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Abstract 

 

Matrix contrasts affect communities in patchy landscapes by influencing resources, abiotic 

conditions and spill-over effects. However, current knowledge is significantly biased towards 

forest and rural communities. We examined the effects of three different matrix types, i.e., low, 

intermediate and high contrasts, on carabid beetle assemblages at urban railway verges in two 

climatic regions. Study sites were located in Finland and in Slovenia. Using pitfall trapping, 

non-metric multidimensional scaling and generalised linear mixed models, we investigated 

carabid assemblages at railway verges and in differently contrasting adjacent matrices, i.e. 

built-up, grassland and forest. The matrix influenced carabid assemblages at railway verges. 

Assemblages grouped with adjacent matrix types, although some Finnish railway assemblages 

included a characteristic set of open dry habitat species. Abundances of generalist species at 

railway verges were higher when next to grassland or forest than urban matrices. Habitat 

specialists responded negatively to high contrast matrices, resulting in lower abundances of 

open habitat specialists in railway verges when next to forests and nearly no spill-over of forest 

specialists into railway verges. These patterns were consistent in both countries, i.e. 

irrespective of climatic region. Our study emphasises effects of the adjacent matrix and matrix 

contrasts on communities in linear open habitat patches in cities. Knowledge on matrix effects 

in patchy landscapes, such as urban environments, is essential in understanding the distribution 

and composition of communities in discrete patches. This knowledge can be used in 

conservation planning. If habitat specialists are negatively affected by high matrix contrasts, 

high contrasts should be avoided. 
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Introduction 

 

Communities in small habitat patches are exposed to matrix effects. For example, predation 

and competition are more intensive in small patches due to the spill-over of predators and 

competitors from matrices and the tendency of some animals to move along edges (Polis et al. 

1997; Winter et al. 2000; Ries and Fagan 2003; Rand and Louda 2006; Schneider et al. 2012). 

Furthermore, the surrounding matrix isolates patches (Ricketts 2001), alters abiotic conditions 

within the patch or at least at the edges (Chen et al. 1995; Ries et al. 2004) and thus influences 

community composition within a habitat patch. To understand the community assembly 

processes in patchy landscapes, the mechanisms and role of matrix effects need to be 

investigated. Urban areas provide an excellent opportunity to investigate the effects of the 

matrix on habitat patches with a low interior-to-edge ratio (Luck and Wu 2002; Hamberg et al. 

2009), such as railway verges. Here we investigated the effects of different matrix types (built-

up, grassland and forest) on carabid beetle assemblages at railway verges in an urban setting in 

both cold (Finland) and warm temperate climatic regions (Slovenia) (Lomolino et al. 2010). 

The presence of a species in a patch can be affected by matrix contrast, which is the 

magnitude of difference in ecologically meaningful features (e.g. vegetation height and density, 

microclimate) between the focal patch and the surrounding matrix. As such, it is related to edge 

contrast and includes edge effects (see Wiens et al. 1993; Harper et al. 2005) but the emphasis 

is on the effects of the matrix on within-patch processes. Matrix contrasts are thought to affect 

the strength of edge responses, i.e. a higher contrast results in an edge response of higher 

magnitude (Ries et al. 2004; Harper et al. 2005). For example, forest carabid beetles avoid 

edges with high contrast matrices more than with low contrast matrices (Noreika and Kotze 

2012), and similar patterns have been observed for other habitat specialist taxa (DeGraaf and 

Yamasaki 2002; Reino et al. 2009; Campbell et al. 2011). Consequently, these species can be 

absent from small patches with high contrast matrices. In contrast, habitat generalists are 

usually not influenced by the perceived edges or even benefit from the adjacency of a 

contrasting matrix (Fagan et al. 1999; Ries and Debinski 2001; Gaublomme et al. 2008; Reino 

et al. 2009; Noreika and Kotze 2012; Peyras et al. 2013). However, rigorous studies on this 

topic are rare (Ries et al. 2004; Ries and Sisk 2008).  

Ries and Sisk (2004; 2008) suggested that distribution patterns of organisms at edges 

and in habitat patches reflect the distribution of resources (e.g. food, nesting sites) and abiotic 

conditions. However, resource availability and abiotic conditions are also affected by the 
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matrix contrast. In particular, abiotic conditions (e.g. temperature, insolation and humidity) 

within small patches are rather similar to the adjacent matrix (Chen et al. 1995; Cadenasso et 

al. 1997; Delgado et al. 2007), resulting in subsequent changes in the biota within the patch 

(Murcia 1995; Fagan et al. 1999; Harper et al. 2005). Additionally, matrix contrast controls the 

flow of organisms from the matrix to the patch by influencing their reluctance of entering the 

patch. Novel or intensified interactions caused by the flow of matrix organisms can suppress or 

subsidize some species within habitat patches (Polis et al. 1997; Fagan et al. 1999; Tscharntke 

et al. 2005). 

Our knowledge about the effects of matrix contrasts on open habitat communities is 

limited, as the predominant research focus has been on forests (e.g. Reino et al. 2009; Lacasella 

et al. 2015). Urban communities, representing taxa living in disturbed and often open habitat 

types, likely respond less acutely to adjacent matrices, as they could be adapted to living in 

small patches (Harper et al. 2005). Communities in cities have higher proportions of generalist 

species and lower proportions of strict habitat specialists (e.g. Elek and Lövei 2007; 

Gaublomme et al. 2008; Niemelä and Kotze 2009), which should cause weak responses of 

communities to adjacent matrices. On the other hand, at least forest species and communities 

respond strongly to habitat edges, and especially to high contrast matrices (Gaublomme et al. 

2008; Brearley et al. 2010; Noreika and Kotze 2012). Linear strips of open habitat in the urban 

environment, such as ruderal vegetation strips along railway tracks, provide an excellent 

opportunity to test the role of contrasting matrices (built-up, grassland and forest) on 

communities of open habitat species within these rather homogenous verges. Particularly, 

verges host dry open habitat specialists that are able to exploit this novel habitat (Vermeulen 

1993; Eversham and Telfer 1994; Eversham et al. 1996; Koivula et al. 2005; Noordijk et al. 

2008).  

Our aim was to examine how carabid beetle assemblages living in a linear ruderal 

habitat (railway verge) are influenced by surrounding matrices of different levels of contrasts. 

Hence, we investigated the structure of carabid beetle assemblages in Finland and Slovenia at 

railway verges and in the adjacent low, intermediate and high contrast matrices, or built-up, 

grassland and forest, respectively. Carabids are useful as model organisms, as traits of most 

carabid species are well known, and landscape features affect their spatial distribution and 

population dynamics (Lövei and Sunderland 1996; Kotze et al. 2011). Our hypotheses are that: 

(i) railway verge carabid assemblages share characteristics with their respective matrix type 

due to strong matrix effects in linear habitats (Ewers and Didham 2006). However, the 

harshness of these linear strips may, alternatively, result in unique carabid beetle communities 
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in these strips irrespective of the adjacent matrix habitat; and (ii) the activity densities 

(hereafter abundances) of habitat specialists are negatively affected by high contrast matrices 

(e.g. DeGraaf and Yamasaki 2002; Noreika and Kotze 2012), while (iii) generalists are more 

abundant at railway verges adjacent to grasslands and forests due to more favourable 

conditions resulting from altered abiotic conditions and spill-over effects (Polis et al. 1997; 

Tscharntke et al. 2005; Rand and Louda 2006; Schneider et al. 2013). Finally, we evaluate 

whether the responses of carabid beetle species and communities are consistent in the two 

climatic regions investigated. 

 

Material and methods 

 

Study areas 

 

Study sites were located in the cold climatic region in Helsinki and Lahti, Finland (60°12'–

60°58' N, 24°44'–25°41' E), and in the warm temperate climatic region in Ljubljana, Slovenia 

(46°1'–46°6' N, 14°26'–14°34' E) (Lomolino et al. 2010). Both Finland and Slovenia have 

similar land uses in these areas: forest cover over 60%, cropland cover below 15%, and 

grassland cover about 10% in Finland and 21% in Slovenia (Eurostat 2012). The similar land 

use allows comparing results more readily. We collected carabid beetle assemblages in narrow 

verges of actively-used railways and in adjacent matrices (built-up, grassland or forest). The 

three treatments (i.e. railway verge – matrix pairs) represented differing matrix contrasts: 1) 

low (railway–built-up), 2) intermediate (railway–grassland) and 3) high (railway–forest). Four 

replicates were chosen for each treatment, resulting in 12 study sites per country. The adjacent 

matrix habitats were at least 1 ha in size to ensure that these matrix habitats have characteristic 

carabid beetle assemblages (Mader 1984). The minimum distance between individual study 

sites was 800 m. Railway verges were narrow with mean widths being 4.2 m (SD = 2.3) in 

Finland and 2.0 m (SD = 1.4) in Slovenia. 

In both countries, verges featured a dry microclimate, mostly ruderal sparse vegetation 

and gravelly or somewhat sandy topsoil. The verges are occasionally treated with herbicide or 

mown to keep the vegetation low. The adjacent matrix affected the vegetation, as it was denser 

close to intermediate and high contrast matrices and some species of the adjacent habitat were 

present, such as small tree saplings. The built-up matrix was largely covered by gravel and 

asphalt and had very sparse vegetation. In contrast to extremely dry conditions at the built-up 

matrix, grasslands had a dense grassy vegetation. All forest patches in Finland were mesic and 
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dominated by mature Norway spruce trees (Picea abies), while forest patches in Slovenia were 

predominantly deciduous stands of pedunculate oak (Quercus robur) and common hornbeam 

(Carpinus betulus) or hybrid poplar (Populus X canadensis) or common alder (Alnus 

glutionosa). 

 

Carabid beetle sampling 

 

Carabid beetles (Coleoptera, Carabidae) were continuously sampled by pitfall trapping in 2013 

from May to October (Finland) or November (Slovenia). The sites were visited and the 

samples collected every 2-3 weeks in Finland and due to logistic reasons, 2-7 weeks in 

Slovenia (2-4 weeks at the peak of carabid activity), resulting in five visits per country. Ten 

traps were installed at each site (totalling 120 traps per country) in two trap lines: 1) five traps 

were placed in the verge near or occasionally into ballast rocks of the railway track depending 

on the verge size, and 2) another five traps in the adjacent matrix at 20-30 m from the railway 

verge trap line, to sample the assemblage immediately adjacent to the verge. The distance 

between traps within a trap line was 5 m. The catch of the five traps per trap line was pooled 

per visit. In Finland, 14 traps were lost (2.3% loss) compared to 94 traps (15.7% loss) in 

Slovenia. Traps were considered “lost” if they were flooded, filled with bycatch such as snails 

or had simply vanished. The lost traps and unequal sampling effort were accounted for in the 

statistical analyses (see below). 

The traps - plastic cups - were dug into the ground with their rim flush with the ground 

surface. Half the cup was filled with a 50% propylene glycol-aqueous solution to kill and 

preserve the invertebrates. In Finland, the mouth diameter and volume of the traps were 65 mm 

and 250 ml, and dark plastic roofs (10 x 10 cm) were installed approximately 2 cm above each 

cup to prevent rain, debris and small mammals from entering the traps. In Slovenia, traps with 

mouth diameter of 100 mm and volume of 500 ml were used, and tree bark was used as a roof. 

The collected invertebrates were taken to the laboratory and preserved in denatured ethanol. 

All adult carabid beetles were identified to species level where possible, and their habitat 

associations were recorded by using the keys of Lindroth (1985; 1986) and Luff (2008) in 

Finland, and Müller (1930/31) and Müller-Motzfeld (2006) in Slovenia.  

Environmental variables 
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A set of environmental variables was recorded to describe habitat conditions at the sites. 

Percentage covers (scale: 0, 5, 10, …., 100%) of ground-layer vegetation (herb, grass and 

moss), shrubs, litter, bare soil and rock were estimated visually from photos taken in the end of 

July in Slovenia and in the beginning of August in Finland, from a 1 x 1 m quadrat around each 

pitfall trap, and averaged per trap line. 

Soil samples were taken from 0-10 cm depth near each trap during two consecutive 

days to measure soil pH, soil moisture (%) and organic matter content (%). Soil pH was 

measured using a WTW inoLab pH/Cond 720 meter from a suspension of soil and distilled 

water (ratio 1:3, volume). Soil moisture content was determined by drying the soil in an oven: 

20 g of soil was placed into an oven for 24 h at 70°C and then weighted again after cooling in a 

desiccator. Organic matter (i.e. loss on ignition) in dried samples was burnt in a muffle oven at 

550°C for 5 h and weighted after cooling in a desiccator. Subsequently, moisture and organic 

matter content were calculated using the obtained masses. Soil pH, moisture and organic matter 

content were then averaged per trap line. Soil organic matter was later removed from the 

analyses as tests revealed strong correlations with several environmental variables and 

especially with soil moisture (rs = -0.779, p < 0.001 for Finland and rs = 0.833, p < 0.001 for 

Slovenia). In the Slovenian data, soil moisture (%) was negatively correlated with soil pH (rs = 

-0.834, p < 0.001) and a few variables were correlated in the Finnish data, but these were 

retained in the non-metric multidimensional scaling analyses (see below) due to potentially 

independent and likely important effects. Particularly, bare soil cover (%) was negatively 

correlated with soil moisture (%) (rs = -0.892, p < 0.001) and degree of urbanisation with soil 

pH (rs = 0.724, p > 0.001) in the Finnish data.  

To further assess habitat quality, several additional variables were recorded. The width 

of the railway verge was measured from the ballast rocks of a railway track to the edge of the 

adjacent matrix (i.e. markedly different in vegetation structure and height) at the first, third and 

fifth trap in the trap line, and averaged per site. In addition, distance between the railway trap 

line and the matrix trap line was measured per site. An approximate value for slope (in 

degrees) was measured at the trap line for verge and matrix at each site. To measure the degree 

of urbanisation for Finland, imperviousness within a 500 m buffer around each study site was 

assessed using ArcGIS for Desktop (Esri 2014) and base maps from the National Land Survey 

for Finland (2009). For Slovenia, percentage of area classified as “urbanised and other similar 

lands” from the Land Use Map RABA (2012) within a 500 m buffer was used as the degree of 

urbanisation. 
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Statisticl analyses 

 

Non-metric multidimensional scaling (NMDS) was used to investigate the effects of the 

adjacent matrix on carabid beetle assemblage structure among the three treatments for Finland 

and Slovenia separately. The environmental variables mentioned above were used in these 

ordinations. The analysis was performed in R (R Core Team 2013), using the vegan package 

(Oksanen et al. 2013). The number of carabid individuals was standardized to 100 trapping 

days to correct for lost traps and unequal sampling effort. The Bray-Curtis coefficent was used 

as a dissimilarity measure in the three-dimensional ordination calculation; dimensions 1 and 2 

were plotted. The envit function in the vegan package was used to evaluate the significance of 

environmental variables in these ordinations. 

Generalised linear mixed models (GLMMs) were run in R (R Core Team 2013) to 

investigate the impacts of adjacent matrices on carabid beetle abundances at the railway verges. 

The most abundant species (with more than 33 individuals collected) were analysed 

individually, while the less abundant species were analysed after being pooled into groups 

based on associated habitat and moisture affinities obtained from the local keys (see above) 

[dry open habitat (OD), open habitat generalist (OG), moist open habitat (OM), dry habitat 

generalist (GD), habitat generalist (G), moist habitat generalist (GM), dry forest (FD), forest 

generalist (F) and moist forest (FM)]. Models simply did not work or returned unrealistic 

coefficients and standard errors when species fewer than 33 individuals captured were 

analysed, presumably due to the clumped nature or abundance data.  Also abundant species 

with highly clumped data were excluded from the analyses (Online Resource 1). Further, forest 

species were not analysed with GLMMs, since these species only occurred in the railway–

forest treatment. The glmer function in the lme4 package (Bates et al. 2014) was used for the 

analysis. The response variable (i.e. number of carabid individuals) was modeled following a 

Poisson distribution (O’Hara and Kotze 2010). To account for possible overdispersion in the 

response variable, an individual-level random effect was added (Harrison 2014). 

Models included the following fixed effects: 1) collecting visit as a factor, 2) log number of 

trapping days as an offset term to account for trap losses (Kotze et al. 2012), 3) treatment as a 

factor (i.e. the three railway–matrix pairs), 4) trap line as a factor, 5) the treatment × trap line 

interaction, 6) soil moisture, and 7) soil pH. In addition to the fixed effects in Finnish models, 

city (factor) was included as a random effect to account for possible impacts of different 

localities. In the Slovenian models, soil pH was removed due to its strong correlation with soil 

moisture. If a modeled species or species group was not, or rarely observed in a treatment, trap 
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line, city or during a visit, that particular component was removed from the analysis for that 

species or group. As such, some effects were excluded from the models, due to very low 

abundances there. Further, the interaction between treatment and trap line had to be removed 

for some species due to unsuitable outputs resulting from overly complex models. Lost traps 

and unequal sampling effort were accounted for by adding the first and second fixed effects 

(see above) to the models. 

Results 

 

In total, 59 carabid beetle species (1065 individuals) were collected in Finland and 70 species 

(3861 individuals) in Slovenia (Online Resource 1). The railway verge catch was dominated by 

dry open habitat species (18 species and 262 individuals in Finland, 21 species and 882 

individuals in Slovenia), such as Calathus erratus (n = 122) and Amara municipalis (n = 69) in 

Finland, and Harpalus rufipes (n = 516) and Harpalus honestus (n = 117) in Slovenia. 

 

Matrix effects on carabid beetle assemblages 

 

NMDS ordinations primarily suggest that the matrix influences carabid beetle assemblages at 

railway verges, i.e. assemblages in the verges are grouped with their respective matrix type in 

both countries (Figs. 1a and 1b), yet high variation (i.e. scatter) was observed for assemblages 

in the railway–built-up treatment. In particular, the railway verge assemblages adjacent to 

forest matrices are associated with moist habitat species and generalists, while railway verge 

assemblages adjacent to grassland and built-up matrices are associated with dry habitat and 

generalist species (Online Resources 2 and 3). Even though the adjacent matrix had an effect 

on carabid beetle assemblages, in Finland (but not in Slovenia) the railway verge also seems to 

have a characteristic set of species, since a number of verge sites grouped together in the centre 

of the ordination (filled symbols in Fig. 1a) irrespective of matrix type.  

 

Vector fitting revealed that in both countries carabid beetle assemblages were 

correlated with soil conditions (pH, soil moisture), percentage ground cover measures (bare 

soil, litter, and rock) and degree of urbanisation (% imperviousness or urbanised lands within a 

500 m buffer) (Online Resource 4). The railway–forest treatment was associated with higher 

soil moisture content and litter cover, while the railway–built-up treatment was associated with 

higher rock and bare soil cover. In Slovenia, the railway–built-up treatment was also associated 

with higher urbanisation. Habitat conditions in the railway–grassland treatment were somewhat 



10 

 

different in Finland compared to Slovenia. Despite both tending to be associated with 

intermediate conditions compared to the other treatments (Figs. 1a and 1b), assemblages in the 

railway–grassland treatment in Finland were associated with a higher cover of ground-layer 

vegetation, which did not correlate with any of the assemblages in Slovenia.  The beetle-

environment associations described above are reflected in habitat conditions at railway verges, 

which were generally moister and with higher litter cover adjacent to grasslands or forests in 

both countries (Online Resource 5).  

Responses of individual species and species groups to the adjacent matrices 

 

Impacts of the matrix on the abundances of individual carabid beetle species and species 

groups at railway verges varied, but was generally comparable among species of similar habitat 

affinity and among countries (Table 1, Figs. 2 and 3). In Finland, open dry habitat species 

(Calathus erratus, Amara cursitans, A. municipalis, Group OD) occurred almost exclusively in 

railway verges, thereby representing here “true” railway verge species. Abundances of these 

habitat specialists showed a positive trend towards the low contrast matrix (Table 1, Fig. 2). 

Forest specialists clearly showed sensitivity towards high contrast matrices, since virtually no 

forest specialist individuals were collected from railway verges adjacent to forests and were 

rarely collected in any of the other treatments (Online Resource 1). The abundances of habitat 

generalists [Carabus nemoralis (G), Pterostichus niger (GM), Trechus secalis (GM), and 

Groups GD, OG, G, GM] were generally highest at the railway–forest treatment, while lowest 

at the railway–built-up treatment (Table 1, Fig. 2). The preferred habitat (i.e. railway verge or 

matrix) for generalists within treatments varied without being clearly related to the species’ 

moisture affinities. Nevertheless, it was clear that the adjacency of grasslands and forests 

increased the abundance of generalists in railway verges. 

 

In Slovenia, no habitat specialist species exclusively occurred in railway verges, 

although some open dry habitat species were rather frequently found (Fig. 3). As in Finland,  

Amara spp. occured almost exclusively in railway verges, but were considered as generalists in 

Slovenia since individual species could not be identified (Online Resource 1). The open dry 

habitat species in Slovenia (Calathus fuscipes, C. melanocephalus, Harpalus affinis, H. rufipes, 

Group OD) were generally associated with grasslands (Table 1, Fig. 3). While these species 

were present in railway verges irrespective of matrix type, the abundances of some species 

(Harpalus rufipes, Group OD) were higher next to grasslands. As in Finland, Slovenian forest 

specialists avoided railway verges (see Online Resource 1). Furthermore, generalists [Amara 
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spp. (G), Carabus coriaceus (G), Abax carinatus (GM), C. granulatus (GM), and Groups OG, 

GM] followed an abundance pattern similar to Finland, although abundances in the railway 

verges were generally markedly lower compared to the matrix (Table 1, Fig. 3). Notably, also 

Amara spp. benefited from the adjacency of grasslands and especially forests, despite occurring 

almost exclusively in railway verges. 

 

Discussion 

 

Our study demonstrated that the adjacent matrix type has a clear influence on carabid beetle 

assemblages at railway verges, stressing the impact of the matrix on communities in narrow, 

linear urban habitat patches (Ewers and Didham 2006; Fletcher et al. 2007), and likely in 

fragmented environments in general. Specifically, assemblages at railway verges adjacent to 

grasslands and especially to forests comprised proportionally more habitat generalists 

compared to assemblages adjacent to built-up matrices. In line with our second hypothesis, 

results also suggest a negative effect of high contrast matrices on habitat specialists, although 

this was clear only for forest species. In Finland, open dry habitat specialists followed the 

expected pattern, i.e. these species occurred abundantly in railway verges and were negatively 

affected by high contrast matrices. In Slovenia, open dry habitat specialists did not follow our 

expectation of high occurrence in railway verges, being generally scarce in verges and 

occurring abundantly in grasslands. However, abundances in railway verges were seldom 

higher adjacent to grasslands, indicating that these species occasionally spilled over from 

grasslands into the railway verge. The observed patterns of matrix effects were shown to be 

consistent irrespective of climatic region.   

 

The effects of matrix contrast on habitat specialists 

 

Similarly to forest species, many open habitat species are declining due to the intensifying 

pressures of agriculture, urbanisation and climate change (Stoate et al. 2009; Kotze et al. 2011; 

González-Varo et al. 2013). Our results suggest that open habitat specialists profit from railway 

verges if contrast with the matrix is low and other conditions are favourable. Both open habitat 

and forest specialists responded negatively to high contrast matrices, which is consistent with 

the observed change in habitat conditions at verges and the edge effect literature (e.g. DeGraaf 

and Yamasaki 2002; Koivula et al. 2004; Campbell et al. 2011; Lacasella et al. 2015). Further, 

habitat specialists appeared to respond less negatively to intermediate contrast matrices. While 
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such a pattern has been reported before both for open habitat and forest species of, e.g. birds, 

carabid beetles and other insects (e.g. Reino et al. 2009; Noreika and Kotze 2012; Korpela et 

al. 2015), it contradicts with Ries and Debinski (2001), who noted that an open habitat butterfly 

species responded negatively to all matrices, irrespective of contrast. Ries and Sisk (2004, 

2008) proposed that species simply respond to the amount of suitable resources. While this 

may be true to some extent, we argue that the matrix contrast, together with changes to the 

biotic and abiotic environment, affects how species respond across these gradients (see also 

Harper et al. 2005; Campbell et al. 2011). 

Finnish railway verges hosted a characteristic set of open dry habitat specialists (of 

which only Harpalus rufipes was rather abundant in the Slovenian railway verges). This 

indicates that urban railway verges can be exploited by some open dry habitat specialists, 

perhaps adapted to these harsh conditions (Harper et al. 2005). Railway verges in Slovenia 

proved to be considerably poorer habitat for open habitat specialists compared to Slovenian 

grasslands and Finnish railway verges. This unexpected result can arise from the narrower 

verge width (Vermeulen 1995; Saarinen et al. 2005), higher soil pH (Paje and Mossakowski 

1984), higher rock cover and lower vegetation cover (Brose 2003) compared to Finland 

(Online Resource 5). Species diversity and abundance within the railway verges could also 

reflect matrix variables we did not investigate, such as the amount of similar open habitats in 

the landscape (Vermeulen 1993; Lizée et al. 2011), which is lower in Finland (Eurostat 2012). 

Large variation within the railway–built-up treatment indicates high species turnover, common 

for disturbed habitats and cities (Rebele 1994).  

 

The effect of different matrix types on generalists at railway verges 

 

Edge response studies indicate that habitat generalists are usually not affected by perceived 

edges, but rather spill over into other habitats (Tscharntke et al. 2005; Noreika and Kotze 2012; 

Peyras et al. 2013). Considering the high abundance of habitat generalists in grasslands and 

forests, and similar patterns in railway verges, our results from both countries suggest spill-

over. Additionally, it is possible that the diversity and abundances of generalists were favoured 

by the higher moisture, increased vegetation and litter cover adjacent to grasslands and forests, 

despite the fact that individual species were generally unresponsive to soil moisture. For 

example, increased litter cover and/or ground-layer vegetation can provide shelter and prey 

(e.g. Koivula et al. 1999). The consistent pattern of increasing abundances of generalists at 

railway verges adjacent to matrices with higher productivity can also be linked to higher 
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influxes of resources (e.g. prey items) from the matrix (Polis et al. 1997; Ewers and Didham 

2006).  

Conclusions 

 

Our study showed consistent effects of the matrix on carabid beetle communities in a narrow, 

linear urban habitat. Such habitats can be considered “all edge”, where community structure 

depends on matrix contrast and on the abundance of generalists within adjacent habitats (see 

Sisk et al. 1997). Spill-over of habitat specialists from low contrast matrices and of generalists 

can increase species diversity in the verge. However, changes in environmental conditions at 

high contrast matrices create an “invisible barrier” for most habitat specialists within these 

habitats, diminishing their value as a habitat and potentially as a corridor. It is important to note 

that reducing matrix contrast can improve habitat conditions for these species, given that linear 

habitats, such as road and railway verges, and urban green corridors, are wide enough. 
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Fig. 1 Non-metric multidimensional scaling ordinations of carabid beetle assemblages at the 

railway–matrix treatments (i.e. railway–built-up, railway–grassland and railway–forest) for a) 

Finland and b) Slovenia. The ellipses indicate 1 SD of the weighted average of site scores of 

the railway–built-up treatment (dotted line), the railway–grassland treatment (dashed line), and 

the railway–forest treatment (solid line). Abbreviations of the significant environmental vectors 

shown: rock = rock cover (%), litter = litter cover (%), soil.moist = soil moisture content (%), 

bare.soil = bare soil cover (%), urban = urbanisation degree (% of pavement/urbanised lands 

within a 500 m buffer), soil.ph = soil pH, g.l.vegetation = ground-layer vegetation cover (%) 

http://www.sicris.si/public/jqm/prg.aspx?lang=eng&opdescr=rsrSearch&opt=2&subopt=700&code1=rsr&code2=nameadvanced&psize=1&hits=1&page=1&count=&search_term=name=vrezec%20and%20sci=%20and%20fil=%20and%20sub=%20and%20type=%20and%20stat=%20and%20edulevl=&id=9190&slng=&order_by=
http://www.sicris.si/public/jqm/prg.aspx?lang=eng&opdescr=rsrSearch&opt=2&subopt=700&code1=rsr&code2=nameadvanced&psize=1&hits=1&page=1&count=&search_term=name=vrezec%20and%20sci=%20and%20fil=%20and%20sub=%20and%20type=%20and%20stat=%20and%20edulevl=&id=9190&slng=&order_by=
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Fig. 2 Predicted mean (± SE) abundances of Finnish individual carabid beetle species and 

species groups at three treatments (railway–built-up, railway–grassland, railway–forest). 

Abbreviations for habitat associations of the species and groups: OD = dry open habitat, G = 

habitat generalist, GM = moist habitat generalist 

 

Fig. 3 Predicted mean (± SE) abundances of Slovenian individual carabid beetle species and 

species groups at three treatments (railway–built-up, railway–grassland, railway–forest). 

Abbreviations for habitat associations of the species and groups: OD = dry open habitat, G = 

habitat generalist, GM = moist habitat generalist 
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Table 1 Generalised Linear Mixed Model results for carabid beetle species and species groups (data of less abundant species pooled; see Online 1 

Resource 1) of the railway–matrix treatments (i.e. railway–forest, railway–grassland, railway–built-up). The species and species groups were a 2 

priori listed from dryness associated (top) to moisture associated (bottom) for both Finland and Slovenia. Coefficients, standard errors (SE) and p-3 

values are shown for intercepts, treatments (treatm.), matrix trap lines, soil moisture (%), soil pH, and the treatment x trap line interaction. 4 

Significant and near significant p-values are in boldface. Abbreviations for habitat associations: OD = dry open habitat, OG = open habitat 5 

generalist, OM = moist open habitat, GD = dry habitat generalist, G = habitat generalist, GM = moist habitat generalist, FD = dry forest and FM = 6 

moist forest 7 

  Intercept a 
Grassland 

treatm. (G) 

Built-up 

treatm. (B) 

Matrix trap 

line (M) 

Soil 

moisture 

(%) 

Soil pH G x M B x M 

Finland          

Calathus 

erratus (OD) 

Coefficient 

(SE) 

-9.283 

(2.269) 

1.730 

(1.194) 

-0.089 

(1.351) 
 

-6.884 

(2.345) 

-2.429 

(0.841) 
  

p-value < 0.001 0.148 0.948  0.003 0.004   

Amara 

cursitans (OD) 

Coefficient 

(SE) 

-12.300 

(8.836) 
 

3.136 

(4.586) 
 

-2.855 

(12.587) 

-1.188 

(2.085) 
  

p-value 0.164  0.494  0.821 0.569   

          

Amara 

municipalis 

(OD) 

Coefficient 

(SE) 

0.094 

(6.118) 
  

-3.988 

(1.729) 

12.405 

(8.127) 

1.810 

(1.486) 
  

p-value 0.988   0.021 0.127 0.223   
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Group OD Coefficient 

(SE) 

-6.151 

(0.999) 

1.632 

(1.000) 

0.139 

(1.138) 

-0.324 

(1.739) 

-1.088 

(0.968) 

0.578 

(0.493) 

-1.148 

(1.812) 

-0.008 

(1.875) 

p-value < 0.001 0.102 0.903 0.852 0.261 0.241 0.526 0.996 

Group GD Coefficient 

(SE) 

-5.764 

(0.754) 

0.703 

(0.767) 

-2.040 

(1.257) 

-2.510 

(0.713) 

1.225 

(0.285) 

1.270 

(0.494) 
  

p-value < 0.001 0.359 0.105 < 0.001 < 0.001 0.010   

Group OG Coefficient 

(SE) 

-7.776 

(1.072) 

0.822 

(0.840) 

-0.377 

(0.911) 

1.713 

0.621 

-3.495 

(1.101) 

-0.065 

(0.460) 
  

p-value < 0.001 0.327 0.679 0.006 0.002 0.887   

Carabus 

nemoralis (G) 

Coefficient 

(SE) 

-1.405 

(1.192) 

-3.992 

(1.016) 

-3.907 

(0.934) 

0.637 

(0.667) 

0.324 

(0.381) 

1.307 

(0.495) 

0.306 

(1.027) 

-4.581 

(1.244) 

p-value 0.239 < 0.001 < 0.001 0.340 0.395 0.008 0.766 < 0.001 

Group G Coefficient 

(SE) 

-2.639 

(0.580) 

-1.947 

(0.741) 

-4.191 

(1.123) 

-0.871 

(0.781) 

0.236 

(0.384) 

1.028 

(0.488) 

1.766 

(0.910) 

-0.388 

(1.580) 

p-value < 0.001 0.009 < 0.001 0.265 0.538 0.035 0.052 0.806 

          

Pterostichus 

niger (GM) 

Coefficient 

(SE) 

-3.954 

(1.478) 

-3.187 

(1.805) 

-1.515 

(1.864) 

-5.308 

(2.899) 

1.731 

(0.921) 

0.173 

(0.633) 

5.326 

(2.444) 

-4.638 

(65.177) 

p-value 0.007 0.078 0.416 0.067 0.060 0.785 0.029 0.943 

Trechus secalis 

(GM) 

Coefficient 

(SE) 

-4.999 

(0.846) 

-2.098 

(1.146) 
 

-1.411 

(1.040) 

1.282 

(0.464) 

0.052 

(0.634) 

2.271 

(1.272) 
 

p-value < 0.001 0.067  0.175 0.006 0.935 0.074  
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Group GM Coefficient 

(SE) 

-2.698 

(0.526) 

-2.645 

(0.879) 
 

-3.686 

(1.363) 

1.340 

(0.459) 

0.155 

(0.428) 

4.474 

(1.400) 
 

p-value < 0.001 0.003  0.007 0.004 0.717 0.001  

Slovenia          

Harpalus affinis 

(OD) 

Coefficient 

(SE) 

-7.800 

(1.555) 
 

-0.242 

(1.594) 

2.165 

(1.818) 

-0.410 

(0.777) 
  

-1.580 

(2.361) 

p-value <0.001  0.879 0.234 0.598   0.503 

Harpalus 

rufipes (OD) 

Coefficient 

(SE) 

-10.522 

(1.827) 

1.845 

(1.466) 

-0.721 

(1.998) 

-0.654 

(1.373) 

1.193 

(0.805) 
   

p-value <0.001 0.208 0.718 0.634 0.139    

Calathus 

melanocephalus 

(OD) 

Coefficient 

(SE) 

-10.839 

(2.478) 
  

2.119 

(1.427) 

3.864 

(2.643) 
   

p-value <0.001   0.138 0.144    

Group OD Coefficient 

(SE) 

-6.370 

(0.664) 

0.973 

(0.787) 

-0.894 

(0.952) 

-0.250 

(0.998) 

-0.627 

(0.392) 
 

1.209 

(1.190) 

2.848 

(1.310) 

p-value <0.001 0.217 0.348 0.802 0.110  0.310 0.030 

Calathus 

fuscipes (OD) 

Coefficient 

(SE) 

-9.590 

(1.203) 

2.348 

(0.876) 
 

0.921 

(0.882) 

0.258 

(0.525) 
   

p-value <0.001 0.007  0.296 0.623    

Group OG Coefficient 

(SE) 

-8.261 

(2.518) 
  

0.213 

(2.101) 

0.054 

(1.061) 
   

p-value 0.001   0.919 0.959    
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Amara spp. (G) Coefficient 

(SE) 

-3.806 

(0.618) 

-0.657 

(0.761) 

-0.894 

(0.796) 
 

-0.164 

(0.329) 
   

p-value <0.001 0.388 0.262  0.619    

Carabus 

coriaceus (G) 

Coefficient 

(SE) 

-6.500 

(0.570) 

-1.819 

(0.675) 

-0.646 

(0.565) 

1.453 

(0.573) 

-0.190 

(0.215) 
 

-0.390 

(0.862) 

-2.480 

(0.908) 

p-value <0.001 0.007 0.253 0.011 0.379  0.651 0.006 

Abax carinatus 

(GM) 

Coefficient 

(SE) 

-6.509 

(0.648) 

-0.809 

(0.942) 
 

1.159 

(0.716) 

0.224 

(0.262) 
 

0.456 

(1.077) 
 

p-value <0.001 0.390  0.106 0.393  0.672  

          

Carabus 

granulatus 

(GM) 

Coefficient 

(SE) 

-7.888 

(1.303) 

-0.929 

(1.696) 
 

1.101 

(1.411) 

0.614 

(0.564) 
 

0.317 

(2.044) 
 

p-value <0.001 0.584  0.436 0.276  0.877  

Group GM Coefficient 

(SE) 

-6.574 

(0.599) 

-0.437 

(0.498) 

-2.445 

(0.796) 

1.794 

(0.569) 

-0.190 

(0.275) 
   

p-value <0.001 0.380 0.002 0.002 0.491    

 8 

 a The intercept for Finnish data represents the prediction at visit 1, railway–forest treatment and railway verge trap line where possible, i.e. for Group OD, Group GD, Group 9 

OG, C. nemoralis, Group G and Group GM. The intercept for other models represents predictions at the following conditions: visit 2 and railway–forest treatment for C. 10 

erratus, visit 1 and railway–forest treatment for A. cursitans, visit 2 and railway verge trap line for A. municipalis, and visit 2, railway–forest treatment and railway verge trap 11 

line for P. niger and T. secalis.  12 
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The intercept for Slovenian data also represents the prediction at visit 1, railway–forest treatment and railway verge trap line where possible, i.e. for H. rufipes, Group 13 

OD, C. fuscipes, Amara spp., C. coriaceus, A. carinatus, C. granulatus and Group GM. The intercept for H. affinis, C. melanocephalus and Group OG represents predictions at 14 

visit 1, railway–grassland treatment and railway verge trap line. 15 

Note that treatment and trap line effects have been occasionally removed from a model if the species or species group did not occur in that particular treatment or trap 16 

line. Furthermore, interactions between treatment and matrix trap line were removed from models due to unsuitable outputs for Groups OG and GD in the Finnish data, and H. 17 

rufipes, C. fuscipes and Group GM in the Slovenian data. 18 
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Online Resource 1 The number of individuals of all carabid beetle species collected from railway verges (R) and 22 

the adjacent matrices: built-up (B), grassland (G) and forest (F). Habitat associations are from Lindroth (1985, 23 

1986) and Luff (2007) (Finnish species), and Müller (1930/31) and Müller-Motzfeld (2006) (Slovenian species). 24 

Abbreviations for habitat associations: OD = dry open habitat, OG = open habitat generalist, OM = moist open 25 

habitat, GD = dry habitat generalist, G = habitat generalist, GM = moist habitat generalist, FD = dry forest and FM 26 

= moist forest. Nomenclature for Finnish species follows Silfverberg (2004) 27 

 GLMM a Habitat R B G F Total 

Finland        

Amara aenea Group OD OD 0 1 0 0 1 

Amara aulica b OM 0 0 5 0 5 

Amara bifrons Group OD OD 23 2 0 0 25 

Amara brunnea b FM 0 0 0 11 11 

Amara communis Group G G 13 1 5 0 19 

Amara convexior Group OD OD 1 0 0 0 1 

Amara cursitans species OD 33 1 0 0 34 

Amara familiaris Group OG OG 1 0 0 0 1 

Amara montivaga Group OD OD 2 0 1 0 3 

Amara municipalis species OD 69 1 0 0 70 

Amara nigricornis Group GD GD 1 0 0 0 1 

Amara nitida Group OD OD 6 0 0 0 6 

Amara ovata Group OD OD 0 0 1 0 1 

Amara praetermissa Group OD OD 11 0 0 0 11 

Amara quenseli Group OD OD 1 0 0 0 1 

Badister bullatus Group G G 5 0 3 1 9 

Badister lacertosus b FM 5 0 3 2 10 

Bembidion femoratum Group OG OG 5 27 0 0 32 

Bembidion gilvipes Group GM GM 0 0 5 0 5 

Bembidion guttula Group GM GM 0 0 6 1 7 

Bembidion lampros Group OD OD 5 2 0 0 7 

Bembidion quadrimaculatum Group OG OG 2 7 0 0 9 

Blemus discus b OM 0 0 1 0 1 

Bradycellus caucasicus Group OD OD 4 0 0 0 4 

Calathus erratus species OD 122 1 0 0 123 

Calathus melanocephalus Group OD OD 1 0 2 0 3 

Calathus micropterus b FD 2 0 0 36 38 

Carabus hortensis b FD 0 0 0 13 13 

Carabus nemoralis Group OG OG 51 1 10 35 97 

Cychrus caraboides b FM 2 0 0 12 14 

Cymindis angularis Group OD OD 1 0 0 0 1 

Dicheirotrichus placidus Group GM GM 0 0 1 0 1 

Dyschirius globosus b OM 1 0 0 0 1 

Harpalus affinis Group OD OD 4 1 0 0 5 

Harpalus laevipes Group GM GM 10 0 0 0 10 

Harpalus latus Group G G 11 0 4 0 15 

Harpalus rufipes Group OG OG 7 4 2 0 13 

Harpalus tardus Group OD OD 0 1 0 0 1 

Leistus ferrugineus Group OD OD 1 1 0 1 3 

Microlestes minutulus Group OD OD 3 1 0 0 4 
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Notiophilus aquaticus Group OD OD 2 0 0 0 2 

Notiophilus biguttatus b FD 0 0 0 7 7 

Notiophilus germinyi Group OD OD 3 0 0 0 3 

Notiophilus palustris Group GM GM 4 0 1 1 6 

Ophonus laticollis Group GD GD 26 0 0 0 26 

Ophonus rufibarbis b OM 45 0 57 0 102 

Oxypselaphus obscurus b FM 3 0 0 7 10 

Patrobus atrorufus Group GM GM 1 0 0 3 4 

Platynus assimilis b FM 0 0 0 3 3 

Poecilus versicolor Group OG OG 1 0 1 0 2 

Pterostichus melanarius Group G G 8 0 6 10 24 

Pterostichus niger species GM 28 0 11 12 51 

Pterostichus oblongopunctatus b FD 3 0 0 14 17 

Pterostichus strenuous Group GM GM 5 0 0 13 18 

Stomis pumicatus Group G G 6 0 1 2 9 

Synuchus vivalis Group GD GD 6 0 4 0 10 

Trechoblemus micros b OM 2 0 0 0 2 

Trechus quadristriatus Group OD OD 0 6 0 0 6 

Trechus secalis species GM 35 0 20 92 147 

Total number of individuals for Finland 581 58 150 276 1065 

Total number of species for Finland 46 16 22 20 59 

Slovenia        

Abax carinatus species GM 8 0 11 22 41 

Abax parallelepipedus Group GM GM 6 0 0 3 9 

Abax parallelus b GM 1 0 0 146 147 

Agonum sp. Group GM GM 0 0 0 13 13 

Amara spp. Species G 102 4 6 0 112 

Anchomenus dorsalis Group OD OD 4 0 10 0 14 

Anisodactylus nemorivagus Group GM GM 0 0 2 0 2 

Anisodactylus signatus Group GM GM 3 2 5 0 10 

Apristus europaeus Group GD GD 1 0 0 0 1 

Asaphidion flavipes Group G G 0 0 0 2 2 

Bembidion properans Group OM OM 0 0 1 0 1 

Brachinus elegans b OD 31 0 92 0 123 

Brachinus explodens Group OD OD 2 0 0 0 2 

Bradycellus caucasicus Group GD GD 2 0 0 1 3 

Calathus fuscipes species OD 8 0 36 0 44 

Calathus melanocephalus species OD 2 0 38 0 40 

Calistus lunatus Group OD OD 4 0 0 0 4 

Carabus catenulatus b FG 0 0 0 10 10 

Carabus coriaceus species G 85 14 14 144 257 

Carabus germari b FG 3 0 2 3 8 

Carabus granulatus species GM 6 0 9 45 60 

Carabus variolosus b FM 0 0 0 1 1 

Chlaenius nitidulus Group OM OM 1 0 3 0 4 

Clyndera germanica b OD 7 1 140 0 148 

Cychrus attenuates b FM 0 3 0 35 38 
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Cychrus caraboides b FM 1 0 0 0 1 

Diachromus germanus b OD 23 0 16 0 39 

Dolichus halensis Group OG OG 0 0 1 0 1 

Elaphrus aureus Group GM GM 0 0 0 1 1 

Harpalus affinis species OD 12 8 32 0 52 

Harpalus anxius Group OD OD 2 0 5 0 7 

Harpalus atratus Group OD OD 2 19 1 2 24 

Harpalus dimidiatus Group OG OG 15 0 14 0 29 

Harpalus distinguendus b OD 62 3 31 0 96 

Harpalus griseus Group OD OD 2 1 0 0 3 

Harpalus honestus b OD 117 0 0 0 117 

Harpalus karamani Group OD OD 0 0 1 0 1 

Harpalus luteicarnis Group GD GD 0 0 1 0 1 

Harpalus pumilus b OD 52 0 0 0 52 

Harpalus punctipennis Group OD OD 0 1 0 0 1 

Harpalus rubripes Group OD OD 8 9 1 0 18 

Harpalus rufipes species OD 516 8 836 43 1403 

Harpalus solitaris Group OD OD 7 0 0 0 7 

Harpalus sp. Group OD OD 0 0 1 1 2 

Harpalus subcylindricus Group OD OD 0 0 1 0 1 

Harpalus tenebrosus Group GD GD 0 2 0 0 2 

Leistus ferrugineus Group GM GM 2 0 4 0 6 

Leistus piceus Group GM GM 0 0 1 9 10 

Limodromus assimilis b FM 0 0 0 7 7 

Microlestes minutulus Group OD OD 1 0 0 0 1 

Molops striolatus b FG 0 0 0 1 1 

Nebria brevicollis Group GM GM 0 1 5 0 6 

Notiophilus palustris Group GM GM 1 0 0 2 3 

Notiophilus rufipes Group GD GD 0 0 2 0 2 

Ophonus azureus Group OD OD 7 23 2 0 32 

Ophonus puncticollis Group OD OD 13 7 1 1 22 

Platynus scrobiculatus Group GM GM 0 1 0 2 3 

Poecilus cupreus b OM 83 0 530 0 613 

Poecilus versicolor Group OG OG 2 0 13 0 15 

Pterostichus fasciatopunctatus b FM 0 2 0 30 32 

Pterostichus melanarius Group GM GM 1 0 3 3 7 

Pterostichus melas b G 4 0 121 2 127 

Pterostichus niger Group GM GM 1 0 2 5 8 

Pterostichus nigrita Group GM GM 0 0 0 1 1 

Pterostichus rhaeticus Group GM GM 1 0 0 1 2 

Pterostichus sternuus Group GM GM 0 1 0 2 3 

Stomis pumicatus Group GM GM 0 0 1 3 4 

Synuchus vivalis Group OG OG 0 0 1 1 2 

Trechus croaticus b FG 0 0 0 1 1 

Trechus quadristriatus Group G G 1 0 0 0 1 

Total number of individuals for Slovenia 1212 110 1996 543 3861 

Total number of species for Slovenia 43 19 40 32 70 
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a The GLMM column shows if a species was analysed individually in the generalised linear mixed models or if it 28 

was pooled into groups based on habitat association.   29 
b Species were removed from GLMM analyses based on three criteria: 1) a species was abundant but the data were 30 

highly clumped, 2) forest species were not analysed, as they occurred almost exclusively in forests, and 3) Group 31 

OM was excluded due to low numbers of individuals. 32 

  33 
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 34 
Online Resource 2 Non-metric multidimensional scaling ordination (NMDS) of Finnish 35 

carabid beetle species at the railway–matrix treatments (i.e. railway–built-up, railway–36 

grassland and railway–forest). See Fig. 1 in the manuscript for the NMDS site plot. Species 37 

name abbreviations consist of the first four letters of the genus name and first four letters of the 38 

species name (for full species names, see Online Resource 1) 39 
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 41 
Online Resource 3 Non-metric multidimensional scaling ordination (NMDS) of Slovenian 42 

carabid beetle species at the railway–matrix treatments (i.e. railway–built-up, railway–43 

grassland and railway–forest). See Fig. 1 in the manuscript for the NMDS site plot. Species 44 

name abbreviations consist of the first four letters of the genus name and first four letters of the 45 

species name (for full species names, see Online Resource 1) 46 
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Online Resource 4 Correlations (r2) and p-values of the environmental variables used in the non-metric multi-48 

dimensional scaling ordinations for the Finnish and Slovenian carabid beetle datasets. The vegan function envfit 49 

(see Oksanen et al. 2013) was used to test the fit of these variables using permutation tests 50 

 
Finland  Slovenia  

Environmental variable r2 p-value r2 p-value 

Soil moisture (%) 0.471 0.003 0.356 0.010 

Urbanisation degree a 0.375 0.007 0.339 0.013 

Rock cover (%) 0.376 0.012 0.319 0.017 

Bare soil cover (%) 0.511 0.001 0.273 0.035 

Litter cover (%) 0.418 0.005 0.278 0.032 

Soil pH 0.466 0.002 0.198 0.099 

Shrub cover (%) 0.197 0.122 0.116 0.276 

Ground-layer vegetation cover (%) b 0.421 0.004 0.061 0.516 

Distance (m) c 0.158 0.178 0.076 0.436 

Verge width (m) 0.037 0.691 0.060 0.523 

Slope (°) 0.007 0.932 0.038 0.670 
Significant p-values are in boldface. a Urbanisation degree represents % imperviousness or urbanised land within a 51 

500 m buffer for Finland and Slovenia respectively. b Ground-layer vegetation cover includes grass, herb and 52 

moss. c Distance between railway and matrix trap lines. 53 

  54 
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Online Resource 5 Environmental variables (means ± SD) within railway verges and the 55 

adjacent matrices at the railway–built-up, railway–grassland and railway–forest treatments 56 

Environmental variables 
Built-up 

Railway 

Built-up 

Matrix 

Grassland 

Railway 

Grassland 

Matrix 

Forest 

Railway 

Forest 

Matrix 

Finland        

Ground-layer 

vegetation 

cover (%) a 

mean 24.5 10.0 46.0 94.3 25.0 21.5 

(SD) (19.7) (5.3) (42.4) (9.5) (18.3) (6.9) 

Shrub cover 

(%) 

mean 4.0 0.0 3.0 0.8 17.3 18.5 

(SD) (4.7) (0.0) (3.2) (1.0) (28.0) (23.4) 

Litter cover (%) mean 13.3 3.3 14.8 10.3 19.0 75.8 

(SD) (11.2) (3.5) (15.1) (6.7) (10.2) (9.7) 

Rock cover (%) mean 5.8 19.0 18.8 0.0 19.5 0.0 

(SD) (8.9) (32.9) (26.6) (0.0) (19.0) (0.0) 

Bare soil cover 

(%) 

mean 56.8 70.0 23.3 1.5 21.0 0.0 

(SD) (37.5) (39.9) (43.9) (3.0) (14.0) (0.0) 

Verge width 

(m) 

mean 4.5  4.3  3.7  

(SD) (2.2)  (2.8)  (2.4)  

Distance (m) b  mean 16.8  14.6  20.5  

(SD) (2.4)  (7.1)  (5.2)  

Slope (°) mean 7.5 0.0 25 2.5 17.5 3.8 

(SD) (6.5) (0.0) (7.1) (2.9) (13.2) (4.8) 

Urbanisation 

degree c 

mean 42.3 42.3 33.5 33.5 25.5 25.5 

(SD) (4.6) (4.6) (9.3) (9.3) (2.6) (2.6) 

Soil pH mean 6.9 7.0 6.4 6.1 5.8 5.3 

 (SD) (0.4) (0.8) (0.4) (0.1) (0.3) (0.8) 

Soil moisture 

content (%) 

mean 0.9 1.1 5.9 13.8 1.8 28.7 

(SD) (0.9) (1.2) (5.9) (3.0) (1.9) (16.7) 

Soil organic 

matter content 

(%) 

mean 2.2 2.7 3.4 11.2 1.2 48.6 

(SD) (1.2) (2.2) (3.1) (2.4) (0.3) (29.9) 

        

Slovenia        

Ground-layer mean 15.0 34.3 7.3 81.8 29.8 10.5 
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vegetation 

cover (%) a 

(SD) (11.2) (33.5) (6.4) (7.8) (16.3) (3.7) 

Shrub cover 

(%) 

mean 3.5 19.8 3.8 7.3 2.8 10.5 

(SD) (3.0) (19.4) (5.7) (6.4) (3.6) (11.4) 

Litter cover (%) mean 3.5 9.8 6.3 6.5 13.8 82.0 

(SD) (3.1) (9.5) (8.1) (1.3) (8.5) (5.0) 

Rock cover (%) mean 76.8 12.8 63.0 0.0 48.3 0.0 

(SD) (13.2) (17.6) (33.4) (0.0) (27.3) (0.0) 

Bare soil cover 

(%) 

mean 1.5 24.0 18.8 7.0 8.0 0.8 

(SD) (2.4) (14.1) (22.3) (8.1) (13.5) (1.0) 

Verge width 

(m) 

mean 3.1  0.8  2.0  

(SD) (1.7)  (0.6)  (0.5)  

Distance (m) b mean 126.9  43.8  27.8  

(SD) (99.3)  (14.7)  (10.9)  

Slope (°) mean 9.5 5.5 20.0 1.0 14.0 5.5 

(SD) (12.8) (9.1) (13.9) (2.0) (11.7) 4.9 

Urbanisation 

degree c 

mean 98.2 98.1 60.2 54.5 14.3 14.3 

(SD) (2.2) (1.9) (35.4) (28.7) (6.7) (7.0) 

Soil pH mean 8.5 8.4 8.4 7.3 8.2 6.5 

 (SD) (0.4) (0.3) (0.8) (0.5) (0.8) (2.3) 

Soil moisture 

(%) 

mean 6.1 6.5 8.4 18.7 12.2 27.7 

(SD) (5.5) (3.7) (8.5) (1.5) (10.4) (14.0) 

Soil organic 

matter (%) 

mean 7.7 8.1 7.1 11.4 14.2 25.4 

(SD) (3.4) (2.7) (5.1) (2.5) (9.0) (22.3) 

a Ground-layer vegetation cover includes grass, herb and moss. b Distance between railway and matrix trap lines. c 57 

Urbanisation degree represents % imperviousness or urbanised land within a 500 m buffer for Finland and 58 

Slovenia respectively. 59 
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