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Abstract—The increasingly connected world magnifies the
threats to users’ location privacy. Encryption protocols offer
solutions to privacy concerns, but they are computationally
very demanding. A reduction of the bit-length of the Received
Signal Strength (RSS) measurements is required for a realistic,
privacy-preserving positioning system based on fingerprinting.
This paper studies the practical design of quantizers for RSS
fingerprinting data and analyses the effect of the quantization
on the positioning performance, with several real data sets and
positioning algorithms. Our results show that 4-bit quantization
deteriorate the accuracy compared to no-quantization case by
only 20 cm and that 1-bit approaches (i.e. proximity based
positioning) are also feasible for certain applications.

Index Terms—Received Signal Strength (RSS), quantization,
secure protocols, privacy-preserving positioning, fingerprinting

I. INTRODUCTION AND MOTIVATION

The Received Signal Strength (RSS) information in a
wireless system is nowadays used in a variety of applications,
ranging from link-budget computations and optimizations of the
communication chain to RSS-based localization and tracking.
Typically, the RSS are used without any quantization, but a
quantized RSS approach would bring in significant benefits in
terms of lowering the energy consumption and communication
bandwidths [1] and increasing the security of the positioning
protocol for RSS-based positioning. In this paper we address
the latter case, namely the quantization of RSS values for
the purpose of enabling low-complexity security protocols in
positioning for an increased user privacy. Indeed, in a RSS-
based positioning approach, there are two main threats to user’s
location privacy if the RSSs heard by the user are sent in “clear”
(i.e. without any encryption mechanism):

• The location server in charge with computing the user’s
location can also track the users’ position and could
disclose it unwittingly to third parties.

• An attacker with the access to a fingerprint database of
a particular building can intercept the user’s signalling
towards the location server (Medium Access Control
(MAC) addresses of the Access Nodes (AN) and their cor-
responding RSS) and infer the user’s location information.

User’s position privacy infringements can bring in significant
threats, as outlined recently in [2]. In order to offer solutions
to the user’s privacy problem, privacy-preserving protocols
have to be derived. Security against external adversaries
intercepting signals between the user and server is relatively

easy to solve by encrypting the channel, e.g., with TLS.
Privacy problems originating from the server’s ability to track
users is significantly harder to solve, but a few attempts are
available in the literature [3]–[8]. Many of them use secure
multiparty computation (MPC) based on partially homomorphic
encryption that allows limited operations with encrypted data.
Unfortunately, weaknesses have been identified recently in
some of them [8]. The schemes also introduce significant
computation and communication overheads compared to basic
privacy-violating protocols. Nevertheless, some promising
schemes have been identified in [8] based on MPC built from
garbled circuits and additively homomorphic encryption. Their
complexities are directly related to the precision (bits) of RSS
values used in the protocols. Consequently, significant efficiency
improvements could be received by using fewer bits in the
quantized RSS values, both used in the fingerprint database
and measured by the user’s device.

While RSS quantization decreases the complexity of the
privacy-preserving protocol, it will also decrease the accuracy
of the location estimate. The goal of this paper is to investigate
the impact of RSS quantization on the positioning accuracy.

Most related work about RSS quantization can be found in
the research on sensor node localization in densely deployed
wireless sensor networks, where sensors are low-cost with
limited energy, communication and sensing ability. The authors
of, for example, [9]–[11] use quantized RSS to localize a
target in a sensor network, but they are not concerned about
the trade-off between quantization and positioning accuracy.

The authors of [12] propose a quantizer whose output level
is a function of the number of spatial grid cells, to minimize
number of beacons while pertaining the positioning accuracy.
The basic path loss model with log-normal shadowing is used
in simulations to evaluate the method.

The studies [13] and [14] derive the Cramér-Rao lower
bound (CRLB) to analyse the performance of a RSS-based
localization system with quantized RSS. The principal objective
in these studies are the optimal quantization thresholds based
on the CRLB. Both works conclude that a small number of
quantization levels suffices to achieve a good localization
performance. [13] states that eight levels (3 bit) achieve a
performance comparable with that of systems using non-
quantized RSS. These contributions were later extended by [1]
to a distributed estimation of the target location. They found that
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5-bit quantized RSS achieve a similar CRLB as using raw RSS.
These theoretical studies derive the optimal quantization

thresholds for specific networks, network configurations and
particular assumptions (a-priori knowledge of the sensor
locations, isotropic signal attenuation model, reception of
target’s signals at all nodes, access nodes communicate with
each other). This limits the validity of their findings and makes
the transfer of the outcomes uncertain for positioning systems
that do not reflect these assumption.

In [15] a genetic algorithm is used to find the partitions
of a RSS quantizer. From experiments with EMSPCC 11
nodes in an 8 × 12 m2 environment, they conclude that a
2-bit representation of RSS yields an adequate compromise
between data compression and positioning accuracy.

Our study outlines privacy-preserving fingerprinting local-
ization in WLANs and investigates the trade-off between
positioning accuracy and quantization bit-length using real-
field measurements in large multi-floor spaces (areas larger
than 100× 100 m2 per floor). We design here several practical
quantizers derived empirically from the fingerprint database and
we evaluate them with k-Nearest Neighbour (k-NN) algorithms
using three different distance metrics for five different WLAN
RSS data sets in office and mall buildings.

II. INDOOR POSITIONING WITH PRIVACY CONSTRAINTS

Indoor positioning methods rely typically on inertial mea-
surements or on radio signals, as those used in WiFi and
Bluetooth [16]–[18]. Among the possible positioning tech-
niques, fingerprinting with RSS measurements has been widely
adopted, because the alternative techniques based on signal
propagation times suffer severely from shadowing and multipath
propagation effects and yield poorer accuracy. Its widespread
use comes also from the ease with that the necessary data can
be acquired and from its low complexity. With fingerprinting
localization, a positioning accuracy of a few meters can be
achieved, which is sufficient for many location based services.

RSS-based fingerprinting uses a pattern matching technique
that finds the user’s position by comparing an observed RSS
signature, a set of RSS values from all ANs in range, with
previously collected RSS signatures in a database. During an
off-line phase, RSSs and the positions at which the RSSs have
been recorded, are collected and stored in a database. In an
on-line phase a RSS signature is measured and compared with
the RSS signatures in the database. The position of the RSSs
that match best with the observed RSSs serves as an estimate
for the user position. For that comparison we use the k-NN
method with the following commonly used metrics:

a) Gaussian-kernel distance:
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b) Euclidean distance:
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Fig. 1. Privacy preserving fingerprinting localization using quantized RSS.

c) Sørensen distance:

di =

∑M
m=1 |sm − ŝm,i|∑N
m=1(sm + ŝm,i)

, (3)

where {sm}Mm=1 is the observed RSS signature, {ŝm,i})Mm=1

the ith entry in the database and M denotes the number of ANs.
To preserve the users’ location privacy its RSS measurements

need to be protected. Fig. 1 shows a flow chart of the privacy-
preserving positioning system that integrates quantization and
encryption. In Sect. III, we describe possible privacy-preserving
protocols and Sect. IV explains the quantization.

III. SECURITY PROTOCOLS FOR POSITIONING

In privacy-preserving RSS-based localization the problems
are twofold: (1) how to prevent the server from learning
the user’s RSS measurements and, consequently, the user’s
location and (2) how to prevent the user from obtaining the
server’s database. Secure multi-party computation (MPC) are
cryptographic protocols that allow two (or more) parties to
jointly perform computations without revealing their inputs
to each other. Yang and Järvinen [8] surveyed different
possibilities to use MPC for efficient privacy-preserving RSS-
based localization. They identified garbled circuits and addi-
tively homomorphic (Paillier) encryption as the main enabling
techniques. In the following, we discuss the benefits of reducing
the number of bits per RSS value in both of them.

A. Garbled Circuits

Garbled circuits introduced by Andrew Yao [19] allow two
parties to jointly evaluate a function f(x, y) without revealing
their inputs (x and y, respectively) to each other. The simplest
way to use this for privacy-preserving RSS-based localization is
to let x be the user’s RSS measurements and y be the server’s
database, but other more efficient ways have been proposed [8].

In MPC using garbled circuits, the main problem is the size
of the garbled circuits that is proportional to the communication
between the parties. The function f is first represented as a
Boolean circuit and then this circuit is scrambled into a garbled
circuit so that each non-XOR gate in the circuit becomes a
2λ-bit table [20], where λ = 128 is a typical value, and XORs



are for free [21]. For instance, an addition (subtraction) of
two b-bit integers requires a 2bλ-bit garbled circuit whereas a
schoolbook multiplication requires a 2(2b2 − b)λ-bit garbled
circuit (see, e.g., [22]). Given this, it is clear that the size of
the garbled circuit for computing, for example, Eq. (2) depends
heavily on the precision of RSS values.

Example: Consider constructing a garbled circuit for
Eq. (2) (but omitting the square root because it does not affect
the ordering) with M = 500 and λ = 128. With 8-bit RSS
values, sm − ŝm requires 256 B. Squaring the result requires
3840 B. To simplify, we assume that accumulating the 500
squares (16-bit values) is done with 25-bit additions1 (each
800 B) and, then, we get that the total circuit becomes about
2.33 MB. The corresponding numbers with 2-bit RSS values
are 64 B (2-bit addition), 192 B (2-bit multiplication), 416 B
(13-bit addition), and 0.32 MB.

Above, we considered only computing a single instance of
Eq. (2) but, in reality, we need to compute several distances
and, then, find the shortest of them, e.g., as shown in [23].

B. Paillier Encryption

In the following, we use Paillier’s additively homomorphic
public key encryption scheme [24] as an example of how
reducing the precision of RSS values can significantly reduce
the number of ciphertexts that needs to be communicated. We
discuss Paillier encryption because it is used in [8] for privacy-
preserving localization, but similar advantages can be achieved
for most additively homomorphic encryption schemes.

In Paillier encryption, the encryption and decryption func-
tions with a key pair (sk, pk) are as follows:

c = Enc(pk,m) (4)
m = Dec(sk, c) (5)

where m ∈ Zn = {0, 1, 2, . . . , n − 1}, where n is a large
integer (more than 2000 bit), m is the plaintext message, c is the
ciphertext, sk is the secret key, and pk is the public key. Paillier
encryption is additively homomorphic and, therefore, given two
ciphertexts c1 and c2, which are encryptions of m1 and m2,
there is an operator ? for the ciphertexts such that c3 = c1 ? c2
and Dec(sk, c3) = m1 +m2. For Paillier, ? is multiplication
modulo n2. This allows the server to compute Euclidean
distances using the user’s encrypted RSS measurements without
learning their real values [3], [8].

As shown above, Paillier encryption allows encrypting very
large numbers because n is large. Hence, it is not immediately
obvious how reducing the precision of RSS values plays any
role. However, as shown in [25], it is possible to reduce the
number of ciphertexts sent from the server to the user by
packing several b-bit Euclidean distances into one ciphertext.
The packing can be done by, first, scaling the ciphertext of
di by 2(i−1)b via repeated homomorphic additions with itself
and, second, by adding several scaled ciphertexts together
homomorphically. Fig. 2(a) shows how most of the log2(n)-bit
plaintext space of a Paillier ciphertext is wasted if only one b-bit

1In practice, the first additions can use a smaller precision
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Fig. 2. (a) Only one b-bit distance per ciphertext that could store a log2(n)-bit
plaintext (b) T distances packed in one ciphertext for efficient use of the
plaintext space

distance is stored in a ciphertext. Fig. 2(b) demonstrates how
T = blog2(n)/bc distances can be packed in one ciphertext
for efficient use of the plaintext space. Obviously, the number
of distances that fit into a ciphertext depends on b, the number
of bits per distance, which in turn depends on the RSS values.

Example: Let log2(n) = 2048 and assume that Euclidean
distances are computed with Eq. (2) by omitting the square root
(not possible with Paillier but also no effect on the ordering).
Let the number of ANs be M = 500 and the number of
reference points be N = 1000. If only one distance is stored
in one ciphertext, then 2 048 000 bit need to be transmitted
regardless of b. With 8-bit RSS values, we have that each
(sm − ŝm)2 can be a 16-bit value and as we have M =
500, one distance can be at maximum a 25-bit value. Hence,
T = b2048/25c = 81 values can be packed in one ciphertext
resulting in d1000/81e · 2048 = 26 624 bit to be transmitted.
With 2-bit RSS values, each distance is only a 13-bit value and
T = 157 which gives that only 14 336 bit need to be transmitted
leading to a 46.5 % saving compared to 8-bit values (and 99.3 %
compared to the non-packed version). This clearly shows that
the precision plays an important role.

IV. RSS QUANTIZATION METHODS

This section details the fix bit-length quantization of RSS for
secure multi-party computation in support of privacy preserving
localization systems.

A quantizer is specified by a codebook and a partition. The
codebook defines a finite set {y1, y2, . . . , yN}, the possible N
output levels, and the N partition cells that form the input
range of the quantizer. The partition cells are specified by
their endpoints {x1, x2, . . . , xN}, also called boundary points
or decision levels. Quantizers are typically regular, that is,
each partition cell is an interval of the corresponding boundary
points (xi−1, xi) and yi ∈ (xi−1, xi).

The overall goal when designing a quantizer is to minimize
the (squared) error that the quantization y = Q(x) introduces:
d = |x− y|2 [26]. The performance of a quantizer depends of
course on the quantizer itself, but also on the data, X , which we
model as random variable with a probability density function
(pdf) fX(x). A more general and informative measure of a
quantizer’s overall performance is then the average distortion
D = E[d(X,Q(X)] [26], where E denotes the expectation. To
find an optimal quantizer, the codebook and the partitions need
to be found at the same time.
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The RSS in a fingerprint database are spatio-temporal
samples of an underlying random process whose analytic model
is unknown. We design therefore the quantizer based on the
empirical distribution of a RSS data set, considering all RSS
in a fingerprint database. Fig. 3 illustrates the histogram of
the RSS for a three-floor university building. We consider
two principle options in this study: uniform quantization and
non-uniform quantization. The motivation of studying also
the non-uniform quantizers comes from the fact that the RSS
probability distribution is not uniform, as shown in Fig. 3.

A. Uniform quantizers and non-uniform quantizers

Uniform quantizers are characterized by an input-output
function that lies on a line with unit slope. That implies equally
spaced boundary points and also output levels, ∆ = yi − yi−1.
Thus, the output levels are given as the midpoints of the
quantization intervals, yi = (xi +xi−1)/2 [26]. This limits the
maximum quantization error to ∆/2 regardless the distribution
of the input data.

Non-uniform quantizers adapted to the input pdf may show
a smaller distortion than uniform quantizer. Non-uniform
quantizer adapt to the pdf, meaning smaller quantization levels
for frequent values and more coarse quantization for less
frequent values. This results in smaller errors for frequent
input values, which may compensate the larger errors yielded
from less frequent values and thus decreases the distortion
in comparison with uniform quantizer. This enables higher
dynamic ranges without an increase of the distortion.

B. Codebook and partition choice

In order design a quantizer, the optimal partitions for a given
codebook must be found. We first compute the codebook based
on the complete set of RSS of a fingerprint database and then
we fix the partition. The number of bits determines the number
of output levels N = 2`.

The codebook of the uniform quantizer is simply determined
by picking N equally spaced values from the interval defined
by the maximum and minimum of the RSSs: yi = yi−1 + ∆,
where y1 = minX and ∆ = (maxX −minX)/(N − 1).

The codebook of the non-uniform quantizer is determined
in two steps: First, we determine a vector of N equally spaced
ordinal numbers starting at one and ending at the cardinality of
the RSSs fingerprint data set, v = (1,

[
|X|/(N−1)

]
, . . . , |X|).

The [·] is the rounding operator and |·| is the cardinality. Second,
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Fig. 4. Uniform and non-uniform quantizer with zero-bit for the same RSS
data set. The threshold for the zero-bit is sth = −105 dBm.

we rank the set of RSSs. The codebook is then the ordered set
of RSS that corresponds to the ranks contained in v.

An optimal partition for a given codebook should minimize
the distortion. Thus, the input values in the range of the partition
cell i should be closer to yi than to any other output level.
This is equivalent to choosing the partition boundary points as
midpoints of the neighbouring output levels xi−1 = (yi−1 −
yi)/2, which is known as the nearest neighbour condition [26].
We chose the partition of the uniform and the non-uniform
quantizer according to that rule.

In a last step we encode the quantizer outputs with a simple
binary code. Here, the binary number does not have to reflect
the actual RSS value as long the same encoding is used on the
server and user side. Because in RSS fingerprinting only the dif-
ference between the RSS matters (see the metrics in Sect. II).

C. Modified (combined) quantizer

Furthermore, we introduce here also a modification of the
two quantizers described in the Sect. IV-A. The modified
quantizers reserve an extra bit for the ANs whose signals
could not be received. This information is either directly or
indirectly contained in a fingerprint database: indirectly, if the
identifiers of certain ANs do not appear in a fingerprint but in
other fingerprints; directly, if the RSS values of every AN are
included in the database but are set to some invalid value.

We compute the codebook of these modified quantizers as
described before, but with a number of output levels N = 2`−1.
Based on these codebooks, we determine the partition, also
as described before, and then add an extra output level and
boundary point to accommodate the retained zero-bit. We use a
value below the lowest RSS of RSS th = −105 dB for the not
heard RSS. This zero-bit makes the uniform quantizer clearly
nonuniform. Nonetheless, we use the term “uniform” to refer
to the modified quantizer derived from the uniform quantizer.
The resulting uniform and non-uniform quantizers for the same
data set are depicted in Fig. 4(a) and (b).

V. POSITIONING RESULTS WITH QUANTIZATION

This section presents the experimental set-up and fingerprint-
ing positioning results with quantized RSS. We first compare
the positioning accuracy and floor detection rate (FDR) for the
uniform quantizer, with and without the zero-bit for not received
signals. Then, we present positioning results for the uniform
and the nonuniform quantizer of five different RSS data sets.



TABLE I
CHARACTERISTICS OF FINGERPRINT DATABASES USED IN THE

EXPERIMENTS. THE BASE AREA IS ROUGHLY ESTIMATED FROM THE
POSITIONS OF THE FINGERPRINTS.

base area (m2) # AN # FP # floors

Data-set-1 176 × 73 509 628 4
Data-set-2 176 × 73 331 360 5
Data-set-3 [27] 166 ×199 489 446 3
Data-set-4 183 ×163 653 406 3
Data-set-5 [28] 395 ×275 465 19861 5

A. Measurement environments

To evaluate the positioning with quantized RSS we use
fingerprinting with WLAN RSS. Nonetheless, we expect similar
results for RSS-based fingerprinting methods in other networks,
such as Bluetooth. We use RSS data from five different data
sets, collected in different buildings, with different devices.
Details about the different environments can be found in Tab. I.
Among the buildings there are three typical university buildings
with primarily office and lab use (Data-set-1 to Data-set-3), but
also a shopping mall (Data-set-4). Data-set-5 consists of three
university buildings. Data-set-1 and Data-set-2 were collected
in the same building, but with different devices. Prior to the
positioning experiments we determined a quantizer for each
data set according to the procedure in Sect. IV.

B. Positioning accuracy with quantized RSS values

Fig. 5 shows the localization performance of Data-set-3
with uniformly quantized RSS for different bit sizes. In that
experiment, we study the influence of the zero-bit and compare
the results of the k-Nearest Neighbour method (with k = 3)
for the three metrics given in the Eqs. (1)–(3).

Noticeable is first of all the high RMSE of the k-NN
with Euclidean and Sørensen distance if the zero-bit was not
used. Interestingly, the Gaussian distance does not show that
behaviour. For bit lengths larger than four, the difference
between the two quantizer versions is almost negligible.
Regarding the FDR, with 1-bit quantization, the methods that
use the modified quantizer, with the zero-bit, perform better
than the methods without it; and vice versa for bit lengths
larger than two.

A comparison of the three distance metrics shows that the
Gaussian metric outperforms the other metrics if the RSS
are quantized with 1-bit. If two or more bits are spent, the
Sørensen distance performs better than the Gaussian distance.
The Euclidean distance yields consistently the highest RMSE
and lowest FDR.

For the comparative analysis of the uniform and the nonuni-
form quantizers we refer to Fig. 6. Both quantizers used the
zero-bit and the positions were estimated for all five data sets,
with the k-NN employing the Sørensen distance. This figure
depicts the RMSE for different bit lengths and contains the
results for the uniform quantizer on the left hand side and
the ones for the nonuniform quantizer on the right hand side.
Moreover, we estimated the positions with non-quantized RSS
and included the RMSE in the graphs.
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Fig. 5. Positioning performance of k-NN with Gaussian kernel-, Euclidean-
and Sørensen distance with RSS. The first plot depicts the RMSE and the
second plot the FDR.

The uniformly quantized RSS lead to a lower positioning
error than the non-uniformly quantized RSS. When a 4-bit
quantizer is used, the positioning accuracy is almost as accurate
as if the RSS had not been quantized. The accuracy yielded
with raw, non-quantized RSS is achieved if we quantize the
RSS with 6-bit. That means for WLAN, where RSS are
quantized with eight bit, that two bits can be saved in any
case without compromising the localization performance. We
would also like to point out that for certain applications the
accuracy of proximity based positioning (1-bit quantized RSS)
might actually suffice. For such applications the storage and
computational costs would be decreased significantly.

A final remark is on the positioning accuracy of Data-set-4,
whose fingerprints were collected sparsely in an environment
that consists of only a few separations: An accuracy of 15 m
is too high for a practical indoor localization system. However,
despite the accuracy deviation also this data set conforms with
the general pattern regarding the effect of quantization.

VI. CONCLUSIONS AND FURTHER STUDIES

Through the design of different quantization schemes and the
subsequent use of quantized RSS in the positioning methods,
we found that uniformly quantized RSSs result in a higher
positioning accuracy than using nonuniform quantization; and,
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for two different quantizers and multiple RSS fingerprint data sets. The data
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that the zero-bit is only beneficial for localization with binary
quantized RSS. Otherwise, we recommend to use all bits in
the regular quantizer design. We would like to point out that
even 1-bit quantization yields accuracies that might suffice
for some scenarios and we consider a ` = 4 bit quantization
as a affordable w.r.t. positioning performance. Although the
Gaussian distance proved to be robust for proximity based
positioning, the Sørensen distance yielded the best overall
performance.
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[18] P. Davidson and R. Piché, “A survey of selected indoor positioning
methods for smartphones,” IEEE Communications Surveys Tutorials,
vol. 19, no. 2, pp. 1347–1370, Secondquarter 2017.

[19] A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS 1986.
IEEE, 1986, pp. 162–167.

[20] S. Zahur, M. Rosulek, and D. Evans, “Two halves makes a whole
— reducing data transfer in garbled circuits using half gates,” in
EUROCRYPT, ser. LNCS, vol. 9057. Springer, 2015, pp. 220–250.

[21] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in ICALP, ser. LNCS, vol. 5126. Springer,
2008, pp. 486–498.

[22] T. Schneider, Engineering Secure Two-Party Computation Protocols:
Design, Optimization, and Applications of Efficient Secure Function
Evaluation. Springer, 2012.

[23] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushanfar,
“Compacting privacy-preserving k-nearest neighbor search using logic
synthesis,” in DAC. ACM, 2015, pp. 36:1–36:6.

[24] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in EUROCRYPT, ser. LNCS, vol. 1592. Springer,
1999, pp. 223–238.

[25] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-
preserving face recognition,” in ICISC, ser. LNCS, vol. 5984. Springer,
2009, pp. 229–244.

[26] A. Gersho and R. M. Gray, Vector quantization and signal compression.
Kluwer Academic Publishers, 1992.



[27] P. Richter, E. S. Lohan, and J. Talvitie, “WLAN (WiFi) RSS
database for fingerprinting positioning,” Jan. 2018. [Online]. Available:
https://doi.org/10.5281/zenodo.1161525

[28] J. Torres-Sospedra, R. Montoliu, A. Martnez-Us, J. P. Avariento, T. J.

Arnau, M. Benedito-Bordonau, and J. Huerta, “Ujiindoorloc: A new
multi-building and multi-floor database for WLAN fingerprint-based
indoor localization problems,” in International Conference on Indoor
Positioning and Indoor Navigation (IPIN), Oct. 2014, pp. 261–270.


