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PREFACE

The area of Boolean satisfiability (SAT) solving has seen tremendous progress over the last years.
Many problems (e.g., in hardware and software verification) that seemed to be completely out of
reach a decade ago can now be handled routinely. Besides new algorithms and better heuristics,
refined implementation techniques turned out to be vital for this success. To keep up the driving
force in improving SAT solvers, SAT solver competitions provide opportunities for solver developers
to present their work to a broader audience and to objectively compare the performance of their
own solvers with that of other state-of-the-art solvers.

SAT Race 2019 (SR 2019; http://sat-race-2019.ciirc.cvut.cz), a competitive event for SAT
solvers, was organized as a satellite event of the 22nd International Conference on Theory and
Applications of Satisfiability Testing (SAT 2019), Lisbon, Portugal. SR 2019 stands in the tradition
of the previously organized main competitive events for SAT solvers: the SAT Competitions held
2002-2005, biannually during 2007-2013, and 2014, 2016-2018; the SAT Races held in 2006, 2008,
2010, and 2015; and SAT Challenge 2012.

Compared to the more diverse SAT Competitions, SAT Race 2019 was a lean competitive event that
evaluates the state-of-the-art SAT solvers. In contrast to SAT Competitions, SAT Races consist of
only one track that is comparable to the Main Track of the SAT Competitions.
There were two ways of contributing to SR 2019: by submitting one or more solvers for evaluation in
the competition and by submitting interesting benchmark instances on which the submitted solvers
could be evaluated on in the competition. Following the tradition put forth by SAT Challenge 2012,
the rules of SR 2019 invited all contributors to submit a short, 1-2 page long description as part
of their contribution. This book contains these non-peer-reviewed descriptions in a single volume,
providing a way of consistently citing the individual descriptions.

Successfully running SR 2019 would not have been possible without active support from the com-
munity at large. We would like to thank the StarExec initiative (http://www.starexec.org) for
the computing resources needed to run SR 2019. Many thanks go to Aaron Stump for his invaluable
help in setting up StarExec to accommodate for the competition’s needs. Furthermore, we would
like to emphasize that a competition does not exist without participants: we thank all those who
contributed to SR 2019 by submitting either solvers or benchmarks and the related description.

Marijn J. H. Heule, Matti Järvisalo, & Martin Suda
SAT Race 2019 Organizers
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CADICAL at the SAT Race 2019
Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz

Our SAT solver CADICAL provides a clean, documented,
easy to understand and modify state-of-the-art solver, based on
CDCL [1] with inprocessing [2]. Earlier versions participated
in the SAT competition 2017 and 2018. Here we only describe
differences to these versions [3], [4]. Even though CADICAL
performed well on unsatisfiable instances in the SAT Competi-
tion 2018, the performance on satisfiable instances was behind
the top solvers in that competition. Thus a large part of the
changes made and described in this note are motivated by
trying to improve CADICAL on satisfiable instances without
loosing its good performance on unsatisfiable instances.

SEPARATE DECISION QUEUE

The earlier versions of CADICAL already partially followed
the advice given by Chanseok Oh in [5] to interleave (what
we call) stable search phases focusing on satisfiable instances
with almost no restarts and (again in our terminology) unstable
search phases with the usual frequent but limited restarts
schedule. In our new version we use a reluctant doubling
scheme with base conflict interval 1024 for the stable phase.

However, the results of [5] also suggest to use a smoother
increase of scores for the stable phase using a separate decision
queue. We have integrated this idea. It required to add the usual
exponential VSIDS scoring mechanism using a binary heap as
in MINISAT [6]. Thus this new version relies on its previous
VMTF queue [7] only for the unstable search phases and on
the exponential VSIDS for the stable search phase.

The “default” configuration submitted to the competition
alternates stable and unstable phases, while the “unsat” con-
figuration remains in the unstable search phase and the “sat”
configuration vice versa only in the “stable” phase.

LOCAL SEARCH

Our local search solver YALSAT [8] solved 48 instances
in the main track of the SAT Competition 2018 from which
30 instances were not solved by CADICAL and even one
not solved by any other solver. It further solved 36 instances
faster than any other solver. This shows that it should be
beneficial to add a local search component to CADICAL. We
already had YALSAT hooked up to LINGELING, which was
successfully used in TREENGELING in parallel solver threads.
However controlling the amount of time allocated to YALSAT
is difficult. It also requires to copy all clauses.

Therefore we added a simple local search component to
CADICAL. As YALSAT it is based on ideas developed in

Supported by FWF, NFN Grant S11408-N23 (RiSE).

ProbSAT [9]. In contrast to YALSAT and ProbSAT, we watch
one literal in each clause instead of using counters. The
broken (unsatisfiable) clauses are kept on a stack and traversed
completely during each step (flipping a literal).

Local search is called from the rephase procedure [3], [4]
which is scheduled in regular intervals. It can also be executed
as preprocessing step for an arbitrary number of rounds, which
in essence turns the solver into a local search solver (disabled
by default). As initial assignment for local search we use the
same assignments that would be selected in the CDCL loop
for decision variables (actually the target phases—see next
section—are always preferred, even for local search during
unstable phases). The best assignment (falsifying the smallest
number of clauses) determined during each local search round
is exported back to the CDCL loop as saved phases.

TARGET AND BEST PHASES

Probably the most important new technique is the use
of target phases, which can be seen as a generalization of
phase saving [10]. This well-known technique saves the last
value assigned to a variable (its saved phase) and uses it as
assignment value if a variable is selected as decision.1

In addition to these saved phases our new approach now also
maintains an array of target and another array of best phases.
The idea is to maximize the size of the trail without conflicts.
Thus during backtracking the prefix of the trail is determined
which did not (yet) lead to a conflict previous propagations.
The values of the literals on the prefix are then saved as new
target phases if this prefix is larger than the previously saved
one. In stable search phases these target phases are preferred
over saved phases [10] for decisions.

During rephasing [3], [4] saved phases are reset as before,
except, that beside the new local search rephasing discussed
above we have further a new best rephasing, which sets saved
phases to the values of the largest previously reached trail
without conflict and then resets these best phases. By default
best rephasing is only performed during stable search phases.

LUCKY PHASES

Occasionally applications produce trivial formulas in the
sense that they can be satisfied by for instance assigning
all variables to false. Some of them also made it into the
competition and therefore we implemented in LINGELING [11]

1Unfortunately there are now two uses of the word “phase” here, one
for stable and unstable search phases, as well as for the values assigned to
variables. We hope it is clear from the context which of the two interpretation
is meant whenever we use “phase”.

Proceedings of SAT Race 2019: Solver and Benchmark Descriptions, volume B-2019-1 of Department of Computer Science Series of Publications B,
University of Helsinki 2019.
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a “lucky phase” detector. This has been ported to CADICAL
and extended to detect horn clause benchmarks, which can be
satisfied by assigning in forward or backward order all vari-
ables to the same constant (interleaved with propagation). For
instance satisfiable multiplier miters [12] comparing correct
and buggy multipliers can be satisfied by this new lucky phase
procedure instantly if the inputs either appear consecutively at
the beginning or at the end of the variable range.

IMPROVEMENTS TO PREPROCESSING

Since (bounded) variable elimination [13] remains the most
important pre- and inprocessing technique, we tried to improve
its effectiveness even further. First, if variable elimination
completed, the bound on the number of allowed zero additional
clauses (difference between non-tautological resolvents and
clauses with a candidate variable) is increased (exponentially
from the default zero to 1,2,4,8,16) and all variables are
again considered as candidates for elimination attempts. We
further perform variable elimination by substitution [13] if
we are able to extract AND or XOR gates. We also added
eager backward subsumption and strengthening after each
successful variable elimination, in addition to our fast forward
subsumption algorithm [3] which is continued to be applied
to redundant clauses too. Last we added a resolution limit, to
reduce the time spent in variable elimination for large but easy
to solve formulas. In the same spirit we limit the number of
subsumption checks during forward subsumption.

As in previous versions the solver triggers failed literal
probing (including hyper binary resolution and equivalent
literal substitutions) independently from both subsumption (on
redundant and irredundant clauses followed by vivification)
and variable elimination (elimination rounds are interleaved
with subsumption and optionally, but disabled by default, with
blocked and covered clause elimination). These preprocessors
can also be called for multiple rounds initially. Using a conflict
limit this allows the solver to be used as a CNF preprocessor
(the extension stack needed for solution reconstruction can be
extracted as well).

CHRONOLOGICAL BACKTRACKING

The winner MAPLE LCM DIST CHRONOBT [14] of the
main track in the SAT Competition 2018 implemented a
combination of chronological backtracking with CDCL [15].
We have ported this idea to CADICAL and as in the original
work backtrack chronologically if backjumping would jump
over more than 100 levels, but otherwise do not limit its
application. We further combine it with the idea of reusing
the trail [16]. More details will appear in [17].

INCREMENTAL SOLVING AND MODEL BASED TESTING

Finally we added a new approach [18] to incremental
SAT solving which does not require to freeze variables (as
in MINISAT and LINGELING) in order to be combined
with inprocessing. To implement such a combination cor-
rectly requires sophisticated API testing and accordingly we
implemented a tightly integrated model based tester called
MOBICAL following the principles reported in [19].

LICENSE

The solver remains open source under the MIT License.
New versions are available at http://fmv.jku.at/cadical and
https://github.com/arminbiere/cadical.
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Candy for SAT Race 2019
Markus Iser∗ and Felix Kutzner†

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

∗markus.iser@kit.edu, †felix@kutzner.io

Abstract—We use Candy as a platform to systematically
analyse the properties of competing strategies in a portfolio.

I. INTRODUCTION

Candy [1] is a fork of Glucose 3 [5], [6]. Candy provides
a flexible and efficient architecture to experiment with many
different strategies. The solver does this by orchestrating a set
of loosely coupled systems, which mainly provide an interface
for implementations of competing strategies. For example,
Candy provides a variety of strategies in the branching-system.

II. IMPLEMENTATION

Among others, the branching system can resort to im-
plementations of gate-analysis and random-simulation based
implicit learning (RSIL) which uses the algorithms which we
presented in [7] and [8].

Candy now also has a parallel mode with selected com-
binations and configurations of strategies and efficient clause
sharing.

Candy implements the IPASIR interface [3] and an interface
to the generic massively parallel SAT solver HordeSAT [2].
The sonification interface makes solver runs even audible [4].

III. CANDY IN SAT RACE 2019

We submitted Candy in its default setting which is a
configuration of strategies that is roughly similar to the one
used in Glucose 3. This is the public evaluation of our baseline
performance for reference.

REFERENCES

[1] Candy GIT. https://github.com/Udopia/candy-kingdom
[2] HordeSAT GIT. https://github.com/biotomas/hordesat

[3] Ipasir GIT. https://github.com/biotomas/ipasir
[4] MiniSAT Sonification. https://www.youtube.com/watch?v=

iupgZGlzMCQ
[5] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern

SAT solvers. In: Proceedings of the 21st International Jont Conference
on Artifical Intelligence. pp. 399–404. IJCAI’09, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2009)

[6] Eén, N., Sörensson, N.: An extensible sat-solver. In: Theory and Appli-
cations of Satisfiability Testing, 6th International Conference, SAT 2003.
Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers.
pp. 502–518 (2003)

[7] Iser, M., Kutzner, F., Sinz, C.: Using gate recognition and random
simulation for under-approximation and optimized branching in SAT
solvers. In: 29th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2017, Boston, MA, USA, November 6-8, 2017. pp.
1029–1036 (2017)

[8] Iser, M., Manthey, N., Sinz, C.: Recognition of nested gates in CNF
formulas. In: Theory and Applications of Satisfiability Testing - SAT
2015 - 18th International Conference, Austin, TX, USA, September 24-
27, 2015, Proceedings. pp. 255–271 (2015)

Proceedings of SAT Race 2019: Solver and Benchmark Descriptions, volume B-2019-1 of Department of Computer Science Series of Publications B,
University of Helsinki 2019.

10



CCAnrSim in SAT Race 2019
Md Shibbir Hossen

Dept. of Computer Science & Engineering
Jagannath University
Dhaka, Bangladesh

shibbir.hossen@live.com

Md Masbaul Alam Polash
Dept. of Computer Science & Engineering

Jagannath University
Dhaka, Bangladesh

mdmasbaul@gmail.com

Abstract—This document is provided as a brief description of
the SAT solver named ”CCAnrSim” which is a stochastic local
search (SLS) solver.

Index Terms—SAT, Local Search, Similarity Checking Meta-
heuristics

I. INTRODUCTION

A very common problem of local search is it regenerates the
same solution after a certain time. Therefore, search may falls
in a stagnation stage. Here, we have introduced a new method
named Similarity Checking (SC) to escape from stagnation
stage. SC was a successful method in biological science for
protein structure prediction and that can be found in [1]. SC
metaheuristic is implemented on a comparable solver for SAT
named CCAnr [2].

II. MAIN TECHNIQUE

CCAnrSim is an SLS based SAT solver and it incorporates
common local search techniques like tabu, aspiration and
clause weighting. It includes CCA heuristic [3] that is used to
pick a compromising variable. To overcome the regeneration
of same solutions after a certain time, we have introduced a SC
meta-heuristic. The main technique of SC is to check similarity
of the current solution with some previously saved solutions.
If the similarity is high then this solution is discarded and
applied a focused random walk.The pickV ar() function in
[2] returns the variable to be flipped next.

Algorithm 1 describes the pseudo-code of similarity check-
ing. At line 1, we store some previously visited solutions
within a custom interval in elite sol[]. At line 2, elite iter
indicates the last solution index. So whenever a new solution
is found, we will check against all previously stored solutions.
It is not a good idea to save all previously visited solutions
because of memory constraint and that’s why we save the
solutions after a custom interval. At line 5, we determine
the similarity of current solution against all stored solutions
and if the similarity exceeds a predefined proximity value,
we discard the solution. If it is discarded then it performs a
focused random-walk to return a variable. Otherwise, we will
store it and return flipV ar that was picked from pickV ar.

III. MAIN PARAMETERS

In our solver, we set similarity percentage of proximity =
90% and number of elite solution elite sol length = 20. We
employ the Algorithm 1 after each 100 iterations.

Algorithm 1 similarity checking(flipV ar)

1: elite sol[] stores previously visited solutions
2: elite itr is the last solution index at elite sol[]
3: i← 1
4: while ++ i ≤ elite itr do
5: if similarity(cur sol, elite sol[i]) ≥ proximity

then
6: discard this solution
7: break
8: if i = elite itr then
9: elite itr ++

10: elite sol[elite itr]← currentsol
11: return flipV ar
12: else
13: flipV ar ← pick variable by performing focused random−

walk mode
14: return flipV ar

IV. IMPLEMENTATION DETAILS

Here, we have used C++ language to build the solver. It is
based on the code of CCAnr [2].

V. RUNNING TECHNIQUE

This solver is submitted to SAT Race 2019 for Application
and Hard-combinatorial tracks. It is compiled by g++ compiler.
Running command is :
./CCAnrSim − inst < instance name >
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CryptoMiniSat 5.6 with WalkSAT at the SAT Race
2019

Mate Soos (National University of Singapore)

Bart Selman (Cornell University), Henry Kautz (University of Rochester)

I. Introduction

This paper presents the conflict-driven clause-learning
(CLDL) SAT solver CryptoMiniSat v5.6 (CMS ) augmented
with the Stochastic Local Search (SLS) [10] solver WalkSAT
v56 as submitted to SAT Race 2019.

CryptoMiniSat aims to be a modern, open source SAT
solver using inprocessing techniques, optimized data struc-
tures and finely-tuned timeouts to have good control over
both memory and time usage of inprocessing steps. It also
supports, when compiled as such, to recover XOR con-
straints and perform Gauss-Jordan elimination on them at
every decision level. For the competition, this option was
disabled. CryptoMiniSat is authored by Mate Soos.

WalkSAT [6] is a standard system to solve satisfiability
problems using Stochastic Local Search. The version inside
CryptoMiniSat is functionally equivalent to the “rnovelity”
heuristic of WalkSAT v56 using an adaptive noise heuris-
tic [4]. It behaves exactly as WalkSAT with the minor
modification of performing early-abort in case the “low-
bad” statistic (i.e. the quality indicator of the current best
solution) indicates the solution is far. In these cases, we
early abort, let the CDCL solver work longer to simplify
the problem, and come back to WalkSAT later. The only
major modification to WalkSAT has been to allow it to
import variables and clauses directly from the main solver
taking into account assumptions given by the user.

A. Composing the Two Solvers

The two solvers are composed together in a way that
does not resemble portfolio solvers. The system runs the
CDCL solver CryptoMiniSat, along with its periodic in-
processing, by default. However, at every N inprocessing
step, CryptoMiniSat’s irredundant clauses are pushed into
the SLS solver (in case the predicted memory use is not
too high). The SLS solver is then allowed to run for a
predefined number of steps. In case the SLS solver finds
a solution, this is given back to the CDCL solver, which
then performs all the necessary extension to the solution
(e.g. for Bounded Variable Elimination, BVE [2]) and then
outputs the solution.

Note that the inclusion of the SLS solver is full in the
sense that assumptions-based solving, library-based solver
use, and all other uses of the SAT solver is fully supported
with SLS solving enabled. Hence, this is not some form
of portfolio where a simple shell script determines which
solver to run and then runs that solver. Instead, the SLS
solver is a full member of the CDCL solver, much like any
other inprocessing system, and works in tandem with it.
For example, in case an inprocessing step has reduced the

number of variables through BVE or increased it through
BVA [8], the SLS solver will then try to solve the problem
thus modified. In case the SLS solver finds a solution, the
main solver will then correctly manipulate is to fit the needs
of the “outside world”, i.e. the caller.

As the two solvers are well-coupled, the combination of
the two solvers can solve problems that neither system
can solve on its own. Hence, the system is more than just
a union of its parts which is not the case for traditional
portfolio solvers.

II. Major Improvements

A. Via Negativa

The system has been subjected to a thorough investi-
gation whether all the different systems that have been
implemented into it actually make the solver faster. In
this spirit, failed literal probing [7], stamping [3], burst
searching (random variable picking), and blocked clause
elimination [5] have all been disabled.

B. Chronological Backtracking

Chronological backtracking [9] has been implemented
into a branch of the solver. However, chronological back-
tracking (CBT) is a double-edged sword. Firstly, it slows
down the solver’s normal functionality as it adds a number
of expensive checks to both the propagation and the back-
tracking code. Secondly, it changes the trail of the solver in
ways that make it hard to reason about the current state
of the solver. Finally, it seems only to help with satisfiable
instances which are theoretically less interesting for the au-
thor of CryptoMiniSat. These issues make CBT a difficult
addition.

Currently, CryptoMiniSat by default does not implement
CBT. The SAT Race has two versions submitted, clearly
marked, one with, an one without CBT.

C. Cluster Tuning

The author has been generously given time on the
ASPIRE-1 cluster of the National Supercomputing Center
Singapore[1]. This allowed experimentation and tuning
that would have been impossible otherwise. Without this
opportunity, CryptoMiniSat would not stand a chance at
the SAT Race.

III. General Notes

A. On-the-fly Gaussian Elimination

On-the-fly Gaussian elimination is again part of Crypto-
MiniSat. This is explicitly disabled for the competition, but
the code is available and well-tested. This allows for special
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uses of the solver that other solvers, without on-the-fly
Gaussian elimination, are not capable of.

B. Robustness

CMS aims to be usable in both industry and academia.
CMS has over 150 test cases and over 2000 lines of Python
just for fuzzing orchestration, and runs without fault under
both the ASAN and UBSAN sanitisers of clang. It also
compiles and runs under Windows, Linux and MacOS X.
This is in contrast many academic winning SAT solvers that
produce results that are non-reproducible, cannot be com-
piled on anything but a few select systems, and/or produce
segmentation faults if used as a library. CryptoMiniSat has
extensive fuzzing setup for library usage and is very robust
under strange/unexpected use cases.

IV. Thanks

This work was supported in part by NUS ODPRT Grant
R-252-000-685-133 and AI Singapore Grant R-252- 000-
A16-490. The computational work for this article was
performed on resources of the National Supercomputing
Center, Singapore[1]. The author would also like to thank
all the users of CryptoMiniSat who have submitted over
500 issues and many pull requests to the GitHub CMS
repository[11].
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I. Introduction

This paper presents the conflict-driven clause-learning
(CLDL) SAT solver CryptoMiniSat v5.6 (CMS ) augmented
with the Stochastic Local Search (SLS) [11] solver YalSAT
03v as submitted to SAT Race 2019.

CryptoMiniSat aims to be a modern, open source SAT
solver using inprocessing techniques, optimized data struc-
tures and finely-tuned timeouts to have good control over
both memory and time usage of inprocessing steps. It also
supports, when compiled as such, to recover XOR con-
straints and perform Gauss-Jordan elimination on them at
every decision level. For the competition, this option was
disabled. CryptoMiniSat is authored by Mate Soos.

Yet Another Local Search SAT Solver (YalSAT) imple-
ments several variants of ProbSAT’s [4] algorithm and re-
cent extensions [3]. These variants are selected randomly at
restarts, scheduled by a reluctant doubling scheme (Luby).
For further details, see [1]. YalSAT is authored by Armin
Biere.

A. Composing the Two Solvers

The two solvers are composed together in a way that
does not resemble portfolio solvers. The system runs the
CDCL solver CryptoMiniSat, along with its periodic in-
processing, by default. However, at every N inprocessing
step, CryptoMiniSat’s irredundant clauses are pushed into
the SLS solver (in case the predicted memory use is not
too high). The SLS solver is then allowed to run for a
predefined number of steps. In case the SLS solver finds
a solution, this is given back to the CDCL solver, which
then performs all the necessary extension to the solution
(e.g. for Bounded Variable Elimination, BVE [5]) and then
outputs the solution.

Note that the inclusion of the SLS solver is full in the
sense that assumptions-based solving, library-based solver
use, and all other uses of the SAT solver is fully supported
with SLS solving enabled. Hence, this is not some form
of portfolio where a simple shell script determines which
solver to run and then runs that solver. Instead, the SLS
solver is a full member of the CDCL solver, much like any
other inprocessing system, and works in tandem with it.
For example, in case an inprocessing step has reduced the
number of variables through BVE or increased it through
BVA [9], the SLS solver will then try to solve the problem
thus modified. In case the SLS solver finds a solution, the
main solver will then correctly manipulate it to fit the needs
of the “outside world”, i.e. the caller.

As the two solvers are well-coupled, the combination of
the two solvers can solve problems that neither system
can solve on its own. Hence, the system is more than just

a union of its parts which is not the case for traditional
portfolio solvers.

II. Major Improvements

A. Via Negativa

The system has been subjected to a thorough investi-
gation whether all the different systems that have been
implemented into it actually make the solver faster. In
this spirit, failed literal probing [8], stamping [6], burst
searching (random variable picking), and blocked clause
elimination [7] have all been disabled.

B. Chronological Backtracking

Chronological backtracking [10] has been implemented
into a branch of the solver. However, chronological back-
tracking (CBT) is a double-edged sword. Firstly, it slows
down the solver’s normal functionality as it adds a number
of expensive checks to both the propagation and the back-
tracking code. Secondly, it changes the trail of the solver in
ways that make it hard to reason about the current state
of the solver. Finally, it seems only to help with satisfiable
instances which are theoretically less interesting for the au-
thor of CryptoMiniSat. These issues make CBT a difficult
addition.

Currently, CryptoMiniSat by default does not implement
CBT. The SAT Race has two versions submitted, clearly
marked, one with, an one without CBT.

C. Cluster Tuning

The author has been generously given time on the
ASPIRE-1 cluster of the National Supercomputing Center
Singapore[2]. This allowed experimentation and tuning
that would have been impossible otherwise. Without this
opportunity, CryptoMiniSat would not stand a chance at
the SAT Race.

III. General Notes

A. On-the-fly Gaussian Elimination

On-the-fly Gaussian elimination is again part of Crypto-
MiniSat. This is explicitly disabled for the competition, but
the code is available and well-tested. This allows for special
uses of the solver that other solvers, without on-the-fly
Gaussian elimination, are not capable of.

B. Robustness

CMS aims to be usable in both industry and academia.
CMS has over 150 test cases and over 2000 lines of Python
just for fuzzing orchestration, and runs without fault under
both the ASAN and UBSAN sanitisers of clang. It also
compiles and runs under Windows, Linux and MacOS X.
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This is in contrast many academic winning SAT solvers that
produce results that are non-reproducible, cannot be com-
piled on anything but a few select systems, and/or produce
segmentation faults if used as a library. CryptoMiniSat has
extensive fuzzing setup for library usage and is very robust
under strange/unexpected use cases.

IV. Thanks

This work was supported in part by NUS ODPRT Grant
R-252-000-685-133 and AI Singapore Grant R-252- 000-
A16-490. The computational work for this article was
performed on resources of the National Supercomputing
Center, Singapore[2]. The author would also like to thank
all the users of CryptoMiniSat who have submitted over
500 issues and many pull requests to the GitHub CMS
repository[12].
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COMiniSatPS Pulsar in SAT Race 2019
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Abstract—COMiniSatPS is a patched MiniSat generated by
applying a series of small diff patches to the last available version
(2.2.0) of MiniSat that was released several years ago. The essence
of the patches is to include only minimal changes necessary to
make MiniSat sufficiently competitive with modern SAT solvers.
One important goal of COMiniSatPS is to provide these changes
in a highly accessible and digestible form so that the necessary
changes can be understood easily to benefit wide audiences,
particularly starters and non-experts in practical SAT. As such,
the changes are provided as a series of incrementally applicable
diff patches, each of which implements one feature at a time.
COMiniSatPS has many variations. The variations are official
successors to an early prototype code-named SWDiA5BY that
saw great successes in the past SAT-related competitive events.

I. INTRODUCTION

It has been shown in many of the past SAT-related com-
petitive events that very simple solvers with tiny but criti-
cal changes (e.g, MiniSat [1] hack solvers) can be impres-
sively competitive or even outperform complex state-of-the-
art solvers [2]. However, the original MiniSat itself is vastly
inferior to modern SAT solvers in terms of actual performance.
This is no wonder, as it has been many years since the
last 2.2.0 release of MiniSat. To match the performance of
modern solvers, MiniSat needs to be modified to add some of
highly effective techniques of recent days. Fortunately, small
modifications are enough to bring up the performance of any
simple solver to the performance level of modern solvers. CO-
MiniSatPS [3]. adopts only simple but truly effective ideas that
can make MiniSat sufficiently competitive with recent state-
of-the-art solvers. In the same minimalistic spirit of MiniSat,
COMiniSatPS prefers simplicity over complexity to reach out
to wide audiences. As such, the solver is provided as a series
of incremental patches to the original MiniSat. Each small
patch adds or enhances one feature at a time and produces
a fully functional solver. Each patch often changes solver
characteristics fundamentally. This form of source distribution
by patches would benefit a wide range of communities, as
it is easy to isolate, study, implement, and adopt the ideas
behind each incremental change. The goal of COMiniSatPS
is to lower the entering bar so that anyone interested can
implement and test their new ideas easily on a simple solver
guaranteed with exceptional performance.

The patches first transform MiniSat into Glucose [4] and
then into SWDiA5BY. Subsequently, the patches implement
new techniques described in [5], [2], and [6] to generate the
current form of COMiniSatPS.

COMiniSatPS is a base solver of the MapleCOMSPS solver
series [7], [8], [9], [10] that participated in SAT Competition

2016, 2017, 2018, and SAT Race 2019.

II. COMINISATPS PULSAR

This year’s solver is identical to the last year’s solver.

III. AVAILABILITY AND LICENSE

Source is available for download for all the versions de-
scribed in this paper. Note that the license of the M4RI library
(used to implement the Gaussian elimination) is GPLv2+.
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Abstract—We describe four CDCL SAT solvers: MLD-
ChronoBT GCBump, expMaple CM, expMaple CM GCBump,
expMaple CM GCBumpOnlyLRB, which are entering the SAT
Race-2019. These solvers are based on two new ideas: 1) Guid-
ance of VSIDS via random exploration during conflict depression
phases and 2) Activity score bumping of Glue variables.

I. GUIDANCE OF VSIDS VIA RANDOM EXPLORATION
DURING CONFLICT DEPRESSION

This approach is based on our observation that CDCL SAT
solving entails clear non-random patterns of bursts of conflicts
followed by longer phases of conflict depression (CD). During
a CD phase a CDCL SAT solver is unable to generate conflicts
for a consecutive number of decisions. To correct the course
of such a search, we propose to use exploration to combat
conflict depression. We therefore design a new SAT solver,
called expSAT, which uses random walks in the context of
CDCL SAT solving. In a conflict depression phase, random
walks help identify more promising variables for branching.
As a contrast, while exploration explores future search states,
VSIDS relies on conflicts generated from the past search
states.

A. expSAT algorithm

Given a CNF SAT formula F , let vars(F), uV ars(F)
and assign(F) denote the set of variables in F , the set of
currently unassigned variables in F and the current partial
assignment, respectively. In addition to F , expSAT also accepts
four exploration parameters nW, lW, pexp and ω, where 1 ≤
nW, lW ≤ uV ars(F), 0 < pexp, ω ≤ 1. These parameters
control the exploration aspects of expSAT . The details of these
parameters are given below.

Given a CDCL SAT solver, expSAT modifies it as follows:
(I) Before each branching decision, if a substantially large
CD phase is detected then with probability pexp, expSAT
performs an exploration episode, consisting of a fixed number
nW of random walks. Each walk consists of a limited number
of random steps. Each such step consists of (a) the uniform
random selection of a currently unassigned step variable and
assigning a boolean value to it using a standard CDCL polarity
heuristic, and (b) a followed by Unit Propagation (UP). A walk
terminates either when a conflict occurs during UP, or after a
fixed number lW of random steps have been taken. Figure 1

illustrates an exploration episode amid a CD phase. (II) In an
exploration episode of nW walks of maximum length lW ,
the exploration score expScore of a decision variable v is the
average of the walk scores ws(v) of all those random walks
within the same episode in which v was one of the randomly
chosen decision variables. ws(v) is computed as follows: (a)
ws(v) = 0 if the walk ended without a conflict. (b) Otherwise,
ws(v) = ωd

lbd(c) , with decay factor 0 < ω ≤ 1, lbd(c) the
LBD score of the clause c learned for the current conflict,
and d ≥ 0 the decision distance between variable v and the
conflict which ended the current walk: If v was assigned at
some step j during the current walk, and the conflict occurred
after step j′ ≥ j, then d = j′ − j. We assign credit to all
the step variables in a walk that ends with a conflict and
give higher credit to variables closer to the conflict. (III) The
novel branching heuristic expVSIDS adds VSIDS score and
expScore of the unassigned variables. At the current state of
the search, the variable bumping factor of VSIDS is gz , where
g > 1 and z ≥ 1 is the count of conflicts in the search so far.
To achieve a comparable scale for expScore and VSIDS score,
we scale up the expScore by gz before adding these scores.
A variable v∗ with maximum combined score is selected for
branching. (IV) All other components remain the same as in
the underlying CDCL SAT solver.

Fig. 1: The 20 adjacent cells denote 20 consecutive decisions
starting from the dth decision, with d > 0, where a green cell
denotes a decision with conflicts and a black cell denotes a
decision without conflicts. Say that amid a CD phase, just
before taking the (d + 9)th decision, expSAT performs an
exploration episode via 3 random walks each limited to 3 steps
. The second walk ends after 2 steps, due to a conflict. A triplet
(v, i, j) represents that the variable v is randomly chosen at
the jth step of the ith walk.
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The Parameter Adaptation Algorithm: From the empir-
ical perspective, a parameter setting that is effective for one
instance may not be effective for another. To address this issue,
here we use an adaptive algorithm paramAdapt to dynamically
control when to trigger exploration episodes, and how much
exploration to perform in an exploration episode. The three ex-
ploration parameters pexp, nW , and lW are adapted between
CDCL restarts based on the search behavior. The details of
paramAdapt is given below:

The search in expSAT starts with a initial value P init of P .
paramAdapt keeps track of the following statistics about all
exploration steps within a period: the number of random steps
rSteps, the number of conflicts c, the number of glue-clauses
gc, the mean LBD value, lbd, of the learned clauses.

With fixed weights w1 > w2 > w3, an exploration
performance metric (EPM) is defined as

w1 × gc+ w2 × c
rSteps

+ w3 ∗
1

lbd

This performance metric rewards finding glue clauses (most
important), finding any conflict (very important), and learning
clauses with low LBD score (important).

At each restart, the algorithm computes a new EPM σnew

and compares (the comparison starts after the second restart)
it with the prior one σold, and update the parameter setting
P old just used to get a new setting Pnew.
- If σnew < σold, the performance of exploration is worse than
before. First, Pnew is set to the old P old, then we perform an
increment: Randomly select a parameter p ∈ P and increase
its value by a predefined stepsize.
- If σnew = σold, we only perform the increment, no reset.
- If σnew > σold, then exploration is working better than
before. We do not change P old in this case.

The values of a parameter are bounded by a range. When-
ever a value leaves its range, it is reset to its initial value.

II. GLUE VARIABLE BUMPING

Let a CDCL SAT solver M is running a given SAT instance
F and the current state of the search is S. We call the variables
that appeared in at least one glue clause up to the current state
S Glue Variables. We design a structure-aware variable score
bumping method named Glue Bumping (GB), based on the
notion of glue centrality (gc) of glue variables. Given a glue
variable vg , glue centrality of vg dynamically measures the
fraction of the glue clauses in which vg appears, until the
current state of the search. Mathematically, the glue centrality
of vg , gc(vg) is defined as follows:

gc(vg)←
gl(vg)

ng

, where ng is the total number of glue clauses generated by
the search so far. gl(vg) is the glue level of vg , a count of
glue clauses in which vg appears, with gl(vg) ≤ ng.

A. The GB Method

The GB method modifies a CDCL SAT solver M by adding
two procedures to it, named Increase Glue Level and Bump
Glue Variable, which are called at different states of the search.
We denote by Mgb the GB extension of the solver M .
Increase Glue Level: Whenever Mgb learns a new glue clause
g, before making an assignment with the first UIP variable that
appears in g, it invokes this procedure. For each variable vg
in g, its glue level, gl(vg) is increased by 1.
Bump Glue Variable: This procedure bumps a glue variable
vg , which has just been unassigned by backtracking. First a
bumping factor (bf) is computed as follows:

bf ← activity(vg) ∗ gc(vg)
, where activity(vg) is the current activity score of the variable
vg and gc(vg) is the glue centrality of vg .

Finally, the activity score of vg , activity(vg) is bumped as
follows:

activity(vg)← activity(vg) + bf

III. SOLVERS DESCRIPTION

We have submitted four CDCL SAT solvers to SAT
Race-2019, which are based on four combinations of the
two approaches described in the previous two sections. Our
solvers are implemented on top of the solvers MapleL-
CMDistChronoBT and Maple CM. In the following, we de-
scribe our solvers:

a) MLDChronoBT GCBump: This solver extends
MapleLCMDistChronoBT by implementing the the GB
method. In MLDChronoBT GCBump, Glue Variables are
bumped for all its three heuristics, namely- Dist, LRB and
VSIDS.

b) expMaple CM: The corresponding baseline system
Maple CM has three switches between VSIDS and LRB (i) it
runs VSIDS for the first 10,000 conflicts, (ii) then switches to
LRB, which runs until 2,500 seconds, and (iii) then switches
to VSIDS for the rest of the execution of the solver. In
expMaple CM, we replace VSIDS with expVSIDS for phase
(iii) and have kept everything else the same as in Maple CM.

c) expMaple CM GCBump: expMaple CM GCBump
is an GB extension of expMaple CM. This solver performs
Glue variable bumping for both LRB and expVSIDS.

d) expMaple CM GCBumpOnlyLRB: This system is
a variant of expMaple CM GCBump, where GB method only
increases the activity score of LRB heuristic In this solver, the
glue variable bumping is turned off after 2,500 seconds.

2
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Abstract—Glucose is a CDCL solver developed on top of
Minisat almost ten years ago, with a special focus on removing
useless clauses as soon as possible, and an original restart scheme
based on the quality of recent learnt clauses. We describe in this
short description the small novelties introduced for the SAT 2018
competition, that remains in the 2019 edition. We also give some
experimental evidences that motivated our choice to maintain
Glucose as is.

I. INTRODUCTION

Glucose is a CDCL (Conflict Driven Clause Learning)
solver introduced in 2009 that tries to center all the components
of the SAT solver around a measure of learnt clause quality,
called LBD, for Literal Block Distance. This measure allows
to delete a lot of learnt clauses from the beginning of the
computation. From a practical point of view, it seems that this
feature allows Glucose to produce more shorter proofs, which
probably explains why Glucose and Syrup won a number
of competitions in the last 9 years. A recent survey paper
summarises most of the improvements we added to the original
Glucose [1]. Of course, the current short description does not
mean to be exhaustive and the interested reader should refer
to the previous paper.

In a few words, however, Glucose enters SAT compe-
titions/races [2], [3] every year since its creation. Glucose
is based on the internal architecture of Minisat [4] (espe-
cially for the VSIDS implementation, the 2-Watched scheme
and the memory management of clauses (garbage collection,
...)). It is based on the notion of Literal Block Distance,
as aforementioned, a measure that is able to estimate the
quality of learnt clauses [5]. This measure simply counts
the number of distinct decision levels of literals occurring in
learnt clauses, at the time of their creation. Thanks to that,
new strategies for deleting clauses were proposed. Moreover,
the solver constantly watches the quality of the last learnt
clauses and triggers a restart when the quality is worst than
a dynamic threshold. Recent developments include a way
of postponing restarts when the number of assigned literals
suddenly increases without conflicts (a SAT solution may be
then expected). In the last version of Glucose, a special policy
allows the solver to decide which strategy to use with respect
to a set of identified extreme case [6].

Indeed, learnt clauses removal, restarts, small modifications
of the VSIDS heuristic are based on the concept of LBD. The
core engine of Glucose (and Syrup) is 9 years old. Syrup is a
parallel version of Glucose on which we focused most of our
efforts in the last years, but there is no parallel track this year.

Glucose and Syrup were not well ranked in the 2018 SAT

competition. We partially explain in this short description why
we choose to keep Glucose untouched despite this.

II. COMPONENTS INTRODUCED IN 2018

The 2018 version of Glucose and Syrup are very similar
to the 2016 ones, with two improvements. The main modifica-
tions are based on the extension of the recent LCM strategies
proposed recently [7] (which ”revived” the vivification tech-
nique [8]). We observed that the LCM strategy was not always
performed on clauses of small LBD only, because LCM was
not triggered right after clause database reduction, and thus
the order of clauses traversed by the LCM was not based on a
sorted order of learnt clauses. However, we observed that LCM
was more efficient when not always run on good clauses only
(LCM can replace clauses, and thus may delete a good clause).
We observed that LCM was more efficient when active clauses
were kept, in addition to clauses of small LBD. Glucose is now
keeping 10% of the most active clauses in addition to the usual
LBD based ranking.

III. COMPONENTS IN 2019

Despite the rapid adoption by the community of all the
MapleLCMDist mechanisms, we only incorporated the LCM
technology, as stated above.

Following the average ranking of Glucose in the 2018 SAT
Competition, we decided to test more formally the perfor-
mances of Glucose vs MapleLCMDistChronoBT [9], the clear
winner of the last year contest. We gathered all the available
problems and partitioned them by year. We obtained around
3800 problems on which we ran Glucose 4.2.1 (version partici-
pating in the 2018 competition) and MapleLCMDistChronoBT.
Results are shown in Figure 1. We observed that, despite the
very good results in the last competitions, the progress made
by the recent solvers is more difficult to measure on previ-
ously used problems. It shows that technologies developed
in Glucose in the last years are more efficient on problems
before 2013. At the opposite, MapleLCMDistChronoBT is
the method of choice for the recent sets of problems. More
importantly, it seems that all the technologies proposed in the
last years (except LCM) are hurting the performances of SAT
solvers on problems before 2013. Our intuition on this results
is that the MapleLCMDistChronoBT solver is more suited to
problems containing arithmetic constraints (typically classified
as ”Crafted” problems in the previous competitions) while
Glucose is more suited to ”Industrial” problems, as typically
gathered in the previous competitions.

We thus decided to maintain Glucose as is.
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Fig. 1. Percentage of problems on which Glucose is significantly better than
MaplLCMDistChronoBT, grouped by year of benchmark used in competitions,
Industrial category (when applicable).The X axis is the percentage of all
problems, introduced or used for the given year, where Glucose outperforms
MapleLCMDistChronoBT (both versions from 2018). Only not easy problems
are considered here (not solved by Glucose in less than 100,000 conflicts).
We say that a solver outperforms another one if it can solve a problem that
is unsolved by the other one (time out of 45 minutes), or if it can solve a
problem at least five times more faster than the other.

IV. ALGORITHM AND IMPLEMENTATION DETAILS

Glucose uses a special data structure for binary clauses, and
a very limited self-subsumption reduction with binary clauses,
when the learnt clause is of interesting LBD. The certified
UNSAT version of Glucose is using text-based logging infor-
mations of the proof.
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Abstract— This document describes Maple_LCM_BTL and 

its friends. 

I. INTRODUCTION 

 The improvements of these solvers are made mainly from 
the following two aspects. First, we improved the evaluation 
method of VSIDS, so that better branch decision variables can 
be selected. The second improvement is on the evaluation 
method of learnt clauses so that better clauses can be preserved. 

II.  IMPROVEMENT 

Variable state independent decaying sum (VSIDS) [1] is 
still the dominant branching heuristics because of its low cost. 
VSIDS consists of a rewarding mechanism for variables 
participating in the conflict. We  proposed a method to reward 
variables differently depending on information provided by the 
conflict analysis process, i.e., the literal block distance value of 
the learnt clause and the size of the backtrack level decided by 
the learnt clause [2]. We implement it as part of Glucose 4.1 
and Maple_LCM_Dist, and the corresponding solvers are 
named as Glucose_BTL and Maple_LCM_BTL. 

Two major problems need to be solved for the deletion of 
learnt clauses, which clauses to be deleted and when to delete. 
Most state of art SAT solvers use LBD value as the evaluation 
index and delete clauses according to different LBD thresholds. 

However, the differences of the learnt clauses with the same 
LBD value are not considered. Only the first 50% of the learnt 
clauses in the intermediate sequence and with the same LBD 
value will be deleted. Some clauses will be deleted even though 
they might be useful for the future. 

We therefore defined a new evaluation value—LD（Level 

Distance）that measures the difference of the max decision 

level of a literal ‘v’ in the learnt clause ‘c’ and its LBD value. 

 ( ) max( ( )) ( )LD c decisionlevel v LBD c    (1) 

When the LBD values of some learnt clauses are the same, 
the solver will retain the learnt clause with smaller LD. It 
means that we will keep the learnt clauses that are on top level. 
In order to implement this function we resort the learnt clauses 
in descending order when they have the same LBD value. This 
method is called LDCR(Level Distance Based Clause 
Reduction Heuristic). 

MapleLCMChronoBT_ldcr is based on 
MapleLCMDistChronoBT [3] and add the LDCR method. 

Glucose_421_DEL is a SAT solver that incorporate the 
deletion strategy in Maple_LCM_Scavel [4]. 
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Abstract—This document describes the SAT solvers Maple-
COMSPS LRB VSIDS and MapleCOMSPS CHB VSIDS that
implement our machine learning branching heuristics called the
learning rate branching heuristic (LRB) and the conflict history-
based branching heuristic (CHB).

I. INTRODUCTION

A good branching heuristic is vital to the performance
of a SAT solver. Glancing at the results of the previous
competitions, it is clear that the VSIDS branching heuristic
is the de facto branching heuristic among the top performing
solvers. We are submitting two unique solvers with a new
branching heuristic called the learning rate branching heuris-
tic (LRB) [1] and another solver with the conflict history-based
branching heuristic (CHB) [2].

Our intuition is that SAT solvers need to prune the search
space as quickly as possible, or more specifically, learn a high
quantity of high quality learnt clauses. In this perspective,
branching heuristics can be viewed as a bi-objective problem
to select the branching variables that will simultaneously
maximize both the quantity and quality of the learnt clauses
generated. To simplify the optimization, we assumed that the
first-UIP clause learning scheme will generate good quality
learnt clauses. Thus we reduced the two objectives down to
just one, that is, we attempt to maximize the quantity of learnt
clauses.

II. LEARNING RATE BRANCHING

We define a concept called learning rate to measure the
quantity of learnt clauses generated by each variable. The
learning rate is defined as the following conditional proba-
bility, see our SAT 2016 paper for a detailed description [1].

learningRate(x) = P(Participates(x) |
Assigned(x) ∧ SolverInConflict)

If the learning rate of every variable was known, then
the branching heuristic should branch on the variable with
the highest learning rate. The learning rate is too difficult
and too expensive to compute at each branching, so we
cheaply estimate the learning rate using multi-armed bandits, a
special class of reinforcement learning. Essentially, we observe

the number of learnt clauses each variable participates in
generating, under the condition that the variable is assigned
and the solver is in conflict. These observations are averaged
using an exponential moving average to estimate the current
learning rate of each variable. This is implemented using the
well-known exponential recency weighted average algorithm
for multi-armed bandits [3] with learning rate as the reward.

Lastly, we extended the algorithm with two new ideas. The
first extension is to encourage branching on variables that
occur frequently on the reason side of the conflict analysis
and adjacent to the learnt clause during conflict analysis. The
second extension is to encourage locality of the branching
heuristic [4] by decaying unplayed arms, similar to the decay
reinforcement model [5], [6]. We call the final branching
heuristic with these two extensions the learning rate branching
heuristic.

III. CONFLICT HISTORY-BASED BRANCHING

The conflict history-based branching heuristic (CHB) pre-
cedes our LRB work. CHB also applies the exponential
recency weighted average algorithm where the reward is
the reciprocal of the number of conflicts since the assigned
variable last participated in generating a learnt clause. See our
paper for more details [2].

IV. SOLVERS

All the solvers are modifications of COMiniSatPS [7]. We
used the same COMiniSatPS version that also participates in
the competition [8]. This year’s solvers are identical to the last
year’s solvers.

V. AVAILABILITY AND LICENSE

Source is available for download for all the versions de-
scribed in this paper. All the solvers use the same license
as COMiniSatPS. Note that the license of the M4RI library
(which COMiniSatPS uses to implement Gaussian elimina-
tion) is GPLv2+.
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Abstract—This document describes the
MapleLCMDistChronoBT-DL family of solvers which
are based on the SAT Competition 2018 winner, the
MapleLCMDistChronoBT solver, augmented with duplicate
learnts heuristic.

I. DUPLICATE LEARNTS

During the CDCL inference, some learnt clauses can be
generated multiple times. It is reasonable to assume that they
deserve special attention. In particular, the simple rule for their
processing can look as follows: if a learnt clause was repeated
at least k times (k ≥ 2) during the derivation, then this clause
should be permanently added to the conflict database. It can
be naturally implemented for solvers based on COMiniSatPS
[1], since they store learnt clauses in three tiers: core, tier2 and
local, where the learnts in core are not subject for reduceDB-
like procedures. Thus we basically can put duplicate learnts
into core when they satisfy the conditions outlined below.

In the submitted solvers we track the appearances of dupli-
cate learnts using a hashtable-like data structure and process
them based on several parameters. The hashtable is imple-
mented on top of C++ 11 unordered_map associative con-
tainer. The goal of parameters is to ensure that the hashtable
does not eat too much memory, that the learnt clauses are
filtered based on their LBD and that the learnts repeated a
prespecified number of times are added to tier2/core.

• lbd-limit – only learnt clauses with lbd ≤
lbd-limit are screened for duplicates.

• min-dup-app – learnt clauses that repeated
min-dup-app times are put into tier2, and the
ones repeated min-dup-app+1 times – to core tier.

• dupdb-init – the initial maximal number of entries in
the duplicate learnts hashtable.

The duplicates database is purged as soon as its size ex-
ceeds dupdb-init. Only the entries corresponding to learnt
clauses repeated at least min-dup-app times are preserved.

Additionally, we limit core_lbd_cut parameter of the
solver to 2 since duplicate learnts can provide a lot of
additional clauses to store in core.

All MapleLCMDistChronoBT-DL solvers are
based on the SAT Competition 2018 main track winner,

The research was funded by Russian Science Foundation (project No. 16-
11-10046).

MapleLCMDistChronoBT [2], which in turn is based on
Maple_LCM_Dist [3].

II. MAPLELCMDISTCHRONOBT-DL-V1.1

The solver employs lbd-limit=12, min-dup-app=3
(e.g. only learnts repeated 4 times are added to core), and
dupdb-init=500000. In addition to lbd-limit it also
filters out the learnt clauses which contain > 200 literals.
Also, if during the first 500 000 conflicts no duplicate learnt
was added to core tier, then it switches off the processing of
duplicate learnts altogether.

III. MAPLELCMDISTCHRONOBT-DL-V2.1

The solver employs lbd-limit=12, min-dup-app=3
(e.g. only learnts repeated 4 times are added to core), and
dupdb-init=500000.

IV. MAPLELCMDISTCHRONOBT-DL-V2.2

This solver employs lbd-limit=14, min-dup-app=2
(e.g. only learnts repeated 3 times are added to core), and
dupdb-init=1000000. In addition to that, the lbd value
separating tier2 from local tier is increased from 6 to 7.

V. MAPLELCMDISTCHRONOBT-DL-V3

This solver uses the same parameters as
MapleLCMDistChronoBT-DL-v2.1 but has a
deterministic LRB-VSIDS switching strategy: it starts from
LRB and switches each time the number of propagations
since the last switch exceeds a specific value. This value
starts from 30 000 000 propagations and is increased by 10%
each switch.
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Abstract

Variable indices imply the initial variable or-
dering in many SAT solvers. Our submis-
sion strategically rearranges the variable in-
dices of SAT instances and runs the top
ranked solver from the 2018 SAT Competition,
Maple LCM Dist ChronoBT. The key idea is to
map the static structure of a SAT problem to
a permutation over variable indices, with the
goal that related variables should have related
indices.

1 Description
Modern SAT solvers sometimes benefit from the order in
which a problem encoding is written down; hence, they
sometimes see performance degrade under random vari-
able renamings, despite the fact that each corresponds
to a logically identical formula [Heule et al., 2019]. We
introduce a SAT preprocessor that makes solvers in-
variant to isomorphic reorderings by mapping the static
structure of a CNF SAT problem to the permutations
over variable indices. Our system also requires post
processing to remap the variable indices for verifying
SAT assignments and DRAT proofs. The primary ef-
fect of variable renaming is in the initial variable order-
ing in many SAT solvers. We created a large design
space of variable index remapping strategies motivated
by work relating static structure to modern branching
heuristics (e.g., community structure and VSIDS [New-
sham et al., 2015]). After variable reindexing, we use
the Maple LCM Dist ChronoBT solver, which was the top
ranked solver at the 2018 SAT competition [Ryvchin and
Nadel, 2018][Luo et al., 2017]. We optimized for PAR2
performance over the past three main tracks of the SAT
competition.

The remapping strategy that we selected traverses the
graphical representation of CNF SAT problems using
information related to vertex degrees and community
structure. First, our preprocessor creates a weighted
variable incident graph. Each variable represents a ver-
tex. The weight of an edge between two vertices is
the number of clauses that the corresponding variables
jointly participate in. Second, we cluster the graph based

on community structure using a greedy modularity max-
imization algorithm. Next, we order the communities by
decreasing number of vertices and traverse each commu-
nity in a breadth first search beginning with the highest
degree vertex in each community. The traversal order
over vertices represents the new variable indices.

The key idea of our preprocessor is to encourage re-
lated variables to have related indices. Because vari-
able indices represent the initial variable ordering, re-
lated variables will initially be selected close together.
We speculate that this might lead to fast clause learn-
ing early on in solver execution where related variables
trigger fast contradictions if selected in quick succession.
This may have connections to the powerful variable or-
dering heuristic learning rate branching (LRB), where
variables are prioritized for assignment if they tend to
promote learning of new clauses [Liang et al., 2016].

Computing the community structure is prohibitively
expensive for large SAT problems. We only run our pre-
processor for instances where the community structure
can be efficiently computed. We build a random for-
est prediction model based on simple size information to
predict whether community structure can be computed
within 100 seconds. If our model predicts that graph
computation will be too expensive or we do the compu-
tation and it takes more than 100 seconds, then we run
Maple LCM Dist ChronoBT with the original variable in-
dices. Based on the instances from the past three com-
petitions, we expect that we will use our preprocessor
for ≈ 60% of instances.
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Abstract—We provide a brief introduction to our solvers
Maple LCM OnlineDel 19a and Maple CM OnlineDel 19b.
They use a simple online clause reduction scheme, which
involves no sorting and was introduced in [10], within
Maple LCM Dist ChronoBT, the first place solver in the SAT
Competition 2018 [1], [2].

I. INTRODUCTION

Maple LCM Dist ChronoBT won the gold medal of the
main track of the SAT competition 2018 [3]. Its clause main-
tenance strategy, which was inherited from COMiniSatPS,
involves three stores of learnt clauses: Core, Tier2 and Local
[4], [5]. The size of Core and Tier2 are limited by being
selective about which clauses are added. The majority of learnt
clauses are added to Local. The size of Local is limited by
periodically deleting half of the clauses with lowest activities,
as in most recent CDCL solvers [4], [6], [7].

II. ONLINE DELETION

The solvers described here replace the delete-half clause
deletion strategy by a new deletion scheme called Online
Deletion [10]. In Online Deletion, each time the solver derives
a new conflict clause we choose a previously learnt clause to
replace with it, according to the following simple method.

Clauses of Local are maintained in a circular list L with
an index variable i that traverses the list in one direction. The
index indicates the current “deletion candidate” Li at each
time. For deletion, we maintain a clause quality measure Q,
and a threshold quality value q. When a new clause C is
learnt and needs to be stored in Local, we select the next
“low quality” clause in the list to be replaced with C. The
index i is showing the next candidate Li. While Q(Li) ≥ q,
we increment i to “save” clause Li for one more “round” in
the circular list; The first time Q(Li) < q, we replace Li with
C and delete the “old” clause Li. The size of Local, indicates
how long a round is, and the clause quality measure threshold
is chosen in a way that there are always sufficiently enough
“low-quality” clauses in the list to be deleted [10].

The submitted solvers use a simple quality measure based
on counting how many times a clause has been used in conflict
analysis since the last time it was considered for deletion. Q
is calculated as follows:
Each clause has a quality measure RUL which is an indicator
of its recent usage and LBD. RUL is initialized with 0 when a
clause is first learnt. Every time a clause C is used in conflict
analysis, its RUL is increase by 12/LBD(C). In the solvers

submitted to this competition, the clause Li is saved if its RUL
is at least 2. (Q(Li) = RUL(Li) and q = 2). If a clause is
saved, its RUL resets to 0.

III. MAPLE LCM ONLINEDEL 19A

This solver is built based on the winning solver of the
SAT competition 2018, Maple LCM Dist ChronoBT [1]. The
delete half clause deletion scheme is replaced by Online
Deletion as described above. The maximum size of Local
is set to 80,000, which indicates the “length” of each round
during most of the run. The solvers was first introduced in
[10] with minor difference in RUL (replaced 20/LBD(C)
with 12/LBD(C)).

IV. MAPLE CM ONLINEDEL 19B

This solver is the same as Maple LCM OnlineDel 19a with
2 differences:

1) Size of Local is set to 50,000
2) Unlike Maple LCM Dist ChronoBT that uses the learnt

clause minimization introduced in [8]. This solver has
further learnt clause minimization as in the solver
Maple CM Dist, which won the third place in the main
track of SAT competition 2018 [9].
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Abstract— This document describes the SAT solvers which 
used EWMA for the SAT Race 2019. 

I. INTRODUCTION 
MapleLCMChronoBT_Scavel_EWMA is an improved 

SAT solver based on MapleLCMChronoBT and  
Maple_LCM_Scavel [1, 5]. The improvement is made mainly 
from the following aspect: We add a new evaluation method 
which named CTS (cumulative trend strength) [4], which is for 
evaluating  learnt clauses  by Exponential Weighted Moving 
Average  (EWMA) [2]  so that better clauses can be preserved. 

II. IMPROVEMENT 
We retain the framework of MapleLCMChronoBT to 

implement the corresponding sequence backtracking [3]. We 
also incorporate our technical expertise in Maple_LCM_Scavel, 
which include two aspects: dynamic comprehensive variable 
activity evaluation and learnt clause threshold value 
management strategy. Our improvement work is as follows: 

CHEN et al. [4] studied the time series distribution of learnt 
clauses used and proposed an algorithm for quantifying the 
cumulative trend strength (CTS) of learning clauses. The 
random and scattered time distribution is transformed into 
continuous cumulative trend strength, and the trend strength 
threshold is set to determine whether the clause should be 
deleted. 

Setting the threshold of cumulative trend strength for learnt 
clause evaluation is a violent truncation method. In statistics, a 
moving average is the principle of evaluating a certain window 
of recent data  points  related to time series data. It is, e.g., 
often used in technical analysis of financial data in connection 
with stock prices. In a similar way, the tendency of learning 

clauses to participate in conflict analysis can be judged by 
comparing the short-term and long-term cumulative trend 
strength. 

In order to make better use of the dynamic information of 
the cumulative trend strength, we use the EWMA algorithm to 
improve the evaluation criteria of learnt clauses. 

Expecting to achieve better performance, we further refined 
and adjusted relevant operating parameters through 
experiments, based on our Maple_LCM_Scavel solver of 2018. 

MapleLCMDChronoBT_DEL is also based on 
MapleLCMChronoBT and  Maple_LCM_Scavel [1, 5]. It 
adopts only the deletion strategy in Maple_LCM_Scavel. 
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Abstract—The sequential SAT solver MERGESAT starts from
last years competition winner, and adds known as well as novel
implementation and search improvements. MERGESAT is setup
to simplify merging solver contributions into one solver, to
motivate more collaboration among solver developers.

I. INTRODUCTION

When looking at recent SAT competitions, the winner of
the current year was typically last years winner plus a single
modification. However, each year there are several novel ideas
that the winner does not pick up. Hence, lots of potential with
respect to maximal performance is likely lost, and bug fixes
of previous versions do not make it into novel ones.

The CDCL solver MERGESAT is based on the competition
winner of 2018, MAPLE LCM DIST CHRONOBT [12], and
adds several known techniques, fixes, as well as adds some
novel ideas. To make continuing the long list of work2
that influenced MERGESAT simpler, MERGESAT uses git to
combine changes, and comes with continuous integration to
simplify extending the solver further.

II. INTEGRATED TECHNIQUES AND FIXES

Most recently, backtracking has been improved by [8].
Backtracking improvements during restarts have already been
proposed in [11]. MERGESAT uses the partial trail based
backtracking during restarts.

Learned clause minimization (LCM) [6] is also kept. It is
still open research in which order literals should be considered
during vivification [9]. MERGESAT uses the improvement
from [7], which repeats vivification in reverse order, in case
a clause could be simplified with the first order. The original
implementation of LCM adds a bit to the clause header to
indicate that this clause has been considered already. However,
no other bit has been dropped from the header, resulting in a
65 bit header structure. Along [4], this can result in a major
slow down of the solver. Consequently, MERGESAT drops a
bit in the size representation of the clause.

Large formulas require a long simplification time, even
though simplification algorithms are polynomial. While for a
5000 second timeout, large simplification times are acceptable
for effective simplifications, usually an incomplete simplifica-
tion helps the solver already. Therefore, we introduce a step
counter, that is increased whenever simplification touches a
clause. Next, we interrupt simplification as soon as this counter
reaches a predefined limit, similarly to [2]. To speed sim-
plification up further, the linear subsumption implementation
and related optimizations from [3] have been integrated into
MERGESAT.

Since the solver MAPLESAT [5], the decision heuristic is
switched back from the currently selected one to VSIDS –
after 2500 seconds. As solver execution does not correlate
with run time, this decision results in solver runs not being
reproducible. To fix this property, the switch to VSIDS is now
dependent on the number of performed propagations as well
as conflicts. Once, one of the two hits a predefined limit,
the heuristic is switched back to VSIDS. This change enables
reproducibility and deterministic behavior again.

MERGESAT implements an experimental – and hence dis-
abled by default – heuristic to decide when to disable phase
saving [10] during backtracking, which has been used in
RISS [7] before: When the formula is parsed, for each non-unit
clause it is tracked whether before applying unit propagation
there is a positive literal. In case there is no positive literal,
a break count is incremented. For the whole formula, this
count approximates how close the formula is to being able
to be solved by the pure literal rule. In case this break count
is zero, or below a user defined threshold, no phase saving
is used. The same rule is applied for negative literals. There
exists benchmarks, where this heuristic with a threshold zero
results in a much better performance. However, for a mixed
benchmark, this feature has not been tested enough, and hence,
remains disabled.

III. INCREMENTAL SAT

In previous variants of MAPLESAT, incremental solving
via assumptions was disabled. To be able to use MERGESAT
as backend in model checkers and other tools that require
incremental solving capabilities, this feature is brought back.
Furthermore, an extended version 1 of the IPASIR interface [1]
is provided, which besides the usual functionality offers an
additional function ipasir solve final to tell the SAT solver
that this call is the final (or only) call. This function allows the
solver to use formula simplification more extensively, because
usually simplification cannot be applied during incremental
solving.

IV. AVAILABILITY

The source of the solver is publicly available under the MIT
license at https://github.com/conp-solutions/mergesat. The ver-
sion with the git tag “satrace-2019” is used for the submission.
The submitted starexec package can be reproduced by running
“./scripts/make-starexec.sh” on this commit.

1https://github.com/conp-solutions/ipasir
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V. CONTINUOUS TESTING

The submitted version of MERGESAT compiles on Linux
and Mac OS. GitHub allows to use continuous testing, which
essentially build MERGESAT, and tests basic functionality:
i) producing unsatisfiability proofs, ii) building the starexec
package and producing proofs, iii) being used as an incre-
mental SAT backend in Open-WBO as well as iv) solving via
the IPASIR interface. All these steps are executed by executing
the script “tools/ci.sh” from the repository, and the script can
be used as a template to derive similar functionality.
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Abstract—This document uses a new Unit Propagation (called
also Boolean Constraint Propagation) heuristic to improve CDCL
(conflict-driven clause-learning) SAT solvers. This new heuristic
is called Core First Unit Propagation. Generally speaking, the
unit propagation is implemented by scanning sequentially every
clause over a linear watch-list. Instead of it, we prefer core clauses
over non-core ones during unit propagation. Using the core first
unit propagation technique, we improve two CDCL SAT solvers:
smallsat and MapleLCMDistChronoBT, and design a new SAT
solver called optsat

I. INTRODUCTION

Unit propagation (which is called also Boolean Constraint
Propagation) is not only an important component of every
modern CDCL SAT solver, but also an important one of some
proof checkers [1], [2]. BCP (Boolean Constraint Propagation)
carries out repeatedly the identification of unit clauses and the
creation of the associated implications until either no more
implications are found or a conflict (empty clause) is produced.
In general, BCP is implemented by scanning sequentially
every clause over a linear watch-list. Based on our empirical
observation, we found that this implementation is not efficient
in some cases. Because of this, this article proposes a new
unit propagation heuristic called core first unit propagation. Its
basic idea is to prefer core clauses over non-core ones during
unit propagation, trying to generate a shorter learnt clause.

II. CORE FIRST UNIT PROPAGATION

In this article, a clause is said to be core if it is a learnt
clause and its LBD (Literal Block Distance) value is less than
7, where LBD is defined as the number of decision variables in
a clause [5]. Here the core concept corresponds to the concept
of non local in the CoMiniSatPS solver that classifies learnt
clauses into three categories [6]. It is different from the core
concept used in [1], [2], where core clauses refer to marked
or visited ones, and have nothing to do with LBD. The basic
idea of CFUP ( Core First Unit Propagation) is to prefer core
clauses over non-core ones during unit propagation. This can
be done by moving core clauses ahead of non-core clauses.
The pseudo-code of CFUP shown in Algorithm 2 assumes that
a full literal watch scheme (a full occurrence list of all clauses)
is used, If using a two literal watch scheme [7], The statement
“Append W [l] − C to the end of C ” in Algorithm 2 can be
replaced with the code of Algorithm 1.

A general CDCL solver has two watchlists: binary and
non binary. We adopt the core priority strategy only on a

Algorithm 1 Append non-core to core under two literal watch
scheme
W [l]: set of clauses watched by literal l

D := ∅
for k = 0 to end index of W [l] do

if W [l][k] has more than two unassigned literals then
D := D ∪ {W [l][k]}
W [s] = D ∪ {W [l][k]}
where s is unwatched and unassigned literal

end if
end for
Append W [l] − C − D to the end of C

non-binary watchlist. By our empirical observation, adopting
always the core priority strategy is not good choice. A better
policy is that when the number of conflicts is less than 2×106,
CFUP is called, Otherwise, BCP is called. The high-level
algorithm CDCL combining CFUP and BCP are shown in
Algorithm 3. CDCL given in Algorithm 3 uses a loop to reach
a status where either all the variables are assigned (SAT) or an
empty clause is derived (UNSAT). Inside the loop, based on
whether the number of conflicts is greater than θ, it decides
to invoke either CFUP or BCP. Here BCP is considered a
unit propagation without any priority strategy. If there is a
conflict, CFUP or BCP returns a falsified conflicting clause.
Otherwise, a new decision is taken and pushed to the trail
stack. Conflict analysis learns a new 1UIP clause γ. CDCL
asserts the unassigned 1UIP literal and pushes it to the trail
stack.

III. SMALLSAT

Here, smallsat is an improved version of smallsat 2018 [9].
This version adds CFUP and adopt the mixed learning rate.
The learning rate rv in this solver is defined as

rv =
Cv + Sv + Pv

T

where Cv , Sv and Pv is the number of conflict clauses, seen
clauses and reason clauses variable v participated in since v is
picked or assigned, T = conflictCounter − pickedT ime[v]
when LBD < 22, T = conflictCounter − assigedT ime[v]
otherwise, where pickedT ime[v] and assigedT ime[v] are
the number of conflicts since v is picked and assigned,
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Algorithm 2 CFUP( ): Core First Unit Propagation
T: trail stack of decisions and implications
W [l]: set of clauses watched by literal l

β := null
for q := index of 1st unvisited literal in T to T .size do

l := T [q]
C := ∅, where C is used to store core clauses
for k = 0 to W [l].size do

if W [l][k] is unit then
u := the unassigned literal of W [l][k]
Push u to the end of T
if W [l][k] is core clause then

C := C ∪ {W [l][k]}
else

if W [l][k] is falsified then
β := W [l][k] break

end if
end if

end if
Append W [l] − C to the end of C
W [l] := C
if β ̸= null then return β

end for
end for
return null

Algorithm 3 CDCL(): Conflict-Driven Clause Learning
T: trail stack of decisions and implications
γ: a learnt clause

while not all variables assigned do
if No of conflict > θ then

conflict cls := BCP()
else

conflict cls := CFUP()
end if
if conflicting cls ̸= null then

(1uip, γ) := ConflictAnalysis(conflicting cls)
if γ = ∅ then

return UNSAT
end if
Push 1uip to T
Backtrack(current decision level-1)

else
Decide and push the decision to T

end if
end while
return SAT

respectively. Like the solver inIDGlucose [10], the initial phase
of a decision variable in this solver is based on a weighted
literal occurrence count on the original CNF.

IV. OPTSAT

This solver is simpler than smallsat. Compared to the above
version of smallsat, optsat removes the tree-based branching
solving strategy of smallsat. In this solcer, The learning rate
rv is defined as

rv =
Cv + Pv

T

where Cv and Pv is the number of conflict clauses and reason
clauses v participated in since v is assigned, and T is the
interval time that is defined as T = conflictCounter −
assigedT ime[v]. The initial phase of a decision variable in
this solver is similar to the solver inIDGlucose [10]. That is,
it is set by weighting a literal occurrence in the original CNF.

V. MAPLELCMDISTCBTCOREFIRST

This is a hack version of MapleLCMDistChronoBT [3], [4].
This solver adds only CFUP. The remainder keeps unchanged.
That is, it is the same as MapleLCMDistChronoBT.
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Abstract—This document describes the solvers
PADC MapleLCMDistChronoBT, PADC Maple LCM Dist
and PSIDS MapleLCMDistChronoBT which integrate the
PADC (periodic aggressive learned clause database cleaning)
strategy and the PSIDS (Polarity State Independent Decaying
Sum) heuristic.

I. INTRODUCTION

The boolean satisfiability problem (SAT) has seen tremen-
dous progresses in its resolution these last years thanks to
the integration of several features within the so-called CDCL
(Conflict-Driven Clause Learning) [1]–[4] SAT solvers which
made them capable of effectively solving several previously
intractable instances. These features include clause learning,
efficient unit propagation through watched literals, effec-
tive learned clause database management, dynamic branching
heuristics, restarts etc. SAT solvers nowadays implement many
heuristics and are highly sensible to slight modifications in
their source codes. That is, a simple change in the source
code can result in a solver with completely different perfor-
mances. A typical example is the great number of solvers
that participated in the last SAT competitions, which are the
result of very simple modifications of Minisat [5]/Glucose [6],
[7] and which showed important performances improvement.
The methods we use in this document follows the same
idea, i.e. improving performances with slight modifications.
The first is the PADC (periodic aggressive learned clause
database cleaning) strategy [8] and the second is the PSIDS
(Polarity State Independent Decaying Sum) polarity heuristic.
They have been integrated into the winners of the last two
SAT competitions namely MapleLCMDistChronoBT [9] and
Maple LCM Dist [10] in order to participate in the 2019 SAT
Race. The PADC strategy showed good performances in the
2018 SAT competition when integrated within Glucose-3.01

and its current integration into the winners of the previous
SAT Competitions revealed significant improvements during
preliminary experiments conducted on the latest competi-

1https://www.labri.fr/perso/lsimon/downloads/softwares/glucose-3.0.tgz

tions’ benchmarks. We are impatient this year to see how
our integration of PADC into MapleLCMDistChronoBT and
Maple LCM Dist will perform on the new benchmark set.
PSIDS (Polarity State Independent Decaying Sum) as far as it
is concerned is a polarity heuristic which closely follows the
principle of the VSIDS branching heuristic [11].

II. PADC

The PADC (periodic aggressive learned clause database
cleaning) strategy [8] is an aggressive learned clause database
cleaning strategy which periodically deletes a large amount
of clauses in the learned clause database. This technique
allows the solver to periodically perform a deep cleaning of
the learned clause database. Concretely, after every K − 1
executions of the cleaning procedure (i.e. at the K th execu-
tion after the previous deep cleaning step), all the learned
clauses are removed, except those of very high quality —
such as clauses with LBD ≤ 2 — and those that are
involved in the construction of the implication graph. This
aggressive learned clause database reduction has some posi-
tive impact on the solver’s performances such as increasing
diversification, reducing memory consumption and speeding
up unit propagations. We integrated this technique within
MapleLCMDistChronoBT and Maple LCM Dist and called
the resulting solvers PADC MapleLCMDistChronoBT and
PADC Maple LCM Dist respectively. Note that these solvers
use a three-tiered learned clauses database where the learned
clauses are divided into the following three sets : CORE,
TIER2 and LOCAL. CORE and TIER2 store clauses with
LBD ≤ 6, the best of which being stored in CORE while
LOCAL stores the others. We introduced in them a parameter
called ClearType in order to control which learned clause
database to clear during deep cleaning steps. ClearType can
take three values : 0, 1 or 2 indicating respectively to clean the
LOCAL learned clause database only, the LOCAL and TIER2
databases and all databases.
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III. PSIDS HEURISTIC

Branching and polarity heuristics are known to be determi-
nant for the performances of SAT solvers. Once the branching
heuristic has chosen the next variable to branch on, the polarity
heuristic comes into play to determine which polarity to set
for the latter. The de facto standard branching and polarity
heuristics today are VSIDS (Variable State Independent De-
caying Sum) [11] and progress saving [12] (also known as
phase saving) respectively. Although there have been several
attempts to replace it, VSIDS still remains a widely used
branching heuristic in modern SAT solvers. It operates by
choosing for branching, the most active unassigned variable
in the solver. Progress saving as for it was introduced to
prevent repeated work in solvers since upon non chronological
backtracking there can be some redundant rediscovery of some
sub-problems’ solutions lost while unassigning variables. The
limitation with progress saving is that it takes into account
only the saved polarities of the assignment preceding the
backjumping. This can still lead to the rediscovery of some
sub-problems’ solutions as some polarities may change after
setting the asserting literal. The polarity that is frequently used
might be a good choice at this level since it might more
likely be the one which make the sub-problem satisfied: this
is the intuition behind the PSIDS (Polarity State Independent
Decaying Sum) heuristic. The PSIDS heuristic is similar to the
VSIDS heuristic but is used for polarities instead of variables.
Concretely, we keep for each variable in the solver two scores
for its positive and negative polarities respectively. Each time
a polarity — of a variable — is set in the solver, the activity of
the latter is increased, and when a decision is made using the
branching heuristic, then the most active polarity is chosen. As
with VSIDS, we decrease from time to time the activities of all
polarities (of all variables) in order to favor most recent ones.
This heuristic unlike progress saving [12] takes into account
the agility of the polarity of a variable in a longer period.

IV. SAT RACE 2019 SPECIFICS

We submitted two configurations of
PADC MapleLCMDistChronoBT : the first with parameter
K set to 10 and with ClearType set to 0, and the second
with K set to 5 and ClearType set to 0 as well. As far as
PADC Maple LCM Dist is concerned, we set its parameter
K to 10 and ClearType to 0. We also integrated the PSIDS
heuristic within MapleLCMDistChronoBT and submitted
the resulting solver PSIDS MapleLCMDistChronoBT to the
2019 SAT Race.

V. ACKNOWLEDGMENTS
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Abstract—This note introduce a novel method for im-
proving CDCL-based SAT solvers by relaxing backtrack
and integrating local search techniques, and we use this
method to improve four state of the art CDCL solvers.
The four resulting solvers called Relaxed LCM Dist, Re-
laxed LCMDistChronoBT, Relaxed LCMDistChronoBT p9 and
Relaxed LCMDistChronoBT Scavel.

I. INTRODUCTION

We propose a method to improve CDCL solvers by relaxing
the backtracking. The idea is to relax the backtrack process,
by allowing some promising branches to be extended to
the leaf (corresponding to a complete assignment) without
backtracking, even if conflicts are met during extending the
assignment. The resulting complete assignments obtained in
this way are highly consistent and are more likely to have
small distances to a model (satisfying assignment). Then, a
local search solver is called to find a model nearby. If the
local search cannot find a model within a short time limit,
the CDCL search process continues as normal from the node
where the algorithm enters the non-backtracking phase.

II. A RELAXED CDCL APPROACH

Our method is to relax the backtracking by protecting
promising partial assignments from being pruned. Specifically,
during the search of CDCL, whenever reaching a node cor-
responding to a promising assignment, the algorithm enters a
non-backtracking phase (with some condition), which uses unit
propagation and heuristics in CDCL to assign the remaining
variables without backtracking, even an empty clause is de-
tected. At the end, this leads to a complete assignment β,which
is fed to a local search solver to search for a model nearby.
If the local search fails to find a model within a certain time
budget, then the algorithm goes back to the normal CDCL
search from the node where it was interrupted (we call this
a breakpoint). The non-backtracking phase does not change
the data structures used for CDCL search process. So, if all
calls of local search fail to find a solution, the modified solver
works in the same way just as the original CDCL solver, but it
may have a lower speed due to the time consumption of local
search.

III. THE LOCAL SEARCH ALGORITHM

As for the local search solver used in our four solvers, we
use the CCAnr [1] solver. There are three parameters in the
local search solver : the average weight threshold parameter

γ, and the two factor parameters ρ and q. All of the three
parameters are for the Threshold-based Smoothed Weighting
(TSW) weighting scheme.

IV. MAIN PARAMETERS

There is one parameter p for controlling the cooperation of
the backtracking style procedure and the local search solver.
Meanwhile, we limit the time of Local search procedure no
more than 300 seconds every time ReasonLS call it, and limit
the sum of all Local search time no more than a propotion ξ
of the total runtime.

For all our relaxed CDCL solvers, the parameters are
set as follows with only one exception (p is 0.9 for Re-
laxed LCMDistChronoBT p9).
p = 0.5; ξ = 0.3; γ = 50; ρ = 0.3; q = 0.7.

V. IMPLEMENTATION DETAILS

Our four solvers are implemented in
C++. Relaxed LCM Dist is developed based
on the codes of Maple LCM Dist[2] and
CCAnr. Relaxed LCMDistChronoBT and Re-
laxed LCMDistChronoBT p9 are developed based on
the codes of Maple LCM Dist ChronoBT[3] and CCAnr,
and the only one difference between them is the value
parameter p. Besides, Relaxed LCMDistCB Scavel uses
some techniques from Maple LCM Scavel [4] to optimize
the performance of ReasonLS LCMDistCB.

VI. SAT COMPETITION 2019 SPECIFIES

Our four solvers are submitted to “main Track”. It is
compiled by g++ with the ’O3’ optimization option.

They need to be compiled in the root folder by running
“./starexec build”.

The running command is: “./starexec run default $1” in
folder “./bin”. The parameter $1 is the absolute path of input
file. For a given input file ”∼/sc/a.cnf”, the call command is
”./starexec run default ∼/sc/a.cnf ”.
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Abstract—The sequential SAT solver RISS combines a heavily
modified Minisat-style solving engine of GLUCOSE 2.2 with
a state-of-the-art preprocessor COPROCESSOR and adds many
modifications to the search process. RISS allows to use in-
processing based on COPROCESSOR. As unsatisfiability proofs
are mandatory in 2019, but many simplification techniques
cannot produce them, a special configuration is submitted, which
first uses all relevant simplification techniques, and in case of
unsatisfiability, falls back to the less powerful configuration that
supports proofs.

I. INTRODUCTION

The CDCL solver RISS is a highly configurable SAT
solver based on MINISAT [1] and GLUCOSE 2.2 [2], [3],
implemented in C++. Many search algorithm extensions have
been added, and RISS is equipped with the preprocessor
COPROCESSOR [4]. Furthermore, RISS supports automated
configuration selection based on CNF formulas features, emit-
ting DRAT proofs for many techniques and comments why
proof extensions are made, and incremental solving. The
solver is continuously tested for being able to build, correctly
solve CNFs with several configurations, and compile against
the IPASIR interface. For automated configuration, RISS is
also able to emit its parameter specification on a detail level
specified by the user. The repository of the solver provides a
basic tutorial on how it can be used, and the solver provides
parameters that allow to emit detailed information about the
executed algorithm in case it is compiled in debug mode
(look for “debug” in the help output). While RISS also imple-
ments model enumeration, parallel solving, and parallel model
enumeration, this document focusses only on the differences
to RISS 7, which has been submitted to SAT Competition
2017. Compared to the version of 2018, only the NOUNSAT
configuration has been added.

II. SAT COMPETITION SPECIFICS – NOUNSAT
CONFIGURATION

The default configuration uses only variable elimination [5]
and bounded variable addition [6] as simplification, both of
which can produce unsatisfiability proofs.

While recent SAT competitions come with a NOLIMITS
track, this years event requires unsatisfiability proofs. To com-
ply, simplification techniques that cannot produce proofs have
been disabled in this situation. Differently, this years version
comes with the NOUNSAT configuration, which basically
cannot produce unsatisfiability answers. This means, that all
simplification techniques are available for formulas that are
satisfiable, or cannot be solved. In case the formula turns out to
be unsatisfiable, the procedure is solved one more time, using
the configuration that can produce unsatisfiability proofs.

III. AVAILABILITY

The source of the solver is publicly available under the
LGPL v2 license at https://github.com/conp-solutions/riss. The
version with the git tag “satrace-2019” is used for the submis-
sion. The submitted starexec package can be reproduced by
running “./scripts/make-starexec.sh” on this commit.
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[1] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT 2003, ser.
LNCS, E. Giunchiglia and A. Tacchella, Eds., vol. 2919. Heidelberg:
Springer, 2004, pp. 502–518.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI 2009, C. Boutilier, Ed. Pasadena: Morgan
Kaufmann Publishers Inc., 2009, pp. 399–404.

[3] ——, “Refining restarts strategies for sat and unsat,” in CP’12, 2012, pp.
118–126.

[4] N. Manthey, “Coprocessor 2.0 – a flexible CNF simplifier,” in SAT 2012,
ser. LNCS, A. Cimatti and R. Sebastiani, Eds., vol. 7317. Heidelberg:
Springer, 2012, pp. 436–441.

[5] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in SAT 2005, ser. LNCS, F. Bacchus and
T. Walsh, Eds., vol. 3569. Heidelberg: Springer, 2005, pp. 61–75.

[6] N. Manthey, M. J. Heule, and A. Biere, “Automated reencoding of
Boolean formulas,” in Hardware and Software: Verification and Testing,
ser. Lecture Notes in Computer Science, A. Biere, A. Nahir, and
T. Vos, Eds., vol. 7857. Springer Berlin Heidelberg, 2013, pp. 102–117.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-39611-3 14

Proceedings of SAT Race 2019: Solver and Benchmark Descriptions, volume B-2019-1 of Department of Computer Science Series of Publications B,
University of Helsinki 2019.

37



SLIME: A Minimal Heuristic to Boost SAT Solving
Oscar Riveros

Research Architect at www.PEQNP.science
PEQNP

Santiago, Chile.
oscar.riveros@peqnp.science

Abstract—This is the system description of the SLIME SAT
Solver submitted to the SAT Competition 2019, based in MapleL-
CMDistChronoBT winner by PAR-2 Score of SAT Competition
2018 [1] on Main Track.

I. DESCRIPTION

On CDCL Based SAT Solvers the trail size is strictly related
to progress or to the total conflicts on the current assignment,
such that if the trail size is the same that the number of
variables, then current assignment is valid.

On the other hand, in the selection of the current variable it
is necessary to assign a predetermined polarity to the resulting
literal, which in most implementations is a predefined value.

SLIME implement a simple heuristic with minimal com-
plexity, that correlated the trail size and the polarity of the
current variable to assign.

The selection of variable is not related to trail size, this
decouple the both concepts.

Algorithm 1 Boost: Algorithm for Variable Selection.
Require: variable
Ensure: literal

polarity[variable] = !polarity[variable]
if size(trail) > global then
global = size(trail)

else if size(trail) < global then
polarity[variable] = !polarity[variable]

end if
return literal(variable, polarity[variable])

* The global is an external variable init to 0.

II. EXPERIMENTAL RESULTS

Thanks to www.starexec.org it could be possible to test the
Boost Heuristics vs The Control Solver, in a real context, these
are the results for SAT Race 2006 and SAT Race 2015 at 1800
seconds of wall with the PAR-2 score scheme. (The score of a
solver is defined as the sum of all runtimes for solved instances
+ 2*timeout for unsolved instances, lowest score wins.)
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Fig. 1. SAT Race 2006 at 1800 seconds

TABLE I
SAT RACE 2006

SAT-VERIFIED UNKNOWN UNSAT
CONTROL 39 / 6200.9036 12 / 21600.5500 49 / 4073.3146

SLIME 40 / 13636.2266 6 / 10800.2000 54 / 5925.2390
PAR-2 SCORE: SLIME-41161.8656 vs CONTROL-53475.3182

Fig. 2. SAT Race 2015 at 1800 seconds

TABLE II
SAT RACE 2015

SAT-VERIFIED UNKNOWN UNSAT
CONTROL 337 / 75335.6121 141 / 253807.9600 173 / 45136.8643

SLIME 316 / 72936.3637 132 / 237606.6200 203 / 63956.2390
PAR-2 SCORE: SLIME-612105.8427 vs CONTROL-628088.3964
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Abstract—SPARROWTOMERGESAT is a combination of the
solvers SPARROW and MERGESAT, and is heavily inspired by
SPARROWTORISS. SPARROWTOMERGESAT is first trying to
solve the problem with SPARROW+CP3, limiting its execution to
5 ·108 flips. If the formula could not be solved, the CDCL solver
MERGESAT then tries to solve the problem.

The SLS solver SPARROW is the same version as used in 2014
and 2018. The solver MERGESAT is the same solver as used
plain in this years competition.

I. INTRODUCTION

While in 2014, where this solver combination was submitted
for the first time, the benchmark was split in industrial and
combinatorial families, recent competitions did not insist on
this split any more. Last year, SPARROWTORISS performed
amazingly well in the NOLIMIT track of the competition,
when the number of solved formulas is considered. However,
in the main track, SPARROWTORISS did not perform well.
The major difference is due to the fact that SPARROWTORISS
does not use SPARROW, as soon as a unsatisfiability proof is
required, even though the input formula might be satisfiable.
As there is no NOLIMIT track this year, the solver has been
adapted.

The motivation of the combination of a SLS and CDCL
solver can be found in [3], where formula simplification is
used to boost the efficiency of SLS solvers on crafted families.
The best found technique together with SPARROW represents
the basis of our solver SPARROW+CP3. As SLS solvers cannot
show unsatisfiability, we run a CDCL solver after a fixed
amount of 5 · 108 flips, so that the overall solver behavior
stays deterministic.

II. MAIN TECHNIQUES

SPARROW is a clause weighting SLS solvers that uses
promising variables and probability distribution based selec-
tion heuristics. It is described in detail in [4]. Compared to the
original version, the one submitted here is updating weights of
unsatisfied clauses in every step where no promising variable
can be found.

The used preprocessor CP3 is an extension of COPROCES-
SOR 2 [7], and received updates, but no changes since 2018.

The CDCL solver MERGESAT uses the MINISAT
search engine [5], more specifically the extensions added
in GLUCOSE 2.2 [1], [2], MAPLESAT [6] up until
MAPLE LCM DIST CHRONOBT [9].

Currently, no information is forwarded from the SLS solver
to the CDCL solver. However, by using MERGESAT, a
powerful CDCL engine is used, which is capable of producing

unsatisfiability proofs. To motivate our approach, we now start
with SPARROW+CP3, even if proofs are required. In case the
SLS solver hits the step limit, we fall back to MERGESAT,
which will produce the unsatisfiability proof.

III. MAIN PARAMETERS

SPARROW is using the same parameters as SPARROW 2011.
The configuration of CP3 has been tuned for SPARROW

in [3] on the SAT Challenge 2012 satisfiable hard combinato-
rial benchmarks. The configuration used in 2019 is the same
configuration used in the version of 2014 and 2018.

The details of MERGESAT are described in this years solver
description [8].

IV. IMPLEMENTATION DETAILS

SPARROW is implemented in C. The solver MERGESAT is
build on top of MINISAT 2.2, and many successfuly succes-
sors, and is implemented in C++.

V. AVAILABILITY

SPARROW is available at https://github.com/adrianopolus/
Sparrow, and commit “satrace-2019” has been used.

The source of MERGESAT, as well as SPARROW-
TOMERGESAT is publicly available under the MIT license at
https://github.com/conp-solutions/mergesat. The version with
the git tag “satrace-2019” is used for the submission. The
submitted starexec package can be reproduced by running
“./scripts/make-starexec.sh -r satrace-2019 -s satrace-2019” on
this commit.
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Abstract—This paper describes our CDCL SAT solver
Topk-LC-Glucose which we submit to the SAT Race 2019.

I. INTRODUCTION

Clause Learning [1], [2] is one of the most important
components of a conflict driven clause learning (CDCL) SAT
solver that is effective on industrial SAT instances. Since the
number of learned clauses is proved to be exponential in the
worst case, it is necessary to identify the most relevant clauses
to maintain and delete the irrelevant ones. As reported in
the literature, several learned clauses deletion strategies have
been proposed. However the diversity in both the number
of clauses to be removed at each step of reduction and the
results obtained with each strategy increase the difficulty
to determine which criterion is better. Thus, the problem
to select which learned clauses are to be removed during
the search step remains very challenging. Our SAT solvers
Topk-LC-Glucose presented in this paper integrate a novel
approach to identify the most relevant learned clauses without
favoring or excluding any of the learned clause database
cleaning strategies proposed, but by adopting the notion of
dominance relationship among those measures. These solvers
bypasse the problem of results diversity and reache a compro-
mise between the measures assessments. Furthermore, they
also avoid another non-trivial problem which is the number
of deleted clauses at each reduction of the learned clause
database.

II. DOMINANCE RELATIONSHIP BETWEEN LEARNED
CLAUSES IN GLUCOSE

Topk-LC-Glucose was implemented on top of the solver
Glucose3.0 by integrating the learned clause database
cleaning approach described in [3]. More precisely, this
approach is obtained by selecting at each cleaning step
of the learned clauses database, the top-k current undomi-
nated learned clauses (the k first Reference Learned Clauses
[3]) according to a set of learned clauses relevant mea-
sures, and to delete all the learned clauses dominated by at
least one of the top-k current undominated learned clauses.
Topk-LC-Glucose solver avoids another non-trivial prob-
lem which is the amount of learned clauses to be deleted
at each reduction step of the learned clauses database by
dynamically determining the number of learned clauses to

delete at each cleaning step. Dominance relationship between
learned clauses is described in more detail in [3].

We submit to the SAT Race 2019 an implementation of our
Topk-LC-Glucose solver integrating three learned clauses
relevant measures in the dominance relationship: Size [4], [5];
that considers the shortest learned clauses as the most relevant,
LBD [6]; that considers the clauses with the smallest LBD
measure as the most relevant, and CSIDS [7]; that prefers the
learned clauses most involved in recent conflict relationship.

III. ALGORITHM FOR FINDING top-k LEARNED CLAUSES

During the search process, the CDCL SAT solvers learn a
set of clauses which are stored in the learned clauses database
∆ = {c1, c2, ..., cn}. At each cleaning step, we evaluate
these clauses with respect to a set M = {m1,m2, ...,mk} of
relevant measures. We denote m(c) the value of the measure
m for the clause c, c ∈ ∆, m ∈ M. Since the evaluation
of learned clauses varies from a measure to another one,
using several measures could lead to different outputs (relevant
clauses with respect to a measure). For example, consider the
three learned clauses, c1, c2 and c3 with their values on the
three relevant measures LBD, SIZE and CVSIDS [7]:
• SIZE (c1) = 8, LBD(c1) = 3, CVSIDS (c1) = 1e10;
• SIZE (c2) = 6, LBD(c2) = 5, CVSIDS (c2) = 1e20;
• SIZE (c3) = 5, LBD(c3) = 4, CVSIDS (c3) = 1e30.
It comes from the previous example that c1 is the best clause

with respect to the LBD measure whereas it is not the case
according to the evaluation of SIZE measure which favors
c3. This difference of evaluations is confusing for any process
of learned clauses selection. Hence, we can utilize the notion
of dominance between learned clauses to address the selection
of relevant ones.

Algorithm 1 starts by sorting the set ∆ of learned clauses
according to their degree of compromise [3]. It is easy to see
that the first clause of ∆ is not dominated, it is the top-1.
So, at the beginning of the algorithm, we have at least one
undominated clause. In step ind (ind > 1) of the outermost
while-loop, the clause in position ind is compared to at most
ind − 1 undominated clauses. As soon as it is dominated, it
is removed, otherwise, it is kept as undominated clauses.
Degree of compromise: Given a learned clause c, the

degree of compromise of c with respect to the set of learned
clauses relevant measures M is defined by DegComp(c) =
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Algorithm 1: reduceDB_Dominance_Relationship
Input: ∆: the learned clauses database; M: a set of

relevant measures; k: the number of reference
learned clauses

Output: ∆ t he new learned clauses database
1 sortLearntClauses() ; /* by degree of
compromise criterion */

2 ind = 1;
3 j = 1;
4 undoC = 1 ; /* the number of current

undominated clauses */
5 while ind < |∆| do
6 c = ∆[ind] ; /* a learned clause */
7 if c.size() > 2 and c.lbd() > 2 then
8 cpt = 0 ;
9 while cpt < undoC and ¬dominates(∆[cpt],

∆[ind], M) do
10 cpt++ ;
11 if cpt >= undoC then
12 saveClause() ;
13 j + + ;
14 undoC = min(k, j) ; /* minimum between

j and k */
15 else
16 removeClause() ;
17 else
18 saveClause() ;
19 j + + ;
20 undoC = min(k, j) ; /* minimum between j

and k */
21 ind + +;
22 return ∆ ;

23 Function dominates(cMin: a clause, c: a clause, M)
24 i = 0;
25 while i < |M| do
26 m =M[i] ; /* a relevant measure */
27 if m(c) � m(cMin) then
28 return FALSE ;
29 i + +;
30 return TRUE ;

∑|M|
i=1 m̂i(c)

|M | , where m̂i(c) corresponds to the normalized value
of the clause c on the measure mi.
dominance value: Given a learned clause relevant

measure m and two learned clauses c and c′, we say that
m(c) dominates m(c′), denoted by m(c) � m(c′), iff m(c)
is preferred to m(c′). If m(c) � m(c′) and m(c) 6= m(c′)
then we say that m(c) strictly dominates m(c’), denoted
m(c) � m(c′).

IV. SUBMITTED VERSIONS

We submit two variants of Topk-LC-Glucose to the
SAT Race 2019 and different scripts to start it with different
parameters. Each variant with a different way for normalizing

the set of learned clauses relevant measures which are defined
in the follow.

How to normalize the values of the learned clauses?

For the two variants of our Topk-LC-Glucose solver
submitted to the SAT Race 2019, we propose two ways
for normalizing the values of the learned clauses. Given a
learned clause relevant measure m and a learned clause c, we
normalize the value of the clause c on the measure m using
the two approaches described in the following.

Normalization of the learned clause values (approach 1):

• If m higher values are better, then m̂(c) = 1
m(c) ;

• If m smaller values are better, then m̂(c) = m(c)
nV ars() , with

nV ars() the number of variables of the Boolean formula.
Normalization of the learned clause values (approach 2):

• If m higher values are better, then m̂(c) = m(c)
M , where

M is the upper bound of the learned clause values on the
measure m;

• If m smaller values are better, then m̂(c) = 1
m(c) .

For each variant of Topk-LC-Glucose, we submit
two versions with respectively the parameter k = 3
(Top3_Glucose) and k = 6 (Top6_Glucose).
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ZIB Glucose: Luby Blocked Restarts and Dynamic
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Abstract—The solver ZIB Glucose is based on Glucose 3.0
and mainly differs from its original in three implementation
details. The dynamic restart heuristic was altered, a learned
clause minimization (LCM) based on vivification was added, and
the preprocessor was extended. These changes were made to
boost the performance on satisfiable problems while maintaining
performance on unsatisfiable ones.

Index Terms—sat solver; restart heuristic; vivification; variable
elimination

I. LUBY BLOCKED RESTARTS

Glucose uses a dynamic restart heuristic based on the
LBDs of recently learned clauses [3]. The solver restarts
when the last LBDs have a significantly higher average than
the total LBD average. Additionally, when a solver reaches
a significantly deeper search space, the LBD queue of the
dynamic restart heuristic is flushed, which blocks a potential
restart until the queue is full again, i.e., for a number n
of conflicts equal to the queue’s length. ZIB Glucose delays
restarts further by blocking potential restarts for n · luby(m)
conflicts, where m is the number of blocked restarts and luby()
is the restart sequence (e.g. (1,1,2,1,1,2,4,1,1,...) for the power
of 2) by the same name [2].

Additionally, we split the LBD queue in two parts where the
first always contains the newest learned LBDs and the second
contains the iteratively flushed LBDs of the first. A restart will
then be triggered, when two conditions apply:

1) the average of both queue parts is larger than the total
LBD average (equals the condition in Glucose 3.0) and

2) the average of the first queue part is larger than the total
LBD average

The second condition allows the solver to stay in the search
spaces, when recent LBDs are small and less recent LBDs are
significantly larger. Glucose 3.0 allows per default an increase
of the average LBD in the queue of 20 % before a restart
is triggered. Due to increasing the number of conflicts per
restart by introducing Luby in blocking and splitting the LBD
queue, the increase of 20 % of LBD values is disabled in
ZIB Glucose.

The combination of both approaches leads to seldomly
enforced long restart intervals and also rapid restarts, while
trying to learn clauses of small LBD value. This behavior

This work received funding from the BMBF under grant 01IH15006C
(HPSV).

should increase the performance on satisfiable instances with-
out significantly decreasing the performance on unsatisfiable
problems.

II. DYNAMIC VIVIFICATION

In some test cases the LCM approach described by Luo
et al. [7] using vivification [8] for learned clauses takes over
50 % of the total propagations. However, nearly no clause was
minimized. To overcome this issue, we measure the impact
of the minimization during solving and block, if necessary,
the LCM. The impact is measured by tracking the number of
failed vivifications f , the number of succeeded vivifications s
and the rate r by which a clause was minimized on average
(r ∈ [0, 1]). Then, the following condition should hold during
the complete solving process:

s

f
· r + c ≥ pv

p

, where p is the total number of propagations, pv the number
of propagations used for the vivification and c ∈ [0, 1] the
minimal ratio spend for LCM. In the SAT Race we set c =
0.01,i.e., the solver spends at least 1 % on LCM propagations.

Since at some point further LCMs are blocked, the order in
which the clauses are minimized is important. The missing key
insight to properly solve this problem was given by Audemard
et al. [4] by applying vivification first to the most active
clauses.

III. EXTENDED PREPROCESSING

The Glucose preprocessor is based on SatElite [5] and
uses variable and clause elimination based on resolution and
subsumption. Our version calls the elimination routine mul-
tiple times, where the first iteration is equal to the original
preprocessor. The following iterations start with an empty sub-
sumption queue and allow the variable elimination to remove
a variable x, also when it increases the number of clauses
with the restriction that the two clause sets (one containing all
occurrences of x and the other all of −x) are constructed from
the same set of variables. The intention behind this approach is
to make already strongly connected parts of the SAT problem
more efficient for unit propagation.

Additionally, the elimination is not disabled for huge prob-
lems (containing more than 480,000 clauses). Instead, we set
a hard time limit of 150 seconds, which might be replaced
by a deterministic counter in the future. This is also a quick
fix for a performance bug, where the preprocessor exceeds the
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computation time of 5000 s (e.g. happening for the ’barman-
pfile08-032.sas.ex.15.cnf’ of SAT competition 2016), which
was to the best of our knowledge only fixed in the solver
TopoSAT2 [1], [6].
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The benchmarks for the SAT Race 2019 were drawn from
a pool containing benchmarks that (i) were used in past
competitive SAT events (SAT Competitions, SAT Races, and
SAT Challenge 2012); and (ii) new benchmarks submitted to
SAT Race 2019 (the descriptions for these benchmarks are
provided in these proceedings). The benchmark suite consists
of 400 benchmarks of which 200 are old and 200 are new.

As in recent SAT Competitions, the focus is on medium-
to-hard benchmark formulas. As a consequence no old bench-
marks that can be solved reasonably efficiently by a state-
of-the-art solver of a decade ago were selected. The solver
MiniSAT version 2.2 [1] was used as the representative solver
from a decade ago. We ren MiniSAT on all benchmarks in the
Main, Application and Crafted tracks of the prior competitive
events and categorized the benchmarks into three buckets,
easy, medium, and hard, based on the solver runtimes. A
benchmark was categorized as “easy” if MiniSAT could solve
it in 600 seconds, “hard” if MiniSAT could not solve it in
5000 seconds, and “medium” otherwise. For SAT Race 2019,
we then selected 100 medium and 100 hard benchmarks from
prior competitive events.

A weighted random selection was applied to each bucket.
The weight for each benchmark depended on the track in
which it was used in a prior competitive events. Benchmarks
that were used in Industrial tracks were assigned weight
3, ones used in Crafted tracks weight 1, and ones used
in Main tracks weight 2. These weights are motivated as
follows: most benchmarks that were submitted to SAT Race
2019 were crafted. To make the combination of old and new
benchmarks more balanced, we therefore prioritized industrial
old benchmarks. Based on the weights, a random order of the
benchmarks in each bucket was generated. From the medium
bucket, the first 50 satisfiable and the first 50 unsatisfiable
benchmarks wrt this order were selected. From the hard
bucket, the first 100 benchmarks wrt this order were selected.

For SAT Competition 2018 it was mandatory to submit
benchmarks in order to participate in the competition. This
requirement was dropped for SAT Race 2019. Unfortunately,
there were relatively few benchmarks submitted in 2019.
As a consequence, it was challenging to include 200 new
benchmarks, especially due to the restriction that at most 20
benchmarks could be selected from a SAT Race participant (in
order to limit the influence of a participant on the results). By
the submission deadline, the organizers received benchmarks
from Joseph Bebel, Armin Biere, Jingchao Chen, Dieter von
Holten, Norbert Manthey, Volodymyr Skladanivskyy, and Oleg

Zaikin. (We kindly thank each of then for their contribution!)
Most submissions contained between 10 and 20 instances.
After the deadline we further asked Neng-Fa Zhou to generate
new instances with his tool Picat [2] using instances of
XCSP competition 2018. Additionally, the organizers used the
benchmark challenges from a recent publication on matrix
multiplication [3].
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Abstract—These benchmarks were generated by the latest
version of the ToughSAT software and are based on the hardness
of factoring products of prime numbers. Instances based on prod-
ucts of primes are always satisfiable by exactly 2 assignments and,
assuming widely accepted cryptographic assumptions, should be
computationally hard to solve, with superpolynomial difficulty
in the size of the primes used. The latest version of ToughSAT
includes substantial improvements to the absolute and asymptotic
complexity of the produced SAT instances, producing instances
with significantly fewer variables and clauses for the same size
prime numbers.

Index Terms—factoring, SAT, karatsuba multiplication, fast
integer multiplication, circuit optimization, boolean formula op-
timization

I. INTRODUCTION

The ToughSAT project (https://toughsat.appspot.com/) by
Joseph Bebel and Henry Yuen is designed to be an easy-to-
use and easy-to-understand open source (https://github.com/
joeintheory/ToughSAT) generator of computationally hard
SAT instances. Specifically, it is a concrete implementation
of several conceptually well-known strategies for hard SAT
instance generation packaged as a web app and python script
allowing quick and easy generation.

Integer Factoring is a well known problem in NP widely
assumed to be hard in the average-case. This problem is
not often necessary to compute in most practical applications
and is most widely associated with cryptographic applications
where instance sizes large enough to be computationally
impractical to solve.

While ToughSAT is not the first software to generate hard
SAT instances from Integer Factoring, a major goal of the
project is to produce the “hardest possible” SAT instances
from each Integer Factoring instance. Ideally, large instances
of Integer Factoring (as measured by the number of bits in each
prime factor) should be practically convertible to reasonably
large SAT instances. For example, cryptographic size instances
should produce instances which are not excessively large
as to be unwieldy and impractical to generate, store, and
load into SAT solvers (whether they are solvable by a SAT
solver is a separate issue). In principle, assuming the the
Exponential Time Hypothesis, solving SAT instances should

The author gratefully acknowledges the support of the Annenberg Graduate
fellowship and the ARCS Foundation Los Angeles Chapter.

require worst case running time exponential in the number of
variables. Therefore, it is reasonable to suspect that “not many”
additional variables are necessary to encode Integer Factoring
into SAT instances.

ToughSAT has been improved towards this goal where
smaller instances now produce more efficient boolean formulas
using fewer variables and clauses in smaller DIMACS files.
Interestingly, the reduction in variables anecdotally seems to
produce instances which take longer to solve (compared to
less efficient SAT instances generated from the same prime
numbers).

II. IMPROVEMENTS TO TOUGHSAT

The primary improvements to ToughSAT occurred in
2015 (the original ToughSAT was released in 2011) and
have come from the use of the Karatsuba multipli-
cation algorithm and the Espresso heuristic logic min-
imizer (https://ptolemy.berkeley.edu/projects/embedded/pubs/
downloads/espresso/index.htm), along with some additional
small optimizations.

The Karatsuba multiplication algorithm is a “fast integer
multiplication” algorithm capable of multiplying n bit integers
in time O(nlog2 3) time which is asymptotically better than
the O(n2) time of classical integer multiplication. For our
purposes, even though the numbers we are multiplying are
rather small (20-30 bits per multiplicand, to obtain SAT
instances that are solvable in practice) using the Karatsuba
algorithm does produce smaller instances than the classical
multiplication algorithm. While there are fast integer multi-
plication algorithms asymptotically superior to the Karatsuba
algorithm, their large constant overhead likely would produce
SAT instances larger than Karatsuba’s in the 20-30 bit integer
regime. It remains an open question whether asymptotically
better integer multiplication algorithms would be superior in
the cryptographic regime (greater than 384 bits per multi-
plicand), although such SAT instances are likely completely
impractical as SAT solver benchmarks.

The instances are further shrunk substantially by use of the
Espresso logic minimizer. The minimizer is not used directly
in the construction of each SAT instance but rather was used
to find minimal or at least smaller “building blocks” of each
boolean functional unit used in Karatsuba’s algorithm. For
example, the initial implementation of Karatsuba’s algorithm
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may use basic units such as single bit adders, used in the form
of CNF formulas on 5 variables that are satisfied on valid
input/outputs of a 1 bit binary adder. This results in many
intermediate variables, which for our purposes are wasteful.
Instead, we can encode entire functional units (such as 8 bit
adders and 6 bit multipliers) in CNF directly, with only the
external input/output variables required (the internal interme-
diate variables being removed). Such CNF formulas of an 8
bit adder or 6 bit binary multiplier are rather large if written
out in standard product of sums format (essentially describing
the truth table of those functions) but can be optimized quite
substantially with Espresso. The Espresso optimized functional
units are used in our implementation of Karatsuba’s algorithm.

In the small prime regime we are most interested in (at
most 30 bit primes) this means we can avoid a substantial
number of intermediate variables. For comparison, the 30 bit
primes instance generated here needed only 988 intermediate
variables to produce the 60 bit product, not far off from the
approximately 900 intermediate variables required to simply
even write down the partial products of the classical integer
multiplication algorithm (completely ignoring the complex
addition steps afterward).

III. INSTANCES GENERATED

We generated a test instance constructed from two 23 bit
prime numbers, using ToughSAT version 20190413, and used
CryptoMiniSat 5.6.8 on default settings to estimate difficulty.
CryptoMiniSat found a satisfying assignment in 313.2 seconds
on a MacBook Pro (13-inch Retina Late 2013) with Intel Core
i7-4558U 2800 MHz dual core CPU. Therefore, problems in
this regime (22 to 26 bits) should be feasibly solvable using
state-of-the-art SAT solvers given substantial CPU time.

28 distinct prime numbers (14 pairs of equal sized primes)
were generated: 2 pairs of 22 bit primes; 4 pairs of primes of
each of 23, 24, 25, and 26 bits; 1 pair of each of 27, 28, 29,
and 30 bits. The primes were generated by OpenSSL 1.1.1b
with the command “openssl prime -generate -bits b” where b
is the number of bits required. Each pair was used to generate
a single instance “20190413 toughsat bbits i.dimacs”, where
b is the number of bits in each prime factor and i is the index
of the pair used. Each pair of primes uses distinct primes and
no instances share prime factors.

In each DIMACS file, the target number (the product of the
two primes) is given, along with the indexes of the variables
encoding each prime factor. The input bits are encoded so
that least-significant bit has smaller variable, so for example
p = x30x29 . . . x1 and q = x60x59 . . . x31.

An observation: the 30 bit instance is nowhere near cryp-
tographic size, however it may still be impractically large
for some SAT solvers. The instance itself is quite reasonably
sized (1108 variables, 27721 clauses, 897061 byte DIMACS
file). In theory, subexponential time algorithms for Integer
Factorization can solve products of 30 bit primes using almost
no computational resources. However, to our knowledge there
is no SAT solver in existence which implicitly or explicitly
“encodes” the knowledge of number fields or other number

theory to exploit any structure of the Integer Factoring prob-
lem. Therefore, it is not immediately obvious how exhaustive
search can be avoided except for a constant number of bits.
It is an interesting question to evaluate the extent to which a
SAT solver can reliably find exploitable structure in factoring-
sourced instances.

IV. CONCLUSION

The goal of the ToughSAT project is to use conceptually
well known and understood methods to produce small, hard,
SAT instances, as both an educational tool and a competitive
hard SAT instance generator. Although by now, the optimiza-
tions and implementation details of ToughSAT are quite com-
plex, the basic structure is still conceptually simple to describe
using a widely understandable toolkit of concepts (integer
factoring, fast integer multiplication) to produce competitively
small and hard SAT instances. The reduction of intermediate
variables has interesting effects on the perceived hardness of
each instance. It would be interesting if a SAT solver could
somehow reconstruct the functional units used in Karatsuba’s
algorithm to simplify its own analysis of each instance, or
even implement higher order number theoretic methods.
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MULTIPLIER MITERS

In the benchmark description of our arithmetic challenge
problems [1] submitted to the SAT Competition 2016, we
have mentioned that there is another source of multiplier
designs, which we could not retrieve back then. These circuits
described in [2] were used in [3] and then synthesized and
translated to AIGs in our related work [4]. Furthermore, the
corresponding web-service “Arithmetic Module Generator” for
generating the circuits (in Verilog) became recently available
again at https://www.ecsis.riec.tohoku.ac.jp/topics/amg/. For
the SAT Race 2019 we generated AIG miters and encoded
them into CNF for interesting bit-widths 10, 12 and 14, where
SAT solvers not using algebraic reasoning start to have a hard
time. These benchmarks compare pairwise several multipli-
ers with different architectures and characteristics. We also
considered unsigned multipliers and a few signed multipliers
(these are all n × n inputs to 2n bits outputs multipliers
where signedness makes a difference). We compare two signed
architectures “2cbpwtcl” and “2csparrc” with prefix “eq2. . .”
which gives 6 signed benchmarks for bit-widths 10,12,14. The
12 unsigned multiplier architectures we compare are

bparcl, bparrc, bpctbk, bpdtlf, bpwtcl, bpwtrc,
sparcl, sparrc, spctbk, spdtlf, spwtcl, spwtrc

for bit-widths 10,12 and 14, which gives 396 = 3 · 12 · 11
unsigned benchmarks (all with “eq. . .” but without “eq2”,
“btor” nor “ktsb” in their name).

KARATSUBA MULTIPLICATION

As crafted benchmark we generated a bit-vector imple-
mentation of a single recursive step of the well-known
Karatsuba multiplication algorithm. The implementation is
then compared against a full multiplier of the same archi-
tecture (BTOR). We submitted only the three benchmarks
“eqbtor10ktsb{10,12,14}*.cnf” for bit-widths 10,12 and 14.

THE CRUX OF MULTIPLIER VERIFICATION

During our work on multiplier verification we came across
the issue that within a single column of a multiplier circuit
(producing a certain output bit) the sum of the partial products
can be permuted in an arbitrary order. Since adding up these
partial products within a column needs adders of logarithmic
size this summation requires bit-vector reasoning. In different
multipliers these adders are ordered and grouped differently,

Supported by FWF, NFN Grant S11408-N23 (RiSE)

which we conjecture to be the “crux” of multiplier verification
on the bit-level.

To capture this problem we generated benchmarks which
add up n bits with two input adder trees in a random order
and grouping. The input bits are zero extended to m bits,
which is the minimum number such that 2m > n. Then we
generate two different random adder trees. Each tree consists
of n− 1 adders of bit-width m. The outputs of the two trees
are compared, which is getting hard for standard SAT solvers
on the CNF level at around n = 30 bits. We used 10 different
seeds for n = 20, . . . , 32 and thus submitted 130 benchmarks
“cruxmiters{20,. . . ,32}seed[0-9].cnf”.

INTEGER OVERFLOW CHECK

In program analysis of code similar to the following C pro-
gram, the overflow check might yield hard bit-vector problems:

void *calloc (size_t a, size_t b) {
if (((size_t)-1) / a < b) return NULL;
return memset (malloc (a*b), 0, a*b);

}

Here is a corresponding SMT formula for this check

(set-logic QF_BV)
(declare-fun a () (_ BitVec 32))
(declare-fun b () (_ BitVec 32))
(assert
(not (=
((_ extract 63 32)
(bvmul ((_ zero_extend 32) a)

((_ zero_extend 32) b)))
(_ bv0 32))))

(assert
(bvuge (bvudiv (bvnot (_ bv0 32)) a) b))

This is for a 32-bit machine. We generated 29 instances for bit-
widths 20 to 48 called “davidcoqchallenge{20,. . . ,48}.cnf”.
This problem is getting hard around 36 bits.
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Abstract—This document briefly describes SAT encodings of
cryptanalysis instances for seven keystream generators. Three of
these generators are finalists of the eSTREAM project.

I. BACKGROUND

Keystream generator is a discrete function that given a
short binary sequence (secret key) produces a binary sequence
(keystream) of any required size. Keystream generators are
used as primitives in stream ciphers. We consider a plaintext
attack on keystream generators in the following formulation:
based on the known fragment of keystream, it is required to
find a secret key that was used to produce the fragment.

Cryptanalysis problems can be solved by SAT solvers [1].
We apply the SAT-based cryptanalysis to seven keystream
generators. Four of them are described in [2]. In particular,
two variants of the alternating step generator (ASG) [3],
with 72-bit and 96-bit secret keys, are considered. They are
further denoted as ASG-72 and ASG-96. Two modifications
of ASG, MASG and MASG0 [4] with 72-bit secret keys are
chosen. They are denoted as MASG-72 and MASG0-72. Also,
Grain v1, Mickey and Trivium are considered. Lengths of
their secret keys are 160, 200 and 288 bits respectively. These
three generators are finalists of the eSTREAM project [5]. This
project was organized by European cryptological community
and was aimed at identifying new fast and resistant stream
ciphers. There were 7 finalists of this project in its second
edition, we chose 3 of them.

II. BENCHMARKS

We submit 20 SAT instances made by the TRANSALG tool
[6]. All secret keys are generated randomly. In Table I, the
characteristics of the considered generators are presented.

In the benchmark set, there are 2 instances of ASG-72, 1 of
MASG-72 and 1 of MASG0-72. All of them are satisfiable.
Each of these 4 instances is simple enough to be solved by
a state-of-the-art CDCL solver in about an hour. However,
instances of ASG-96, Grain v1, Mickey and Trivium are very
hard, that is why weakened variants are considered for them
in order to be able to solve them in reasonable time. First,
for each of these 4 generators, 1 instance is constructed.

The research was partially supported by Council for Grants of the President
of the Russian Federation (grant no. MK-4155.2018.9) and by Russian
Foundation for Basic Research (grant no. 19-07-00746-a).

TABLE I
CHARACTERISTICS OF THE CONSIDERED KEYSTREAM GENERATORS.

Generator Secret key (bits) Keystream fragment (bits)
ASG-72 72 76
MASG-72 72 76
MASG0-72 72 76
ASG-96 96 112
Grain v1 160 200
Mickey 200 250
Trivium 288 350

Then, 4 weakened instances are constructed based on it:
2 satisfiable and 2 unsatisfiable. For ASG-96, 2 weakened
satisfiable/unsatisfiable instances are formed by assigning cor-
rect/incorrect values of the last 12 and 13 bits of the secret
key. The incorrect values are chosen randomly. For other three
generators, weakened instances were made in the same way –
by assigning correct/incorrect values of the last bits of secret
keys: for Grain v1 – 104 and 105 bits; for Mickey – 146 and
147 bits; for Trivium – 142 and 143 bits. As a result, there are
8 unsatisfiable and 12 satisfiable instances in the benchmark
set.
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Abstract—We present a set of SAT instances that encode pre-
image attack against SHA-1 reduced to 17 rounds. Our novel
compact encoding minimises both number of auxiliary variables
and number of clauses. We include the second set of instances
mirroring the first one with several simplification pre-processing
techniques applied to them. All our benchmarks are satisfiable
with an expected single solution. We suggest that they represent
a minimalistic version of the SHA-1 inversion SAT problem, hard
enough to be challenging for modern day solvers.

I. INTRODUCTION

Encoding of SHA-1 pre-image attack as a SAT problem is
a well known method of obtaining SAT instances with desired
level of hardness [1], [3], [4]. At the same time, selecting such
instances can be challenging in practice as hardness increases
rapidly with number of parameters and number of rounds
going up [2]. Furthermore, even for low number of rounds
the hardness varies by orders of magnitude depending on the
choice of unfixed parameters and particular values of fixed
parameters, i.e. bits of the hash and the message.

SHA-1 CNF encoding is often produced by translating its
logic circuit representation using Tseitin transformation [1],
[2], [5]. This approach when unoptimised introduces a large
number of auxiliary variables and clauses. How much of this
increase of size and complexity contributes to hardness, is
unclear. An improvement of the same approach, our method
[7] and tool [6] produces significantly more compact encod-
ings than those published previously [5] thanks to algebraic
optimisations and tailored imperative encoding for 32 bit
modular addition.

We suggest that our benchmarks represent a minimalistic
yet hard version of SHA-1 inversion SAT problem. For this
competition, our aim is to benchmark performance of the
various solvers on our compact encoding. In addition, it is
to evaluate the impact of bespoke pre-processing on solvers’
performance.

II. BENCHMARKS

Our benchmarks represent a single-block SHA-1. We en-
code the pre-image attack by fixing all of the hash bits and
some of the message bits to pre-defined values. We keep
unfixed a chosen number of the first message bits (message
variables) in the sequence. We note that any practical attempt
to find SHA-1 pre-image will involve constraining the message
as well as the hash at least due to SHA-1 message padding re-
quirement. Therefore, our variant of the SAT problem reflects
complexity and hardness of a realistic pre-image attack.

The formulas are produced taking into account the fixed part
of the message. That is, the corresponding message variables
are excluded while encoding. We present two variants of each
benchmark. The first variant has hash variables assigned using
unit clauses and the second one is the result of applying
a number of simplification techniques after the assignment,
including unit propagation.

We chose the round-reduced version with 17 rounds because
of practical considerations. In particular, instances with lower
number of rounds are solvable in trivial time for any number
of message variables while instances with higher number of
rounds are larger and demonstrate higher variability of the
solving time, making selection difficult.

Furthermore, we would like to note SAT instances with 160
message variables. With number of parameters equal to the
number of constraints (160 hash bits), these instances are at
the threshold of difficulty. Even with 17 rounds, solving them
while practical, is beyond what is considered interesting for the
purpose of this competition. That is, instances with 17 rounds
are hard enough to be challenging for modern day solvers.

All our benchmarks are satisfiable by design. Satisfiability
can be verified by solving after assigning the known values
to the message variables. Also, all our benchmarks have less
than 160 message variables. Therefore, they are expected to
have single solution because of the uniformity of SHA-1.

We chose two solvers, glucose and cadical for verification
and timing. We used the versions that participated in SAT
Competition 2018, running on a workstation with performance
characteristics comparable to StarExec cluster nodes, assuming
that solvers use a single processor core.

III. INSTANCES

Table I summarises the selected instances. All of them are
solvable by the chosen solvers within 5000 seconds in our
environment. We selected instances that are neither trivial
nor very close to the timeout threshold. Also, we preferred
instances with higher number of message variables. For each
instance, we provide recorded solving time as a reference
point.

With high variability of the solving time for even small
changes of parameters, we were unable to identify any useful
hypotheses with respect to the solving time other than glucose
appeared to perform slightly better in the majority of our
experiments.
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TABLE I
SELECTED SAT INSTANCES

Instance Message Pre- CPU Time, s
Name ASCII vars proc. glucose cadical

sha1r17m63a a 63 no 2882 519
sha1r17m63a p a 63 yes 415 837
sha1r17m66a a 66 no 634 945

sha1r17m66a p a 66 yes 2691 129
sha1r17m67a a 67 no 1174 289

sha1r17m67a p a 67 yes 1067 463
sha1r17m72a a 72 no 1220 875

sha1r17m72a p a 72 yes 2768 218
sha1r17m75a a 75 no 1281 116

sha1r17m75a p a 75 yes 1253 32
sha1r17m145ABCD ABCD 145 no 1116 4099

sha1r17m145ABCD p ABCD 145 yes 352 2975
sha1r17m146ABCD ABCD 146 no 2116 3940

sha1r17m146ABCD p ABCD 146 yes 409 1694
sha1r17m147ABCD ABCD 147 no 1020 2673

sha1r17m147ABCD p ABCD 147 yes 1826 1311
sha1r17m148ABCD ABCD 148 no 281 1956

sha1r17m148ABCD p ABCD 148 yes 218 2620
sha1r17m149ABCD ABCD 149 no 2048 2274

sha1r17m149ABCD p ABCD 149 yes 1536 3824
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Another SAT-Benchmark from
Edge-Matching Puzzles

Dieter von Holten

Abstract—This document describes a set of benchmark-
problems for SAT-solvers. The problems are yet another attempt
to solve edge-matching puzzles like the notoriously difficult E2
puzzle. The underlying concepts and the structure of the model
as well as the variants of the problem files are briefly explained.

I. INTRODUCTION

A. 2-Phase Attack

Instead of trying to create one formula and solve the
problem in one big step, we try a 2 phase-approach:

• Phase 1 tries to find ’Balanced Rotation Sets’ (BRS).
It rotates the tiles, until all edge-counts of all colors in
north/south and east/west-direction are balanced, that they
are equal. This is an invariant to all puzzle-solutions.

• Phase 2 then takes the fixed tiles-rotations and builds a
new formula with a completely different structure, which
tries to place the (non-rotating!) tiles on the grid, so that
each edge has a peer of the same color.
Phase 2 has been implemented: the solution of an E2-
grade puzzle (size, number of colors, 5 hint-pieces) using
a ’good’ BRS as input can be found in a few minutes.
Phase 2 is considered solved.

Unfortunately, the number of BRS for even mid-size
puzzles is so large, that this approach is not practical.

B. local Balanced Rotation Sets

Other experiments brought the insight, that the ’color-counts
must be balanced’ invariant is true not just for the whole tile-
set, but also for vectors. That is, in a row (or column), the
number of east-edges (south-edges) of a color must be equal
to the west-edges (north-edges) of that color. This constraint is
much more precise. However, it is also much more expensive:
instead of one large global tile-set we need to balance the
color-counts in nSize rows and nSize columns. In addition, we
now have to deal with the position of the tiles: we need to
know, which tiles sit in row 5 or in column 12.
An incremental SAT-solver would produce these rotation-sets,
which are then fed into Phase 2. It has been observed, that
it takes a while to compute the first result, subsequent results
are generated much quicker.

II. THE TILE-MODEL

Each tile has four bits to describe the rotation in ’1-hot’
notation. Furthermore, each tile has a 4-bit integer each to
model the row and column-position. The position-range is
limited from 0 to 15, in smaller puzzles the unused upper

positions are prevented by blocking clauses. There are clauses,
which further limit the valid positions (row, col) according to
the tile-type:

• the 4 corner-tiles can have only positions (0, 0),
(0, nSize−1), (nSize−1, 0) and (nSize−1, nSize−1).
The position enforces the rotation.

• the border-tiles can have only positions with forced
rotation:
in the northern border: (0, 0 < col < nSize− 1),
in the western border: (0 < row < nSize− 1, 0),
in the southern border (nSize−1, 0 < col < nSize−1),
and in the eastern border: (0 < row < nSize −
1, nSize− 1)

• the inner-tiles can have only positions (0 < row <
nSize− 1, 0 < col < nSize− 1) .

Each tile has two decoder-circuits, which convert the binary
form of the row- and column-position into ’1-hot-format’; it
is useful, to have the position-information available in both
formats.

III. THE VECTOR-MODEL

A vector is a row or a column. It ’knows’ it’s index. The
head (the west-end) and the tail (east-end) of a row are border-
tiles, in between are (nSize− 2) inner tiles. In a row-vector
we have two ’color-lines’ for each color: one line holds the
variables for the west-looking edges of this color, the other
line holds the east-looking edges. A variable in a color-line
is true, when the tile belongs to this vector (as indicated by
tile-row-position and row-vector-index) and when the rotation
indicates, that this edge shows west or east. The north and
south edges are ignored in a row-vector. We have BitCount-
constructs over the variables in the color-lines. The design of
these BitCount-constructs is modelled after [Hackers Delight]
and [Wikipedia]. The result is a bit-vector representing an
integer. It is trimmed to three bits. Although we have up to
50 color-variables in a color-line, the actual size is limited
to nSize− 2, color-distribution of typical puzzles gives very
small numbers of color-counts in a vector. The bit-count is
used for these purposes:

• it is compared with it’s peer bit-count of the same color
in the same vector: they must be equal - this is the basic
’balanced color-count’-constraint.

• all bit-counts of one color over all vectors are added up.
The total count must be equal to a known constant per
color.
this constraint is expensive and redundant, but it helps.
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• all bit-counts over all colors in one vector are added up.
The total is the number of relevant edges in a vector, it
is compared to a known constant.
this constraint is expensive and redundant, but it helps.

The clockwork described above is sufficient to provide ’locally
balanced rotation sets’. However, when visually inspecting the
results, some special cases show up:

• a tile with east and west edges of the same color sits
in the row-vector. Obviously, it is balanced, but it is not
useful in a solution.

• the inward looking edges of the head and tail have the
same color. Obviously, this is balanced, but not useful in
a solution.

• the inward looking edge of the head is green and the
inward looking edge of the tail is red. There is one tile
with a green west-edge and a red east-edge. Obviously,
this is balanced, but not useful for a solution.

These cases are detected and prevented by additional con-
straints. This is sufficient to provide exact solutions for smaller
puzzles. However, in larger puzzles, more complex invalidat-
ing patterns show up, which are difficult to avoid. The (not yet
implemented) idea is to use an incremental solver to produce
these results and check the quality of the solution outside of
the SAT-solver.

IV. THE GRID-MODEL

The position-encoding of the tiles ensures, that each tile has
only one position - but it does not prevent two tiles sitting on
the same grid-cell. This is enforced by AllDistinct-constraints
over all tile-positions. The two 4-bit integers of the row- and
column-position are combined to an 8 bit grid-position and
then these 8-bit grid-positions are pairwise given to bit-vector
not-equal expressions [A.Biere technique]. The three tile-types
(corner, border, inner) sit on disjoint areas on the grid, so we
use 3 AllDistinct-constraints:

• one for the 4 corner-tiles
• one for the 4× (nSize− 2) border-tiles
• one for the (nSize− 2)2 inner tiles

V. SYMMETRIES

When you look at a ’locally balanced rotation set’, you
hardly can see any symmetry beyond the obvious rotation
symmetry of the whole tile-set. But there is more: imagine
a complete, valid puzzle solution. It is color-count-balanced
in every aspect. Now cut out column-vector 3 and column-
vector 11. Then swap the two column-vectors and put them
back: 3 goes to 11, 11 goes to 3. Of course, this is no longer
a valid puzzle-solution. But it is still completely balanced: no
column was modified, and within each row, only two tiles
have exchanged their position. No tile was rotated, all color-
counts are the same as before. We can permute column-vectors
with column-vectors, and rows with rows. We cannot swap the
border rows and columns.
In a 16 × 16 puzzle, we have 14 inner vectors per direction;
this gives us a total of (14!)2 = 7.6× 1021 permutations.

That means, the inner square of a puzzle-solution has billions
of ’visual images’ ! And each of them is just a few cpu-minutes
away from the valid puzzle-solution.
The rotation-symmetry is removed by one or more hint-tiles.
The vector-permuting symmetry is reduced by hint-tiles: the
rows and columns, which contain one or more hint-tiles,
cannot be swapped. Having 14−3 = 11 free rows and columns
leaves us with (11!)2 = 1.59× 1015 possible permutations.
It might be quite interesting to see how symmetry-aware tools
would deal with this.

VI. THE CHALLENGE

We have these knobs to influence the difficulty of the
problem:

• the size of the puzzle: larger puzzle, more variables, more
bitcounters, adders, etc.

• the number of colors: the effect of phase-transition w.r.t
size vs. colors is known, fewer colors for same puzzle-
size means more edges per color, resulting in fewer, but
longer bitcount-vectors.

• hint-pieces: we know the solution of the synthetic puz-
zles, we can place between 0 and n hint-pieces, more
hint-pieces is easier.

VII. THE FILES

The zip-file contains these files:

• this description
• benchmark-files in DIMACS-format, same problem =

same puzzle, but different parameters. The filename is
build as:
b <year><month><problemId>-<size> x <size>
c <colors> h <hintTiles><SAT|UNSAT>.cnf

UNSAT is enforced by placing hint-tiles in conflicting
positions.
Time shown is execution-time in wall-clock minutes with
plingeling (version 17. May 2018) on a 4-core i5 3.1 GHz.

No filename problem nSize colors hint-tiles time
1 b1904P1-6x6c8h0SAT.cnf P1 6 8 0 < 1
2 b1904P1-6x6c8h2SAT.cnf P1 6 8 2 < 1
3 b1904P1-6x6c8h2UNSAT.cnf P1 6 8 2 < 1

4 b1904P1-8x8c6h5SAT.cnf P1 8 6 5 > 100
5 b1904P1-8x8c6h7SAT.cnf P1 8 6 7 > 75

6 b1904P2-8x8c9h5SAT.cnf P2 8 6 5 > 100
7 b1904P2-8x8c9h7UNSAT.cnf P2 8 6 5 > 45

8 b1904P3-8x8c11h0SAT.cnf P3 8 11 0 > 35
9 b1904P3-8x8c11h7SAT.cnf P3 8 11 7 35

10 b1904P3-8x8c11h7UNSAT.cnf P3 8 11 7 15
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Abstract—The formulas that are generated by CBMC rep-
resent the NP problems that have to be solved by the tool to
solve benchmarks from the Software verification competition.
Currently, MINISAT 2.2 is used as a backend. With the submis-
sions of this benchmark, we want to motivate research on SAT
solvers in the direction of software verification.

I. THE CBMC TOOL

CBMC [5] is a Bounded Model Checker for C and C++
programs. It supports C89, C99, most of C11 and most
compiler extensions provided by gcc and Visual Studio. It
also supports SystemC using Scoot. We have recently added
experimental support for Java Bytecode [3].

CBMC verifies array bounds (buffer overflows), pointer
safety, exceptions and user-specified assertions. Furthermore,
it can check C and C++ for consistency with other languages,
such as Verilog. The verification is performed by unwinding
the loops in the program and passing the resulting equation to
a decision procedure.

CBMC comes with a built-in solver for bit-vector formulas
that is based on MINISAT 2.2 [4]. Further, SAT solvers can
be linked to CBMC via the IPASIR interface, and the solvers
GLUCOSE 4.1 [1] and CADICAL [2] are supported as well. As
an alternative, CBMC has featured support for external SMT
solvers. Finally, the solver can also dump the CNF instead of
running a solver. This feature has been used to generate the
benchmark.

II. SAT COMPETITION 2019 BENCHMARK

The collected formulas have been dumped while running
CBMC against the SV Comp 2019 benchmark. The timeout
in this benchmark is 900 seconds. Within this time, a wrapper
tries to solve a problem with multiple calls to the actual
CBMC tool (see [5] for details). The CNFs that are considered
for the benchmark are the CNF of the last CBMC call for a
given input. Some of these CNFs are large, but can be solved
easily, whereas others are small but more difficult to be solved.

From all categories of SV Comp where CBMC participated,
we selected a subset of the categories, and measured the run
time that CADICAL takes to solve them, and Any generated
CNF formula is dropped as soon as CADICAL can solve it
within 10 seconds.

III. AVAILABILITY

The source of CBMC can be found at https://github.com/
diffblue/cbmc. For more details, please have a look at http://
www.cprover.org/cbmc/. The used version of CBMC is: cbmc-
5.8-81-g9ae35de, from https://github.com/diffblue/cbmc.git.

The used version of CADICAL is: sc18-1-g58331fd, from
https://github.com/arminbiere/cadical.
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Abstract—The Knights problem is to ask whether a knight can
visit all squares of an n × n chessboard on an admissible path
exactly once. This problem is a special case of NP-complete graph
problems. There exists a polynomial time algorithm to solve it.
However, to the best of our knowledge, when n > 20, so far no
SAT solver solve it if we use the distance encoding to translate
it into a SAT problem.

I. INTRODUCTION

The Knight’s tour puzzle is defined as follows: Is it possible
for a knight to start on some square and, by a series of
admissible knight moves, visit each square on an n × n
chessboard exactly once and return to the initial square of
the tour? Admissible knight moves can be formalized by the
edge set of the graph G.

The graph G = (V,E) for the Knights tour puzzle on n×n
chessboard is defined as the vertex set V = {(i, j)|1 ≤ i, j ≤
n} and the edge set E, describing the admissible moves of a
knight, i.e.
{(i, j), (x, y)} ∈ E ⇔
|i − x| = 1 and |j − y| = 2 or |i − x| = 2 and |j − y| = 1.

The Knight’s tour problem is to ask whether there exists a
cycle which contains each vertex exactly once. In general, such
a cycle is called a Hamiltonian cycle. The Hamiltonian prob-
lem is NP-complete. However, the Knights tour problem can
be solved in optimal sequential time O(n2) [1]. We translate it
into a SAT problem by four encodings: CP encoding, bijection
encoding, reachability encoding and distance encoding. The
resulting SAT problem is not easy.

II. CP ENCODING

The CP (Constraint Programming) encoding is used in Ref.
[5]. It is based on the notion of MiniZinc’s all different
[4]. The all different constrains an array of variables to take
different values. Its argument is an array of n integer variables,
which has the form [V1, V2, . . . Vn], where Vi(i = 1, . . . , n)
is an integer variable. Let E denote the set of edges in
the Hamiltonian circle graph G. The CP encoding of the
Hamiltonian circle on G may be described as follows.

all different([V1, V2, . . . , Vn]) (1)
Vi = j ⇒ (i, j) ∈ E 1 ≤ i, j ≤ n (2)
all different([O1, O2, . . . , On]) (3)
O1 = 1 (4)
Oi = n ⇒ Vi = 1 1 ≤ i ≤ n (5)
Vi = j ⇒ Qj = Qi + 1 1 ≤ i, j ≤ n (6)

Constraints (1) and (2) ensure that each vertex has exactly one
incoming edge. Oi denotes the order number of vertex i. The
first visited vertex is 1, and the last visited vertex is n. This
is done by constraints (4) and (5). Constraint (3) ensures that
each vertex has a different order number. Constraint (6) means
that if there is an edge from vertex i to vertex j, i.e., Vi = j,
the order number of j is 1 more than that of vertex i, i.e.,
Oj = Oi + 1.

III. BIJECTION ENCODING

The bijection encoding is based on Ref. [3]. The basic idea
is to map the vertices to the positions in a Hamilton cycle,
and assume that vertex 1 is in position 1. This encoding uses
a two-dimensional 0/1 matrix M , whose entry Mij is 1 iff
vertex i is mapped to position j. Here is the CP bijection
encoding for the Hamiltonian circle.
∑n

j=1 Mij = 1 1 ≤ i ≤ n (7)∑n
i=1 Mij = 1 1 ≤ j ≤ n (8)

q = 1 + p%n, (i, j) ̸∈ E, Mip ⇒ ¬Miq 1 ≤ i, j, p ≤ n (9)
q = 1 + p%n,Mip,Miq ⇒ (i, j) ∈ E 1 ≤ i, j, p ≤ n (10)

In the above encoding, % is a modular operator. q is the next
position after p. This is computed by q = 1+p%n. Constraint
(7) ensures that each vertex is mapped to exactly one position.
Constraint (8) ensures that each position is mapped to exactly
one vertex. Constraint (9) means that for each non-edge pair
(i, j) if vertex i is mapped to position p, vertex j cannot be
mapped to p’s successor position. Constraint (10) means that
if vertex i is mapped to position p and vertex j is mapped to
p’s successor, (i, j) is an edge in the Hamilton cycle.

IV. REACHABILITY ENCODING

The reachability encoding is used to convert answer set
programs with loops into the SAT problem [2]. This encoding
is to reduce the problem of finding a Hamilton cycle with n
vertices to finding a Hamilton path from vertex 1 to vertex
n + 1, where vertex n + 1 is a dummy vertex that has no
outgoing edge to any vertex, and an incoming edge from each
vertex i if (i, 1) is an edge in G. This encoding uses a two-
dimensional 0/1 matrix H of size (n+1)×(n+1). Each entry
Hij ∈ H is 1 iff the edge (i, j) is included in the Hamilton
path. In addition to matrix H , we use another 0/1 matrix R
of size (n + 1) × (n + 1) to prevent sub-cycles. Each entry
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Rij ∈ R is 1 iff there exists a Hamilton path from vertex i to
vertex j. The reachability encoding consists of the following
constraints.

∑n
j=2 H1j = 1 (11)∑n
i=2 Hi(n+1) = 1 (12)∑n+1
j=2 Hij = 1 2 ≤ i ≤ n (13)∑n
i=1 Hij = 1 2 ≤ j ≤ n (14)

Hij ⇒ Rij 1 ≤ i, j ≤ n + 1 (15)
Rik ∧ Rkj ⇒ Rij 1 ≤ i, j, k ≤ n + 1 (16)
¬Rii 1 ≤ i ≤ n + 1 (17)

Constraint (11) ensures that vertex 1 has exactly one outgoing
edge. Constraint (12) ensures that vertex (n + 1) has exactly
one incoming edge. Except vertices 1 and n + 1, each vertex
has exactly one incoming edge and exactly one outgoing edge.
This is done by constraints (13) and (14). Constraint (15)
means that there is a path (Rij) from vertex i to j if (i, j)
is an edge in H . Constraint (16) describes the transitivity of
the reachability relation.

V. DISTANCE ENCODING

The distance encoding uses an integer variable Di to indi-
cate how far vertex i is from vertex 1 in the Hamilton path.
This encoding is similar to the reachability encoding. It uses
a two-dimensional 0/1 matrix H of size (n+1)× (n+1), but
replaces the two-dimensional matrix R with a one-dimensional
matric D. The distance encoding consists of constrains (11)-
(14) and the following constrains on the distance.

D1 = 0 (18)
Dn+1 = n (19)
Hij ⇒ Dj = Di + 1 1 ≤ i, j ≤ n + 1 (20)

Constraints (18) and (19) set the distance of vertices 1 and
n + 1 to 0 and n, respectively. Constraint (20) means that j’s
distance is 1 more than i’s distance if (i, j) is an edge.

VI. ENCODING OF THE KNIGHTS HAMILTONIAN PATH
PROBLEM

We use the above four encodings to translate 20 Knights
Hamiltonian path problem on n × n chessboard into SAT. 8
out of 20 Knights Hamiltonian problems are translated by CP
encoding, which correspond to n = 10, 12, 14, 16, 18, 20,
22, 24, 26. 7 out of 20 Knights Hamiltonian problems are
converted by distance encoding, which correspond to n = 10,
12, 14, 16, 18, 20, 22, 24. Two SAT problems are from
reachability encoding, which correspond to n = 20, 26. One
Knights Hamiltonian problem with n = 16 is translated by
bijection encoding. In some cases, nn at-most-one constraint
is encoded by the 2-product encoding with O(n) clauses and
O(

√
n) auxiliary variables [6]. The SAT problems produced

by CP encoding and distance encoding seem to be hard. When
n > 20, to our best knowledge, no SAT solver can solve them.
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