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 23 

Recognizing when and how rapid evolution drives ecological change is fundamental for 24 

our understanding of almost all ecological and evolutionary processes such as community 25 

assembly, genetic diversification and the stability of communities and ecosystems. 26 

Generally, rapid evolutionary change is driven through selection on genetic variation as 27 

well as affected by evolutionary constraints such as trade-offs and pleiotropic effects, all 28 
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contributing to the overall rate of evolutionary change. Each of these processes can be 29 

influenced by the presence of multiple environmental stressors reducing a population’s 30 

reproductive output. Potential consequences of multi-stressor selection for the 31 

occurrence and strength of the link from rapid evolution to ecological change are unclear. 32 

However, understanding these is required for predicting when rapid evolution might 33 

drive ecological change. Here we investigate how the presence of two stressors affects this 34 

link using experimental evolution with the bacterium Pseudomonas fluorescens and its 35 

predator Tetrahymena thermophila. We show that the combination of predation and 36 

sublethal antibiotic concentrations delays the evolution of anti-predator defence and 37 

antibiotic resistance compared to the presence of only one of the two stressors. Rapid 38 

defence evolution drove stabilization of the predator-prey dynamics but this link between 39 

evolution and ecology was weaker in the two-stressor environment, where defence 40 

evolution was slower, leading to less stable population dynamics. Tracking the molecular 41 

evolution of whole populations over time showed further that mutations in different genes 42 

were favoured under multi-stressor selection. Overall, we show that selection by multiple 43 

stressors can significantly alter eco-evolutionary dynamics and their predictability.   44 

Microbes often adapt surprisingly fast to changes in their environment. For instance, the rapid 45 

adaptation of resistance against pesticides or antibiotics1,2, as well as the coevolution of 46 

interacting microbes3-5, suggest an abundant supply of adaptive genetic variation. It is now well 47 

established that the dynamics of rapid evolutionary change can determine the ecological 48 

dynamics of populations and communities, which can again alter further evolutionary change 49 

and so on6-8. Because microbial communities determine the functioning of nearly all 50 

ecosystems9, understanding their eco-evolutionary dynamics is of fundamental importance, for 51 

example, for predicting harmful bacterial blooms10, the community composition of the 52 
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holobiont11 or the potential of a microbial community to serve as a reservoir for antibiotic 53 

resistance alleles2. 54 

Recent work has uncovered important consequences of eco-evolutionary dynamics, for 55 

example, for the coexistence of interacting species12, temporal changes in their population 56 

sizes6 and the maintenance of diversity3,13. Eco-evolutionary dynamics and their consequences 57 

are typically studied in the presence of one environmental stressor that leads to a reduction in 58 

fitness (e.g. one consumer or the exposure to antibiotics). However, the underlying mechanisms 59 

linking evolutionary and ecological change are virtually unknown in communities with more 60 

than one stressor (e.g. consumer and antibiotics). Previous work has examined multi-stressor 61 

selection14,15, but this work has been limited to investigations of the evolutionary or ecological 62 

dynamics rather than the links between ecology and rapid evolution. One important question 63 

with multiple stressors is whether or not the same links between evolution and ecology matter 64 

as with one stressor. Here we develop predictions for the link between the evolutionary and 65 

ecological dynamics in single and multiple stressor environments and test these in an 66 

experimental evolution study. We focus on two commonplace stressors in microbial 67 

communities—ciliate predation and sublethal antibiotic concentrations (sub-minimum 68 

inhibitory concentrations; hereafter, sub-MICs)—and disentangle for the first time key 69 

processes driving the link between ecological and evolutionary dynamics in bacteria-ciliate 70 

communities. 71 

Sub-MIC levels are commonly found e.g. in sewage waters, lakes, rivers and soil17, and 72 

they have been shown to select for antibiotic resistance either by an increase in the frequency 73 

of resistant bacteria or by selection for de novo resistance1. Besides evolutionary consequences, 74 

sub-MICs of antibiotics can also affect ecological dynamics, for example, by lowering bacterial 75 

population sizes when sub-MICs of antibiotics do not alter growth rates but increase density 76 

independent mortality rates2. From these observations, we can further predict a direct link 77 
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between evolutionary and ecological dynamics when resistance evolution leads to higher 78 

growth rates or compensation for increased death rates in the presence of sub-MICs such that 79 

bacteria reach similar densities as without sub-MICs. 80 

Consumption by protists or phages exerts strong selection on the bacterial prey 81 

population apart from the ecological effect of driving bacterial population. Bacteria are known 82 

to rapidly evolve anti-predatory adaptations against consumers, e.g. by evolving to grow in 83 

colonies or as biofilm, thereby decreasing attack rates or increasing handling time 16,17. General 84 

ecological theory for predator-prey interactions predicts that decreasing attack rates and/or 85 

large increases in handling time can result in stabilization of the temporal dynamics of the prey 86 

and its consumer18, which can be seen in oscillations with reduced amplitudes or a shift to 87 

steady state dynamics (Supplementary Information Fig. S1; note that the conditions for stability 88 

depend on the details of the model applied, e.g., the functional response of the predator)19. Thus 89 

the evolution of defence traits can directly affect the ecological dynamics within predator-prey 90 

systems, which has been confirmed in models20 and experiments21-23. 91 

Sub-MIC levels of antibiotics can, however, alter the evolution of anti-consumer defence 92 

traits in bacterial populations4,24, and the presence of the two stressors also has the potential to 93 

alter the stability of the microbial community (ecology). Multi-stressor selection can prevent 94 

or delay the evolution of resistance and/or anti-predatory defences through lowering selection 95 

strength on individual loci14, clonal interference where adaptive mutations compete for fixation 96 

in large asexual populations25, trade-offs between traits26,27, pleiotroy28 or linkage 97 

disequilibrium29. Furthermore, the evolution of one trait can alter the strength of species 98 

interactions and thus selection, which can lead to slower evolution, or favour different 99 

mutations due to differences in associated costs, or because the role of the order of mutations 100 

changes in different environments. Bacterial population sizes are predicted to be lower in the 101 

presence of the two stressors as the combined effect lowers fitness even more, which can affect 102 
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evolutionary change by reducing mutation supply and increasing the relative importance of 103 

drift to selection30,31. Alternatively, pleiotropic effects of mutations might accelerate the 104 

evolution of one trait when adaption to one stressor provides adaption to the second one at the 105 

same time. The effects of clonal interference could be alleviated in small population sizes, as 106 

clonal interference occurs less often when mutation supply is low32,33. The pace of evolution is 107 

also predicted to be faster when the predator removes selectively maladapted individuals or 108 

through the evolutionary hydra effect34. Finally, we predict that differences in the rate of 109 

evolution impact the population dynamics of the bacterial prey and the predator, with slower 110 

evolution leading to less stable and faster evolution to more stable predator-prey dynamics 111 

under the assumption of stabilizing selection35. 112 

To test for the role of multi-stressor selection for eco-evolutionary dynamics, we exposed 113 

in an experimental evolution study initially isogenic populations of the bacterium 114 

Pseudomonas fluorescens SBW25 to 0×MIC and 0.1×MIC of the antibiotic streptomycin 115 

(mode of action: inhibition of protein synthesis in prokaryotes) in the presence and absence of 116 

the ciliate Tetrahymena thermophila in a full-factorial experiment for ~220 bacterial and ciliate 117 

generations (66 days; Material and Methods). We followed population dynamics and 118 

phenotypic changes of three replicated populations in each treatment. To gain mechanistic 119 

insights into how sub-MICs and predation altered the evolution of defence and resistance, we 120 

analysed whole-genome sequence data from the replicate bacterial populations over time. This 121 

allowed us to compare when de novo mutations (single nucleotide polymorphisms, SNPs; 122 

insertions or deletions, INDELs; copy number variations, CNVs) arise and their dynamics over 123 

time across the different treatments. 124 

Results & Discussion 125 

We observed different ecological and evolutionary dynamics over time depending on the 126 

presence/absence of the ciliates, as well as between treatments with the presence of 127 
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streptomycin (Fig. 1). Streptomycin did not have a direct effect on the maximum growth rates 128 

of ciliates and bacteria (Fig. S2). However, bacterial densities were significantly lower with 129 

streptomycin (Generalized Estimating Equations model (GEE) bacteria alone: sub-MIC: 130 

W=19.11, df=1, p=1.236 ·10–5; for all non-significant results, see Supplementary Information; 131 

Table S1) as well as in the presence of ciliates (GEE: interaction sub-MIC×day: W=4.96, df=1, 132 

p=0.026; day: W=29.54, df=1, p=5.47·10–8; sub-MIC: W=61.68, df=1, p=3.997·10–15). Overall, 133 

population dynamics were less stable in the presence of the ciliates and even less in the 134 

presence of ciliates with streptomycin (de-trended standard variation of the predator 135 

population=coefficient of variation: Generalized linear model (glm): F=16.963, df=2, 136 

p=0.0146; Figs. 1, 2a). Bacteria-ciliate populations showed considerable fluctuations at the 137 

beginning of the experiment in the presence and absence of streptomycin, but stabilized in the 138 

latter case around day 25. In the predator-free treatments, bacterial population sizes showed 139 

only small fluctuations around the carrying capacity (Fig. 1a,b). Thus, the sub-MIC and the 140 

presence of the predator led to lower bacterial population sizes and the predator to less stable 141 

dynamics, which was stronger with sub-MIC streptomycin. 142 

To follow the evolutionary response of predation by the ciliate, we measured growth 143 

rates r of the ancestral predator when growing on ancestral and evolved bacteria isolated from 144 

different time points of the experiment. From this we calculated the defence level 𝐷 =145 

#1− revolved
rancestor

% with 0 meaning that the evolved bacteria have the same level of defence as the 146 

ancestor and values close to 1 a very high level of defence compared to the ancestor16. Bacteria 147 

evolved anti-predatory defence by forming biofilm and/or colonies (Fig. S3), with significantly 148 

higher levels of defence with 0×MIC levels over time (GEE: day: W=13.03, df=1, p=0.00031; 149 

sub-MIC: W=15.38, df=1, p=8.81∙10–5; Fig. 1b, d; Table S2). Lower predator growth rates were 150 

attributed to significantly lower ingestion rates for the defended prey compared to the 151 

undefended ancestral prey (ANOVA starting concentrations vs. ingestion: interaction 152 
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concentration×defence: F1,60=11.44, p=0.001; concentration: F1,60=76.67, p=7∙10–12; defence: 153 

F1,60=20.86, p=2.51∙10–5; Fig. S4), which could be the result of lower attack rates or increased 154 

handling times (Fig. S1).  155 

We found the evolution of streptomycin resistance in populations in the predator-free 156 

environments with 0.1×MIC (Fig. 1c), which we confirmed by testing individual isolates from 157 

the end of the experiment (glm for the comparison ancestor vs. isolates from the end of the 158 

experiment: F=37.6, df=8, p=4.6·10–5; Fig. S5). Importantly, however, streptomycin resistance 159 

was not observed in the 0.1×MIC populations with predators (glm for the comparison ancestor 160 

vs. isolates from the end of the experiment with family: F=2.32, df=8, p=0.15; Figs. 1d, Fig. 161 

S5). To test whether resistance evolution was delayed or not occurring, we followed the 162 

frequency of resistance evolution in 48 additional populations with a factorial design including 163 

the presence and absence of ciliates in 0.1×MIC streptomycin (Material and Methods). We 164 

found an increase in the frequency of resistant populations within 16 days in all treatments but 165 

the overall level of resistance was lower in the presence of the ciliates in 0.1×MIC (GEE: 166 

interaction day×treatment: W=35.46, df=3, p=9.738·10–8; treatment: W=440.5, df=1, p<2.2·10–167 

16; day: W=14.15, df=1, p=0.00014; Fig. S6). Thus, resistance and defence evolution were 168 

delayed in the presence of the two stressors. 169 

Next, we investigated the links between the ecological and evolutionary dynamics over 170 

time and across different environments. Bacterial population sizes were significantly lower in 171 

the presence of 0.1×MIC streptomycin even after they evolved resistance (Fig. 1a,c) suggesting 172 

that the evolution of resistance had no effect on the ecological dynamics of the system. We 173 

found a significant negative correlation between stability of the bacteria-ciliate communities 174 

and defence level (glm: mean defence level: F=21.96, df=1, p=0.0094; Fig. 2b) suggesting that 175 

the evolution of defence altered the predator-prey dynamics as predicted by ecological theory 176 

(Fig. S1). To further test whether the degree of defence alters the stability of the predator-prey 177 
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system, we repeated the experiment but starting with clonal bacterial lineages differing in their 178 

defence level in the presence and absence of 0.1×MIC streptomycin (Material and Methods). 179 

Again, we found a significant negative correlation between stability and defence level but 180 

independent of the presence of sub-MIC levels of streptomycin (glm: level of defence of initial 181 

clone: F=14.06, df=1, p=0.00057; Fig. 2c). Thus the evolution of defence altered the ecological 182 

dynamics of predator and prey and, importantly, the presence of sub-MIC streptomycin did not 183 

directly affect the predator-prey dynamics but rather indirectly by slowing down defence 184 

evolution. Thus the relative role of defence evolution for the predator growth was lower in the 185 

presence of sub-MIC streptomycin compared to the ecological change, i.e., the number of 186 

available prey (ratio evolutionary change: ecological change: 0×MIC: 1.2 ±0.5 and 0.1×MIC: 187 

0.28±0.3; ANOVA: F=8.72, df=1, p=0.042; following the Geber method described in16,36; Fig. 188 

S7).  189 

We confirmed this in additional experiments using two antibiotics with different modes 190 

of action at 0.1×MIC (rifampicin: inhibition of RNA synthesis; tetracycline: inhibition of 191 

protein synthesis). Bacteria evolved anti-predator defence very rapidly with tetracycline but 192 

not with rifampicin. Also in these cases bacterial population sizes were lower in the antibiotic 193 

treatment without predator, and defence evolution affected the stability of predator-prey 194 

dynamics with lower stability in the absence of defence evolution (Fig. S8). 195 

Our data show that the combination of sub-MIC levels of streptomycin and predation 196 

slowed down the evolution of anti-predator defence as well as antibiotic resistance. Clonal 197 

interference, differences in mutation supply, genomic constraints such as epistatic interactions 198 

and pleiotropic effects, and differences in the strength and directionality of selection could 199 

explain these observations14,25,27,37-39. With clonal interference, we would predict to find 200 

subpopulations of clones that are either resistant against streptomycin or defended against 201 

ciliates, but not both. We did not find evidence for this when estimating correlations between 202 
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these two traits in bacterial clones from populations with 0.1×MIC streptomycin and ciliates 203 

isolated from the end of the experiment (Fig. 3a). We rather found a significant positive 204 

correlation indicating a pleiotropic effect for defence and resistance (glm: logMIC~ defence 205 

level: F=36.5, df=1, p=1.2·10–7; Table S3). Such an effect was absent in the populations 206 

evolving in the presence of only the ciliates (glm: logMIC~ defence level: F=0.59, df=1, 207 

p=0.44; Fig. 3a). There were also no costs associated with defence and MIC levels of individual 208 

clones that could hinder the evolution of resistance or defence as we observed only positive 209 

correlations with maximum growth rates when tested in the absence of either of the stressor 210 

from the 0.1×MIC streptomycin and ciliate populations (glm: rmax~logMIC: F=43.6, df=1, 211 

p=1.5·10–8; rmax~ defence level: F=30.7, df=1, p=8.1·10–7), which were absent in the one 212 

stressor environments (Fig. 3b,c; Table S3). 213 

To further investigate the mechanisms slowing down evolution of defence and resistance, 214 

we used whole-genome sequence data from the replicate bacterial populations over time. For 215 

this, we isolated DNA from subsamples of the populations at 10 time points (Material and 216 

Methods; Supplementary Information). We applied a pipeline to distinguish mutations from 217 

sequence errors and identified CNVs, short variants (SNPs, INDELs) and cohorts of variants 218 

with similar dynamics over time. We found a large number of variants in all populations (Figs. 219 

4a, S9) likely because bacterial populations were not mutation-limited (average size >108 220 

individuals), which also suggests that the role of drift was negligible in our populations. 221 

However, the number of variants differed significantly (glm: χ2=3393, df=8, p<2.2∙10–16; Fig. 222 

4a), with most mutations in the populations where bacteria evolved in the presence of 0.1×MIC 223 

and fewest in the presence of the ciliate (Table S4). These differences in the overall number of 224 

mutations are likely explained by the evolution of mutator lineages in some replicates (Fig. 225 

4a). The majority of mutations were synonymous substitutions (Fig. 4b) and there were no 226 

differences between the treatments in the fraction of synonymous mutations (glm with 227 
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proportion data: χ2=84.8, df=8, p=0.33), suggesting that there were no or only little differences 228 

in mutation supply.  229 

In further analyses, we focused on genes involved in antibiotic resistance and associated 230 

with the wrinkly spreader colony phenotype40 and derived variants within genes that reached a 231 

frequency in at least one population of 50% (hereafter filtered variants). We focus on the 232 

wrinkly spreader phenotype as it has previously been shown to be selected by predation (the 233 

phenotype forms biofilm)17 and we found a higher frequency of wrinkly spreaders in the 234 

presence of predation independent of the streptomycin concentration (glm: predation: F=248.3, 235 

df=1, p=2.627·10–7; Figs. S3, S10, Table S5). The number of selected mutations differed 236 

significantly between the different treatments (glm: χ2=74.87, df=8, p=0.009l; Fig. 4b) with 237 

fewest variants in the environment with 0.1×MIC and the ciliates present (glm: predation: 238 

χ2=79.24, df=10, p=0.0076; antibiotics: χ2=79.18, df=9, p=0.8168; predation×antibiotics: 239 

χ2=74.87, df=8, p=0.038). 240 

We identified one gene related to antibiotic resistance (rpsL) in populations exposed to 241 

antibiotics alone and where we observed streptomycin resistance evolution (Figs. 1c,4c). The 242 

third replicate, where we did not observe streptomycin resistance evolution had no mutation in 243 

the known resistance related gene. For the populations exposed only to predation, we found in 244 

all three replicate populations a duplication that did not occur in other treatments arising around 245 

day 20–30 (Fig. 4c), and in two populations, the fixation of mutations in the gene PFLU 4745 246 

(Figs. 1b, 4c). For populations evolving in the presence of antibiotics and the predator, we 247 

found different mutations reaching high frequencies. Mutations in the gene ptsP were found at 248 

high frequency in all three replicate populations and mutations in wspF and gacS in two 249 

replicates. The latter two have previously been associated with the wrinkly spreader 250 

phenotype41,42, and ptsP has a proposed global regulatory function for gene expression43.  251 
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Mutations in the same genes in replicate populations can be considered evidence for 252 

fitness benefits of these mutations. While we found 1–3 multi-hit genes within treatments (Figs. 253 

1,4), we found only one gene with derived variants present in the one and two stressor 254 

environments in at least two out of the three replicates (ptsP, Fig. 4c) but not in the control 255 

populations without any stressor. The lack of overlap across treatments but not across replicates 256 

within treatments in derived alleles suggests that different mutations were selected with one or 257 

two environmental stressors. Furthermore, in the one-stressor environment, derived alleles 258 

swept to high frequencies in all replicates (Fig. 4b,c). In the two-stressor environment, we 259 

found sweeps as well as additional sweeps at a later time point and before the preceding sweeps 260 

were close to fixation. In one replicate (4d, middle row, replicate 2) mutations that reached 261 

high frequencies (ptsP and wspF) went extinct and were replaced by others, which could either 262 

be the result of an additional detrimental mutation in this genetic background or clonal 263 

interference. Interestingly, these frequency changes correlate with changes in the predator-prey 264 

dynamics (Fig. 1d, top row, replicate 2; a decrease in predator and increase in bacteria densities 265 

around day 50), which we did not observe in the other two replicates where the derived allele 266 

of ptsP stayed at high frequencies. We observed two or several derived alleles with the same 267 

trajectories within the same populations in the presence of 0.1×MIC (Fig. 1c,d) indicating 268 

genetic hitchhiking, where driver mutations carry along other mutations.  269 

Based on general ecological theory for predator-prey systems (Fig. S1), we predicted 270 

differences in the eco-evolutionary dynamics of bacteria and ciliate communities in the 271 

presence and absence of antibiotic stress through slower evolution of anti-predator defences in 272 

the presence of the antibiotics. These differences in the evolutionary dynamics altered the 273 

ecological dynamics. Thus, our experiment showed a significant change in the link from 274 

evolution to ecology in the presence of both stressors. The slower phenotypic evolution was 275 

the result of different mutations increasing to high frequencies in the one and two-stressor 276 



 12 

environments. Thus the genomic changes driving eco-evolutionary dynamics11 and the link 277 

between evolution and ecology might depend on the system and the specific conditions.  278 

For the two stressors examined here we can suggest that sub-MIC levels of antibiotics 279 

have significant ecological and evolutionary effects on communities and alter the dynamics of 280 

the microbial loop as well as its link to ecosystem functioning and nature conservation44. Ours 281 

and other recent studies examining eco-evolutionary dynamics and multi-stressor 282 

selection3,12,45 suggest that the type of species interaction and stressor determines the potential 283 

mechanism whereby multiple stressors affect the links between ecology and evolution. 284 

Consequently, the strength of the link between evolution and ecology depends on other 285 

stressors or environmental factors, making predictions on when to find eco-evolutionary 286 

dynamics challenging.  287 



 13 

References: 288 

1 Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. Plos Path. 7, 289 
doi:10.1371/journal.ppat.1002158 (2011). 290 

2 Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. 291 
Rev. Microbiol. 8, 260-271, doi:10.1038/nrmicro2319 (2010). 292 

3 Frickel, J., Theodosiu, L. & Becks, L. Rapid evolution of hosts begets species diversity at the cost of 293 
intraspecific diversity. Proc. Natl. Acad. Sci. USA 114, 11193-11198 (2017). 294 

4 Cairns, J., Becks, L., Jalasvuori, M. & Hiltunen, T. Sublethal streptomycin concentrations and lytic 295 
bacteriophage interactively promote resistance evolution. Philos. Trans. R. Soc. Lond. B 9, 20160040, 296 
doi:DOI: 10.1098/rstb.2016.0040 (2017). 297 

5 Frickel, J., Sieber, M. & Becks, L. Eco-evolutionary dynamics in a coevolving host-virus system. Ecol. Lett. 298 
19, 450-459 (2016). 299 

6 Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G., Jr. Rapid evolution drives 300 
ecological dynamics in a predator-prey system. Nature 424, 303-306 (2003). 301 

7 Koch, H., Frickel, J., Valiadi, M. & Becks, L. Why rapid, adaptive evolution matters for community 302 
dynamics. Front. Ecol. Evol. 2, doi:10.3389/fevo.2014.00017 (2014). 303 

8 Rudman, S. M. et al. What genomic data can reveal about eco-evolutionary dynamics. Nat. Ecol. Evol. 2, 9-304 
15, doi:10.1038/s41559-017-0385-2 (2018). 305 

9 Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H. & Stahl, D. A. Brock Biology of 306 
Microorganisms. Fourteenth edition edn,  (Pearson, 2014). 307 

10 Paerl, H. W. & Huisman, J. Climate - Blooms like it hot. Science 320, 57-58 (2008). 308 
11 Bordenstein, S. R. & Theis, K. R. Host Biology in Light of the Microbiome: Ten Principles of Holobionts 309 

and Hologenomes. PLoS Biol. 13 (2015). 310 
12 Hiltunen, T., Kaitala, V., Laakso, J. & Becks, L. Evolutionary contribution to coexistence of competitors in 311 

microbial food webs. Proc. R. Soc. B 284, 20170415, doi:doi: 10.1098/rspb.2017.0415 (2017). 312 
13 Lawrence, D. et al. Species Interactions Alter Evolutionary Responses to a Novel Environment. PLoS Biol. 313 

10, doi:ARTN e100133010.1371/journal.pbio.1001330 (2012). 314 
14 Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. Bioscience 50, 217-226, 315 

doi:Doi 10.1641/0006-3568(2000)050[0217:Esaaef]2.3.Co;2 (2000). 316 
15 Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors 317 

in marine systems. Ecol. Lett. 11, 1304-1315 (2008). 318 
16 Hiltunen, T. & Becks, L. Consumer co-evolution as an important component of the eco-evolutionary 319 

feedback. Nat. Commun. 5, 5226, doi:doi:10.1038/ncomms6226 (2014). 320 
17 Meyer, J. R. & Kassen, R. The effects of competition and predation on diversification in a model adaptive 321 

radiation. Nature 446, 432-435 (2007). 322 
18 Murdoch, W. W., Nisbet, R. M., McCauley, E., deRoos, A. M. & Gurney, W. S. C. Plankton abundance and 323 

dynamics across nutrient levels: Tests of hypotheses. Ecology 79, 1339-1356, doi:Doi 10.1890/0012-324 
9658(1998)079[1339:Paadan]2.0.Co;2 (1998). 325 

19 McCauley, E., Nisbet, R. M., Murdoch, W. W., de Roos, A. M. & Gurney, W. S. C. Large-amplitude cycles 326 
of Daphnia and its algal prey in enriched environments. Nature 402, 653-656 (1999). 327 

20 Abrams, P. A. & Matsuda, H. Prey adaptation as a cause of predator-prey cycles. Evolution 51, 1742-1750 328 
(1997). 329 

21 Fussmann, G. F., Ellner, S. P., Shertzer, K. W. & Hairston, N. G., Jr. . Crossing the Hopf bifurcation in a 330 
live predator-prey system. Science 290, 1358-1360 (2000). 331 

22 Jones, L. E. & Ellner, S. P. Effects of rapid prey evolution on predator-prey cycles. J. Math. Biol. 55, 541-332 
573 (2007). 333 

23 Becks, L., Ellner, S. P., Jones, L. E. & Hairston Jr., N. G. Reduction of adaptive genetic diversity radically 334 
alters eco-evolutionary community dynamics. Ecol. Lett. 13, 989-997 (2010). 335 

24 Friman, V.-P., Guzman, L. M., Reuman, D. C. & Bell, T. Bacterial adaptation to sublethal antibiotic 336 
gradients can change the ecological properties of multitrophic microbial communities. Proc. R. Soc. Lond. 337 
B. 282, doi:10.1098/rspb.2014.2920 (2015). 338 

25 Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. 339 
Nature 500, 571–574, doi:10.1038/nature12344 (2013). 340 

26 Ostman, B., Hintze, A. & Adami, C. Impact of epistasis and pleiotropy on evolutionary adaptation. Proc. R. 341 
Soc. Lond. B. 279, 247-256 (2012). 342 

27 Hansen, T. F. Why Epistasis Is Important for Selection and Adaptation. Evolution 67, 3501-3511 (2013). 343 



 14 

28 Rosenthal, J. P. & Dirzo, R. Effects of life history, domestication and agronomic selection on plant defence 344 
against insects: Evidence from maizes and wild relatives. Evol. Ecol. 11, 337-355 (1997). 345 

29 Barton, N. & Partridge, L. Limits to natural selection. BioEssays 22, 1075-1084, doi:Doi 10.1002/1521-346 
1878(200012)22:12<1075::Aid-Bies5>3.0.Co;2-M (2000). 347 

30 Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 348 
102-3, 127-144, doi:Doi 10.1023/A:1017067816551 (1998). 349 

31 Ferriere, R. & Legendre, S. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. 350 
Phil. Trans. R. Soc. B 368, 20120081, doi:10.1098/rstb.2012.0081 (2013). 351 

32 Fogle, C. A., Nagle, J. L. & Desai, M. M. Clonal Interference, Multiple Mutations and Adaptation in Large 352 
Asexual Populations. Genetics 180, 2163-2173 (2008). 353 

33 Park, S. C. & Krug, J. Clonal interference in large populations. Proc. Natl. Acad. Sci. USA. 104, 18135-354 
18140 (2007). 355 

34 Osmond, M. M., Otto, S. P. & Klausmeier, C. A. When predators help prey adapt and persist in a changing 356 
environment. Am. Nat. 190, 83-98 (2017). 357 

35 Cortez, M. H. How the magnitude of prey genetic variation alters predator-prey eco-evolutionary dynamics. 358 
Am. Nat. 188, 329-341 (2016). 359 

36 Hairston, N. G., Jr., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the 360 
convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114-1127 (2005). 361 

37 Bell, G. Evolutionary rescue and the limits of adaptation. Phil. Trans. R. Soc. B 368 (2013). 362 
38 Orr, A. H. & Unckless, R. L. The population genetics of evolutionary rescue. PLoS Genet 10, e1004551, 363 

doi:doi:10.1371/journal.pgen.1004551 (2014). 364 
39 Buskirk, S. W., Peace, R. E. & Lang, G. I. Hitchhiking and epistasis give rise to cohort dynamics in adapting 365 

populations. Proc. Natl. Acad. Sci. USA. 114, 8330-8335 (2017). 366 
40 Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69-72, 367 

doi:10.1038/27900 (1998). 368 
41 Workentine, M. L., Wang, S. Y., Ceri, H. & Turner, R. J. Spatial distributions of Pseudomonas fluorescens 369 

colony variants in mixed-culture biofilms. BMC Microbiol. 13 (2013). 370 
42 Bantinaki, E. et al. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. 371 

mutational origins of wrinkly spreader diversity. Genetics 176, 441-453, doi:10.1534/genetics.106.069906 372 
(2007). 373 

43 Mavrodi, O. V., Mavrodi, D. V., Weller, D. M. & Thomashow, L. S. Role of ptsP, orfT, and sss recombinase 374 
genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl. Environ. Microbiol. 72, 7111-7122 375 
(2006). 376 

44 Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 377 
336, 1401-1406 (2012). 378 

45 Ellner, S. P. & Becks, L. Rapid prey evolution and the dynamics of two-predator food webs Theor. Ecol. 4, 379 
133-152 (2011). 380 

46 Rainey, P. B. & Bailey, M. J. Physical and genetic map of the Pseudomonas fluorescens SBW25 381 
chromosome. Mol. Microbiol. 19, 521-533, doi:10.1046/j.1365-2958.1996.391926.x (1996). 382 

47 Kassen, R., Buckling, A., Bell, G. & Rainey, P. B. Diversity peaks at intermediate productivity in a 383 
laboratory microcosm. Nature 406, 508-512 (2000). 384 

48 Duetz, W. A. et al. Methods for intense aeration, growth, storage, and replication of bacterial strains in 385 
microtiter plates. Appl. Environ. Microbiol 66, 2641–2646, doi:10.1128/AEM.66.6.2641-2646.2000 (2000). 386 

49 R: A language and environment for statitical computing (R Foundation for Statistical Computing, Vienna, 387 
Austria. URL http://www.R-project.org/. Vienna, Austria, 2014). 388 

50 lme4: Linear mixed-effects models using Eigen and S4 R package version 1.1-7, http://CRAN.R-389 
project.org/package=lme4>. (2014). 390 

51 Halekoh, U., Hojsgaard, S. & Yan, J. The R Package geepack for Generalized Estimating Equations. J. Stat. 391 
Soft. 15, 1-11 (2006). 392 

52 pracma: Practical Numerical Math Functions. R package version 1.8.8. http://CRAN.R-393 
project.org/package=pracma (2015). 394 

53 Silby, M. W. et al. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas 395 
fluorescens. Genome Biol. 10, doi:10.1186/gb-2009-10-5-r51 (2009). 396 

54 Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, 397 
SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6, 80-92 (2012). 398 

55 McDonald, M. J., Rice, D. P. & Desai, M. M. Sex speeds adaptation by altering the dynamics of molecular 399 
evolution. Nature 531, 233-239 (2016). 400 

56 Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: An approach to discover, genotype, and 401 
characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 402 
974-984, doi:10.1101/gr.114876.110 (2011). 403 



 15 

 404 

Acknowledgments: We are grateful to Tuulia Niska, Saara Suomalainen, Tuulia Virolainen 405 

and Julia Haafke for helping with data collection. This work was supported by an Emmy 406 

Noether Grant and Heisenberg Stipend from the German Research Foundation (DFG) to LB 407 

(grant BE 4135/3-1, 4135/9); the Academy of Finland to TH (project #106993), to JL (project 408 

#1255572), and to VK (project #1267541); and the Finnish Cultural Foundation to JC (grant 409 

#160149).  410 

Author contributions: TH, MJ and LB conceived and designed the study; JC, JF, EK, LB 411 

analysed the sequence data; SK performed the sequencing; TH and JC collected data; LB and 412 

TH analysed data; JF, TH and LB wrote the manuscript. All authors contributed to the final 413 

version of the manuscript. 414 

Data Availability Statement: Data reported in the paper will be archived in a community 415 

archive. Raw sequence data will be deposited in NCBI SRA. 416 

Correspondence and requests for materials should be addressed to lutz.becks@uni-417 

konstanz.de.  418 

Competing Interests Statement: The authors declare no competing financial interests.    419 



 16 

Legends: 420 

Figure 1| Prey (a,c, top), predator-prey (b,d, top), prey defence D (middle), resistance 421 

(middle) and derived allele frequency (bottom) dynamics from P. fluorescens populations 422 

exposed sub-MIC levels of streptomycin.  Shown are three replicates 1-3 (left to right). a,b) 423 

No antibiotics. c,d) 0.1×MIC streptomycin. a,c) Ciliate absent. b,d) Ciliate present. Bacteria 424 

are 108 cells/ml (black squares), ciliates are 104 cells/ml (blue circles), defence level D (green 425 

circles), resistance (logMIC in μg/ml, red triangles) and derived alleles are shown in black and 426 

different symbols when only found in one population, in orange and with the same symbol 427 

when found in more than one population. We only show trait data (defence, log(MIC)) for 428 

treatments where they were collected, and when derived alleles passed filtering steps and 429 

reached at least 50% frequency in non-mutator populations (Material and Methods). Note that 430 

the logMIC values are higher in c and that 10 is the maximum we could measure.  431 

Figure 2| Stability of bacteria-ciliate populations exposed to 0× or 0.1×MIC sub-MIC 432 

levels of streptomycin and correlation of stability with defence levels of bacteria 433 

populations. a) Standard deviations (SD × 104) for de-trended ciliate time series were 434 

significantly higher for populations exposed to 0.1×MIC. Symbols: replicates; horizontal bar: 435 

mean (corresponds to Figs. 1b,d). b) SDs were negatively correlated with the mean levels of 436 

defence that evolved over time; Symbols correspond to a. c) Significant negative correlation 437 

between SDs (SD for de-trended predator densities of the first ten transfers, i.e. before further 438 

evolution of defence) and initial defence level of the bacteria at the start of the experiment. 439 

Bacteria with different defence levels were grown in the absence of streptomycin (dark grey, 440 

circle) and presence of 0.1×MIC streptomycin (light grey, square). For statistical tests, see main 441 

text. 442 

Figure 3| Trait correlations of clonal isolates from P. fluorescens populations exposed to 443 

0.1×MIC streptomycin and the ciliate T. thermophila from the end of the experiment (day 444 
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66). a) MIC and defence level D. b) Maximum growth rate of the bacteria and MIC (μg/ml). 445 

c) Maximum growth rate and D. Light grey triangles and regression lines = clones from ciliates 446 

+ 0.1×MIC, dark grey circles and regression lines from 0×MIC and ciliates. For statistical tests, 447 

see main text.   448 

Figure 4| Molecular evolution of P. fluorescens populations exposed to 0.1×MIC 449 

streptomycin and the ciliate T. thermophila in a factorial design. a) Total number of 450 

mutations (SNPs and small INDELs) accumulated over 66 days in P. fluorescens in the control 451 

populations, in the presence of predation, the presence of 0.1×MIC streptomycin and in the 452 

presence of both. Blocks within the bars represent replicates (n=3). The pound key (#) 453 

represents the occurrence of a known mutator allele in the population (mutL or mutS gene). b) 454 

Number of mutations at high frequencies (>50%) in populations and in genes related to 455 

antibiotic resistance and anti-predator defence (see main text). c) Genomic variants across 456 

replicated populations for 145 genes and 5 large duplications in the P. fluorescens SBW25 457 

genome. Only variants passing filtration criteria are displayed (total: 190 variants). Heat map 458 

colour from white (0.0) through orange (0.5) to red (1.0) indicates the maximum frequency of 459 

a SNP or short indel obtained in a population over time (66 day evolutionary experiment). Blue 460 

bars indicate the presence of large duplications. Columns represent variable genes or genomic 461 

duplications ordered from left to right according to their locus along the genome. Rows 462 

numbered 1–3 within treatments represent replicates 1–3.   463 
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Material and Methods 464 

Study system and microcosm experiments: As a prey species we used the bacterial strain 465 

Pseudomonas fluorescens SBW2546 and as a predator the ciliated protozoan Tetrahymena 466 

thermophila 1630/1U (CCAP). Prior to the experiments, the bacterial stock was kept at –80°C 467 

and ciliate stocks were cultured axenically in proteose peptone yeast extract (PPY) medium 468 

containing 20 g of proteose peptone and 2.5 g of yeast extract in 1 liter of deionized water. All 469 

treatments were started from one clonal culture of bacteria to achieve minimum initial genetic 470 

variability in populations. Experiments lasted 66 days, representing approximately 220 471 

bacterial and ciliate generations. 472 

Community experiments: Experiments testing the community dynamics were conducted in 473 

standard 25 ml glass vials12,16,40,47 with 6 ml medium containing M9 salts and King’s B (KB) 474 

nutrients at 5% concentration (5% KB: 1 g/l Peptone number 3 and 0.5 ml/l glycerol). Every 475 

48 hours, 1% of each culture was transferred to a new vial containing fresh culture medium. 476 

Microcosms were kept at 28 ± 0.1°C and shaken constantly at 50 rpm. Population sizes were 477 

estimated using optical density measurements and light microscopy counts16. Evolution of the 478 

prey defence trait D against predator grazing was quantified with a simple, ecologically 479 

appropriate bioassay where growth rates of the predator are measured and compared between 480 

ancestral and evolved prey12,16. We used Liofilchem MIC strips to measure antibiotic resistance 481 

over time for the evolving populations (Supplementary Information, Fig. 5) and for clonal 482 

isolates from day 66. We set up a first experiment adding 0× or 0.1×MIC streptomycin to 483 

microcosms of bacteria with and without ciliates with three replicates per treatment (12 484 

microcosms in total). A second set of experiments was set up at a later time point using 485 

0.1×MIC of rifampicin and tetracycline in bacterial microcosms with and without ciliates (four 486 

replicates each, 16 microcosms in total). We analysed the second set of experiments separately. 487 
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In order to assay colony phenotype frequencies, we plated diluted samples from day 66 on PPY 488 

agar, and categorized the types according to Ref. 40. 489 

Evolution of antibiotic resistance: A second experiment was used to test for the interactive 490 

role of predation and a sub-MIC of streptomycin on the evolution of antibiotic resistance. The 491 

experiment was conducted in 96-well plates where populations were transferred into fresh 492 

culture medium every 48 hours using a pin-replicator48 in medium without streptomycin or 493 

with 0.1×MIC streptomycin and with or without ciliates. Proportions of resistant populations 494 

were tested by plating each of the populations onto agar containing an above MIC 495 

concentration of streptomycin (25 μg/ml). For the analyses, we used differences in the 496 

proportion of resistant populations between 0 and 0.1×MIC per time point and contrasted these 497 

between the ciliate present and absent treatments. 498 

Data analyses: All statistical analyses were performed in the R statistical environment49 using 499 

the lme450 and the geepack51 packages. Data from the experiments with streptomycin and 500 

tetracycline/rifampicin were analysed separately as they were performed separately. We used 501 

consumer specific Generalized Estimating Equations models (GEE; bacteria alone or bacteria 502 

and ciliate) for the analyses of bacterial and ciliate densities as well as predator-prey ratio and 503 

defence level D over time with day and sub-MIC (0 and 0.1×MIC). We used the family Gamma 504 

and the link function inverse for density data and the family Poisson and the link function 505 

identity for the D. For the stability analyses of the communities, we calculated the standard 506 

deviation of predator population size after de-trending the time-series and scaling the mean to 507 

0 using the R package pracma52. To test for differences in stability between treatments and a 508 

relationship between stability and maximum D, we used generalized linear models (glm) with 509 

the family Gamma and the link function inverse. Differences in ingestion rates for defended 510 

and naive bacteria (Fig. S4) were tested using linear models. The evolution of resistance with 511 

and without ciliates in 48 replicate populations (Fig. S6) was compared using generalized linear 512 
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models with the family Gamma and the link function inverse. For the correlations between D 513 

and resistance of the clones from the end of the experiment, we used a generalized linear model 514 

with the family Gaussian and the link function identity, and for the correlation between rmax 515 

and D as well as rmax and resistance, glms with the family Gamma and the link function inverse. 516 

To test for the effect of predation on the frequency of WS evolution, we used glms with the 517 

family Gamma and the link function inverse.   518 

Sequence analyses: Bacterial DNA was extracted (DNeasy Blood & Tissue Kit, Qiagen) 519 

directly from 0.5 ml freeze-stored whole-population sample without culturing steps to retain 520 

allele frequencies intact. We sequenced the following populations: i) populations without 521 

antibiotics or predators (control), ii) with antibiotics (0.1×MIC streptomycin), iii) with 522 

predators and iv) with both predators and 0.1×MIC streptomycin. For each treatment, all three 523 

replicate populations were sequenced from 10 time points over the course of the 66-day 524 

experiment. We focused on early time points, since adaptive mutations were expected to 525 

emerge early in rapidly evolving bacterial populations (sequence data generated for days 2, 4, 526 

8, 12, 22, 32, 42, 50, 56, 66). Paired-end libraries were prepared using Illumina Nextera XT 527 

sequence reads obtained by high-throughput sequencing (Illumina Nextseq 500 high output; 528 

for coverage see Table S6). 529 

After mapping reads to the reference genome (Pseudomonas fluorescens SBW25 530 

NC_012660)53, variants (SNPs and short INDELs) were called using HaplotypeCaller and 531 

jointly genotyped for all 10 time points per population using GenotypeGVCFs with GATK 532 

(version 3.5) and ploidy set to 30. Thus, for each population, we could detect variants at each 533 

locus at a frequency detection limit and resolution of 3.3 % (100 % / 30). Variants were hard-534 

filtered to omit variants with combined read depth < 100 and Phred-scaled quality < 50. We 535 

used SnpEff54 with the annotation file corresponding to the reference genome for variant effect 536 

prediction, i.e. to detect whether the variant has no predicted effects (non-coding variants: 537 
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intergenic regions and synonymous variants) or results in an amino acid change (all coding, 538 

non-synonymous variants). Prior to further analyses, variant counts (max. 30) were converted 539 

into frequencies (0–1). 540 

We designed a pipeline to remove likely sequence errors from the resulting dataset 541 

utilizing previously published pipelines25,55 (see also Supplementary Information). To reliably 542 

track variant frequency, we excluded variant loci represented by two or more alternate alleles 543 

in the same population in GATK variant calling. Since the frequency of a real mutation is 544 

expected to be correlated across time points, we excluded variants whose frequency trajectories 545 

had a lag-1 autocorrelation < 0.2. Variants occurring immediately at detectable frequency are 546 

more likely to be either ancestral variants or sequence errors compared to variants emerging at 547 

later time points. Therefore, initial variants (first two sequenced time points) were required to 548 

have a stricter minimum lag-1 autocorrelation of 0.5. Because variants that remain at very low 549 

frequencies are unreliable, we required a variant to reach 0.1 frequency in a minimum of two 550 

time points. We also excluded variants located within 10 bp from INDELs, which might have 551 

an increased likelihood of being alignment errors. Finally, to ensure that the data has sufficient 552 

temporal resolution, we removed variants with missing information from over two (> 2/10) 553 

time points (resulting e.g. from insufficient coverage at the variant locus in a given sample). 554 

As well as analysing mutations individually, we assigned them to cohorts, i.e. temporal 555 

clusters of mutations, using a previously developed approach25. First, a Euclidian distance 556 

matrix was created from frequency vectors of mutations with ≥ 0.3 maximum frequency, since 557 

low-frequency mutations cannot be reliably clustered. The distance matrix was hierarchically 558 

clustered, and the hierarchies were flattened using a cutoff distance of 0.5 (data resolution did 559 

not permit lower cutoff distances), using the dist, hclust and cutree functions in the stat package 560 

in base R. After all filtration steps, we also extracted nonsynonymous candidate mutations 561 

potentially under selection from variant data based on being located on a gene mutated at min. 562 
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50 % frequency in at least one non-mutator population (to leave out nonselected hitchhikers 563 

likely present in the mutational cohorts of mutator populations). 564 

In addition to detection of SNPs and short INDELs using the approach outlined above, 565 

we performed read-depth-based detection of large genomic deletions and duplications (i.e. 566 

copy number variation, CNV) using cnvnator 0.3.256with a bin size of 500 bp. CNVs of interest 567 

were extracted based on absence in the first sequenced time point (likely ancestral CNV or 568 

sequence error) and detection in at least two consecutive time points (signal of potential 569 

selection).  570 

To test for differences in the total number of variants and the number of filtered variants 571 

between treatments, we use generalized linear models with the family Poisson and the link 572 

function log with treatment as factor. We used glms with the family Gamma and the link 573 

function inverse to test for the distribution of variants (total and filtered) in different impact 574 

classes with the presence and absence of streptomycin and predators and impact class as 575 

factors.  576 


