
Multiprecision Multiplication on ARMv8

Zhe Liu∗, Kimmo Järvinen†, Weiqiang Liu‡, and Hwajeong Seo§
∗APSIA, Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg.

†Department of Computer Science, University of Helsinki, Finland.
‡College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, China.

§Department of IT, Hansung University, South Korea.
Email: sduliuzhe@gmail.com, kimmo.u.jarvinen@helsinki.fi, liuweiqiang@nuaa.edu.cn, hwajeong@hansung.ac.kr

Abstract—Multiplication of large integers is a fundamental
operation for public key cryptography. In contemporary public
key cryptography, the sizes of integers are typically from
more than one hundred bits to even several thousands of bits.
Because these sizes exceed the bit widths of all general-purpose
processors, these multiplications must be performed with a
multiprecision multiplication algorithm which splits the opera-
tion into multiple partial products and accumulation steps. To
ensure efficiency, multiprecision multiplication algorithms must
be designed with special care and optimized for the instruction
sets of specific processors. Consequently, developing efficient
multiprecision multiplication algorithms and optimizing them
for specific platforms has been an active research topic. In this
paper, we optimize multiprecision multiplication and squaring
specifically for the 64-bit ARMv8 processors which are widely
used, for example, in modern smart phones and tablets.
We combine the subtractive Karatsuba algorithm, operand-
scanning techniques (for multiplication) and sliding-block-
doubling methods (for squaring) to accelerate the performance
of the 256-bit multiprecision multiplication and squaring by
7.6 % and 7.0 % compared to the OpenSSL implementations.
We focus particularly on the multiprecision multiplications that
are required in elliptic curve cryptography. Our implementa-
tion supports general elliptic curves of various sizes and all
source codes are available in public domain.

Keywords-Multiprecision multiplication; public key cryptog-
raphy; elliptic curve cryptography; 64-bit processor; ARMv8

I. INTRODUCTION

Integer multiplication is the most commonly used oper-
ation in public key cryptography (PKC) and, at the same
time, amongst the most time-consuming ones. Generally,
PKC utilizes integer multiplications with very large inte-
gers of several hundreds of bits. They are computed with
multiprecision multiplication algorithms that break down the
operation into several small partial products which are small
enough to be computed with the multiplication instructions
of the processor. The partial products are then accumulated
in a special way to get the correct product of the large
integer multiplication. Because of the frequency and com-
plexity of multiprecision multiplication, its efficiency largely
determines the efficiency of the whole PKC implementation.
In this paper, we concentrate mostly on multiprecision mul-
tiplications that are required for elliptic curve cryptography
(ECC) [1], [2] over fields of large prime characteristic, but

the techniques may have importance also for other pre-
quantum cryptosystems including RSA [3] and cryptosys-
tems based on discrete logarithms (e.g,. El-Gamal [4]) as
well as future post-quantum cryptosystems such as Ring
Learning with Errors (RLWE) based cryptosystems [5] or
Super-Singular Isogeny Diffie-Hellman (SIDH) [6].

The efficiency of multiprecision multiplication is deter-
mined mostly by two factors: (1) the size of the partial
products, which depends on the bit-width of the processor
(e.g., 8 bits for an 8-bit AVR or 32 bits for a 32-bit
ARM processor) and also determines the number of partial
products that need to be computed and (2) the instructions
used for computing the partial products and accumulat-
ing them. In particular, certain instruction set architectures
(ISA) can include special instructions (e.g., multiply-and-
accumulate) that make certain multiprecision multiplication
algorithms more efficient. Besides pure efficiency, it is also
crucial that multiprecision multiplication algorithm has a
constant latency in order to prevent timing side-channel
attacks. By combining all the above, we can summarize
that optimizing multiprecision multiplication specifically for
specific processor architectures is of great importance.

ARM is an ISA for high-performance embedded appli-
cations. The most advanced ARM processors, the 64-bit
ARMv8 processors, support both 32-bits (AArch32) and
64-bits (AArch64) architectures. The processor includes 31
64-bit registers, which are accessible at any time, and also
supports a new instruction set (A64) with 64-bit operands.
Compared to its predecessor, ARMv7, it has a more powerful
instruction set and more registers to optimize memory access
performance. The ARMv8 processors started to dominate
the smartphone market soon after the release in 2011 and
nowadays they are widely used in various smart phones (e.g.,
in iPhone and Samsung Galaxy series). Since the processor
is used primarily in embedded systems and smart phones,
efficient and compact implementations are of special interest.
ARMv8 provides two 64-bit multiplication instructions, MUL
and UMULH, both of which carry out one half of a 64×64-
bit multiplication (see Fig. 1). In both cases, the inputs are
64-bit registers. MUL computes the lower 64-bit half of the
results while UMULH computes the higher 64-bit half.

Recently, many papers have been published about imple-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/275655534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A

×

B

LOW(A×B)–

MUL(A,B)

A

×

B

–HIGH(A×B)

UMULH(A,B)

Figure 1: ARMv8 instructions for the 64-bit multiplication:
MUL and UMULH

mentations of cryptography on ARMv8. Gouvêa et al. [7]
presented an optimized constant-time implementation of
AES-GCM utilizing this instruction set. It achieved very
competitive performance: 1.71 cycles per byte for GCM
authenticated encryption, 0.51 cycles per byte for GCM
authentication and 1.21 cycles per byte for AES-128 encryp-
tion. In [8], Seo et al. presented efficient implementations
of binary field multiplication in ARMv8. They optimized
the multiplication for ARMv8 by combining the Karatsuba
algorithm with a 64-bit polynomial multiplication instruction
(PMULL). Also they achieved very good performance: 57
and 153 cycles for the 251-bit and 571-bit binary fields
(B-251 and B-571), respectively. The same authors pre-
sented further improvements in [9] by presenting efficient
elliptic curve cryptography over B-571 in ARMv8. They
improved the binary field multiplication in B-571 from [8]
by combining finely aligned multiplication and incomplete
reduction techniques with the advantages of the PMULL
instruction of ARMv8. Despite the fact that ECC over
fields of large prime characteristic (e.g., over prime fields)
is nowadays significantly more popular than ECC over
binary fields, academic papers on efficient implementation
of multiprecision integer multiplication for ARMv8 are still
missing. The latest OpenSSL library [10] includes the most
advanced multiprecision multiplication implementations for
the ARMv8 architecture. Even in OpenSSL, only the 256-
bit arithmetic required for ECC over the NIST P-256
curve [11] is implemented for the ARMv8 instruction set.
The OpenSSL implementation for multiprecision multipli-
cation follows the operand-scanning (schoolbook) approach
while multiprecision squaring (multiplication of an operand
by itself) follows the sliding-block-doubling method.

In this paper, we study multiprecision multiplication on
ARMv8 and introduce several optimizations that lead to
significant improvements over the state-of-the-art (i.e., the
OpenSSL implementation). We exploit good practices avail-
able in the literature and make advantage of the new features
in the ARMv8 ISA in order to optimize the multiprecision
multiplication for ARMv8. Specifically, we employ the sub-
tractive Karatsuba algorithm and optimize the use of general
purpose registers. The detailed implementation techniques

are given in Sect. III. Our implementations of multiprecision
multiplication provide better performance compared to the
OpenSSL implementations in ARMv8. For example, we are
7.6 % and 7.0 % faster for 256-bit multiplications and squar-
ings, respectively. For 512-bit multiplications, we already
show improvements of 14.9 % and 10.7 % for multiplication
and squaring, respectively.

The remainder of the paper is structured as follows: We
review the related work on multiprecision multiplication in
Sect. II. We present our contributions and implementations
in Sect. III and present the results in Sect. IV. We end with
conclusions in Sect. V.

II. RELATED WORK

A. Multiprecision Multiplication

Multiprecision multiplication as well as it efficient imple-
mentation have been deeply studied in the past few decades.
The n-bit integers A and B are represented in radix-2w:
A =

∑N−1
i=0 A[i]2iw and B =

∑N−1
j=0 B[j]2jw so that both

integers decompose into N = bn/wc + 1 partial operands
A[i] and B[j] which are integers from 0 to 2w − 1 (w-bit
words). Multiprecision multiplication computes the product
A ·B by computing partial products A[i] ·B[j] with different
i and j and adds them appropriately to get the final result.

The simplest and most intuitive multiprecision multiplica-
tion algorithm is the operand-scanning method (the school-
book method). As its name suggest, it iterates two nested
loops that originate directly from the following equation:

C = A ·B =

N−1∑
i=0

N−1∑
j=0

(A[i] ·B[j])2(i+j)w. (1)

The operand-scanning method performs a multiplication in
a row-wise manner so that, first, A[0] is multiplied with all
partial operands B, then, the same is done with A[1], etc.
Because each partial operand of A is multiplied with all
partial operands of B, N2 partial products are computed
in total. Adding all partial products to the corresponding
positions produces the final result.

Comba [12] proposed a multiprecision multiplication
called product-scanning method where partial products of
(1) are computed in a column-wise manner in the order
in which they affect the result. I.e., all partial products
belonging to the same result word are computed at once:
one iterates an index k from 0 to 2N − 2 and computes
partial products A[i] · B[j] for which i + j = k on each
iteration. Because of this, all partial products of an iteration
are accumulated to the same register and the computation
proceeds as follows: A[0] ·B[0] is computed first giving the
lowest part of the result, then A[0] ·B[1] and A[1] ·B[0] are
computed next and accumulated together with the higher
word of the result of A[0] · B[0] to get the next word of
the result, etc. This has several advantages. First, since all
partial products of each word of the result are computed

and added consecutively, the final result word is obtained
directly and no intermediate results have to be stored or
loaded in the algorithm. Second, only five working registers
are needed to perform the multiplication: two registers for
the operands and three registers for the accumulation. This
makes the method very suitable for low-resource devices
with limited registers.

Gura et al. in [13] proposed a hybrid scanning method that
combines the two aforementioned methods. Specifically, the
product-scanning and operand-scanning methods are used
in the outer and inner loops, respectively. The method
uses more registers to store intermediate operands at every
iteration of the outer loop which decreases the number of
READ operations from the memory as a consequence. The
performance of the method is determined by a parameter
d, which represents the number of READ operations in an
iteration of the outer loop. Obviously, the method is equal
to the product-scanning method if d = 1 and to the operand-
scanning method if d = N .

Scott et al. [14] made an improvement to the original
hybrid-scanning method from [13] by employing a set of
registers called the carry-catcher. They allow to significantly
reduce the number of MOV instructions which saves the total
number of CPU cycles. In the original hybrid method of
[13], carry propagations happen in every iteration of the
inner loop when row-wise partial products occur. In the
hybrid-scanning method of [14], they happen only in every
iteration of the outer loop which results in an increase in
performance. The method is particularly useful for squaring
(see Sect. II-B) where it results in the fastest schemes
available so far.

A variant of the product-scanning method called the
operand-caching method was proposed by Hutter et al.
in [15]. It follows the principles of the product-scanning
method but divides the calculations into several rows. By
reordering the sequence of inner and outer row sections,
previously loaded operands in working registers are reused
for the next partial products. This adds a few WRITE
instructions, but reduces the number of READ instructions
and leads to better overall performance. The number of row
sections is given by r = bn/ec, where e denotes the number
of words used to cache the words of the operands.

Seo et al. [16] made a further improvement on the
operand-caching method from [15]. The improved version
named the consecutive operand-caching method uses a
caching technique to further reduce the number of memory
accesses (READ instructions). The key observation was that
several memory accesses can be saved because different
rows use common operands and it is not necessary to replace
all cached values between the rows.

B. Multiprecision Squaring

Squaring is a special case of multiplication where both
operands are the same, i.e., A = B. All methods discussed

above naturally apply for squaring, too. However, there is
room for optimizations in multiprecision squaring because
certain partial products become the same and need to be
performed only once. E.g., A[0] ·B[1]+A[1] ·B[0] becomes
2A[0] ·A[1] if A = B.

Lee et al. [17] proposed another optimization especially
for squaring. In this optimization, the partial products which
need to be added twice to the intermediate results, are
doubled after they are collected to the accumulator registers
at the end of the computation of each column.

Seo et al. [18] gave a further optimization for squaring. By
using sliding-block-doubling method, the squaring algorithm
executes doubling operation by delaying the operation to
the end. The doubling process is conducted on fully accu-
mulated intermediate results with one-bit shift operations.
Later, they proposed another method called sliding-middle-
block-doubling in [19], which computes the middle parts
of the duplicated partial products first and then computes
the remaining parts with a doubling process. The technique
reduces the number of accesses to the intermediate results.

C. Karatsuba-Ofman Algorithm

We have discussed several improvements for multipreci-
sion multiplication above. All of them optimize the memory
access required for computing (1) in some way, but the
number of partial products is N2 for all of them.

In the early 1960s, Karatsuba and Ofman [20] proposed a
novel method (called Karatsuba-Ofman or simply Karatsuba
algorithm) that reduces the number of partial products at the
expense of extra additions. Hence, the Karatsuba algorithm
has the potential to perform well in platforms where multi-
plications are more expensive than additions. The algorithm
is based on the remarkable observation that the product
C = A · B of two n-bit integers A = AL + AH2n/2 and
B = BL +BH2n/2 can be computed as follows:

C = AH ·BH2n + ((AL +AH) · (BL +BH)−
AL ·BL −AH ·BH)2n/2 +AL ·BL

(2)

As shown above, the Karatsuba algorithm computes a mul-
tiplication with only three partial products compared to four
that are required by the standard schoolbook multiplication
(and the algorithms discussed previously), but requires two
additions and two subtractions compared to one addition to
compute the middle term (the term corresponding to 2n/2).
For large values of n, the cost of additions and subtractions is
insignificant compared to the cost of the multiplications. The
procedure may be applied recursively to the intermediate
values until some appropriate threshold (e.g., the word size
of the processor), after which the classical multiplication (or
other method) is employed. The number of partial products
can be estimated by N log2 3, which is a great improvement
compared to N2 of the schoolbook method.

A subtractive variant of the Karatsuba method relies on
the fact that the middle term can be expressed by using

Algorithm 1 Subtractive Karatsuba Multiplication

Input: n-bit operands A = AL+AH ·2
n
2 , B = BL+BH ·2

n
2

Output: 2n-bit result C ← A ·B
1: L = LL + LH · 2

n
2 ← AL ·BL {n2 -bit mul.}

2: H = HL +HH · 2
n
2 ← AH ·BH {n2 -bit mul.}

3: T ← LH +HL {n2 -bit add.}
4: LH ← T + LL {n2 -bit add.}
5: HL ← T +HH {n2 -bit add.}
6: AD ← |AL −AH | {n2 -bit sub.}
7: BD ← |BL −BH | {n2 -bit sub.}
8: M = ML +MH · 2

n
2 ← AD ·BD {n2 -bit mul.}

9: M ← L+H −M {n-bit add., n-bit sub.}
10: C ← L−M · 2n

2 +H · 2n {n-bit sub., n
2 -bit add.}

11: return C

Algorithm 2 Subtractive Karatsuba Squaring

Input: n-bit operand A = AL +AH · 2
n
2

Output: 2n-bit result C ← A ·B
1: L = LL + LH · 2

n
2 ← AL ·AL {n2 -bit mul.}

2: H = HL +HH · 2
n
2 ← AH ·AH {n2 -bit mul.}

3: T ← LH +HL {n2 -bit add.}
4: LH ← T + LL {n2 -bit add.}
5: HL ← T +HH {n2 -bit add.}
6: AD ← |AL −AH | {n2 -bit sub.}
7: M = ML +MH · 2

n
2 ← AD ·AD {n2 -bit mul.}

8: M ← L+H −M {n-bit add., n-bit sub.}
9: C ← L−M · 2n

2 +H · 2n {n-bit sub., n
2 -bit add.}

10: return C

absolute values as follows:

(AL +AH) · (BL +BH)−AL ·BL −AH ·BH =

AL ·BL +AH ·BH − |AH −AL| · |BH −BL|
(3)

The advantage of the subtractive Karatsuba algorithm is
the constant size of operands (n/2) for computing partial
products, which leads to fast constant-time multiplications.
However, the absolute values should implemented with
care in two’s complement representation. Alg. 1 gives an
algorithm for the subtractive Karatsuba multiplication and
Alg. 2 shows the corresponding algorithm for squaring.

Recently, Scott [21] denoted that, for the Karatsuba algo-
rithm to be competitive, the actual radix must be a few bits
less than the word size in order to facilitate additions without
carry processing and, at the same time, to support the ability
to distinguish positive and negative numbers. However, this
requires an arbitrary degree variant of Karatsuba (ADK)
algorithm that allows a non-word size split. The author
shows that the total number of multiplications and additions
for ADK is less than the numbers required by the operand-
scanning method when N ≥ 12.

III. OUR CONTRIBUTIONS

In this section, we give our optimized implementations of
multiprecision multiplication and squaring on ARMv8 by
making the best use of the algorithms discussed above in
Sect. II and the specific hardware features of ARMv8.

We begin the description of our implementations with
128-bit multiplication and squaring. Then, we proceed to
constructing efficient implementations of 256-bit, 384-bit,
and 512-bit multiplication and squaring routines. These bit
sizes are relevant, especially, for ECC based PKC which is
popular in many applications where ARMv8 is in frequent
use. The implementations may have importance also in
efficient implementations of, e.g., RSA and post-quantum
PKC (e.g., in SIDH) in the future.

A. 128-bit Operations

ARMv8 is a 64-bit processor, but it does not provide
a full 64-bit multiplication instruction. The multiplication
needs to be carried out with two instructions: MUL and
UMULH. Therefore, some special tricks are needed when
implementing multiprecision multiplications with these two
instructions.

1) Multiplication: We implemented the 128-bit multi-
plication by using the subtractive Karatsuba multiplica-
tion combined with our implementation tricks. Suppose
A = (A[1], A[0]) and B = (B[1], B[0]) are the 128-bit
multiplicand and multiplier, respectively, and they are loaded
into four 64-bit registers. First, we compute the lower 64-bit
partial product RL ← A[0] · B[0]. A 64-bit partial product
requires one MUL and one UMULH instruction in order to
obtain the full 128-bit result. Second, we compute the higher
64-bit multiplication RH ← A[1] ·B[1]. Third, we perform
the subtractions and compute the absolute values to obtain
|A[0] − A[1]| and |B[0] − B[1]|. In the subtraction, we
capture a borrow bit through the SBC instruction after the
SUB instruction. If the borrow bit is captured, the register
is set to 232 − 1. Otherwise, the register is set to 0. The
borrow bit indicates whether the sign of the variable is
positive (0) or negative (232− 1). Afterwards, we perform a
two’s complement operation on the subtracted value with the
borrow bit by using the EOR, AND and ADD instructions (see
Sect. III-E2). The step is performed on both operands and
the obtained borrow bits are combined to determine the sign
of the last 64-bit multiplication (RM ← |A[0]−A[1]|·|B[0]−
B[1]|) through the two’s complement operation. Finally, the
result of the 128-bit multiplication is computed via the
accumulation step RH ·2128+(RL+RH−RM)·264+RL. In
total 13 registers are used in the above process and, hence,
the callee-saved registers (X19 ∼ X30) are not used.

As will be seen in Sect. IV, the above process using the
Karatsuba algorithm does not achieve performance enhance-
ments compared to the quadratic variant of the OpenSSL in
this case (see Table I). The detailed assembly source code

for the above 128-bit Karatsuba multiplication is available
in the Appendix in Alg. 3.

2) Squaring: We use a similar approach also for squar-
ing. Suppose the 128-bit operand is stored into two 64-bit
registers. First, we compute the lower 64-bit partial product
RL ← A[0] ·A[0] and, then, the higher 64-bit partial product
RH ← A[1] ·A[1]. Second, the subtraction and the absolute
value are computed resulting |A[0] − A[1]|. The third 64-
bit multiplication RM ← |A[0] − A[1]| · |A[0] − A[1]| is
performed next followed by the the final accumulation step
RH ·2128+(RH+RL−RM)·264+RL. The process requires
in total 12 registers. Similarly to the 128-bit multiplication,
Karatsuba does not give performance enhancements in the
case of 128-bit squarings either (see Sect. IV and TableI).

B. 256-bit Operations

1) Multiplication: For the 256-bit multiplication, the
operands A = (A[3], . . . , A[0]) and B = (B[3], . . . , B[0])
are stored into eight 64-bit registers. We first compute the
lower 128-bit multiplication RL ← A[1 ∼ 0] · B[1 ∼ 0])
using the schoolbook method that requires four MUL, four
UMULH and certain additional instructions for accumulating
the partial products. Second, we compute the higher 128-
bit multiplication RH ← A[3 ∼ 2] · B[3 ∼ 2] similarly.
Third, we compute the subtractions and absolute values
|A[1 ∼ 0] − A[3 ∼ 2]| and |B[1 ∼ 0] − B[3 ∼ 2]|
and proceed to the last 128-bit multiplication RM ←
|A[1 ∼ 0] − A[3 ∼ 2]| · |B[1 ∼ 0] − B[3 ∼ 2]|. Finally,
we obtain the result by performing the accumulation step
RH · 2256 + (RL + RH − RM) · 2128 + RL. One 256-bit
multiplication uses in total 25 registers so that six callee-
saved registers (X19 ∼ X24) are stored into the stack. As
will be shown in Sect. IV, the Karatsuba algorithm shows
higher performance than quadratic complexity multiplication
for the 256-bit multiplication (see Table I).

2) Squaring: The 256-bit operand A = (A[3], . . . , A[0])
is stored into four 64-bit registers. The computation proceeds
as above. First, we compute the lower 128-bit multiplication
RL ← A[1 ∼ 0] · A[1 ∼ 0] followed by the higher 128-bit
multiplication RH ← A[3 ∼ 2]·A[3 ∼ 2]. Then, we compute
the subtraction and absolute value |A[1 ∼ 0] − A[3 ∼ 2]|
and the 128-bit multiplication RM ← |A[1 ∼ 0] − A[3 ∼
2]| · |A[1 ∼ 0] − A[3 ∼ 2]|. Finally, the accumulation step
RH ·2256+(RL+RH−RM)·2128+RL returns the result. The
256-bit squaring requires in total 19 registers. Similarly as
before, the Karatsuba algorithm shows higher performance
than quadratic complexity multiplication (see Sect. IV and
Table I).

C. 384-bit Operations

1) Multiplication: The 384-bit operands
A = (A[5], . . . , A[0]) and B = (B[5], . . . , B[0]) are stored
into twelve 64-bit registers. We again begin with the lower
and higher 192-bit multiplications RL ← A[2 ∼ 0]·B[2 ∼ 0]

and RH ← A[5 ∼ 3] ·B[5 ∼ 3], which both require 9 MUL
and 9 UMULH instructions. Also the rest of the multiplication
proceeds similarly as before: the subtractions and the
absolute values are computed |A[2 ∼ 0] − A[5 ∼ 3]| and
|B[2 ∼ 0]−B[5 ∼ 3]| followed by the 192-bit multiplication
RM ← |A[2 ∼ 0]−A[5 ∼ 3]|·|B[2 ∼ 0]−B[5 ∼ 3]| and the
accumulation step RH ·2384+(RL+RH−RM) ·2192+RL.
The 384-bit multiplication requires in total 31 registers with
12 callee-saved registers (X19 ∼ X30) which are stored
into the stack.

2) Squaring: The 384-bit operand A = (A[5], . . . , A[0])
of the squaring is stored into six 64-bit registers. First, we
compute the lower 192-bit multiplication RL ← A[2 ∼
0] · A[5 ∼ 3] and the higher 192-bit multiplication RH ←
A[5 ∼ 3] · A[5 ∼ 3]. The computation proceeds with
the subtraction |A[2 ∼ 0] − A[5 ∼ 3]| and the last 192-
bit multiplication RM ← |A[2 ∼ 0] − A[5 ∼ 3]| ·
|A[2 ∼ 0] − A[5 ∼ 3]|. Finally, the accumulation step
RH ·2384+(RL+RH−RM)·2192+RL ends the computation.
In total 31 registers are used in the 384-bit squaring and 12
callee-saved registers (X19 ∼ X30) in the stack.

D. 512-bit Operations

1) Multiplication: The operand A = (A[7], . . . , A[0])
and B = (B[7], . . . , B[0]) of the 512-bit multiplication
are stored into 16 64-bit registers. Unlike the previous
cases, we use 2-level Karatsuba multiplication for the 512-
bit multiplication. First, we compute the lower 256-bit
multiplication RL ← A[3 ∼ 0] · B[3 ∼ 0] using the
1-level Karatsuba multiplication of two 256-bit operands
as described in Sect. III-B1. This 256-bit partial product
requires 12 MUL and 12 UMULH instructions. Second, we
compute the higher 256-bit multiplication RH ← A[7 ∼
4] · B[7 ∼ 4] similarly. Third, we compute the subtrac-
tions and absolute values |A[3 ∼ 0] − A[7 ∼ 4]| and
|B[3 ∼ 0] − B[7 ∼ 4]| and the last 256-bit multiplication
RM ← |A[3 ∼ 0] − A[7 ∼ 4]| · |B[3 ∼ 0] − B[7 ∼ 4]|
using the 256-bit 1-level Karatsuba multiplication. Finally,
the accumulation step RH ·2512+(RL+RH−RM)·2256+RL

gives the result of the full 512-bit multiplication. The above
process requires in total 31 registers with 12 callee-saved
registers (X19 ∼ X30) in the stack. Additionally, 16 bytes
of the stack are used for intermediate results.

2) Squaring: The 512-bit operand A = (A[7], . . . , A[0])
of the squaring is stored into eight 64-bit registers. For this
case, we also use the 2-level Karatsuba approach. First, we
compute the lower and higher 256-bit multiplications RL ←
A[3 ∼ 0] · A[3 ∼ 0] and RH ← A[7 ∼ 4] · A[7 ∼ 4]
with the 1-level 256-bit Karatsuba algorithm described in
Sect. III-B1. We obtain the result of the 512-bit squaring by
computing the subtraction and absolute value |A[3 ∼ 0] −
A[7 ∼ 4]|, the final 256-bit multiplication RM ← |A[3 ∼
0]−A[7 ∼ 4]| · |A[3 ∼ 0]−A[7 ∼ 4]|, and the accumulation
step RH · 2512+(RL+RH −RM) · 2256+RL. The 512-bit

Table I: A comparison of execution times (clock cycles) and
stack sizes (bytes) of multiplication and squaring

Input size (bits)
Method 128 256 384 512

Multiplication
Operand-scanning [10] cycle 19 66 148 261

byte 0 32 96 96
This paper cycle 24 61 126 222

byte 0 48 96 112
Karatsuba 1-level 1-level 1-level 2-level

Squaring
Sliding Block cycle 17 43 87 149
Doubling [18], [10] byte 0 0 32 96
This paper cycle 20 40 84 133

byte 0 0 96 96
Karatsuba 1-level 1-level 1-level 2-level

squaring requires in total 31 registers and 12 callee-saved
registers (X19 ∼ X30) which are stored into the stack.

E. Optimizations

1) Generation of the Carry Register: In the accumulation
of partial products, the most significant word can generate a
carry bit, which should be stored into the higher word. We
initialize and use a zero register in order to store the carry
bit. The general approach is as follows: MOV x0, #0;
ADDS x1, x1, x2; ADCS x3, x0, x0. In the first
instruction, we initialize the zero register x0. The second
instruction computes the addition and the third instruction
captures its carry to the register x3 with the help of the
zero register. Alg. 3 in the Appendix shows how the carry
register is used in the 128-bit Karatsuba multiplication.

2) Two’s Complement: In order to generate a two’s
complement value, we perform a subtraction and logical
operations. The general approach to obtain the two’s comple-
ment is as follows: SBCS x2, x2, x2; EOR x0, x0,
x2; AND x2, x2, #1; ADD x0, x0, x2. Alg. 3 in
the Appendix shows how the two’s complement is computed
in the 128-bit Karatsuba multiplication.

IV. EVALUATIONS

We programmed our implementations by using Xcode
and benchmarked them on iPad mini 2. The device is
equipped with an Apple A7 (APL0698) system-on-chip
including a 64-bit ARMv8-A dual-core processor running
at the frequency of 1.3 GHz. The programs1 were written
in mixed C and assembly for deep optimizations using
the ARMv8-specific features. The code was compiled with
-Ofast optimization level. The timings are acquired as the
number of clock cycles required to execute the codes on a
real device and are averaged over 1,000,000 executions.

Table I shows a comparison with the previous works. To
the best of our knowledge, there are no academic papers that

1The source codes are available in https://github.com/solowal/ARITH

have presented implementations of multiprecision multipli-
cation and squaring on ARMv8. Therefore, we compared
our results with the OpenSSL library [10] which includes
implementations of the 256-bit multiplication using the
operand-scanning method and the 256-bit squaring using the
sliding block doubling method. For comparison purposes, we
implemented similar methods also for other bit widths.

For the 128-bit case, the operand-scanning method shows
better performance because the Karatsuba algorithm reduces
only two multiplication instructions but adds several other
instructions (see Table II for the detailed instruction counts).
Already for the 256-bit case, the asymptotically faster Karat-
suba multiplication and squaring show higher performance
than the previous works. For multiplication, we achieved
7.6 %, 14.8 %, and 14.9 % performance enhancements for
the 256-, 384-, 512-bit cases, respectively. For squaring, we
achieved 7.0 %, 3.4 %, and 10.7 % performance enhance-
ments for the 256-, 384-, 512-bit cases, respectively. The
stack sizes are slightly larger than for the previous methods
since the Karatsuba algorithm requires a larger number of
registers for the intermediate results. However, the additional
stack size is reasonable and, typically, does not present a
problem in applications of the advanced ARMv8 processors
which often include a lot of RAM (e.g., 1–4 GB).

Table II gives a detailed comparisons of instruction counts
of multiprecision multiplication and squaring in ARMv8.
The main instructions include multiplication, memory access
and other arithmetic operations. Particularly, multiplication
requires 6 clock cycles and memory access requires 4 clock
cycles each. The other arithmetic operations need only 1
clock cycle. If we replace one multiplication with one to five
other arithmetic operations, the performance should increase.
However, as the results in Table I show, the final latency is
not a simple weighted sum of instruction counts due to mi-
croarchitectural features such as multiple levels of pipeline
as well as parallelism of memory access and arithmetic
operations. Consequently, the performance enhancements
for particularly the 256- and 384-bit squaring operations
are slightly smaller than what could be expected based on
Table I. Nonetheless, performance increases are observed
for all operations where the operands are at least 256 bits
long. We emphasize that multiprecision multiplication and
squaring are fundamental operations for PKC and even small
improvements for them have significance for the overall
performance of cryptographic operations.

V. CONCLUSION

In this paper, we presented optimized multiprecision
multiplication and squaring implementations for the 64-bit
ARMv8 processors. Our implementations utilized the sub-
tractive Karatsuba algorithm and ARMv8 specific optimiza-
tions. This work shows that our implementations are more
efficient than the OpenSSL implementation already for 256-
bit operands. Our implementations achieved performance en-

Table II: A comparison of instruction counts for multiplication and squaring

Operation ADD/ADC SUB/SBC MUL/UMULH MOV NEG EOR/AND ASR LDP STP

Previous operand-scanning multiplication [10]
128-bit 7 – 8 2 – – – 2 2
256-bit 32 1 32 4 – – – 6 6
384-bit 77 1 72 6 – – – 12 12
512-bit 158 1 128 24 15 – – 14 14

Proposed Karatsuba multiplication
128-bit 14 5 6 1 – 8 – 2 2
256-bit 45 8 24 1 – 11 1 7 7
384-bit 84 10 54 1 – 15 1 12 12
512-bit 182 33 72 2 – 52 4 32 21

Previous sliding block doubling squaring[18], [10]
128-bit 6 – 6 1 – – – 1 2
256-bit 27 – 20 4 – – – 2 4
384-bit 56 1 42 6 – – – 5 8
512-bit 94 1 72 9 1 – – 10 14

Proposed Karatsuba squaring
128-bit 7 5 6 1 – 2 – 1 2
256-bit 32 8 18 1 – 3 – 2 4
384-bit 60 12 36 1 – 4 – 9 12
512-bit 124 39 54 2 – 14 – 10 14
ADD/ADC (1 cycle): addition w/o carry / addition w/ carry
SUB/SBC (1 cycle): subtraction w/o borrow / subtraction w/ borrow
MUL/UMULH (6 cycles): multiplication (lower 64-bit)/ multiplication (higher 64-bit)
MOV/NEG (1 cycle): move / negation
EOR/AND/ASR (1 cycle): exclusive-or / logical and / arithmetic right shift
LDP/STP (4 cycles): load pair / store pair

hancements of 7.6 % and 7.0 % for the 256-bit multiplication
and squaring, respectively, and even larger improvements
for larger operand sizes. These are significant improvements
because multiprecision multiplication and squaring are fun-
damental operations, e.g., in PKC and have a very significant
effect on their performance. Our implementations also have
constant execution times which is essential in order to avoid
side-channel attacks. Since our codes are available in public
domain, other cryptography engineers can directly use them
for their cryptography applications.

Possible directions for future work are to apply the
multiplication and squaring routines described in this paper
to ECC. For example, OpenSSL uses quadratic-complexity
multiplication and squaring on ARMv8 for operations on
the popular Curve25519 elliptic curve [22] and replacing
that code with our implementations using the subtractive
Karatsuba algorithm will improve the performance of these
critical cryptographic operations. Furthermore, this paper
focused on ECC friendly operand sizes. It will be of interest
to investigate even longer operand sizes that are relevant
for RSA implementations. Other possible domains for our
implementations include the recent post-quantum PKC im-
plementations (e.g., for the SIDH cryptosystem [6]) which
also use multiprecision multiplications with large integers.

ACKNOWLEDGMENTS

The work of K. Järvinen was partly funded by Academy
of Finland under project number 303576 and the work of

Weiqiang Liu was supported by a grant from the National
Natural Science Foundation of China (61401197).

REFERENCES

[1] V. S. Miller, “Use of elliptic curves in cryptography,” in
Advances in Cryptology — CRYPTO ’85, ser. Lecture Notes
in Computer Science, vol. 218. Springer, 1986, pp. 417–426.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, 1987.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126,
1978.

[4] T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” in Advances in Cryp-
tology — CRYPTO 1984, ser. Lecture Notes in Computer
Science, vol. 196. Springer, 1985, pp. 10–18.

[5] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices
and learning with errors over rings,” in Advances in Cryptol-
ogy — EUROCRYPT 2010, ser. Lecture Notes in Computer
Science, vol. 6110. Springer, 2010, pp. 1–23.

[6] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms
for supersingular isogeny Diffie-Hellman,” in Advances in
Cryptology — CRYPTO 2016, ser. Lecture Notes in Computer
Science, vol. 9814. Springer, 2016, pp. 572–601.

[7] C. P. L. Gouvêa and J. López, “Implementing GCM on
ARMv8,” in Cryptographers’ Track at the RSA Conference
— CT-RSA 2015, ser. Lecture Notes in Computer Science,
vol. 9048. Springer, 2015, pp. 167–180.

[8] H. Seo, Z. Liu, Y. Nogami, J. Choi, and H. Kim, “Binary
field multiplication on ARMv8,” Security and Communication
Networks, vol. 9, no. 13, pp. 2051–2058, 2016.

[9] H. Seo, “Faster ECC over F2571 (feat. PMULL),” Cryptology
ePrint Archive, Report 2015/745, 2015, http://eprint.iacr.org/
2015/745.

[10] OpenSSL, “OpenSSL-1.1.0b,” Available for download at
https://www.openssl.org, Sep. 2016.

[11] National Institute of Standards and Technology (NIST), “Dig-
ital signature standard (DSS),” Federal Information Process-
ing Standard, FIPS PUB 186-4, Jul. 2013.

[12] P. G. Comba, “Exponentiation cryptosystems on the IBM
PC,” IBM systems journal, vol. 29, no. 4, pp. 526–538, 1990.

[13] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz,
“Comparing elliptic curve cryptography and RSA on 8-bit
CPUs,” in International Workshop on Cryptographic Hard-
ware and Embedded Systems — CHES 2004, ser. Lecture
Notes in Computer Science, vol. 3156. Springer, 2004, pp.
119–132.

[14] M. Scott and P. Szczechowiak, “Optimizing multipreci-
sion multiplication for public key cryptography,” Cryptology
ePrint Archive, Report 2007/299, 2007, http://eprint.iacr.org/
2007/299.

[15] M. Hutter and E. Wenger, “Fast multi-precision multiplication
for public-key cryptography on embedded microprocessors,”
in International Workshop on Cryptographic Hardware and
Embedded Systems — CHES 2011, ser. Lecture Notes in
Computer Science, vol. 6917. Springer, 2011, pp. 459–474.

[16] H. Seo and H. Kim, “Multi-precision multiplication for
public-key cryptography on embedded microprocessors,” in
Information Security Applications — WISA 2012, ser. Lecture
Notes in Computer Science, vol. 7690. Springer Verlag,
2012, pp. 55–67.

[17] Y. Lee, I.-H. Kim, and Y. Park, “Improved multi-precision
squaring for low-end RISC microcontrollers,” Journal of
Systems and Software, vol. 86, no. 1, pp. 60–71, 2013.

[18] H. Seo, Z. Liu, J. Choi, and H. Kim, “Multi-precision
squaring for public-key cryptography on embedded micro-
processors,” in International Conference on Cryptology in
India — INDOCRYPT 2013, ser. Lecture Notes in Computer
Science, vol. 8250. Springer, 2013, pp. 227–243.

[19] H. Seo, T. Park, S. Heo, G. Seo, B. Bae, L. Zhou, and H. Kim,
“Multi-precision squaring for public-key cryptography on
embedded microprocessors, a step forward,” in International
Workshop on Information Security Applications, 2016.

[20] A. Karatsuba and Y. Ofman, “Multiplication of multidigit
numbers on automata,” in Soviet Physics Doklady, vol. 7,
1963, pp. 595–596.

[21] M. Scott, “Missing a trick: Karatsuba variations,” Cryptology
ePrint Archive, Report 2015/1247, 2015, http://eprint.iacr.org/
2015/1247.

[22] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed
records,” in Public Key Cryptography — PKC 2006, ser.
Lecture Notes in Computer Science, vol. 3958. Springer,
2006, pp. 207–228.

APPENDIX

Algorithm 3 Assembly code for the 128-bit Karatsuba
multiplication

Input: operand pointers (x1 and x2)
Output: result pointer (x0)

1: LDP x4, x5, [x2] {loading}
2: LDP x2, x3, [x1]
3: MOV x1, #0

4: MUL x6, x2, x4 {AL ·BL low}
5: UMULH x7, x2, x4 {AL ·BL high}
6: MUL x8, x3, x5 {AH ·BH low}
7: UMULH x9, x3, x5 {AH ·BH high}
8: ADDS x10, x6, x8
9: ADCS x11, x7, x9

10: ADCS x12, x1, x1
11: ADDS x7, x7, x10
12: ADCS x8, x8, x11
13: ADCS x9, x9, x12

14: SUBS x2, x2, x3 {absolute values}
15: SBCS x3, x3, x3
16: EOR x2, x2, x3
17: AND x3, x3, #1
18: ADD x2, x2, x3
19: SUBS x4, x4, x5
20: SBCS x5, x5, x5
21: EOR x4, x4, x5
22: AND x5, x5, #1
23: ADD x4, x4, x5
24: EOR x3, x3, x5 {combining the signs}
25: SUB x3, x3, #1

26: MUL x10, x2, x4 {AD ·BD low}
27: UMULH x11, x2, x4 {AD ·BD high}
28: EOR x10, x10, x3 {two’s complement}
29: EOR x11, x11, x3
30: AND x4, x3, #1
31: ADDS x10, x10, x4
32: ADCS x11, x11, x1
33: ADCS x3, x3, x1
34: ADDS x7, x7, x10
35: ADCS x8, x8, x11
36: ADCS x9, x9, x3

37: STP x6, x7, [x0, #0] {storing}
38: STP x8, x9, [x0, #16]

