this classification scheme needs to be
validated manually.

Independent component analysis

In ICA, the observations x⃗ = [x1, . . . , xD]
T are assumed to arise from hidden source signals

s⃗ = [s1, . . . , sL]
T , defined by the relation

x⃗ = Ws⃗+η , (4.1)
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where W is called the mixing matrix, and η is a non-zero Gaussian random variable. A
key aspect in ICA is that the source signals are assumed to have independent non-Gaussian
probability distributions p j

p(⃗s) =
L

∏
j=1

p js j. (4.2)

This assumption makes it possible for ICA to uniquely recover the source signals, which is
not the case if p j is a Gaussian distribution [27].

Gaussian mixture model

GMM can be used to classify features, such as land cover types and clouds in the case of
EPIC data, from observations. The premise behind GMM clustering is to use Gaussian
statistics for assigning data points x⃗i in a given dataset X into K clusters. For a set of
k ∈ {1, . . . , K} clusters, a Gaussian mixture model is parameterised by a set of weights,
means, and covariances θ = {π, µ, Σ} and is defined as

p(⃗xi |θ) =
K

∑
k=1

πk p(⃗xi |µk, Σk), (4.3)

where πk are mixing weights, p(⃗xi |µk, Σk) are Gaussian probability densities with means
µk, and covariances Σk. The mixing weights satisfy ∑

K
k=1 πk = 1, and 0 ≤ πk ≤ 1. The GMM

method uses latent variables z to determine the probability γ that a data point x⃗i belongs to
kth cluster

p(zik = 1 |⃗xi) = γk, (4.4)

where obviously 0 ≤ γk ≤ 1. The latent variable has value 1 when x⃗i belongs to the kth cluster,
and value 0 otherwise. To find the optimal parameters, the GMM method uses an iterative
approach called expectation–maximisation (EM) algorithm. The end product of the GMM
clustering algorithm is the probabilities at which the data points belong each cluster. Finally,
the assignment of a given data point to a cluster is determined by the highest probability γk

[27].

4.1.3 View factor ray-tracing

Consider now the spectral radiant flux from such a surface element dAi to a surface element
dA j, which could be, e.g., a satellite surface element. The solid angle corresponding to dA j
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as viewed from the surface element dAi is

dΩ j =
dA j µ j

r2
i j

, (4.5)

where µ j is the cosine of the angle between the surface normal of dA j and the incident
radiation and ri j is the distance between the two surface elements (Fig. 4.2). The spectral
radiant flux can thus be written as

dΦλ ,i j = Lλ (µi, φi)µi dAi dΩ j. (4.6)

The spectral irradiance from the entire ToA intercepted by dA j is then given by

Eλ , j =
∫

Ai

Lλ ,i(µi, φi)
µi µ j

r2
i j

dAi, (4.7)

where Ai is the entire surface radiating towards dΩ j. One can recognize Eq. (4.7) as a
Fredholm integral equation of the first kind, the solution of which is the bread and butter of
inverse problems.

dAi

n̂i

θi

dAjn̂j

θj

rij

Fig. 4.2 Geometry of the view factor for surfaces i and j.

To numerically determine the incident and emergent ToA radiation, the entire surface is
discretized into Npix small surfaces, or pixels. Then Eq. (4.7) can be approximated as a sum
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over the pixels

Eλ , j =
Npix

∑
i=1

Lλ ,i(µi, φi)π Fji. (4.8)

where Fi j is called the view factor, defined as [28]

Fji =
µ j µi

π r2
i j

dAi. (4.9)

ToA irradiance over the entire spectrum towards dA j can be written as a sum of the
scattered shortwave radiation and the emitted longwave radiation as

E j =
Npix

∑
i=1

π Fji [Ri(µ0,i µi, φi)µ0,iE0 + εi(µ, φi)B(Ti)] . (4.10)

One can easily recognize the expression (4.10) as a dot product between two vectors L⃗ and
F⃗ j, or as a product between a matrix F and a vector L⃗ in the case of multiple surface elements

E j =π F⃗ j · L⃗,
E⃗ =π FL⃗.

(4.11)

4.1.4 Numerical integration

Quadrature on a sphere

To evaluate the integrals over spherical surfaces numerically, such as Eq. (2.28), a spherical
quadrature scheme is used [29]. The idea is to approximate the integral of a function
f : S2 → R over a domain Ω on the unit sphere S2 as a weighted sum over a finite set of
nodes

∫
Ω

f (⃗r)dΩ ≈
N−1

∑
i=0

wi f (ri), (4.12)

where N is the number of nodes ri within the integration domain, and i = 1,2, . . . ,N. One
approach is to assume equal weights for all nodes, provided that the nodes are uniformly
spread out over the sphere. If the quadrature is exact for f , the integral becomes

∫
Ω

f (⃗r)dΩ =
4π

N

N−1

∑
i=0

f (ri), (4.13)
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Since the distribution of nodes in the HEALPix scheme is seemingly uniform over a spherical
surface, it is applied in this study in the numerical implementation of Eq (4.13).

Runge-Kutta 4 method

Since finding an analytical solution to a satellite’s equations of motion described in Eq. (2.44)
in most cases would be impossible, numerical methods have to be relied upon to solve the
equation. A popular choice for numerical integration is the Runge-Kutta 4 method (RK4) due
to its stability at large time-steps, ease of implementation, and relatively good computational
efficiency. Applying RK4 to orbit integration requires separating the second-order differential
equation in Eq. (2.44) into two first-order differential equations [30]

⃗̇r = v⃗, (4.14)
⃗̇v = a⃗. (4.15)

The RK4 algorithm calculates the values of r⃗ and ṙ at subsequent time steps as

v⃗i+1 = v⃗i +
h
6
(⃗k1,i+1 + 2⃗k2,i+1 + 2⃗k3,i+1 + k⃗4,i+1), (4.16)

r⃗i+1 = r⃗i +
h
6
(⃗l1,i+1 + 2⃗l2,i+1 + 2⃗l3,i+1 +⃗ l4,i+1), (4.17)

where h determines the size of the time step. The coefficient vectors k⃗1, . . . , k⃗4 and l⃗1 . . . ,⃗ l4
estimate the slopes of the vector functions a⃗ and v⃗ at different points within the time step

k⃗1,i+1 = a⃗(⃗ri), l⃗1,i+1 = v⃗i,

k⃗2,i+1 = a⃗(⃗ri +
h
2 l⃗1,i+1), l⃗2,i+1 = v⃗i +

h
2 k⃗1,i+1,

k⃗3,i+1 = a⃗(⃗ri +
h
2 l⃗2,i+1), l⃗3,i+1 = v⃗i +

h
2 k⃗2,i+1,

k⃗4,i+1 = a⃗(⃗ri + h⃗ l3,i+1), l⃗1,i+1 = v⃗i +h k⃗3,i+1.

(4.18)

In order for the algorithm to work, it is imperative that the coefficients are calculated in the
order shown in Eq (4.18).

4.2 Albedo inversion algorithm

Using the forward model described above, the inverse problem can now be solved numerically
with Markov-chain Monte Carlo methods. In the following, the virtual-observation MCMC
algorithm used to do so is described, following [31, 32].
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4.2.1 Virtual-observation MCMC

As mentioned in Section 2.4.2, a common MCMC technique for sampling the posterior distri-
bution in (2.62) is the Metropolis-Hastings algorithm which simulates successive transitions
in the state space from state P⃗i to state P⃗′ as

P⃗i+1 =

P⃗′ ∼ pt (⃗P′, P⃗), if u ≤ min(1, a(P⃗ j, P⃗′)),

P⃗i, otherwise,
(4.19)

where pt (⃗P′, P⃗i) is the proposal distribution, u ∈ [0, 1] is a uniform random variable and a is
the Metropolis-Hastings transition kernel

a(⃗Pi, P⃗′) =
pp(⃗P′) pt (⃗Pi, P⃗′)

pp(⃗Pi) pt (⃗P′, P⃗i)
. (4.20)

The Metropolis-Hastings algorithm however can be inefficient for multivariate probability
distributions in that it may require a large number of iterations to converge in the posterior
distribution. To make sampling of the posterior more efficient, virtual-observation MCMC
algorithm, based on the MH algorithm, is utilized in this thesis. In the algorithm, virtual
observations m⃗v are generated from the original observations m⃗ as

m⃗v = m⃗+ εv, (4.21)

where εv ∼ N (0, Λv) with Λv being the covariance matrix for the virtual observations. This
is followed by finding virtual least-squares parameters

P⃗v = argmin⃗Pv
([m⃗v −M(⃗P)]T (Λv +Λε)

−1[m⃗v −M(⃗P)]), (4.22)

For this thesis, a direct search algorithm called the Nelder-Mead method was used, since it
does not require the derivatives of the objective function to be known and is available for
implementation in the Python scipy library.

By denoting the Gaussian probability density function for the real observations as p(m⃗),
the probability density function for the virtual observations can be expressed as a marginal
distribution

pv(⃗P) =
∫

dm⃗δD(⃗P− P⃗(m⃗)) p(m⃗), (4.23)
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where δD is the Dirac delta function. The proposal distribution for for the parameter difference
∆⃗P can now be expressed as

pt(∆⃗P) =
∫ ∫

dP⃗dP⃗′
δD(∆⃗P− (⃗Pv − P⃗′

v)) pv(⃗Pv) pv(⃗P′
v)

=
∫

dP⃗v pv(⃗P) pv(⃗Pv − ∆⃗P),
(4.24)

which is a symmetric distribution, meaning that the Metropolis-Hastings kernel simplifies to

a(⃗Pi, P⃗′) =
pp(⃗P′)

pp(⃗Pi)
(4.25)

By producing Nv ≫ 1 virtual observations and incidentally solving for P⃗v before running the
MCMC algorithm, the parameter differences can be obtained from

∆⃗P jk = P⃗v, j − P⃗v,k, (4.26)

where j, k = 1,2, · · · ,Nv, j ̸= k. The transitions in the state space are then readily available
from these pre-computed parameter differences during the MCMC sampling, such that
any pair of virtual parameters P⃗v, j and P⃗v,k are discarded after being used for calculating
the parameter difference. As the number of parameter differences is of the order of N2

v , a
relatively small number of virtual observations, such as 1000 is needed to generate a large
number of parameter differences.
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Results and discussion

5.1 Forward model verification

To verify the performance of the ToA model for producing radiation pressure induced accel-
erations on satellites against previous studies, the radial, transverse, and normal components
of the Earth radiation acceleration calculated for the geodetic satellite LAGEOS in Knocke
et al. [9] were reproduced. The ToA model used to calculate the accelerations was the polar
cap model defined in Eqs. (2.39) and (2.40) with Lambertian reflection coefficient

p0 =0.34, c0 = 0.0, c1 =0.10, c2 = 0.0, p2 = 0.29,

q0 =0.68, k0 = 0.0, k1 =−0.07, k2 = 0.0, q2 =−0.18,

with the epoch t0 being December 22, 1981. The HEALPix maps of the polar cap models are
shown in figures 5.1 and 5.2. The properties of the LAGEOS are found in Table 5.1, where δ

is the fraction of diffusely reflected radiation by the satellite surface, as defined in Eq. (2.56).
The reproduced acceleration components are shown in Fig. 5.3, which matches well with

Table 5.1 LAGEOS properties

altitude (km) eccentricity inclination (deg) area / mass (m2/kg) δ

5893.0 0.004 109.7 0.0007 0.13

the corresponding plot in [9]. The radial acceleration component in Fig. 5.3 demonstrates
how the acceleration depends on the satellite position with respect to the Sun and the Earth.
At ∆ = 0◦ the satellite is the closest to the Sun, where it receives the maximum amount of
reflected and emitted radiation from the ToA, which shows as the high peak in the figure. The
two minima at ∆ = 90◦ and ∆ = 270◦ show when the satellite passes the Earth’s terminator.
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Finally, when the satellite is the farthest from the Sun, it receives mostly or only emitted
radiation, depending on the inclination of its orbit. This shows as the smaller peak at at
∆ = 180◦.

Fig. 5.1 Mollweide projection of the HEALPix reflectance map used to calculate the Earth
radiation acceleration for the LAGEOS satellite.

Fig. 5.2 Mollweide projection of the HEALPix emissivity map used to calculate the Earth
radiation acceleration for the LAGEOS satellite.
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Fig. 5.3 The radial, transverse and normal components of the Earth radiation acceleration on
LAGEOS.
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5.2 Classified Top of the Atmosphere models

A total of five different classified ToA models were used for solving the inverse prob-
lem. These models, labeled M1–M5 in the order of increasing complexity, were created
by applying the unsupervised classification scheme introduced in Section 4.1.2 on the
epic_1b_20170101112452_02 dataset. First, ICA was applied to the 10 images of the
EPIC dataset (Section 3.1) for feature extraction. As some of the ICA components contained
noise or were otherwise irrelevant for this level of classification, four components depicting
different surface types and cloud types were selected (Fig.5.4). Then, GMM clustering was
applied to the four ICA components to provide classes for the water (W), overcast clouds
(C1), dim clouds (C2) and bright clouds (C3), vegetated surfaces (V), savannas (S), and bare
soil (B). These classes constituted the most complex model, M5.

To create the simpler ToA models M1–M4, all the land surfaces were combined to create
a single class (L). To create a class for all non-cloudy surfaces (N), class L was combined
with class W, and to create a class representing all cloudy surfaces, the classes C1–C3 were
combined into C0. All the classes in these five models are shown in Fig. 5.4, and the classes
each model contains are detailed in Table 5.2. Although the classes in each model represent
physical objects, such as clouds or water, the classification itself is not based on physics but
rather on common features in the imaging data that the ICA and GMM methods recognise.
This is notable especially in the case of cloud classification, where there is no simple way of
verifying whether a pixel is correctly or incorrectly identified as part of a cloud. Yet, since the
classification algorithm could identify several classes that visually matched features such as
clouds, oceans or vegetated surfaces in the images, it offered good grounds for investigating
the performance of the albedo inversion algorithm on multiple semi-realistic ToA models.

Table 5.2 Classes used in ToA models M1–M5. The different cloud types are represented by
labels C0–C3 such that the classes C1–C3 are merged into C0. The bare soil surface types
are represented by B, vegetated surfaces by V, savannas by S, and water by W. The label L
represents the merged classes B, V, and S, while the label N stands for non-cloudy surfaces,
i.e., the combination of W and L.

Model Class

M1 C0 - - - N - - - - -
M2 C0 - - - - L W - - -
M3 - C1 C2 C3 N - - - - -
M4 - - - - N - W V - B
M5 - C1 C2 C3 - - W V S B
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Fig. 5.4 Four ICA components showing the features for vegetated surface types (up to the
left), bare soil (up to the right), bright clouds (down to the left), and dim clouds (down to the
right).

5.3 Inverse problem solutions

To solve the inverse problem (see Subsection 2.4.1) from the synthetic dataset (SD, see
Section 3.3), the virtual-observation MCMC algorithm was used on the models M1–M5 to
infer the reflection coefficients corresponding to each class of a given model. The uncertainty
used to forward model the observations was assumed to be Gaussian noise with standard
deviations in the same range as the uncertainties in Table 3.2 from Section 3.2. As an example,
the model M2 has only two Lambertian reflection coefficients (Eq. (2.15)) P⃗ = [pN , pC0]

T .
For each model, the algorithm sampled the posterior distribution 5000 times. The run-time
had a clear dependence on the number of unknown coefficients, as it increased by half an hour
each time a new coefficient was added to the model, such that the run-time for in the case of
M1 was one hour while for M5 it was around 3.5 hours. This long run-time was the reason
for choosing to use only six satellites to study the inverse problem and to use 768 pixels in
the ToA models when solving the inverse problem. The MCMC-derived distributions for
the reflection coefficients and the Bond albedos for M1 – M5 are shown in Figs. 5.6 – 5.10,
while the corresponding estimates are listed in Tables 5.3 – 5.8.

The uncertainties of the Bond albedo distributions as well as the reflection coefficient
distributions of M1, M2, and M3 are relatively similar, whereas for M4 and M5 the width of
the distributions clearly increases. But overall, the MCMC estimates obtained for the Bond
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Fig. 5.5 EPIC RGB image at 2017-01-01 11:24:52, and the classification schemes for models
M5 to M1 in decreasing order from top to bottom.
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albedo are remarkably similar between the models and close to the true value. The similarity
between the estimates can be attributed to the similarity between the models as well as their
close resemblance to the ToA model used to generate the synthetic data. In simple terms, the
classification algorithm finds a clear difference between bright surfaces and dark surfaces in
the EPIC data. And while the number of classes varies with each model, the fraction of the
number of bright surfaces to the number of dark surfaces remains relatively constant between
the ToA models.

What is surprising, however, is how well the albedo inversion algorithm can identify
various classes. For nearly every model, the albedo inversion algorithm estimates the
reflection coefficients of the classes representing the clouds to have a high value, whereas for
the classes representing the various other surfaces the estimated reflection coefficients are
much lower, as one would expect. The largest exception to this is M3, which has a relatively
low value for the reflection coefficient of the class C1. This can be explained by considering
that most of the pixels belonging to this class were located at the edges of the Earth’s disc,
where the limb effects affect their brightness. For M4 there is a clear overlap in the reflection
coefficient distributions between classes W, V, and B, as well as a surprisingly high mean
value for each coefficient. The overlap is even stronger for M5, with the reflection coefficient
distributions of V and S coinciding almost completely. On the other hand, many of estimated
reflection coefficients had a significantly high uncertainty, e.g., for M3, pN = 0.045±0.042.
These uncertainties could indicate that the modeled measurements are not highly sensitive to
the values of the reflection coefficients. These results can be due to the low uncertainty of
the simulated measurements, the low number of unknown coefficients to be solved in the
inversion, and the various simplifications made in this study.

These simplifications naturally raise a question of how realistic the results are? In this
regard, there are several factors to be considered, the study of which is left for future research.
By far the largest discrepancy between reality and the model was that the ToA was assumed
to be static over the 12-hour simulated observation period. In reality, the ToA changes
continually due to e.g. the Earth’s rotation and the evolution of the cloud cover. A good start
towards trying to remedy this discrepancy would be to utilise consequent EPIC images to
create a ToA model that updates at the rate of one to two hours.

However, a ToA model constructed from the EPIC images accounts only for the reflected
shortwave radiation, while the emitted longwave radiation is left unknown. And as it
stands, there is no counterpart for EPIC that provides similar imaging data for longwave
radiation. This study assumed a simple Lambertian model for the ToA emissivity that does
not depend on latitude, longitude, temperature or time. But the emitted radiation is also a
major component of the Earth radiation pressure acting on the satellite, since it perturbs
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satellite motion on both sides of the Earth’s terminator, as seen in Fig. 5.3. Hence, while
this uniform time-independent emissivity assumption simplifies the inversion the Earth’s
Bond albedo, adding more complexity to the emissivity model could make the inversion
significantly harder. Not to even mention the difficulty of trying to invert the total ToA
emissivity along with the Bond albedo.

This study also assumed all properties of the satellite to be known, as the goal of this
thesis is to act as a feasibility study (see Chapter 1). But, even if all the properties of the
satellite materials and the satellite geometry were known in the fullest detail, it is still very
difficult to build a complete physical model. For one, neglecting even the tiniest detail can
lead to biases whose source is difficult to identify [11, 10]. Secondly, this requires immense
computational resources, which for the purposes of solving the inverse problem is highly
undesirable [21].

Another factor is the use of a simple gravitational model in this study, which only consists
of the two-body term, the J2 term, and the J3 term. While significantly more stable than
radiation pressure effects in terms of temporal evolution, the lack of more comprehensive
modeling of gravitational perturbations does raise the question about their impact on the
results of the Bond albedo inversion.

Table 5.3 MCMC-derived Bond albedos for models M1–M5 and the corresponding value
from the synthetic dataset (SD).

Model Bond albedo Uncertainty

SD 0.27335 –
M1 0.27338 0.00748
M2 0.27340 0.00765
M3 0.27326 0.00752
M4 0.27397 0.01393
M5 0.28340 0.01566
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Fig. 5.6 M1: reflection coefficient distribution (top), Bond albedo distribution (bottom).

Table 5.4 MCMC-derived reflection coefficients for M1

Reflection coefficient Value Uncertainty

pN 0.339 0.043
pC0 0.725 0.047
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Fig. 5.7 M2: reflection coefficient distribution (top), Bond albedo distribution (bottom).

Table 5.5 MCMC-derived reflection coefficients for M2

Reflection coefficient Value Uncertainty

pW 0.098 0.041
pC0 0.898 0.039
pL 0.300 0.046
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Fig. 5.8 M3: reflection coefficient distribution (top), Bond albedo distribution (bottom).

Table 5.6 MCMC-derived reflection coefficients for M3

Reflection coefficient Value Uncertainty

pN 0.045 0.042
pC1 0.137 0.051
pC2 0.599 0.052
pC3 0.719 0.049
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Fig. 5.9 M4: reflection coefficient distribution (top), Bond albedo distribution (bottom).

Table 5.7 MCMC-derived reflection coefficients for M4

Reflection coefficient Value Uncertainty

pC0 0.886 0.073
pW 0.150 0.103
pV 0.273 0.110
pB 0.467 0.112
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Fig. 5.10 M5: reflection coefficient distribution (top), Bond albedo distribution (bottom).

Table 5.8 MCMC-derived reflection coefficients for M5

Reflection Value Uncertainty

pC1 0.727 0.105
pC2 0.805 0.111
pC3 0.849 0.110
pW 0.272 0.123
pV 0.359 0.217
pS 0.360 0.216
pB 0.448 0.149





Chapter 6

Conclusions

While multiple attempts have been made to estimate the Earth’s total outgoing radiation, the
measurements behind these estimates heavily rely on modeling and averaging over long time
periods, and as such, pose uncertainties that are difficult to quantify. This thesis provides a
novel approach that can significantly improve the uncertainty quantification related to Bond
albedo determination and, as far as is known, is the first of its kind to be studied. The strength
of this new method lies in that it uses mathematical, not physical modeling for the ToA
scattered and emitted radiation properties, combines two different types of data that provide
observations from multiple viewing geometries, and use Bayesian inference in the hunt for a
single number and its uncertainty.

Although this first study is a rather theoretical one, as it relies on synthetic data, the
theoretical principles built from basic concepts of electromagnetic radiation as described in
this thesis can be applied to realistic data, provided a software with a more complete forward
model is developed. Among a number of things, this requires modeling the gravitational
forces acting on the satellites at least on the same level of detail as is done by the Bernese
GNSS software along with having a more detailed design for the satellite in the forward
model. Then, almost as a side product of this thesis, space-geodetic positioning could be
improved from cm-level precision to mm-level precision using this state-of-the-art model.

As for the imaging component of this method, the future software versions would create
mathematical model for the outgoing ToA radiance from imaging observations by EPIC or
possible future remote sensing missions, making use of spherical wavelets for, e.g., efficient
representation of the BRDFs or fast integration of functions on a sphere [33]. For classifying
the different ToA scene types, there already exist various remote sensing data products for
land type classification. However, for real-time cloud classification there are not as many
options. From pre-existing cloud classification data, one could easily train a convolutional
neural network to recognise clouds in new imaging data. But with the lack of pre-classified
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data, one could also use some threshold value for subtracting clouds from other features in
the case of multispectral imaging data such as EPIC [24].

In testing the performance of the inverse problem algorithm on synthetic data, inverse
crimes were avoided by solving the inverse problem using different forward model with lower
discretisation resolution than what was used for generating the synthetic data. Although the
models used for this study were rather simplistic, these tests provided promising first results
to the extent that the Bond albedo uncertainties were within reasonable limits compared to
estimates by, e.g., CERES. In more detail, all the ToA radiation models that were used to
solve the inverse problem had Lambertian surfaces for the overall surface ToA with one to six
unknown parameters. The simplest model had uniform reflectivity over the entire globe while
the next simplest model had varying reflectance along the latitudes, and the most complex
models classified the ToA scenery into dim and bright clouds, oceans, deserts, and areas
with vegetation. The virtual-observation MCMC algorithm efficiently inferred the unknown
parameters for each of these models, providing accurate estimates for the Bond albedo.

When it comes to software numerical efficiency, the most demanding numerical compo-
nent is by far the satellite ERP model since it requires ray tracing ToA radiance from tens
of thousands of surface elements to each satellite surface at each integration step. This can
act as a limiting factor for the model accuracy regarding satellite designs as well as ToA
resolution. The first steps towards improving the software performance would be to analyse
and optimise numerically heaviest parts of the code, along with including the option for
parallel computing to the software.

The method presented in this thesis is of course limited by the quality of the measurement
data. In this sense, the current sources of measurement data could be improved upon by
designing future satellite missions where an armada of satellites collectively observe the
entire ToA from multiple viewing geometries with each satellite capable of simultaneous
collection of imaging data on a wide spectral range and precise space-geodetic observations.
In addition to this ambitious future prospect for Earth observations, the method described in
this thesis could be applied to any other planetary object. A promising future opportunity is
the BepiColombo mission to Mercury, starting its observations in 2025, which collects both
radiation pressure and imaging data.
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Appendix A

Conventions

Quantities

Table A.1 Spectral radiometric terms and symbols according to International Organization
for Standardization (ISO)

Quantity Symbol Units

Radiance L W m−2 sr−1

Radiant flux Φ W
Flux density F W m−2

Irradiance E W m−2

Radiant exitance M W m−2

Radiosity J W m−2

Disk-integrated brightness I W sr−1

Mathematical conventions

Table A.2 Mathematical notation used in this thesis

Symbol Object

a⃗, F⃗ vector
ê unit vector
A, Matrix
[ ]T Matrix transpose
(˙) Time derivative d

dt
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