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Making use of definitive new lattice computations of the Standard Model thermodynamics during
the quantum chromodynamic (QCD) phase transition, we calculate the enhancement in the mass
distribution of primordial black holes (PBHs) due to the softening of the equation of state. We find
that the enhancement peaks at approximately 0.7M⊙, with the formation rate increasing by at least
two orders of magnitude due to the softening of the equation of state at this time, with a range of
approximately 0.3M⊙ < M < 1.4M⊙ at full width half-maximum. PBH formation is increased by a
smaller amount for PBHs with masses spanning a large range, 10−3M⊙ < MPBH < 103M⊙, which
includes the masses of the BHs that LIGO detected. The most significant source of uncertainty in
the number of PBHs formed is now due to unknowns in the formation process, rather than from
the phase transition. A near scale-invariant density power spectrum tuned to generate a population
with mass and merger rate consistent with that detected by LIGO should also produce a much larger
energy density of PBHs with solar mass. The existence of BHs below the Chandresekhar mass limit
would be a smoking gun for a primordial origin and they could arguably constitute a significant
fraction of the cold dark matter density. They also pose a challenge to inflationary model building
which seek to produce the LIGO BHs without overproducing lighter PBHs.
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I. INTRODUCTION

Since the paper asking “Did LIGO detect dark matter?” appeared by Bird et al. [1] (see also [3] which
appeared shortly afterwards), there has been an enormous burst of activity studying the question of whether
∼ 10 solar mass black holes, such as those which LIGO detected merging, could be primordial in origin and
even make up most or all of the dark matter (DM). This activity has primarily focused on the question
of whether the observational constraints on such massive black holes rule them out as being sufficiently
numerous to make up all of the DM (and hence being primordial), with conflicting conclusions. Work has
also been done on discriminating between a primordial or astrophysical origin of the detected black holes
(BHs), for example by using their spin distribution [4] or ellipticity of the inspiralling orbit [5], with the
conclusion that future measurements should be able to make this distinction.

If the black holes detected by LIGO really are primordial, an important question to ask is why there
happens to be a peak in the primordial black hole (PBH) number density of this mass, with fewer of both
significantly greater or smaller masses. The O(10) solar mass range is not so far from the horizon mass at the
quantum chromodynamic (QCD) phase transition, O(1) M⊙. The softening in the equation of state during
this transition makes the formation probability of PBHs at around this mass scale exponentially more likely
[6], so one is motivated to study the PBH mass distribution across an extended mass range.

In this paper, we quantify the effect on the PBH mass distribution due to the QCD transition. While the
effect has been studied before, see e.g. [7–10], new lattice results [11, 12] now provide a definitive equation
of state of the universe through the QCD phase transition, allowing for the first time an exploration of black
hole formation at this epoch with negligible thermodynamic uncertainties.

We find that the equation of state parameter ω = p/ρ reduces by around 30% during the QCD phase
transition, and that the corresponding decrease in the critical collapse threshold of the comoving density
contrast is around 10%. This leads to a boost in the PBH mass distribution by at least two orders of
magnitude compared to a Universe in which the equation of state parameter remained ω = 1/3. The peak
spans about one order of magnitude in the range of black hole masses, with the peak at around one solar mass,
but the enhancement can be seen in the even wider mass range of 10−3 . M/M⊙ . 103. The enhancement
in the density of BHs in the mass range detected by LIGO is around a factor of 5; 30M⊙ black holes are
forming at around the time muons and pions become non-relativistic. Our results are not very sensitive to
different assumptions about the formation criteria of PBHs with a time varying equation of state and we
discuss the various choices, while stressing the need for numerical simulations in order to reach a precise
prediction.

Our results show that if a near-scale-invariant density power spectrum is tuned to generate PBHs with a
density at M ∼ 10M⊙ to match the inferred LIGO merger rate [13, 14] then there should also exist a much
larger density of PBHs with solar mass, unless the power spectrum is very red on the relevant scales. Solar
mass black holes are below the Tolman–Oppenheimer–Volkoff and Chandrasekhar mass limits and hence, if
detected, would be strong evidence that the black holes are primordial.

A corollary is that it is possible that PBHs are responsible both for the population of black holes observed
by LIGO and for a significant fraction of the dark matter. There is evidence for such a dark matter population
from microlensing of quasar light, which indicates that most, if not all, quasars are microlensed by compact
bodies of around a solar mass [15–17], see also [18] which argues this microlensing is consistent with the
expected stellar population. For example, a locally scale-invariant density power spectrum with variance
σ2 = 0.004 gives PBHs making up 13% of DM with in the mass range 0.2 < M/M⊙ < 1, and with 0.1% in
the range 10 < M/M⊙ < 50. A population of PBHs much greater than a solar mass appears to be ruled out
by several dynamical and accretion constraints, although there is significant uncertainty in the assumptions
which these methods typically entail. The mass range from 10−5M⊙ to 5M⊙ is primarily constrained by
microlensing observations [19] which depend on a knowledge of the structure of the Galactic halo [20].
We discuss these constraints in more detail in Section V. See [21] for a recent review of all observational
constraints.

The plan of this paper is as follows: in Sec. II the recent results for the equation of state near the QCD
phase transition are reviewed. We use those results in Sec. III to discuss the reduction of the critical collapse
threshold during the phase transition. In Sec. IV we derive the mass function of PBHs expected during the
phase transition, and discuss how this varies if the underlying power spectrum is not scale-invariant over the
relevant range of scales. The observational evidence for and against solar mass PBHs from different sources
is discussed in Appendix A and we conclude in Sec. V.
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FIG. 1: The equation of state parameter ω and the sound speed squared c2s for the Standard Model [11],
plotted against horizon mass, in units of solar mass. The filled circles show the nodes of the spline used for

the fit for ω. The horizon mass range plotted corresponds to a temperature range of approximately
104 MeV to 1 MeV.

II. EQUATION OF STATE DURING THE QCD PHASE TRANSITION

As the universe cooled through a temperature of order 100 MeV, the effective number of relativistic
degrees of freedom changed rapidly as the strong interactions confined quarks into hadrons. Lattice QCD
studies [22, 23] agree that the transition is a cross-over, which means that thermodynamic quantities evolve
smoothly, and there is no period of phase coexistence (as in a first-order transition) or divergent specific
heat (as in a second-order transition). Instead, the equation of state parameter ω(T ) and the sound speed
squared c2s (T ) dip well below 1/3 at around this temperature, but suffer no discontinuity.
We denote the two relevant measures of the effective number of relativistic degrees of freedom as

geff(T ) =
30ρ

π2T 4
, heff(T ) =

45s

2π2T 3
, (1)

where ρ is the energy density and s the entropy density. From the relationship between the energy density,
entropy density and the pressure p = sT − ρ, we see that the equation of state parameter is given by

ω(T ) =
4heff(T )

3geff(T )
− 1 (2)

and the sound speed squared by

c2s (T ) =
4(4heff + Th′

eff(T ))

3(4geff + Tg′eff(T ))
− 1, (3)

where the prime indicates differentiation with respect to temperature.
The uncertainties in the functions geff(T ) and heff(T ) near the QCD transition have reduced dramatically

recently as improved computing power and techniques have enabled the use of quarks with physical masses
to study the equation of state of QCD at finite temperature. We will use the results of Ref. [11], which
combine lattice results near the transition with hard thermal loop effective theory at high temperatures and
the hadronic resonance gas at low temperature, to produce a definitive equation of state for the Standard
Model for temperatures in the range 1 . T . 105 MeV. This is the first time an accurate Standard Model
equation of state has been used in studies of PBH formation.
Ref. [11] tabulates values of geff(T ) and geff(T )/heff(T ) in a form suitable for spline interpolation, giving

about 1% accuracy in geff and 0.3% for the ratio. In Figure 1 we show the resulting equation of state



4

parameter ω(T ) and speed of sound squared c2s(T ), plotted against the horizon mass1 MH in units of the
solar mass M⊙. It can be seen that, although these quantities are smooth, there is a distinct minimum where
the Hubble volume mass is O(1) M⊙, corresponding to the temperatures around 200 MeV. The dip is not
as extreme as in the models of the transition used in Ref. [10], or in previous models of the Standard Model
equation of state based on earlier lattice data [24, 25].
In fact, there are significant departures from pure radiation thermodynamics across a wide range of

scales. At temperatures above the QCD phase transition, they are due to quark mass thresholds and
non-perturbative effects in the non-Abelian gauge fields. There is also a broad dip at temperatures just
below the transition, corresponding to horizon mass range 10 to 100 M⊙, due to pions and muons becoming
non-relativistic, resulting in the disappearance of 13/2 of the remaining 69/4 relativistic degrees of freedom.
This is also an interesting range, as it encompasses the masses of the merging binaries detected by LIGO.

III. CRITICAL DENSITY PERTURBATION FOR COLLAPSE DURING THE PHASE

TRANSITION

PBHs may have formed in the early Universe shortly after inflation ended from the direct collapse of large
density perturbations (for reviews see [21, 26, 27]). When a density perturbation reenters the horizon, it will
collapse to form a PBH if the density contrast is above some critical threshold, δc.
Musco and Miller [28] simulated the formation of PBHs with differing values for the equation of state,

calculating the critical density perturbation for collapse δc as function of the equation of state parameter
ω, and these results are used in this paper. However, it should be noted that these results were calculated
assuming a constant equation of state. The true critical value therefore remains uncertain. However, the
general tendency is clear: a decrease in ω results in a decrease in δc, as shown in figure 8 of Ref. [28]. Therefore
the reduced equation of state parameter during the phase transition results in the enhanced formation of
PBHs.
There are two key questions to consider: at which mass does the peak in the PBH distribution occur, and

how high is the peak relative to the value it would take if there were no phase transition.
In order to investigate the peak mass, the critical density perturbation will be calculated from the equation

of state parameter at two key times during the formation of a PBH: 1) the time when the perturbation first
enters the horizon and the process of collapse begins, and 2) the time when the PBH forming region stops
expanding and starts to collapse. This will give a minimum and maximum for the peak formation time and
a corresponding peak mass. The true value for the peak formation time will lie somewhere between these
values.
The height of the peak will depend on how much the critical density perturbation changes during the

transition, which will depend on the equation of state throughout the entire formation process. To fully
answer this will require further investigation, although for the purpose of this paper, an averaged value of
the equation of state parameter during the PBH formation time is used. Both a linear and logarithmic time
average are considered; the resulting mass spectrum is found to be insensitive to the averaging method.
First we recall the time at which a forming PBH forming stops expanding, the turn-around time. Consider

a spherical density perturbation of amplitude δ∗ at time t∗ on a spatially flat radiation-dominated Friedmann
universe with background density ρ∗c and suppose that the overdense region can be considered as a separate
uniform-density closed universe. For the overdense region, the Hubble parameterH is given by the Friedmann
equation,

H2 =
8πG

3
ρ− Kc2

a2
, (4)

where a is the scale factor, K is the curvature, G is the gravitational constant, ρ is the density of the
overdense region, and c is the speed of light. The comoving density contrast at an initial time t∗ is given by

δ∗ =
ρ∗
ρ∗c

− 1 =
K

a2∗H
2
∗

. (5)

1 More correctly but less commonly called the Hubble volume mass.
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The overdense region will eventually cease expanding and start to re-collapse. The time at which this
happens is called the turn-around time, and within the simple model being considered, if this time is reached
the subsequent formation of a PBH is inevitable. At the turn-around time Hta = 0, so the density satisfies

8πG

3
ρta =

K

a2ta
(6)

where the subscript “ta” denotes the turn-around time. The ratio between the energy density at an initial
time t∗ and turn-around time tta is given by

ρta
ρ∗

=
K

a2∗H
2
∗ +K

a2∗
a2ta

. (7)

Using equation (5), this can be rewritten as

ρta
ρ∗

=
δ∗

1 + δ∗

a2∗
a2ta

. (8)

Assuming a constant equation of state (during the phase transition, the equation of state does not change
greatly from 1/3, see Fig. 1), the energy density evolves as

ρta =

(

ata
a∗

)−3(1+ω)

ρ∗. (9)

Combining these equations gives the ratio between the initial scale factor and the scale factor at the turn-
around time,

ata
a∗

=

(

1 + δ∗
δ∗

)
1

1+3ω

. (10)

The initial time will be taken as the time the perturbation enters the horizon, and at this time δ∗ will be
taken as the minimum value required for a PBH to form during radiation domination, δ∗ = δc = 0.453 [28],
The number of efolds to reach turn around is therefore

Nta ≃ 1

2
ln(1.453/0.453) ≃ 0.6. (11)

During this time, the horizon mass grows by a factor of exp(2Nta) ≈ 3.
Figure 2 shows the evolution of the critical density perturbation δc as a function of horizon mass through

the phase transition, with four different methods of treating the equation of state parameter during the
collapse; taking its value at horizon-entry, turn-around time, and two different time averages. It can be
seen that averaging the equation of state increases the minimum value for δc, and that there is a negligible
difference between linear and logarithmic time averaging.

IV. THE MASS FUNCTION OF PRIMORDIAL BLACK HOLES

Typically, the PBH abundance is stated in terms of the mass fraction of the Universe that collapses to form
PBHs at the time of formation β, and the simplest version of the calculation unrealistically assumes that all
PBHs form with exactly the horizon mass. In this case, a Press-Schechter approach is used to calculate β

β = 2

∞
∫

δc

dδP (δ), (12)

where δc is the critical value for PBH formation at the time of horizon entry, and P (δ) is the probability
density function of the density contrast (and we have multiplied the above by the Press-Schechter factor of
two [29]). In this paper, a Gaussian distribution for P will be assumed, although it should be noted that
even small amounts of non-Gaussianity can have a significant effect [30–36].
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FIG. 2: The critical density perturbation for collapse δc as a function of horizon mass during the QCD
phase transition. The critical value is calculated from the equation of state at horizon entry (dot-dashed
blue line), turn-around (dashed red line), and two time-averaged values, with linear (solid black line) and
logarithmic (dotted green line) averaging. The critical density perturbation for a pure radiation fluid

δc = 0.453 is also plotted with a dashed black line for reference.

We write the Gaussian probability distribution as

P (δ) =
1√
2πσ2

exp

(

− δ2

2σ2

)

, (13)

where the variance of the density perturbations, σ2, is calculated by integrating the density power spectrum
Pδ(k) [37],

σ2 =

∞
∫

0

W 2(kR)Pδ(k)
dk

k
, (14)

where W (kR) is the Fourier transform of the window smoothing function, and R is the horizon scale at a
given time. For a Gaussian distribution, β can be approximated as

β = erfc

(

δc√
2σ2

)

. (15)

In this paper, the power spectrum amplitude at PBH formation scales is a free parameter that may be tuned
to produce the correct number of PBHs to make up dark matter. We first assume for simplicity that the
density power spectrum at horizon-entry is scale-invariant over a relevant but limited range of scales, leading
to a constant β on those scales if the critical value for collapse is constant.
However, whilst a scale-invariant power spectrum leads to a scale invariant β, it does not lead to a scale

invariant PBH mass spectrum. This is due to the fact that, once formed, the number density of PBHs evolves
like matter during radiation domination. The radiation density of the Universe evolves as ρrad ∝ a−4, whilst
the matter density evolves as ρmat ∝ a−3. This means that the number density of PBHs grows proportional
to the scale factor during radiation domination. Assuming that black holes form with mass M = MH, and
that the Universe behaves purely as radiation domination until the time of matter-radiation equality means
that the abundance of PBHs at that time βeq can be stated in terms of β as

βeq(M) =
aeq

a(M)
β(M) =

(

Meq

M

)1/2

β(M), (16)
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where the subscript “eq” denotes the scale factor at the time of matter-radiation equality, and a(M) is the
scale factor when the horizon mass is M . The final abundance of PBHs therefore decreases with increasing
mass. The horizon mass at the time of matter-radiation equality is MH,eq ≈ 2.8× 1017M⊙ (using the same
cosmological parameters as Ref. [38]) The fraction βeq represents the abundance at the time of matter-
radiation equality of PBHs which formed at a given earlier time - in order to calculate the total abundance
of PBHs, ΩPBH, it is necessary to integrate βeq over all times at which PBHs form,

ΩPBH =

Mmax
∫

Mmin

d ln(M)βeq(M) =

Mmax
∫

Mmin

d ln(M)

(

Meq

MPBH

)1/2

β(M). (17)

The mass distribution of PBHs will be stated in terms of f(M), the fraction of CDM made up of PBHs of
a given mass M ,

f(M) =
1

ΩCDM

dΩPBH

d lnM
. (18)

In the simplified case currently being considered, if PBHs formed with exactly the horizon mass, the expres-
sion for f measured after matter-radiation equality would be

f =

(

M

Meq

)−1/2
β(M)

ΩCDM
. (19)

In the next subsection we perform a more realistic calculation by including the effects of critical collapse on
the PBH mass spectrum.
For reference we also give approximate relations between the horizon mass with time, wavenumber and

scale factor [26, 38]

MH ≃ 2× 105
(

t

1s

)

M⊙ (20)

≃ 1.5× 105
( g

10.75

)−1/2
(

T

1MeV

)−2

M⊙ (21)

≃ 17
( g

10.75

)−1/6
(

k

106Mpc−1

)−2

M⊙ (22)

where g is the number of degrees of freedom of relativistic particles.

A. Extended mass function of primordial black hole formation

The calculation will now be extended to account for the fact that PBHs do not form with exactly the
horizon mass. The mass of the resulting PBH depends on the horizon mass and the amplitude of the density
perturbation δ defined in the comoving gauge from which it formed, and is given by [28, 39–41]

M = kMH(δ − δc)
γ , (23)

where MH is the horizon mass at the time of horizon re-entry, and during radiation domination the constants
have been numerically found to be given by k = 3.3, γ = 0.36, δc = 0.453 (the values depend upon the
radial profile of the perturbations being considered; we use the values given here in order to be concrete).
We assume that only δc varies with the equation of state. This equation can be inverted to give M as a
function of δ,

δ =

(

M

kMH

)1/γ

+ δc. (24)
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The expression for β is therefore amended to account for the fraction of each Hubble volume which collapses
to form a PBH:

β = 2

∞
∫

δc

M

MH
P (δ)dδ = 2

∞
∫

δc

k(δ − δc)
γP (δ)dδ. (25)

The final expression expression for f can be found by combining the previous two equations with equation
(18), giving f as a function of the PBH mass M and σ2 [39],

f(M) =
1

ΩCDM

∞
∫

−∞

2
√

2πσ2(MH)
exp

[

− (µ1/γ + δc(MH))
2

2σ2(MH)

]

M

γMH
µ1/γ

√

Meq

MH
d lnMH, (26)

where µ ≡ M
kMH

and we have used dδ
d lnM = 1

γµ
1/γ . The difference which critical collapse behaviour makes

is to reduce the mean black hole mass below MH and to broaden the distribution [42] (see also [43]). The
total contribution of PBHs today is given by

ΩPBH = ΩCDM

∫

f(M)d lnM, (27)

where the limits of the integral should include all masses of PBHs which form.
The left hand plot in Fig. 3 plots f(M) for σ2 = 0.004 from 2×10−4M⊙ to 3×103M⊙ (which corresponds

to N = ln(Mmax/Mmin)/2 ≃ 8 efolds).
Since PBHs form from large density perturbations, in the tail of distribution, their abundance is exponen-

tial sensitive to the variance of the density perturbations ([44], c.f. Eq. (15)). In Fig. 3 we see that decreasing
the power spectrum amplitude by 25% reduces the PBH energy density by several orders of magnitude. Hence
only a relatively narrow range of σ2 is of observational interest, as a result of the exponential dependence of β
on the amplitude of the primordial power spectrum. We note that the position of the peaks does not change
significantly when changing the amplitude of the power spectrum, but that the sharpness of the peaks does
increase as σ2 is decreased, growing from two orders of magnitude above the “background” value (i.e. the
value of f one would calculate assuming a pure radiation dominated background) to an enhancement by
three orders of magnitude over the background value.
It can be seen that calculating the critical value for collapse from the equation of state at horizon entry,

turn-around, or an averaged value leads to about a factor of two change in the peak mass at which PBHs
form, and a smaller change in the height of the peak. For the rest of this paper we will use the time averaged
value of δc, defined by

δ̄c(MH) =















1

tta − tH

∫ tta

tH

dtδc, time average

1

ln (tta/tH)

∫ tta

tH

dt

t
δc, logarithmic time average

(28)

This value is likely to be closest to the true answer, since the PBH formation will be sensitive to the equation
of state during the complete period between horizon entry and when the overdensity stops expanding. Fig. 2
shows that δc is quite insensitive to the averaging procedure used. Following Eq. (11) we use tta = 3tH in
order to be concrete.

B. Implications for the LIGO detection of intermediate mass BHs

Since the LIGO detection of several in-spiralling intermediate mass black holes [45] there has been great
interest in whether the BHs which LIGO detected were primordial or astrophysical, e.g. [1, 3, 46]. There is
a significant debate about whether PBHs in the mass range of 10− 50M⊙ detected by LIGO could make up
all of the DM, see e.g. [47, 48], with no definitive conclusion reached due to various uncertainties in both the
constraints and the expected properties of PBHS, see e.g. [19, 38, 48–56] and Appenix A. However, there
are recent works estimating that the merger rate of PBHs would match the LIGO detection rate if around
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FIG. 3: The mass distribution f of PBHs forming during the phase transition is shown for a scale-invariant
density power spectrum, with different ways of treating the equation of state parameter during the black
hole formation process. The different lines correspond to using the equation of state at horizon entry,

turn-around and a time-averaged value. The straight dashed black line represents the mass function f of
PBHs if there is no phase transition (taking the critical density perturbation δc = 0.453). The variance of
the density contrast at horizon crossing is taken to be σ2 = 0.004 for the left plot and σ2 = 0.003 for the
right. Using the time-averaged value of δc, for σ

2 = 0.004, the peak occurs at 0.69M⊙ and the range at
half-maximum is 0.30M⊙ < M < 1.4M⊙, whilst for σ

2 = 0.003, the peak (which becomes sharper for
smaller values of σ2) occurs at 0.65M⊙ and the range at half-maximum is 0.32M⊙ < M < 1.2M⊙.

M low
fwhm/M⊙ Mpeak/M⊙ Mhigh

fwhm/M⊙

horizon entry 0.69 1.4 2.5

turn-around 0.23 0.48 0.83

averaged 0.30 0.69 1.4

TABLE I: Parameters of the PBH mass distribution (peak mass and upper and lower values for the
full-width half-maximum) for a scale-invariant primordial density perturbation spectrum with σ2 = 0.004,
with different assumptions about how the critical collapse threshold depends on the equation of state.

Linear and logarithmic time averaging are almost indistinguishable at this level of precision.

0.1% of DM is made up of PBHs in the LIGO mass range [13, 14, 57, 58] (assuming that the PBHs are not
initially clustered).
Based on the above discussion, we define the integrated fraction of DM between masses M1 and M2 as

ftot(M1,M2) =

∫ M2

M1

f(M)
dM

M
. (29)

We plot ftot(M, 50M⊙) for three cases: σ2 = 0.005, 0.004, and 0.003 in Fig. 4, using the time-averaged
δc (Eq. 28, corresponding to the dashed black line in Fig. 2). For comparison, the integrated fraction
ftot(10M⊙, 50M⊙) = 0.15, 0.001 and 2 × 10−7, respectively. Notice how the value of ftot doubles on a
much shorter scale (in a logarithmic sense, which corresponds to efolding number during inflation) towards
lighter PBH masses, especially for smaller amplitudes of the power spectrum, due to the spike in the energy
density of PBHs with mass close to one solar mass. For example, for the middle plot, ftot(2M⊙, 10M⊙) ≃
10ftot(10M⊙, 50M⊙), despite the mass ranges spanning an equal duration of inflation when measured in
efolding number.

C. Scale-dependent power spectra

For a strictly scale invariant power spectrum, as used in all plots of the PBH mass function shown thus
far, the mass distribution diverges at small masses. To remove the divergence a sufficiently red tilt can be
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FIG. 4: The total mass fraction in PBHs between the mass plotted on the x-axis and 50M⊙, as defined by
Eq. (29), using the time-averaged equation of state. The amplitude of the power spectrum changes from

σ2 = 0.005 on the left to σ2 = 0.004 in the middle and σ2 = 0.003 on the right plot and the fraction of DM
in PBHs with masses between 10− 50M⊙ (i.e. the value of ftot(10M⊙, 50M⊙), Eq. 29) is approximately

0.14, 0.001 and 2× 10−7 from left to right respectively. The PBH density exceeds the measured DM density
if the scale invariant spectrum is assumed to extend below 1.8M⊙, and therefore the scale invariance

cannot extend below this mass.

introduced to the primordial curvature perturbation spectrum. Because of the exponential sensitivity of the
mass fraction to the variance σ2(M), a small tilt changes the slope of the mass distribution a lot.
In order to provide some intuition about the effect of a scale dependent density contrast (measured at

horizon entry) in Fig. 5 we plot f(M) for two different values of the spectral index nM

σ2(MH) = 0.004

(

MH

10M⊙

)nM

, (30)

in both cases taking the same normalisation at 10M⊙. The scale-dependence is related to the usual spectral
index of the primordial curvature perturbation by ns − 1 ≃ −2nM because MH ∝ a2 and k = aH ∝ 1/a
during radiation domination.2

The left hand plot has a gentle scale dependence corresponding to nM = 0.025 (ns − 1 = −0.05) which
shows a clear peak in f centred just below one solar mass. The peak has become relatively insignificant
on the right hand plot which has a four times stronger scale dependence of nM = 0.1 (ns − 1 = −0.2). In
this case the heaviest PBHs will dominate unless the power spectrum is cut off on scales corresponding to a
horizon mass between about 1 and 4 solar masses. In both of the plots shown the effect of the QCD phase
transition is still very important, with the value of f boosted by about a factor of 200 at M = M⊙ compared
to a calculation which neglects the reduction in the equation of state during this transition (compare the
solid and dashed lines in Fig. 5).

D. Requirements for inflation to produce PBH with solar mass

On large scales (k . Mpc−1), the amplitude of the primordial curvature power spectrum is well measured
by CMB and LSS observations to be around 10−9. On the much smaller scales associated with PBH
formation, the power spectrum needs to grow by at least 6 orders of magnitude in order for any to form. The
scale associated to the PBHs detected by LIGO with M ∼ 30M⊙ is k ∼ 106Mpc−1 (see (22)) and such a rapid
growth of the power spectrum requires a break down in slow-roll somewhere in between these scales [59]. It
does not however require that slow-roll is violated while the relevant scales producing PBHs are exiting the
horizon, and hence the approximation of a constant spectral index (which is not related to the observed value
of the spectral index on CMB scales) over this narrow range of scales may, in principle, still be appropriate.
The breakdown in slow-roll may produce a peak of its own in the PBH mass distribution, although it is
unclear how narrow this peak can be in a realistic model. The growth in f by 2 to 3 orders of magnitude

2 The relation ns −1 ≃ −2nM is not exact because the equation of state varies during the phase transition, and the conversion
between the density contrast and the curvature perturbation depend on this. Therefore a scale invariant value of σ2 does not
exactly correspond to a scale independent primordial curvature perturbation.
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FIG. 5: The mass distribution of PBHs formed during the phase transition for two different spectral
indices. The plot on the left shows σ2 ∝ M0.025

H approximately corresponding to a spectral index of the
primordial curvature perturbation of ns − 1 = −0.05; while the plot on the right shows σ2 ∝ M0.1

(ns − 1 = −0.2). Both power spectra have been normalised to σ2 = 0.004 at M = 10M⊙. The solid line is
calculated using a time averaged value of δc while the dashed line assumes no phase transition and a

constant critical value for collapse given by δc = 0.453.

for solar mass PBHs compared to the preferred LIGO mass range of ∼ 30M⊙ BHs poses a challenge for
inflationary model building which seek to explain the LIGO BH mass range without contradicting any of
the constraints on lighter PBHs. The softening in the equation of state during the QCD phase transition
should be taken into account, and this will require a significantly more sharply peaked power spectrum than
otherwise required when neglecting the effect of the QCD phase transition. To the best of our knowledge,
none of the papers that construct an inflationary model capable of generating ∼ 30M⊙ black holes has taken
this phase transition into account. Papers which place an inflection point or other feature at a small scale
in an attempt to generate an interesting number of PBHs include [59–69].
The power spectrum constraints on length scales smaller than k ∼ Mpc−1 are more model dependent,

but CMB spectral distortion constrains the primordial power spectrum to be an order of magnitude too
small on scales k . 105Mpc−1 [70] corresponding to a horizon mass of around 103M⊙, meaning the power
spectrum must grow significantly on scales between 105Mpc−1 and 106 Mpc−1 in order for LIGO mass PBHs
to be generated and the spectral distortion constraints to be evaded. Other small scale constraints include
ultracompact minihalos,3 gravitational wave constraints from the pulsar timing array [38, 75–78] (for a recent
review see [79]), big bang nucleosynthesis [80] and the dispersion of type 1a SNe brightness due to lensing
[53, 81].
For a slightly red spectral index we may tune the power spectrum such that only PBHs with masses

comparable to the horizon mass during the QCD phase transition form in significant numbers, without
requiring any additional cut-off or features of the power spectrum on comparable scales. Unless the primordial
power spectrum has a sufficiently red tilt on small scales, the lightest PBHs will dominate, meaning that
there then also needs to be a reduction in the power spectrum amplitude on even smaller scales than the
ones we study in this paper.
Almost all of the constraints listed in the paragraph above assume a Gaussian distribution for the per-

turbations and may not apply if the perturbations are non-Gaussian, see e.g. [38, 82]. Because PBHs form
from extreme fluctuations deep in the tail of the probability density function, even relatively small amounts
of non-Gaussianity can have an exponentially large effect on the formation rate of PBHs. With large non-
Gaussianity, the amplitude of the primordial power spectrum can change by over an order of magnitude
while keeping the number density of PBHs constant, see e.g. [33, 35]. However, if there is a non-negligible
contribution of “squeezed-limit” non-Gaussianity generating a mode coupling between the long wavelength
modes observable with the CMB and the smaller scales relevant to PBH formation then long-wavelength
isocurvature perturbations will be generated and the model is ruled out [83, 84].

3 It has been claimed that ultracompact mini halos already rule out the power spectrum growing so large on scales of 106 Mpc−1

[71]. However, these constraints are too strong because realistic halo formation is not as isolated as previously assumed leading
to less steep density profiles [72, 73] – see also [74].
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V. SUMMARY

In this paper we have re-examined primordial black hole formation using an accurate Standard Model
equation of state near the QCD phase transition, derived from lattice results [11]. The QCD phase transition
occurs at a time when the horizon mass is around 1 solar mass, and the softening of the equation of state
as confinement sets in suggests that the Universe may be populated by PBHs with a mass distribution
peaked at around a solar mass [6]. There is some evidence for the existence of a non-stellar population of
massive compact halo objects (MACHOs) of around a solar mass, and in addition, there has been much
discussion that the merging black holes observed by LIGO (with masses of tens of solar masses) may have
been primordial in origin.
The density of PBHs depends sensitively on how the critical density perturbation δc is affected by the

changing equation of state during the collapse process. In the absence of a full collapse simulation, we explore
the bounding assumptions that δc is either its value at horizon crossing or at the turn-around time for a
spherically symmetric Gaussian initial perturbation. We also present time-averaged values, both linear and
logarithmic, as intermediate cases.
The PBH mass distribution depends on the underlying density power spectrum. If the spectrum is scale-

invariant in the range 10−3 . MH/M⊙ . 103 , we find that the peak mass is 0.7 M⊙ in the averaged cases,
and bounded by 0.48 < Mpeak/M⊙ < 1.4. In the averaged case the FWHM is 0.30 < M/M⊙ < 1.4. We
emphasise that the main uncertainty is due to the crude modelling of the collapse dynamics, rather than in
the QCD thermodynamics, motivating a more accurate study along the lines of Ref. [28]. The boost to the
PBH mass fraction caused by the softening of the equation of state cannot be neglected within the mass
range 0.1 . M/M⊙ < 100; hence this is another reason why a power-law PBH mass distribution in this
range is quite unrealistic.
Again in the scale-invariant case, the peak of the PBH mass density distribution is boosted by a factor at

least one hundred over a universe with a pure radiation equation of state. A smaller boost extends over a
wide range of masses O(0.1M⊙) up to O(100M⊙), with LIGO precursors (M ∼ 10M⊙) boosted by a factor
of about 5. If the fractional mass density in the range 10 < M/M⊙ < 50 is tuned consistent with the merger
rate inferred from the LIGO observations, f ≃ 0.001 [13, 14, 113] (see also [57] which does not assume a
monochromatic PBH mass spectrum, and [114] who reached a different conclusion about the required mass
fraction), a much larger density in solar mass black holes is found; PBHs make up 13% of DM in the mass
range 0.2 < M/M⊙ < 1. This fraction can be adjusted by small changes in the tilt of the density power
spectrum.
Therefore, a model with a large but quasi-scale-invariant primordial density power spectrum in the mass

range O(0.1) M⊙ up to O(100) M⊙ can simultaneously account for both the LIGO black holes and potential
MACHO observations in terms of PBHs. A detailed calculation of the merger rates that would arise from
the PBH mass distributions calculated here is left for future study.
Our results and formalism could easily be extended to calculate the PBH formation rate during any other

phase transition during the early Universe. A generic expectation is that there will be a strong local peak in
the formation rate whenever the equation of state parameter is reduced. For example, a phase transition with
critical temperature in the range 10 TeV to 1000 TeV could produce a peak in the PBH mass distribution
in the range 10−10M⊙ to 10−14M⊙, where the constraints are weakest [21, 26, 27].
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Appendix A: Microlensing constraints and solar mass PBHs

The debate on whether the dark matter is formed of elementary particles or compact bodies has been
going on for some time (see e.g. [85] for an early review). Any type of compact body making up the dark
matter must be non-baryonic, and the most plausible compact body candidate appears to be primordial
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black holes. Microlensing observations provide one of the best studied and most competitive constraints on
solar mass PBHs.

An early proposal for an observational signal of primordial black holes was that they should microlense
distant quasars [86]. The situation then changed dramatically with results from an experiment to detect
compact bodies in the Galactic halo as they microlensed distant stars in the Magellanic Clouds [87]. Some
15 events were observed, consistent with a lens mass of around 0.5M⊙, and at a higher rate than could be
accounted for by stars in the Galactic halo. Alcock et al. [87] also concluded that for their preferred halo
model the lenses would make up less than 50% of the dark matter mass, their best estimate being 20%.
At the time this was seen as essentially ruling out compact bodies of around a solar mass as dark matter
candidates. In a subsequent re-analysis of their survey results, Alcock et al. [95] extended their limits to
include objects up to 30M⊙ and concluded that this did not alter their limits on the population of compact
bodies in the Galactic halo.

Other microlensing experiments in the Magellanic Clouds [89, 96] produced conflicting results. The objects
detected by the MACHO collaboration remained unexplained, which suggested that the deficit in the number
of events for a halo comprised of compact bodies might be explained by incorrect assumptions about the
structure of the Galactic halo, and problems with estimating the detection efficiency for microlensing events.
Recent observations implying a much lighter halo than that assumed by the microlensing experiments [87,
89, 96] prompted a re-examination of the assumptions upon which the analysis of these groups was based
[20], with the conclusion that an all MACHO Galactic halo with masses around a solar mass is not excluded.
The effect of changing the velocity dispersion of the halo model has recently been explored by Green [50],
who found that constraints on the mass fraction varied by almost an order of magnitude between the halo
models considered. It has also recently been shown [2, 50] that the effect of spatial clustering of lenses or of
broadening their mass function can effectively reduce or even remove microlensing constraints on compact
bodies in the Galactic halo. To summarise, the constraints on compact bodies from microlensing rely on a
number of assumptions including the shape of the Galactic rotation curve, the velocity dispersion in the halo,
the clustering properties of the lenses, and the efficiency with which the microlensing events are detected. In
view of these uncertainties we feel that it is premature to rule out a population of stellar mass black holes
on the basis of microlensing studies in the Galactic halo.

There have also been searches for ‘pixel-lensing’ in M31 where unresolved stars are being microlensed
causing a pixel to brighten. About 30 possible microlensing events have been detected [97], but there is still
some debate as to the extent to which self-lensing distorts the statistics [98]. There does however seem to
be a good case for around 25% of the M31 halo to be in the form of compact bodies [99, 100]. This assumes
that the the standard halo model used by the MACHO collaboration for the Milky Way halo is also correct
for M31, and so the issues raised in the previous paragraph will equally apply to the pixel lensing results.

Another approach involved putting limits on any cosmological population of compact bodies by observing
the extent to which quasar images in gravitationally lensed systems are being microlensed [101, 102]. The
observation of microlensing is inferred when the individual images of a quasar system vary in brightness
independently. It was concluded that their results only supported a small population of compact bodies,
but again the results depend on a number of uncertain assumptions. These include the adoption of a
Single Isothermal Sphere model for the galaxy halos along the line of sight to the the quasars despite the
extensive evidence favouring NFW profiles, and the uncertain contribution from the distribution of the stellar
population. Sizes for the quasar accretion discs and the extent to which the emission line regions can be
microlensed must also be assumed.

Predictions of the effect of microlensing on the brightness of Type Ia supernovae have also been used to
set bounds on any population of primordial black holes [53]. The authors make the case that the population
of PBHs is limited to around 30% of the dark matter on the basis of a lack of highly magnified lightcurves
in samples of supernovae. This result has been challenged by Garćıa-Bellido et al. [54] In particular, they
query the assumptions for the size of the supernova discs and choice of mass spectrum for the PBH masses.

Limits on the halo fraction of more massive (& 10M⊙) bodies come from several different sources which
can be broadly divided into dynamical and accretion constraints. The effect of a population of MACHOs on
the distribution of wide binary star semiaxes in the Galactic halo has been used to put limits on the halo
fraction for perturbers of a range of masses [103]. Their results are very sensitive to the samples of binaries
they choose, but broadly exclude a halo composed of compact bodies with M & 20M⊙. Another approach
to deriving a dynamical constraint on the population of MACHOs comes from the distribution of stars in
dwarf galaxies. It is argued that dark matter in the form of massive compact bodies will result in mass
segregation in the stellar population leading to a depletion of stars in the centre of the galaxy [104, 105].
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This is not seen in the observed stellar profile, implying a limit of M & 10M⊙ for an all MACHO halo. There
are however a number of uncertainties in this procedure. These are discussed by the authors and include
the velocity distribution of the dark matter particles, the uniformity of the dark matter density, the relative
velocity dispersion of stars and dark matter and the dark matter profile. Perhaps most importantly, they
assume that there is no Intermediate Mass Black Hole at the centre of the galaxy. As Lee et al. [106] and
Clesse & Garcia-Bellido [52] point out, the presence of an IMBH could negate their constraints.

The accretion constraints on the PBH population come firstly from the predicted interaction of PBHs with
the inter-stellar medium, which would result in an excess of X-ray sources. This leads to a predicted X-ray
luminosity function for a given population of PBHs which can then be compared to the observed luminosity
function [107], or cross-correlated with a radio source catalogue [108]. This approach appears to excludes
PBH dominated dark matter in the Milky Way for M & 10M⊙. An alternative approach is to look for
distortions in the Cosmic Microwave Background resulting from accretion onto PBHs in the early universe.
There has been considerable divergence in the results from this procedure, reflecting the complications of the
accretion physics involved. The results put constraints on PBHs with mass M & 5M⊙ [109] to M & 100M⊙

[110] as the dominant component of dark matter. However, as both these groups point out, some aspects of
the analysis are still uncertain.

The observational case for compact bodies as dark matter has been summarised by Hawkins [111], where
it was argued that there is good reason to believe that the light from most, if not all, quasars is being
microlensed by compact bodies of around a solar mass, in which case the population of lenses will have an
optical depth to microlensing close to unity. This implies [112] that the lenses could make up an appreciable
fraction of the cosmological dark matter. In view of the uncertainties outlined in [20], it is possible that they
could even constitute all of it. Therefore, one cannot securely conclude from microlensing observations that
the PBH mass fraction f(M) is much less than 1 at around a solar mass.
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