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 18 

Abstract: Climate change presents a serious threat to global biodiversity. Loss of pollinators in particular has major 19 

implications, with extirpation of these species potentially leading to severe losses in agriculture and, thus, economic 20 

losses. In this study, we forecast the effects of climate change on the distribution of hoverflies in Southeast Europe 21 

using species distribution modelling and climate change scenarios for two time-periods. For 2041-2060, 19 analysed 22 

species were predicted to increase their areas of occupancy, with the other 25 losing some of their ranges. For 2061-23 

2080, 55% of species were predicted to increase their area of occupancy, while 45% were predicted to experience 24 

range decline. In general, range size changes for most species were below 20%, indicating a relatively high 25 

resilience of hoverflies to climate change when only environmental variables are considered. Additionally, range-26 

restricted species are not predicted to lose more area proportionally to widespread species. Based on our results, two 27 

distributional trends can be established: the predicted gain of species in alpine regions, and future loss of species 28 
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from lowland areas.  Considering that the loss of pollinators from present lowland agricultural areas is predicted and 29 

that habitat degradation presents a threat to possible range expansion of hoverflies in the future, developing 30 

conservation management strategy for the preservation of these species is crucial. This study represents an important 31 

step towards the assessment of the effects of climate changes on hoverflies and can be a valuable asset in creating 32 

future conservation plan, thus helping in mitigating potential consequences. 33 

 34 

Key words: conservation, global warming, insects, endemism, species distribution modelling  35 

 36 

Introduction 37 

Ecosystems across the world are facing severe modifications due to climate change and many species are facing 38 

extinction risk as a result. Species tolerance to changing climate is critical from ecological, conservation and 39 

evolutionary points of view (Garcia-Robledo et al. 2016). Several studies have shown that climate change influences 40 

many species in different ways: they can move their range to find suitable environment (Hickling et al. 2006; 41 

Parmesan 2006); alter phenology in order to adapt to new conditions (Visser 2008; Gardner et al. 2011); modify 42 

their behaviour, with species opting to change foraging or activity hours, adapt their physiology, or increase 43 

metabolism and growth rates (Hughes 2000); shift their preferred habitat; or eventually undergo evolutionary shifts 44 

(Bradshaw and Holzapfel 2006; Visser 2008; Williams et al. 2008; Daufresne et al. 2009; Maggini et al. 2011). If 45 

none of these is possible or sufficient, extinction is possible (Thuiller et al. 2008; Lurgi et al. 2012). 46 

Among range shifts, climate change is expected to force species distributions towards higher elevations and 47 

latitudes, leading to extinction of species whose future habitable climate space becomes too small or too isolated 48 

from their current geographical ranges (Hill et al. 2002; Midgley et al. 2002; Wilson et al. 2005). Limited dispersal 49 

capacity, low reproductive rate and a high degree of habitat specialization are attributes that make species prone to 50 

environmental disturbances (Isaac et al. 2009). Species with a limited distribution often possess most of these 51 

characteristics. Although widespread species may also be endangered, range-restricted species are particularly 52 

vulnerable (Thomas et al. 2004; Wulf et al. 2013).  53 

Estimating the effects of climate change on species distributions is an important step in assessing the vulnerability of 54 

species to extinction and can provide useful information about the spectrum of possible consequences (Araújo et al. 55 

2005; Gibson et al. 2010; Yates et al. 2010). Species distribution models (SDM; also called environmental niche 56 
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models) are often used to predict the effects of climate change and they have been successfully applied in a number 57 

of environmental studies (Hannah et al. 2002; Elith et al. 2006; Peterson 2006). SDM assess the relationship 58 

between species occurrence at sites and the environmental characteristics of those areas (Franklin 2009) in order to 59 

predict the distribution of suitable environmental envelopes for the species in non-sampled areas or time-frames 60 

(Elith and Leathwick 2009; Costion et al. 2015). When used in combination with future climate change scenarios, 61 

these models can indicate the expected effect of changing climate on species distributions.  62 

Here, we use SDM to assess the potential effects of climate change on Southeast (SE) European hoverflies. 63 

Hoverflies are Dipteran insects comprising around 6000 described species (Thompson 2013). They are recognized 64 

as an important pollinator group (Fontaine et al. 2005; Petanidou et al. 2011; Jauker et al. 2012; Stenley et al. 2013), 65 

and some species are used as biological control agents (White et al. 1995). SE Europe harbours exceptional hoverfly 66 

diversity. The Balkan Peninsula, occupying the largest part of SE Europe, is considered a hotspot of European 67 

biodiversity (Griffits et al. 2004) owing to its long-term environmental stability (Previšić et al. 2009) and habitat 68 

diversity. The great variety of plants and habitat heterogeneity in this region promotes a high diversity of insect 69 

fauna. Vujić et al. (2001) revealed that the diversity of hoverflies in the Balkan Peninsula is amongst the highest in 70 

Europe. The Aegean islands, a part of our study area, have also been designated as one of the world’s hotspots for 71 

hoverflies (Vujić et al. 2012, 2016b; Radenković et al. 2011).  72 

 73 

Our aims were to: (i) analyse the effects of climate change on the distribution of species by examining predicted 74 

changes in range size based on forecasts of current and future potential distribution; (ii) describe and compare 75 

species-richness patterns for both present and future scenarios; (iii) verify if owing to their theoretically higher 76 

vulnerability, the areas of occupancy of range-restricted species decrease proportionally more than those of 77 

widespread species; and (iv) discuss possible consequences to mutualistic networks and implications for 78 

conservation of hoverflies. 79 



4 
 

Material and methods 80 

Occurrence data 81 

Species distribution data for all species in SE Europe were extracted from the database of the Department of Biology 82 

and Ecology of the University of Novi Sad, which is the largest database on the region’s hoverflies (occurrences of 83 

species used in this study are available at:  84 

http://www.dbe.uns.ac.rs/o_departmanu/laboratorije/laboratorija_za_istrazivanje_i_zastitu_biodiverziteta/prilog/mili85 

cic_et_al__2017_-_species_occurrences_data). This database comprises data from field collecting in the study area 86 

from 1950-2015, data obtained from different museum and private collections, and published material referring to 87 

this geographic area. Only specimens with precise distributional data were used. If locality coordinates were 88 

available, they were checked for accuracy. Records only with locality names were assigned coordinates using 89 

Google Earth (Google Inc, 2016). For our analysis, we only used species endemic to SE Europe or whose ranges 90 

outside this region do not cover areas with climatic conditions differing from those within the study area (otherwise 91 

SDM would reflect only part of the environmental niche of species and, thus, be potentially biased). For reducing 92 

sampling bias, we applied the thinning procedure, where we used a threshold of 0.01 of the maximum distance 93 

between any two points. The procedure is explained in detail in Miličić et al. (2017). After data processing, all 94 

species with less than five occurrence points were dropped (the number of occurrences per species is assessable in 95 

occurrence data table, provided on the link above in text).  96 

Selection of predictor variables 97 

We used 19 bioclimatic variables plus elevation data (2.5 arc-minutes resolution, approximately 4.5 km2) taken from 98 

the WorldClim dataset (Hijmans et al. 2005) for model building. As future bioclimatic variables, we used climate 99 

projections at the same resolution from the global climate models used in the Fifth Assessment report of the 100 

Intergovernmental Panel on Climate Change (IPCC 2013). We chose the HadGEM2-ES model with RCP 8.5 101 

(Representative Concentration Pathway), which is a greenhouse gas concentration trajectory that assumes that 102 

emissions will continue to rise throughout the 21st century. We deliberately choose the “worst case scenario” 103 

because historical and current trends of greenhouse emissions are trailing the RCP 8.5 trajectory (Peters et al. 2013). 104 

Modelling was done in two stages. First, we used all variables. Then, using only the stronger predictors for each 105 

http://www.dbe.uns.ac.rs/o_departmanu/laboratorije/laboratorija_za_istrazivanje_i_zastitu_biodiverziteta/prilog/milicic_et_al__2017_-_species_occurrences_data
http://www.dbe.uns.ac.rs/o_departmanu/laboratorije/laboratorija_za_istrazivanje_i_zastitu_biodiverziteta/prilog/milicic_et_al__2017_-_species_occurrences_data
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species, we built the final models and, in that way, avoiding overfitting the models (see details in Miličić et al. 106 

2017).  107 

 108 

Species distribution modelling 109 

For SDM, we used the maxent function of the dismo R package (Hijmans et al. 2016). MAXENT is one of the most 110 

commonly used algorithms for this purpose (Phillips et al. 2006, 2008; Peterson et al. 2007; Ortega-Huerta and 111 

Peterson 2008; Merow et al. 2013). This algorithm shows a generally good performance for presence-only data, 112 

even with small sample sizes (Kumar and Stohlgren 2009; Pearson et al. 2007). There are several examples where 113 

MAXENT has been used for modelling the potential distributions of range-restricted species. For example, Gibson 114 

et al. (2010) used MAXENT to estimate the effect of climate change on a range-restricted marsupial. Costion et al. 115 

(2015) and Krause et al. (2015) used it to assess the effect of climate change on endemic species of plants, and Vujić 116 

et al. (2016a) used MAXENT to identify favourable habitats for hoverflies of conservation interest in Serbia. 117 

Dataset was split into training and test data. MAXENT default settings were maintained. For each species, maps of 118 

current and future potential distributions were created for the year 2050 (average of years 2041-2060) and 2070 119 

(average 2061-2080). These maps were then transformed to binary format (showing suitable/unsuitable areas for 120 

species), applying the threshold that maximized the sum of sensitivity and specificity (Liu et al. 2005, 2013).  121 

Binary maps were used to calculate the potential area of occupancy (pAOO) for all species in all time-periods. To 122 

assess the predictive performance of the models, we used TSS (True Skill Statistic) as an evaluation measure, which 123 

has been shown to be a good measure of accuracy (Allouche et al. 2006; Liu et al. 2013). TSS values range from -1 124 

to +1, with +1 indicating perfect model agreement and values of zero or less indicating a performance no better than 125 

random (Allouche et al. 2006). 126 

Calculation of potential species richness 127 

Our second objective was to describe and compare the species richness patterns for both present and future 128 

scenarios. Maps for each species under the present scenario were overlaid and summed for species richness. We then 129 

did the same for the future scenario.  Then, the overall present and future richness maps were subtracted, allowing 130 

changes in diversity per cell between time-periods to be determined (see also Ferreira et al. 2016). All maps were 131 

created using the software DIVA-GIS (version 7.5). 132 
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Our third objective was to test if the ranges of range-restricted species decrease proportionally more than those of 133 

widespread species. We calculated the Pearson correlation between present pAOO of all species and the respective 134 

predicted relative changes in range size for both time-periods. A significantly negative correlation would indicate 135 

that species with smaller ranges would have higher proportional losses of pAOO, confirming our hypothesis.  136 

 137 

Range expansion and contraction patterns 138 

In order to test whether range expansion and contraction patterns are related with altitude, Spearman rank correlation 139 

among all cells showing difference in species richness (between both future periods and present) and altitude was 140 

calculated. 141 

 142 

Results 143 

Species distribution models  144 

In total, 44 species of hoverflies were included in our analysis (Tab. 1). TSS values used for evaluation of the 145 

models varied between 0.49 and 0.99 (Tab. 1), representing a good fit of the models. The bioclimatic variable 146 

contributing to the highest number of models (n=24) was precipitation seasonality (bio15). Other variables 147 

contributing to more than 10 final models were mean temperature of the wettest quarter (bio8), mean temperature of 148 

the driest quarter (bio9) and precipitation of the driest month (bio14). The list of bioclimatic variables used in each 149 

final model is given in Fig. 1. 150 

For 2041-2060, 19 species (43%) were predicted to lose part of their range, while 25 species were predicted to gain 151 

in range. However, for 40% of the species, their pAOO changed by less than 20%. For 2061-2080, 20 species (45%) 152 

were predicted to reduce their area of occupancy, whereas 24 species (55%) would gain occupancy. Variation in 153 

range size for 38% of the species was below 20%. Four different trends can be identified from the overall changes in 154 

pAOO: (1) fifteen species (34%) were predicted to lose part of their range for both time-periods; (2) twenty species 155 

(45%) would expand their pAOO over both time-periods; (3) four species (9%) were predicted to lose part of their 156 

range during the first period and then regain some of it under the second period; and (4) another five species (11%) 157 

would first gain range and then lose it. 158 
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Species richness 159 

We predicted the species richness hotspots to be similar across time. The Aegean islands and part of the Dinaric 160 

mountain range stretching through Bosnia and Herzegovina, Serbia and Montenegro were predicted to have the 161 

highest potential number of species in all cases (Fig. 2b, 2c, 2d). The Dinaric mountains, together with the Alpine 162 

region in Slovenia, high mountain peaks in central Peloponnese, part of the Carpathian Mountains in Romania and 163 

the coastal zone along the Black Sea, spreading into the continental areas of Southwest Bulgaria, are predicted to 164 

gain species with time. In contrast, the valleys between the Olympus and Rhodopes mountains, the lowland along 165 

the Dinaric mountain range and the peripheral zone of Strandza Mountain in Bulgaria are each predicted to lose 166 

between 1 and 3 species in the future (Fig. 2e and 2f). In general, higher loss is predicted for 2070 time period. 167 

Loss of area 168 

Our results indicate that the correlations between present ranges of species and proportional changes in range size 169 

for both time-periods were not statistically significant (Tab. 2).  170 

Range expansion and contraction patterns for both future time periods showed slight positive statistically significant 171 

correlation with altitude (Tab. 2). 172 

 173 

Discussion 174 

In this paper, we forecast the effect of climate change on the distribution of hoverflies in SE Europe using SDM and 175 

climate change scenarios for two time-periods. We predict species to be distributed in similar proportions amongst 176 

losers and gainers of areas of occupancy, yet individual species distributions change considerably over time leading 177 

to divergent patterns for various sub-regions of our study area.  178 

 179 

Two recent studies analysed the effects of climate change on the distributions of some species belonging to the two 180 

largest hoverfly genera in the region, Merodon and Cheilosia. However, in both studies, only widespread species (i.e. 181 

those not limited to the Balkan Peninsula) and with a large number of occurrences (more than 15 and 30 for 182 

Cheilosia and Merodon, respectively) were included in the analyses. Kaloveloni et al. (2015) predicted Merodon 183 

species to be relatively equally divided amongst gainers and losers of areas of occupancy, whereas Radenković et al. 184 
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(2017) concluded that climate change will have serious consequences for the distributions of almost all studied 185 

Cheilosia species, causing severe range losses for these species across the entire Balkan Peninsula. Undoubtedly, 186 

habitat type and the altitude at which a given species occurs influence species distributions of all hoverflies, 187 

regardless of which genus they belong to. Most species included in the analyses of Radenković et al. (2017) are 188 

Alpine, while the Merodon species analysed by Kaloveloni et al. (2015) are both high mountain and Mediterranean 189 

in origin, with our analyses confirming the patterns established in these studies. However, endemic species 190 

occurring on some Greek islands, and only included in our analyses, show a mixed response, with some species 191 

increasing their area of occupancy and that of others decreasing. Mediterranean and lowland taxa are predicted to 192 

expand their ranges, as these species can move their range towards higher altitudes if temperatures increase. Thus, it 193 

is not surprising that, in most cases, the regions gaining in terms of species richness are mountainous, such as the 194 

Alpine regions of Slovenia, the Dinaric Mountains, or part of the Carpathian Mountains. The bioclimatic variables 195 

found to mostly affect hoverfly distribution were related to precipitation seasonality and temperature and 196 

precipitation in the driest months, which might be related with these findings. Temperature increases tend to shift 197 

species towards areas of higher altitude, which typically have higher levels of precipitation (Beniston 2006). Climate 198 

change-induced altitudinal shifts have already been reported in numerous studies for different organisms (Penuales 199 

and Boada 2003; Wilson et al. 2005; Hickling et al. 2006; Lenoir et al. 2008). In contrast, lowland areas, such as the 200 

valleys between mountains are predicted to lose species. Global warming may render the climatic conditions in such 201 

regions too harsh (hot and/or dry) for many hoverflies. It should be noted that this loss of species at low altitude 202 

might be compensated by range expansions of species coming from warmer areas in the South and East of Europe, 203 

as these species were not modelled here. 204 

 205 

Based on our results, three patterns can be established: a) a relatively high resilience of Syrphidae to climate change 206 

disturbance; b) future range expansions of some hoverfly species to new locations, mostly mountainous; and c) 207 

depletion of syrphid species in lowland areas. 208 

We predict some species (such as Merodon virgatus Vujić et Radenković, 2016; see also Tab. 1) to significantly 209 

expand their range under a feasible climate change scenario. Thus, it seems that projected climate change will create 210 

additional favourable climate space for this and about half the other species we considered here. It is also worth 211 

mentioning that, for a considerable number of species, the variation in range size for both time-periods was below 212 
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20% (40% and 38% of species for 2050 and 2070, respectively). In addition, we found that range-restricted species 213 

are not predicted to decrease their ranges to a greater proportional extent than widespread species. Together, these 214 

findings might indicate an overall potential inherent resistance to changing climate amongst hoverflies in SE 215 

Europe. If true, hoverflies could become an important alternative leading pollinator group if the number of bees 216 

continues to severely decline as a consequence of changing climate, as has been projected (Biesmeijer et al. 2006; 217 

Dorman et al. 2008).We note that two factors may decisively influence our conclusions regarding the resilience of 218 

species and their future range expansions. These are dispersal capacity and diet specialization. Capacity to disperse 219 

to new climatically-suitable regions is a critical factor in species responses to climatic change, as these potential new 220 

areas may be out of reach for less vagile species. Considering that the vast majority of larvae of the species we 221 

analysed are phytophagous (38 out of 44), contrary to species with saprophagous larvae, the distributions of these 222 

hoverfly species are conditioned by the distribution of their hosts. Host plants of stenotopic species may be 223 

unavailable in the new locations so that even though the climatic envelope of a new area might be suitable, the 224 

habitat perhaps cannot support displaced species. In addition, adult hoverflies are always associated with flowering 225 

plants, their food source, which entails that our predictions are necessarily influenced by how the distributions of 226 

hoverfly host plants will alter in the future. More detailed knowledge about species biology and ecology, namely 227 

functional traits such as dispersal ability and diet, are needed to determine limiting factors for species expansion.  228 

 229 

According to our results, loss of hoverfly species from lowlands and their migration to higher altitudinal areas is to 230 

be expected. Having in mind that lowlands represent significant areas for agriculture used since ancient times 231 

(Turner 1974) because of their higher temperatures and less rugged terrain, these altitudinal shifts might cause a 232 

depletion of potential pollinators from agricultural areas, inevitably causing economic losses. Additionally, even if a 233 

species remain in lowlands, a changing climate may cause temporal (phenological) and spatial (distributional) 234 

mismatches (Hegland et al. 2009), between insect and host plant, leading to partial or complete decoupling of 235 

mutualistic partners (Visser and Both 2005). Such decoupling may result in changes to ecosystem dynamics, which 236 

again lead to economic losses in agricultural communities (Donelly et al. 2011). Therefore, assessment of the effects 237 

of climate change on mutualistic processes between plants and pollinators is critically needed to fully assess the risk 238 

of climate change and the possible consequences on insect communities. 239 
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Although predicted future range expansions of some hoverfly species and registered relatively low variations in 240 

range size may indicate high resilience of hoverflies to climate change, there are a number of factors that threaten 241 

current and predicted future locations for Syrphidae conservation. The areas with the highest predicted species 242 

richness for every period, such as the Aegean islands, are dominated by Mediterranean vegetation. Large expanses 243 

of this vegetation type are severely affected by land degradation processes, leading to desertification as a result of 244 

inadequate land use or because of discordance between economic and conservation priorities (Hill et al. 2008). 245 

Many deciduous forests across SE Europe face a similar scenario, harbouring high species richness but are severely 246 

endangered due to forestry and land degradation. Jovičić et al. (2017) indicated that land use has a strong influence 247 

on the species composition of Merodon and Cheilosia hoverflies. Changes in habitat availability for species and low 248 

tolerance to environmental change increase the risks of severe consequences from climate change. Another factor 249 

that can threaten the potential future expansion of hoverflies is intensive agriculture; multiple examples testify to its 250 

negative effects on biodiversity (Matson et al. 1997; Sotherton 1998; Tilman et al. 2001; Wickramasinghe et al. 251 

2004). Kremen et al. (2002) found that agricultural intensification has a serious effect on bee populations, causing 252 

reductions in both diversity and abundance of species, while Hendrickx et al. (2007) established that total species 253 

richness of hoverflies decreases with increasing management intensity in agricultural fields. Agriculture also causes 254 

fragmentation of natural habitats, which has a ruinous effect, especially on small and isolated populations 255 

(Benton et al. 2003). Tourism also represents serious threat to biodiversity. For example, construction of ski resorts 256 

has a strong negative effect on many plant and animal species, including hoverflies, considering that the majority of 257 

these species are mountainous. Ristić et al. (2012) addressed the negative effects of the construction of a ski resort 258 

on Stara Planina Nature Park in Serbia. As a consequence of the construction of the ski centre, population sizes of 259 

several endemic species of birds and plants were significantly reduced or even disappeared from this area rich in 260 

hoverflies. Similarly, The Valley of Butterflies on the Greek island of Rhodes, which has been designated as a 261 

Natura 2000 site, is predicted to be one of the most species-rich areas for hoverflies under both present and future 262 

climate projections in our analysis. However, the numerous tourists visiting this location severely affect its 263 

environment, and it is unclear how long the species that this site hosts can resist such anthropogenic pressure 264 

(Petanidou et al. 1991). Thus, it might prove crucial to find ways of alleviating the consequences of different 265 

threatening factors to preserve imperilled species and biodiversity in general in these regions. 266 

 267 
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Conclusion 268 

Undoubtedly, climate change will affect species ranges in the future. Hoverflies are in general conjectured to have a 269 

relatively high resilience to climate change disturbance, with some species predicted to experience future range 270 

expansions to new, mostly mountainous locations, while in lowland areas the depletion of syrphid species is to be 271 

expected. Such range shifts (both expansionary and contractionary) are all the more important for species dependent 272 

on mutualistic networks and that constitute keystone taxa for several ecosystem services such as pollination. Loss of 273 

these species would lead to severe losses in agriculture and, consequently, economic losses. Our study represents an 274 

important step towards the assessment of the effects of changing climate on hoverflies and can help in future 275 

conservation planning, which could mitigate potential economic loss. 276 

 277 
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Figure legends 492 

Fig. 1 Contribution of  bioclimatic variables related with temperature and precipitation in the final species 493 

distribution models of 44 analysed species of hoverflies in SE Europe. For detailed information on bioclimatic 494 

variables, visit www.worldclim.org 495 

Fig. 2 Geopolitical map of SE Europe with significant localities (a) and projected potential species richness of 496 

hoverflies for (b) present, (c) 2050, (d) 2070, and differences between (e) 2050 and present and (f) 2070 and present. 497 

Each cell represents the total number of species in defined grid cells 498 
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Tables 500 

Tab. 1 TSS values and pAOO values for all time periods, absolute and relative change in pAOO between present 501 

and projected future scenarios for 44 species of hoverflies in SE Europe 502 

Tab. 2 Proportional loss of area and connection of range expansion and contraction patterns with altitude 503 


