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Abstract
Counting the linear extensions of a given partial
order not only has several applications in artifi-
cial intelligence but also represents a hard problem
that challenges modern paradigms for approximate
counting. Recently, Talvitie et al. (AAAI 2018)
showed that an exponential time scheme beats the
fastest known polynomial time schemes in prac-
tice, even if allowing hours of running time. Here,
we present a novel scheme, relaxation Tootsie Pop,
which in our experiments exhibits polynomial char-
acteristics and significantly outperforms previous
schemes. We also instantiate state-of-the-art model
counters for CNF formulas; two natural encodings
yield schemes that, however, are inferior to the
more specialized schemes.

1 Introduction
The generic problem of computing the number of objects in
an implicitly given (multi)set plays a fundamental role in ar-
tificial intelligence research. On the one hand, various instan-
tiations of the problem appear in applications, particularly in
probabilistic inference. On the other hand, the computational
hardness of such problems calls for heuristics that are effi-
cient in practice and able to beat the known, perhaps pes-
simistic, complexity upper bounds. In particular, researchers
have sought alternatives to the popular Markov chain Monte
Carlo (MCMC) method, which often does not provide practi-
cal means for controlling the accuracy and time requirement.
For example, there has been recent interest in approximate
counting methods that leverage the power of modern SAT
solvers [Gomes et al., 2006; Chakraborty et al., 2015]. Gen-
erally, it remains largely an open question, what sort of ap-
proximate counting schemes are the most efficient in practice.

This paper focuses on the classic problem of counting lin-
ear extensions: given a partial order≺ (i.e., an irreflexive and
transitive binary relation) on n elements, compute the number
of those total orders on the elements that are supersets of ≺.
The problem has applications, for example, in sequence anal-
ysis [Mannila and Meek, 2000], sorting [Peczarski, 2004],
preference reasoning [Lukasiewicz et al., 2014], convex rank
tests [Morton et al., 2009], partial order plans [Muise et al.,
2016], and learning graphical models [Wallace et al., 1996;

Niinimäki et al., 2016]. The problem is #P-hard [Brightwell
and Winkler, 1991] but admits a fully polynomial time ap-
proximation scheme based on MCMC [Dyer et al., 1991].
The best known asymptotic bounds for the expected run-
ning time are O(ε−2n3 log2 ` log n) [Banks et al., 2017] and
O(ε−2n5 log2 n) [Talvitie et al., 2018], where ` is the number
of linear extensions and ε the allowed relative error.

The large degree of the polynomial bounds raises the ques-
tion of the practical value of the schemes. This question was
recently addressed by Talvitie et al. [2018] who studied vari-
ants of the schemes empirically on benchmark instances. Al-
though their polynomial-time scheme, enhanced by a number
of heuristic tricks, was superior to prior schemes, it was in-
ferior to an exponential-time scheme they coin adaptive re-
laxation Monte Carlo (ARMC), even when allowing hours of
running time. Their finding suggests that the MCMC method,
though asymptotically faster, may not lend itself to imple-
mentations that are competitive in practice.

In this paper, we refute that conclusion. We present a novel
MCMC scheme that stems from modifying and combining
ideas scattered in previous works. Like Banks et al. [2017]
we apply the generic Tootsie Pop algorithm (TPA) of Hu-
ber and Schott [2010], however, with two major differences:
First, we employ a different continuous embedding, which
also requires us to design a novel sampler—our perfect sam-
pler is the main technical contribution of this work. Second,
unlike all previous efficient reductions from counting to sam-
pling, which add constraints one after another to the input
partial order until it becomes a linear extension, our reduc-
tion constructs intermediate problems between the input par-
tial order and its relaxation we obtain by removing some con-
straints; this is inspired by the ARMC scheme. We demon-
strate empirically using the collection of benchmark instances
of Talvitie et al. [2018] that our scheme, which we call relax-
ation Tootsie Pop, is superior to all previous schemes. More-
over, its running time appears to grow polynomially, even if
we currently have no proof for a polynomial bound.

In addition, we make an attempt to apply state-of-the-art
SAT solver based schemes for counting linear extensions.
Specifically, we instantiate the algorithms of Chakraborty et
al. [2016], Thurley [2006], and Lagniez and Marquis [2017]
using two alternative, natural problem encodings.

Section 2 begins by formulating the problem of counting
linear extensions and reviewing existing approaches; we also

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5119

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/275655391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: The cover graph of a poset (left) and the cover graph of
one linear extension of the poset, shown in emphasized arcs (right).

give our instantiations of the SAT solver based method. Sec-
tion 3 presents the relaxation Tootsie Pop scheme, and Sec-
tion 4 the required perfect sampler. The experiments are sum-
marized in Section 5. We conclude in Section 6 by discussing
the significance of our findings for counting linear extensions
in particular and for approximate counting in general.

2 The Problem and Existing Techniques
Let A be a finite set of n elements and let ≺ be an irreflexive
and transitive binary relation on A. We say that ≺ is a partial
order on A and call the pair P = (A,≺) a partially ordered
set (poset). The elements (x, y) ∈ ≺ are a called order con-
straints of P and denoted simply x ≺ y. We depict P with
its cover graph, a directed acyclic graph where the vertex set
is A and the arc set is the transitive reduction of ≺ (Fig. 1). If
for all distinct x, y ∈ A we have either x ≺ y or y ≺ x, we
say that P is a linear order.

Let ≺′ be another partial order on the set A. If ≺ ⊆ ≺′,
we say that P ′ = (A,≺′) is an extension of P or, conversely,
that P is a relaxation of P ′. If P ′ is an extension of P and
also a linear order, we say that P ′ is a linear extension of P
(Fig. 1). We denote by L(P ) the set of linear extension of P
and by `(P ) := |L(P )| the number of its linear extensions.

For a quantity q, an estimate q̄, and parameters ε, δ > 0,
we say that q̄ is an (ε, δ)-approximation of q if

Pr
(
(1 + ε)−1 < q̄/q < 1 + ε

)
≥ 1− δ .

We consider the problem of giving an (ε, δ)-approximation of
`(P ) for a given poset P and parameters ε, δ.

We begin with an overview of known schemes for approx-
imate counting.

2.1 Telescopic Product
Brightwell and Winkler [1991] presented an approximate lin-
ear extension counting scheme based on uniform sampling of
linear extensions. The method forms a sequence of posets
(P0, P1, . . . , Pk) starting from the original poset P0 = P and
iteratively adding more constraints until reaching a linear or-
der Pk. Thus L(P0) ⊃ L(P1) ⊃ · · · ⊃ L(Pk) and we can
write `(P )−1 as a telescopic product

∏k
i=1 `(Pi)/`(Pi−1).

Each factor `(Pi)/`(Pi−1) is estimated by drawing samples
uniformly from L(Pi−1) and taking the fraction of the sam-
ples that are also elements of L(Pi).

A comparison sorting based approach results in a se-
quence of posets of length k = O(n log n), and drawing
in total O(n2 log2 nε−2 log δ−1) linear extension samples is
sufficient for obtaining an (ε, δ)-approximation [Talvitie et
al., 2017]. Using Huber’s [2006] O(n3 log n)-expected-time

algorithm—asymptotically the fastest know sampler—we ob-
tain an O(n5 log3 nε−2 log δ−1) expected total running time.
Talvitie et al. [2018] improved this bound by a factor of log n
by exploiting the special structure of the posets in the se-
quence. They also achieved a significant performance im-
provements in practice by switching to a Gibbs sampler of
Huber [2014].

2.2 Tootsie Pop Algorithm
The Tootsie Pop algorithm (TPA) [Huber and Schott, 2010]
is a scheme for computing the ratio of the measures of two
nested sets A′ ⊃ A′′ in a continuous space under certain
conditions. Specifically, there must exist a family of inter-
mediate sets {Aβ |β ∈ R} where A′ = Aβ′ and A′′ = Aβ′′ ,
the family must be nested in the sense that Aβ1

⊂ Aβ2
for

any β1 < β2, and the measure µ(Aβ) must be a continuous
function of β. The scheme works by iteratively construct-
ing a random sequence (βi)

∞
i=0 that starts from β0 = β′, and

each subsequent element βi+1 is computed by drawing Xi

uniformly at random from Aβi and setting βi+1 = inf{β ∈
R |Xi ∈ Aβ} (whether it is easy to draw Xi and compute
βi+1 depends on the set family). Now the number of itera-
tions min{i ≥ 0 |βi+1 ≤ β′′} required to reach A′′ is Pois-
son distributed with expected value r = ln(µ(A′)/µ(A′′)),
and we can estimate the log-ratio by averaging over multiple
independent runs. In total,O(r2ε−2 log δ−1) calls to the sam-
pling subroutine are sufficient for an (ε, δ)-approximation.

Banks et al. [2017] apply TPA to linear extension counting
by transforming the discrete counting problem into a mea-
sure computation problem in a continuous space. This is
achieved by affixing a continuous dimension to the set of
linear extensions: Aβ =

⋃
L∈L(P ){L} × [0, wL(β)) where

β 7→ wL(β) is a continuous function with values in range
[0, 1]. The weights wL(β) are chosen carefully such that uni-
form sampling fromAβ is possible andA′ =

⋃
L∈L(P ){L}×

[0, 1) and A′′ = {Lhome} × [0, 1), where Lhome is an ar-
bitrary linear extension of P . Then `(P ) = µ(A′)/µ(A′′)
can be estimated by TPA. The sampling algorithm runs in
O(n3 log n) time, which means that the (ε, δ)-approximation
algorithm for counting the number of linear extensions runs
in O(n3 log2 `(P ) log nε−2 log δ−1) expected time.

2.3 Adaptive Relaxation Monte Carlo
The adaptive relaxation Monte Carlo scheme (ARMC) [Talvi-
tie et al., 2018] utilizes an exact exponential-time algo-
rithm for counting linear extensions [De Loof et al., 2006;
Kangas et al., 2016], which in practice beats approximation
schemes on small posets. The ARMC scheme starts by choos-
ing a relaxation R for the given poset P , in such a way that
each connected component in the cover graph of R has a size
bounded by a parameter k. With this division into small com-
ponents the exact algorithm may compute `(R) in O(2kk2)
time and also enables fast uniform sampling from L(R). The
ratio µ = `(P )/`(R) (and by proxy, `(P )) is then estimated
by sampling, similarly to the telescopic product scheme.

The expected number of samples from L(R) required for
an (ε, δ)-approximation is roughly O(µ−1ε−2 log δ−1). If R
is not too different from P , then µ is small and sampling
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is fast. On the other hand, letting R deviate from P allows
a smaller k and thus makes the exact computation of `(R)
faster. An adaptive procedure is used to choose R so as to
obtain a good tradeoff between these two phases.

2.4 Boolean Model Counting
The Boolean model counting problem, #SAT, asks for the
number of satisfying truth assignments to a given Boolean
formula. Given a poset P = (A,≺), we encode the prob-
lem of computing `(P ) in #SAT by producing a Boolean
formula ϕ (in conjunctive normal form) whose satisfying
assignments are bijectively mapped to L(P ). We investi-
gate two natural encodings and evaluate them by employ-
ing existing model counting software, specifically, imple-
mentations of two exact model counters [Thurley, 2006;
Lagniez and Marquis, 2017] and an algorithm by Chakraborty
et al. [2016], which outputs an (ε, δ)-approximation of the
number of satisfying assignments.

In the first encoding, SAT #1, we let ϕ contain a variable
vxy = ¬vyx for each pair of distinct elements x, y ∈ A to
represent the order between x and y: if vxy is true, then x
precedes y in the linear extension, otherwise y precedes x
(n(n− 1)/2 variables). Let ϕ further contain the clauses

i. ¬vxy ∨ ¬vyz ∨ vxz for all distinct x, y, z ∈ A,
ii. vxy for all x, y ∈ A such that x ≺ y,

where clauses (i) enforce transitivity and clauses (ii) guaran-
tee that the corresponding linear order is an extension of P .
The total number of clauses is n(n− 1)(n− 2) + c, where c
is the number of edges in the cover graph of P .

In the second encoding, SAT #2, we let ϕ contain a vari-
able vxp for each x ∈ A and p ∈ [n] with the interpretation
that vxp is true if and only if x is in position p in the linear
extension (n2 variables). Let ϕ contain the clauses

i.
∨n
p=1 vxp for all x ∈ A (each element has a position),

ii.
∨
x∈A vxp for all p ∈ [n] (each position has an element),

iii. ¬vxp∨¬vxq for all x ∈ A and p, q ∈ [n] such that p 6= q
(no element is in two positions),

iv. ¬vxp∨¬vyp for all p ∈ [n] and x, y ∈ A such that x 6= y
(no position has two elements).

v. ¬vxq ∨ ¬vyp for all x, y ∈ A and p, q ∈ [n] such that
x ≺ y and p < q,

where clauses (i–iv) guarantee that a satisfying assignment
maps each element to exactly one position and vice versa,
and clauses (v) enforce compliance with P . The total number
of clauses is 2n+ 2n2(n− 1) + cn(n− 1)/2.

3 Relaxation Tootsie Pop
In this section, we present a new linear extension counting
method based on TPA [Huber and Schott, 2010]. In order to
translate the counting problem into the continuous space, we
use the same embedding as the linear extension Gibbs sam-
pler due to Huber [2014]: For a poset P = (A,≺), each
point p ∈ [0, 1]A specifies a position px ∈ [0, 1] for every
element x ∈ A, and every order constraint x ≺ y in P maps
to a numerical constraint px ≤ py . The domain A ⊆ [0, 1]A

L(R) L(P )

(a) ARMC
[Talvitie et al., 2018]

f−1L(R) f
−1L(P )

(b) Relaxation
Tootsie Pop

g−1L(P )g−1{L}

(c) Banks et
al. [2017]

Figure 2: Comparison of the relaxation Tootsie Pop scheme (b) to
two other methods (a, c). Like (a), the scheme computes the number
of linear extensions of poset P by estimating its ratio to the known
number of linear extensions of a relaxation R of P . Method (c)
works in the other direction: it relates the size ofL(P ) to that of {L}
where L ∈ L(P ). Similarly to (c), the scheme uses an embedding
f from the continuous space [0, 1]A to the space of linear orders
and imposes a layered structure in the continuous space, allowing
it to use TPA, which estimates the ratio using decreasing random
walks with respect to the layers. However, the embedding and the
layers used in (b) are different from those in (c). In contrast, (a)
works directly in the space of linear orders and uses Monte Carlo to
estimate the ratio by repeatedly drawing samples from L(R).

is defined as the set of points satisfying the numerical con-
straints. The linear order f(p) = (A,≺′p) corresponding to
a point p ∈ Ω is obtained from the ordering of the positions:
x ≺′p y if and only if px < py (we can choose arbitrarily
the cases where px = py for x 6= y since their measure in
A is zero). Consequently, if we sample p ∈ A uniformly at
random, the distribution of f(p) in L(P ) is also uniform.

Similarly to the ARMC method [Talvitie et al., 2018],
we count the linear extensions of P = (A,≺) by estimat-
ing `(R)/`(P ) where R = (A,≺′) is a relaxation of P for
which the number of linear extensions `(R) can be computed
quickly. However, instead of direct sampling, we use TPA
for estimating the ratio, as illustrated in Figure 2. This has
the benefit that the required number of samples for TPA is
only polylogarithmic in the ratio `(R)/`(P ), compared to the
linear growth in ARMC.

We define the family of intermediate sets required by TPA
as follows:

Aβ =

{
p ∈ [0, 1]A

∣∣∣∣ x ≺′ y ⇒ px − py ≤ 0,
x ≺ y ⇒ px − py ≤ β

}
. (1)

As a result, the ratio `(R)/`(P ) is equal to the correspond-
ing ratio of measures µ(A1)/µ(A0). In Section 4 we present
an algorithm for uniform sampling from [0, 1]A in the pres-
ence of generalized order constraints, of which the sets Aβ
are a special case. For now, we assume that we can sample
fromAβ and thus the requirements of TPA introduced in Sec-
tion 2.2 are satisfied, yielding the following result:

Theorem 1. Given a relaxation R for P with `(R) known,
the Relaxation Tootsie Pop algorithm computes an (ε, δ)-
approximation for `(P ) in O(log2(`(R)/`(P ))ε−2 log δ−1)
calls to a generalized order constraint sampling subroutine.
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3.1 Relaxation Finding
Choosing the empty relaxation R = (A, ∅) with `(R) = |A|!
is always valid, but finding a relaxation where `(R) is closer
to `(P ) will make the algorithm run faster. Even though
Talvitie et al. [2018] investigated relaxation finding heuristics
for the ARMC method, their heuristics rely heavily on expo-
nential exact counting algorithms. Investing that much time
to relaxation finding does not pay off in our case: the gains
are much smaller due to the polylogarithmic dependence of
the running time on the ratio `(R)/`(P ). For that reason, we
will use faster heuristics to find reasonable relaxations.

Our heuristics stem from the observation that for many spe-
cial classes of posets P = (A,≺), the number of linear exten-
sions is easy to compute exactly or the problem can at least
be reduced to counting the linear extensions of some induced
subposets, i.e., posets P ′ = (A′,≺) where A′ ⊂ A. First we
check if the poset is already a member of such a special class:

1. If A can be partitioned into sets A1 and A2 that are un-
related in the sense that for all a1 ∈ A1 and a2 ∈ A2,
a1 6≺ a2 and a2 6≺ a1, then we recursively find re-
laxations R1 = (A1,≺1) and R2 = (A2,≺2) for the
respective subposets, and combine them into relaxation
R = (A,≺1 ∪ ≺2) where `(R) =

( |A|
|A1|
)
`(R1)`(R2).

2. If A can be partitioned into sets A1 and A2 that are or-
dered in the sense that for all a1 ∈ A1 and a2 ∈ A2,
a1 ≺ a2, then similarly to the previous part we com-
bine the relaxations for the subposets into relaxation
R = (A,≺1 ∪ ≺2) where `(R) = `(R1)`(R2).

3. If the cover graph of the poset P is a tree, then we use
P as the relaxation and count its linear extensions using
the O(n2) algorithm due to Atkinson [1990].

4. If any exact linear extension counter finishes computing
`(P ) within a short time limit, we can use P as the re-
laxation. We run the counter due to Kangas et al. [2016]
until its dynamic programming table has 10,000 items.

If none of these attempts succeeds, we try the next two meth-
ods and select the relaxation with fewer linear extensions.

5. If A can be partitioned into three sets A1, A2, and A3

such that A1 and A2 are ordered (a1 ≺ a2 for all a1 ∈
A1 and a2 ∈ A2), then we recursively find relaxations
Rk = (Ak,≺k) for k ∈ {1, 2, 3} and combine them into
relaxation R = (A,≺′) where we keep the constraints
between A1 and A2 but remove all constraints between
A3 and A1 ∪ A2, i.e., ≺′ =

(⋃3
k=1≺k

)
∪ (A1 ×A2).

Now `(R) =
( |A|
|A3|
)
`(R1)`(R2)`(R3). Our partition

finding attempts to maximize the heuristic
(|A1|+|A2|
|A1|

)
,

which is inversely correlated with the number of linear
extensions if we assume that the relaxation for all the
parts Ak is the empty partial order. For every x ∈ A, we
use greedy hill climbing, starting from A1 = {x} and
adding more vertices to A1 while maintaining A2 as the
maximal set such that A1 and A2 are ordered.

6. We relax P by taking a spanning tree of its cover graph
and then apply the O(n2) time algorithm. We sample

s34s34

s23

s13

0 1

s23

s13x2

x3

x4

x1

y′
3

s34s34

s23

s13

0 1

s23

s13y2

y3

y4

y1

Figure 3: Example of a transition in the continuous relocation chain
with n = 4. Each transition either sets one of the components of
the state (xi)

n
i=1 to a random value, or makes no changes if the

resulting state would be outside the set of possible states Ω defined
by the constraints sij ≥ 0. In the example transition from (xi)

n
i=1

to (yi)
n
i=1, the third component is set to value y′

3. The values xi

before (left) and after (right) the transition are show as white circles.
Constraints xi − xj < sij are denoted by dashed arrows. The sets
of possible new values for each component are shown in red.

6 minimum-weight spanning trees, with the arcs of the
cover graph sorted randomly by weight, and choose the
one with the smallest number of linear extensions.

4 The Sampler
As the last remaining piece of relaxation Tootsie Pop algo-
rithm, we consider the problem of sampling from sets of type
Aβ defined in equation (1). More exactly, we consider the
more general problem of sampling uniformly from the set

Ω =
{
x ∈ [0, 1]n

∣∣xi − xj ≤ sij for all 1 ≤ i < j ≤ n
}
,

where sij ≥ 0 for all 1 ≤ i < j ≤ n.

4.1 Continuous Relocation Chain
To sample from Ω, we define the continuous relocation
Markov chain (Xk)∞k=0 in Ω in which each state transition
is given by the rule Xk+1 = φ(Xk, ik, tk), where dimension
ik ∈ [n] and position tk ∈ [0, 1] are sampled uniformly at
random, and the transition function φ : Ω× [n]× [0, 1]→ Ω
maps (x, i, t) to y as follows:
• Construct the proposition state y′ by setting y′i = t and
y′j = xj for all j ∈ [n] \ {i}.
• Move to state y = y′ if y′ ∈ Ω; otherwise stay in y = x.

See Figure 3 for an example. From the symmetry of the tran-
sition distributions we get the following result:
Theorem 2. The uniform distribution on Ω is a stationary
distribution for the continuous relocation chain.

4.2 Perfect Sampling
Although by Theorem 2 the stationary distribution of the
chain is uniform, we do not have a bound for its mixing time,
and so we do not know how many iterations are required for
the desired precision. Nevertheless, we next see that one can
sample exactly from the uniform distribution using mono-
tonic coupling from the past [Propp and Wilson, 1996]. For
this we need the chain to be monotonic in relation to the up-
date function φ and some partial order @ on Ω:
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Lemma 1. Let x @ y if xi ≤ yi for all i ∈ [n] and x 6= y.
(a) The relation @ is a partial order on Ω;
(b) there exist 0,1 ∈ Ω such that 0 v x v 1 for all x ∈ Ω;
(c) if x, y ∈ Ω such that x v y, then φ(x, i, t) v φ(y, i, t)

for all i ∈ [n] and t ∈ [0, 1].

Proof. It is easy to verify that @ is a partial order and that
0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1) satisfy the con-
ditions in (b). Assume that x, y ∈ Ω and x v y. To
prove that φ(x, i, t) v φ(y, i, t), it suffices to prove that
φ(x, i, t)i ≤ φ(y, i, t)i because for all j ∈ [n] \ {i} we have
that φ(x, i, t)j ≤ φ(y, i, t)j . For each z ∈ {x, y} let

Lz = max
(
{0} ∪ {zj − sji | 1 ≤ j < i}

)
,

Rz = min
(
{1} ∪ {zj + sij | i < j ≤ n}

)
.

By the definition of Ω we have that zi ∈ [Lz, Rz] and if
t ∈ [Lz, Rz], then φ(z, i, t)i = t and else φ(z, i, t)i = zi.
Because x v y we also have that Lx ≤ Ly and Rx ≤ Ry .

We prove that φ(x, i, t)i ≤ φ(y, i, t)i in cases: First, if t ∈
[Ly, Rx], then t ∈ [Lx, Rx] ∩ [Ly, Ry] and thus φ(x, i, t)i =
t = φ(y, i, t)i. Second, if t < Ly (case t > Rx is symmetric),
then φ(x, i, t)i is either xi or t. It holds that xi ≤ yi because
x v y and t < Ly ≤ yi because yi ∈ [Ly, Ry]. Combined,
these yield that φ(x, i, t)i ≤ yi = φ(y, i, t)i.

The method of Propp and Wilson [1996] now yields the
following algorithm: We run two instances (Xk)0k=−T and
(Zk)0k=−T of the continuous relocation chain for T > 0 it-
erations starting from time −T with initial states X−T = 0
and Z−T = 1. We use the same sequences of parameters ik
and tk for both chains. If X0 = Z0, then X0 is the output
sample, and otherwise we rerun the whole algorithm with the
value of T doubled (i.e. starting from further in the past) still
using the same parameters ik and tk. After the algorithm has
terminated, we know that if we started the chain (Yk)0k=−T
from any initial state and used the same parameters ik and
tk, the output Y0 would match the output X0 of the algorithm
because by Lemma 1 we have that X−T v Y−T v Z−T and
inductively Xk v Yk v Zk for all −T + 1 ≤ k ≤ 0, yielding
X0 v Y0 v X0. By considering a chain (Yk)∞k=−T where the
initial state Y−T is sampled uniformly at random from Ω, we
see that the distribution of the outputX0 = Y0 is also uniform
on Ω because it is a stationary distribution of the chain.

While we do not know a good upper bound for the expected
running time of the algorithm, we can show that it is finite.
Theorem 3. The monotonic coupling-from-the-past algo-
rithm for the continuous relocation chain outputs a sample
from the uniform distribution on Ω in finite expected time.

Proof. Let c = 2n − 1 and define the event Al by
(i−lc, i−lc+1, . . . , i−lc+c−1) = (1, 2, . . . , n, n − 1, . . . , 1)
and tk ∈ [(ik − 1)/n, ik/n] for all −lc ≤ k < −(l − 1)c.
We see that if on some iteration T ≥ lc an event Al occurs,
then X−(l−1)c = Z−(l−1)c, which means that the algorithm
terminates after that iteration. All the events A1, A2, . . . are
mutually exclusive and have the same probability p > 0.

Let L be the smallest l such that the event Al occurs. Be-
cause T is doubled on every iteration, at least half of the time

is spent in the last iteration, and thus the running time isO(L)
for constant n. Because L is geometrically distributed with
parameter p, its expected value is 1/p <∞.

Our algorithm is similar to Huber’s [2014] sampler. The
main difference is that whereas our method resamples xi
along a randomly chosen dimension from the whole set [0, 1],
rejecting the moves that fall outside, that method uses Gibbs
sampling, meaning that it samples uniformly at random from
only the set of allowed values. Even though this is beneficial
in the sense that the chain stalls less in the same state, the
downside is that the sampling never terminates (i.e., reaches
X0 = Z0), and therefore additional tricks, which do not work
with generalized order constraints, are required.

5 Experiments
We empirically evaluated the following schemes:

Telescopic Product: The scheme of Brightwell and Win-
kler [1991], with optimizations [Talvitie et al., 2018].

Extension Tootsie Pop (ETP): The scheme based on TPA due
to Banks et al. [2017].

Adaptive Relaxation Monte Carlo (ARMC): The Monte
Carlo scheme based on exponential-time counting by
Talvitie et al. [2018].

SAT #1 and #2: Reducing the problem into SAT model
counting using encodings given in Section 2.4 and solv-
ing it using sharpSAT [Thurley, 2006] or D4 [Lagniez
and Marquis, 2017] exact model counter or ApproxMC2
approximate model counter [Chakraborty et al., 2016].

(Trivial) Relaxation Tootsie Pop (RTP): The TPA based
scheme given in Section 3. For comparison, we also con-
sider a version with the trivial relaxation (empty poset).

We adopted the experimental setup and benchmark in-
stances of Talvitie et al. [2018]: The instances are randomly
generated and include posets of average indegree k ∈ {3, 5},
bipartite posets of density p ∈ {0.2, 0.5}, and posets ex-
tracted from subgraphs of the networks Andes, Diabetes,
Link, Munin, and Pigs from the Bayesian Network Reposi-
tory (www.cs.huji.ac.il/˜galel/Repository). For every instance
class and size between 8 and 512 elements, we have five dif-
ferent posets. We ran each algorithm for every instance for
at most 24 hours of CPU time and memory limited to 8 gi-
gabytes. All the algorithms were instantiated to produce a
(1, 1/4)-approximation. We use the implementations due to
Talvitie et al. [2018] for the telescopic product, extension
Tootsie Pop and adaptive relaxation Monte Carlo methods.
We will make our implementation for relaxation Tootsie Pop
and the SAT encoding generators publicly available. 1

Figure 4 shows the results of the experiments. The growth
of the running time of RTP clearly resembles polynomial
growth, as opposed to the exponential growth of the running
time of ARMC. While ARMC is faster in small cases, when
the number of elements exceeds roughly 200 elements, RTP
becomes the fastest scheme in most instance classes. The
version of RTP that uses the trivial relaxation is already faster

1github.com/ttalvitie/le-counting-practice
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Figure 4: The running times of the algorithms as functions of the number of elements. Each marker shows the median running time and the
surrounding shaded area is the range of variation among the five runs. The SAT-based results are for encoding #1, as it was found to always
perform better than encoding #2. Both axes are logarithmic.

than the telescopic product scheme and ETP, and using proper
relaxation instead of the trivial relaxation improves the run-
ning time roughly by an order of magnitude. The perfor-
mance of the SAT based schemes is poor: they take hours
to run already in the smallest cases.

6 Discussion
The relaxation Tootsie Pop scheme is a novel application
of TPA [Huber and Schott, 2010] for approximate counting
of linear extensions. Our empirical results suggest that the
scheme is the first that scales to large instances in practice. In
contrast to the exponential-time ARMC scheme, relaxation
Tootsie Pop requires only little memory and enables efficient
large-scale parallelization (not demonstrated here). In appli-
cations like Bayesian network structure learning [Niinimäki
et al., 2016], the new scheme should enable the handling of
partial orders (i.e., networks) with several hundreds of ele-
ments, which are beyond the reach of ARMC; for smaller

partial orders ARMC is superior, though.
Our key technical contribution was the perfect sampler in

the constrained continuous space. We observed that, even
if the sampler does not have—or we do not know how to
prove—polynomial worst-case time complexity bounds, the
sampler runs fast on all tested benchmark instances. This suc-
cess should encourage working on heuristic designs of per-
fect samplers also for other counting and sampling problems.
Compared to theoretical works that are concerned with prov-
able uppers bounds, the heuristic approach gives access also
to samplers whose complexity is difficult to analyze.

For the poor performance of the SAT solver based schemes
we offer three possible explanations. First, our encodings of
the problem were straightforward and could potentially be
beaten by more sophisticated encodings. Second, while the
tested algorithms represent the state of the art, other related
schemes [Gomes et al., 2006; Zhao et al., 2016] could be
more efficient in the present application. Third, the idea of
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reducing a counting problem to the NP-hard CNF-SAT prob-
lem may be ill-suited in general—even if powerful solvers
exist—when the counting problem is “easy” in the sense that
it admits a fully polynomial-time approximation scheme.
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