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Abstract 26 

Predation is one of the key ecological mechanisms allowing species coexistence and influencing 27 

biological diversity. However, ecological processes are subject to contemporary evolutionary change, 28 

and the degree to which predation affects diversity ultimately depends on the interplay between 29 

evolution and ecology. Furthermore, ecological interactions that influence species co-existence can be 30 

altered by reciprocal co-evolution especially in the case of antagonistic interactions such as predation 31 

or parasitism. Here we used an experimental evolution approach to test for the role of initial trait 32 

variation in the prey population and co-evolutionary history of the predator in the ecological dynamics 33 

of a two-species bacterial community predated by a ciliate. We found that initial trait variation both at 34 

the bacterial and ciliate level enhanced species coexistence, and that subsequent trait evolutionary 35 

trajectories depended on the initial genetic diversity present in the population. Our findings provide 36 

further support to the notion that the ecology-centric view of diversity maintenance must be 37 

reinvestigated in light of recent findings in the field of eco-evolutionary dynamics. 38 

 39 

 40 

 41 
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1. Introduction 48 

Natural selection acts on the fitness variance of phenotypes [1–3], and adaptive evolution is predicted 49 

to be enhanced in populations with high genetic diversity [4]. Adaptive evolution can lead to niche 50 

divergence and thus facilitate coexistence in competitor or predator-prey communities [5–7]. Classic 51 

competition theory predicts that species coexistence is possible when intraspecific competition is 52 

stronger than interspecific competition [5]. However, owing to contemporary evolution, the impact of 53 

competitors on each other might not be constant [8]. For example, the high number of coexisting species 54 

in microbial communities [9] in even simple environments [10–13] might be explained by high levels 55 

of within-species clonal diversity [5,14,15] and result in rapid evolution to use underexploited or new 56 

ecological niches [13]. Recent work has shown that traits and species interactions in microbial food 57 

webs can be altered by evolutionary change, as de novo mutations and changes over time in the 58 

frequencies of genotypes from standing genetic variation can occur at the same temporal scale as 59 

ecological processes [16–18]. It has been previously shown that consumers such as predators or 60 

parasites can have significant indirect effects on the outcome of competition and thus on the 61 

maintenance of species diversity [19] by compensating for differences in traits [5,20,21]. Direct 62 

interaction between competing species might also change due to rapid evolution, resulting in resource 63 

use divergence [13].  64 

In microbial communities, competitive interactions are common [22–25], which can lead to rapid 65 

exclusion of community members under standard conditions [21]. Recent studies have proposed that 66 

coexistence and escape from competitive exclusion is facilitated by evolutionary change in between-67 

species interactions [13,26–28], resulting in e.g. cross-feeding [26] or a niche shift to underexploited 68 

resources [29–31]. In most bacterial experiments, monoclonal isolates are assembled [13,21,23,26,32] 69 

and any evolutionary change is based on de novo mutations [33–35], potentially imposing constraints 70 

on evolution [4]. Our aim was to study the role of initial genetic variation on co-existence as the 71 

associated phenotypic variation might affect competition [36]. Our study system consisted of two 72 

bacterial species, Escherichia coli and Pseudomonas fluorescens,  competing for shared resources and 73 

consumed by a keystone predator, the ciliate Tetrahymena thermophila. To investigate if genetic 74 

diversity can promote coexistence, we compared community dynamics with monoclonal P. fluorescens 75 
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populations to genetically diverse populations obtained by pooling different P. fluorescens clones. The 76 

genetic diversity is represented by differences in phenotypic traits, including growth capacity and level 77 

of defence against ciliate predation. To investigate if diversity in the predator population also has an 78 

effect, we added a population containing diverse ciliate phenotypes obtained by pooling ciliates that 79 

had coevolved with either of the two bacterial species. The reason for the two predator treatments is 80 

that we hypothesise that if predation is a key factor allowing our two bacterial species to co-exist, 81 

evolutionary adaptation in the predator allowing for more efficient predation might further facilitate the 82 

co-existence [37]. 83 

In our experiment, we tracked the community dynamics and the evolutionary outcome of both 84 

bacterial species when i) growing without a predator, ii) with a naïve ciliate predator and iii) with 85 

coevolved predators. These predation treatments are hereafter rereferred as 'no predation', 'naive' and 86 

'coevolved' treatments correspondingly. We also manipulated the genetic diversity of the P. fluorescens 87 

population in a full factorial design. We used isogenic lines of P. fluorescens (and E. coli) to inoculate 88 

the experiments with minimum standing genetic variation as control (population hereafter: 'ancestor'). 89 

Further, we increased the genetic diversity of P. fluorescens by adding evolved diverse populations 90 

from previous experiments ('full-diversity'), or artificially assembled a population consisting of a subset 91 

of clones ('high-diversity'). We assessed the variability in interaction between the two bacterial species 92 

by measuring competitive dynamics and the level of coexistence. Ecological dynamics in population 93 

size were followed for 16 days and evolutionary dynamics were estimated by testing whether the 94 

bacteria evolved defence against the ciliate (measured as prey defence level), as well as by estimating 95 

bacterial fitness (measured as growth capacity). 96 

We found that manipulating within-species bacterial diversity affected the frequencies of the two 97 

competitors over time but this effect depended on the presence and evolutionary history of the ciliate. 98 

Notably, the highest frequency of P. fluorescens, expected to be the inferior competitor, was observed 99 

in communities with standing genetic variation in both the bacteria and the ciliates. Our results show 100 

that the relative contribution of evolution (temporal changes in growth capacity and/or defence traits) 101 

and ecology (competitive interactions and predation) to changes in the frequency of the two bacteria 102 

over time was strongly dependent on standing genetic variation. 103 
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 104 

2. Methods 105 

(a)  Model system  106 

We constructed our communities using two bacterial species and a ciliate predator, adopting a 107 

previously utilized model system [21]. The two bacterial species are Escherichia coli ATCC 11303 and 108 

Pseudomonas fluorescens SBW25 cultured in 1% King’s B (KB) liquid culture medium. In general, the 109 

ancestral E. coli strain seems to be the dominant competitor in co-cultures but is more limited by 110 

predation than P. fluorescens (electronic supplementary material, Fig. S1). As a generalist predator, 111 

capable of consuming both bacterial species, we used the ciliated protozoan Tetrahymena thermophila 112 

CCAP 1630/1U. Prior to the experiments, all bacterial stocks were kept at –80 °C and ciliate stocks 113 

were cultured axenically in proteose peptone yeast extract (PPY) medium containing 20 g of proteose 114 

peptone and 2.5 g of yeast extract in 1 L of deionized water. 115 

 116 

(b) Obtaining trait diversity 117 

For P. fluorescens and the ciliate predator, we manipulated genetic diversity by combining samples 118 

isolated from a long-term predator selection experiment (LTPE). The LTPE was started using a single 119 

colony P. fluorescens SBW25 and E. coli ATCC 11303, and an axenic culture of the ciliate T. 120 

thermophila 1630/1U (CCAP). Material from only these two selection lines was used in the current 121 

experiment. Each bacterial strain was cultured alone and together with the ciliate (three replicates each) 122 

in 20 ml glass vials containing 6 ml of 5% KB medium, with 1% weekly transfer to fresh medium. 123 

Cultures were kept at 28°C (± 0.1°C) with shaking at 50 r.p.m. Every four transfers (28 days), bacterial 124 

and predator densities were estimated using optical density as a proxy for bacterial biomass and direct 125 

ciliate counts as described previously [38], and samples were freeze-stored with glycerol at –20 °C for 126 

later analysis. This experiment had been running for 20 months when we isolated the populations for 127 

the current experiment.  128 

We isolated coevolved ciliates from each of the six LTPE P. fluorescens and E. coli lines (three 129 

replicate lines each) and pooled them together in equal densities to obtain a diverse ciliate population 130 

referred as “coevolved ciliates”. This mix of ciliates was cultivated axenically in PPY until the start of 131 
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the experiment. The full-diversity population of P. fluorescens was harvested by mixing all three 132 

replicate populations from samples freed from live ciliates through freeze-storage at –20 °C (ciliates do 133 

not survive under these conditions). For ancestral and high-diversity populations, we isolated individual 134 

colonies of the ancestral strains and from two time points in the LTPE, after six months and after 20 135 

months, using Tryptone Bile X-Glucuronide agar (TBX, Sigma-Aldrich) and CFC agar plates (CFC 136 

supplement: 10 mg of cetrimide and fucidin and 50 mg cephalosporin in 1 l of PPY agar). We 137 

determined the position of each clone in trait space (see below) comprising growth capacity and level 138 

of anti-predatory defence. For both ancestral bacterial strains, we isolated 10 colonies and picked one 139 

isolate representing the ancestral trait space mean. We initially isolated and characterised a pool of 200 140 

clones and picked 20 clones among them representing a broad range of phenotypes in growth capacity 141 

and defence against predation. The high-diversity population was established by randomly combining 142 

10 out of these 20 clones.  143 

 144 

(c) Determining position in trait space 145 

For individual clones from both bacterial species, we determined growth capacity and defence level. 146 

For these measurements, we used the Bioscreen C spectrophotometer (Growth Curves AB Ltd, 147 

Helsinki, Finland) to estimate the optical density of growing bacterial samples (100 wells) at 5 min 148 

intervals for 48 hours. Frozen samples were revived in fresh medium and allowed to acclimatize for 24 149 

hours, after which they were pin-replicated to fresh conditions (1% KB) in Bioscreen-compatible 150 

honeycomb plates. These plates were incubated at 28 °C under constant shaking in the Bioscreen device. 151 

As a proxy for biomass yield, we calculated the area under the curve to obtain growth capacity for each 152 

clone. After 48 hours, ciliates were added to the samples to estimate biomass loss due to predation. 153 

Comparing change in the bacterial biomass of control treatments without ciliates with treatments 154 

containing ciliates allowed us to measure the loss of bacterial biomass due to predation. Comparing 155 

between individual clones allowed us to estimate which clones are well defended and which clones are 156 

poorly defended. Briefly, ciliates were cultivated 5 days in advance in fresh PPY medium. The medium 157 

was removed by centrifugation (2 × 8 minutes at 3300 r.p.m.) and the populations were starved 158 

overnight in M9 salt solution. Initial T. thermophila cell densities were enumerated directly from live 159 
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subsamples (2.5 ml) using a compound microscope (Zeiss Axioskop 2 plus, Oberkochen, Germany) 160 

and diluted to obtain 1000 cells ml–1 inoculated to each microcosm. For control treatments, we filtered 161 

ciliates out from the culture vial and added ciliate-free filtrate. The optical density of the samples was 162 

tracked again for 48 hours, and the loss of biomass due to predation was estimated by comparing the 163 

control with the predation treatment. This protocol allowed us to determine growth capacity and defence 164 

level in the same population. For determining evolution, we picked 10 E. coli and 10 P. fluorescens 165 

clones from each microcosm at the end of the experiment. For these clones, the evolved position in trait 166 

space (i.e. growth capacity and defence level) was estimated using the protocol described above. 167 

 168 

(d) Estimating ciliate growth on both bacterial strains 169 

To estimate ciliate performance, we isolated both the ciliates and the bacterial strains from the LTPE. 170 

Briefly, we isolated the bacteria by freezer-storage which effectively killed all ciliates. Axenic ciliate 171 

populations were obtained by culturing experimental populations to high density in PPY medium 172 

containing 24, 50, 50 and 33 µg ml–1 of the antibiotics kanamycin, rifampicin, streptomycin and 173 

tetracycline, respectively. Axenicity was controlled for by plating on 50% PPY agar plates (on which 174 

all experimental bacterial strains grow). Following this, ciliates were transferred to antibiotic-free PPY 175 

medium and cultured to high density. For the growth assay, we grew both evolved bacterial strains in 176 

5% KB to equal density based on optical density. Bacterial cells were centrifuged, and the medium was 177 

replaced with M9 salts, preventing further bacterial growth. Ciliates from both coevolved lines were 178 

grown in PPY to high density and the medium was replaced with M9 minimum medium. Ciliate 179 

populations were starved overnight and density was determined by counting live cells. We added these 180 

starved ciliates to both evolved bacterial lines. Three replicates per treatment were cultivated for 48 181 

hours after which ciliate growth rate was estimated. For these final counts, we took pictures from 182 

samples fixed with Lugol`s solution using inverse light microscopy. 183 

 184 

(e) Microcosm experiments with manipulated community structure 185 

Microcosms for experimental lines were set up in deep 96-well plates filled with 500 µl medium 186 

containing M9 salts and 1% KB (0.2 g L–1 Peptone number 3 and 0.1 ml–1 glycerol). Communities 187 
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consisting of P. fluorescens and E. coli were assembled and either i) no ciliates (control), ii) naïve 188 

ciliates or iii) coevolved ciliates were added to the microcosms. For P. fluorescens, we initiated 189 

populations with three different levels of initial genetic diversity; i) minimal level, obtained by culturing 190 

a population from a single ancestral clone, ii) full-diversity established from populations obtained from 191 

the LTPE, and iii) high-diversity around ancestral trait mean. For E. coli, we used only one ancestral 192 

clone to set up the populations. For ancestral P. fluorescens populations, we added one of four clones 193 

isolated from the ancestor to each replicate. For the full-diversity populations, bacteria that had evolved 194 

in medium either alone or together with a ciliate, both from the LTPE, were used. For the high-diversity 195 

populations, we randomly combined 10 out of 20 clones representing the trait space with respect to 196 

growth capacity and defence level (Fig. S2). Both species were added in even densities based on optical 197 

density. The nine different treatments, consisting of three ciliates and three genetic diversity levels, 198 

were replicated four times. Plates were incubated at 28 °C under constant shaking (50 r.p.m.). Every 48 199 

hours, 10% of the community was transferred to fresh medium. We recorded biomass by measuring 200 

optical density at 600 nm (Tecan Infinite M200 plate reader) and stored samples at –80 °C after each 201 

round to archive the time series. The experimental period was 16 days, representing approximately 50 202 

bacterial and ciliate generations. After reviving the archived samples from days 0, 2, 6 and 16, we 203 

determined the ratio between E. coli and P. fluorescens using selective TBX and CFC agar plates, 204 

respectively. With these selective media and culture conditions, we were able to clearly distinguish and 205 

enumerate both bacterial species from mixed samples. From the last time point, we also isolated 10 206 

individual colonies (clones) from both species that were stored at –80 °C for later analysis.  207 

 208 

(f) Data analysis 209 

All analyses were performed in R [39]. We used generalized estimating equation models (geeGLMs) 210 

to compare the proportion of P. fluorescens, accounting for the time series structure following 211 

individual microcosms. We modelled the proportion of P. fluorescens using `genetic diversity` and 212 

`predation` both in interaction as explanatory variables together with `time` as continuous variable. To 213 

account for the temporal replication, ̀ microcosm ID` was included as a random effect. We used a model 214 

of the binomial family and included an `ar1` correlation structure (continuous-time first-order 215 
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autoregressive correlation structure) to account for temporal correlation. We used the function geeglm 216 

from the package geepack [40] with the family `binomial` with a logit link. To model the bacterial 217 

biomass data, we followed a similar approach and used estimated equation models based on the gaussian 218 

family. Again, the model investigated the main effects `genetic diversity` and `predation` over `time`, 219 

including `ID` and an `ar1` correlation structure. We simplified the model by dropping non-significant 220 

terms. For analysis of ciliate densities, we compared only the treatments containing ciliates using a 221 

model based on the gaussian family, after log10 transformation of the data. For the main effects model, 222 

`genetic diversity` and `predation` were included together with `time`, `ID` to account for temporal 223 

replication and the `ar1` correlation structure. Again, the model was simplified to remove non-224 

significant terms. For statistical analysis, we removed day 0 measurements from all data, as these 225 

represent diluted, not maximum densities of established populations represented by all the other 226 

sampling points. For comparing performance of the two coevolved ciliate lines growing on the two 227 

bacteria from the LTPE, we used ANOVA with ciliate ID (ciliates coevolved with P. fluorescens or 228 

with E. coli) and bacterial ID (P. fluorescens and E. coli) as explanatory variables. We applied a model 229 

selection process in which the interaction between both variables was dropped. To test for the effect of 230 

the treatments on individual traits (defence or growth), we used generalized least squares models (gls), 231 

as implemented in the nlme [41] package, assuming a residual variance structure dependent on the 232 

experimental treatments. Multiple comparisons for gls models were performed using the package 233 

emmeans [42], with p-value adjustment according to the Tukey post-hoc method and significance level 234 

α = 0.05. 235 

 236 

3. Results  237 

Our experiments suggested that the coexistence of Escherichia coli and Pseudomonas fluorescens 238 

depended on both ciliate predation and genetic diversity (Fig. 1). Ciliate predation was an important 239 

factor increasing P. fluorescens proportions in general (Table 1). Genetic diversity enhanced the 240 

competitive ability of P. fluorescens mainly in interaction with predation. While the ancestral P. 241 

fluorescens was almost completely excluded under competition, P. fluorescens dominated when genetic 242 

diversity and predation acted together. The effect of diversity was time dependent suggesting that 243 
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competitive ability successively increased over the course of the experiment. The proportional changes 244 

over time revealed interesting temporal dynamics congruent with the findings described above. The 245 

ancestral clone was inferior to E. coli and experienced rapid competitive exclusion over time without 246 

ciliate predation. In contrast, in the full-diversity treatment with coevolved ciliates, P. fluorescens was 247 

the superior competitor and almost excluded E. coli. Adding naïve ciliates instead of coevolved ciliates 248 

decreased the competitive ability of P. fluorescens, and both competitors seemed equal. Without 249 

ciliates, P. fluorescens initially decreased in proportion but was able to recover when full-diversity was 250 

present in the population. Interestingly, the coevolved ciliate population shifted competitive balance 251 

towards P. fluorescens even in the absence of diversity.  252 

The total bacterial biomass was independent from the diversity of P. fluorescens (Fig. 2), but was 253 

affected by predation (Table S1). As expected, without predation, bacterial biomass was increased with 254 

no difference between P. fluorescens diversity treatments. While there was no obvious change over 255 

time under coevolved predation, bacterial biomass slightly increased over time with naïve predators. In 256 

general, however, bacterial biomass seemed relatively stable over the duration of the experiment.  257 

The densities of the predatory ciliates depended on total bacterial density but changed 258 

independent from P. fluorescens diversity (Fig. 2). The ciliate densities peaked initially but decreased 259 

thereafter over time resulting in low final densities (Table S2). The naïve ciliate growing on ancestral 260 

P. fluorescens and E. coli had the lowest densities; however, unlike the other treatments, there was no 261 

decrease over time. 262 

In the bacterial clones isolated from the end-point of the experiment, there was an overall negative 263 

correlation between growth and anti-predatory defence level (Pearson r=‒0.175, t=‒3.7012, d.f.=435, 264 

p=0.0002) in line with a fitness trade-off between the two traits. Initial variability in the genetic diversity 265 

of P. fluorescens and the evolutionary state of the predator together drove the E. coli competitor (full-266 

diversity P. fluorescens combined with coevolved predator), but not P. fluorescens itself, to diverge in 267 

trait space during the experiment (Fig. 3). In the treatment with the ancestral P. fluorescens strain, the 268 

presence of coevolved compared to naïve predators caused increased selection for anti-predatory 269 

defence with a corresponding decrease in growth ability, while the opposite occurred in the full-270 

diversity treatment (for gls model results for growth and defence, and multiple contrasts, see 271 



Coevolution and coexistence 

11 
 

Supplementary Tables S3 and S4). This is consistent with prior coevolution in the respective predator 272 

and prey populations. In turn, E. coli divergence in trait space was driven by increased defence and 273 

decreased growth with more diverse competitors or, similar to ancestral P. fluorescens, coevolved 274 

predators (for gls model results for growth and defence, and multiple contrasts, see Supplementary 275 

Tables S5 and S6). Therefore, both predator coevolution and the genetic diversity of an otherwise 276 

inferior competitor resulted in decreased resource use evolution and an increased fitness advantage of 277 

anti-predatory defence. 278 

As there was an effect of the different predation treatments, we also investigated whether the two initial 279 

coevolved ciliate populations had different grazing capacities on the evolved bacterial lines. In all 280 

conditions, we found ciliates had increased growth on E. coli, explaining why the inferior competitor 281 

P. fluorescens can coexist under predation. Ciliates coevolved with E. coli had higher growth rates 282 

compared to ciliates coevolved with P. fluorescens (ANOVA, F =7.995, d.f.=1,9, p=0.0198; Fig. S1, 283 

Table S7). In turn, the ciliates were able to grow marginally better on the evolved E. coli bacteria 284 

compared to the performance on P. fluorescens bacteria (ANOVA, F =5.772, d.f.=1,9, p=0.0397). 285 

 286 

4. Discussion 287 

Predation mediated co-existence of competitors is a widely accepted phenomenon in the field of 288 

ecology. However, very little is known about how contemporary evolution and coevolution may alter 289 

the operation of this mechanism. Our data provide compelling evidence for the role of genetic diversity 290 

in species coexistence. While monoclonal P. fluorescens is rapidly outcompeted by E. coli, it will stably 291 

coexist if the P. fluorescens population is genetically diverse (Fig. 1). The ensuing reduction in the 292 

population size of the competitor might also alter its evolutionary dynamics, constraining resource use 293 

evolution and making anti-predatory defence critical for population survival. As a result, coexistence is 294 

promoted, and the genetically diverse population dominates the bacterial community. This is congruent 295 

with recent theory, which predicts coexistence of diverse communities under sufficiently high trait 296 

adaptation [7], and helps to explain why natural food webs contain many co-occurring species [44,45]. 297 

Interestingly, total biomass production seems to be independent from underlying population structure. 298 
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While there is obvious change in the proportions of bacterial species (Fig. 1), total bacterial and ciliate 299 

production is not affected (Fig. 2). Taken together, these results indicate that the success of species in 300 

communities depends on genetic variation in the traits under selection, although overall production 301 

might remain unaltered which is in line with previous findings [46]. Higher biomass production would 302 

be plausible, especially if both competitors only share a small resource pool. P. fluorescens and E. coli 303 

should both at least slightly differ in resource use, and thus they are expected to introduce additional 304 

ecological functions when both are found together [25]. However, it is possible that these functions are 305 

redundant in the experimental conditions used where competitive interactions can be strong (rapid 306 

outcompetition of P. fluorescens by E. coli), indicating exploitation of a similar set of resources [21,47]. 307 

We found predation to be highly important as an ecological force affecting coexistence of the two 308 

bacteria. This result is in line with previous studies showing the effect of predation on the coexistence 309 

of species [21,37,44,45,48]. A naïve predator equalizes species proportions [21], although this also 310 

depends on growth-defence trade-offs [19,46]. While E. coli seems to grow faster in our experiment, it 311 

also experiences higher loss due to predation (Fig. S1), which might explain how coexistence is 312 

possible, as P. fluorescens seems better defended against predation loss. However, a coevolved predator 313 

population which was previously exposed to different bacterial species promotes coexistence, giving 314 

an advantage to P. fluorescens. This finding might be partly explained by the fact that E. coli is more 315 

affected by predation and more efficient co-evolved predators might enhance this. When P. fluorescens 316 

diversity and a coevolved predator both come together, this seems to have the strongest effect. Our 317 

findings are in line with recent studies using the same experimental system, without the species 318 

competition aspect, which have shown that the role of predator-prey coevolution can be an important 319 

factor determining intraspecific prey diversity and eco-evolutionary feedback loops [19,43]. In addition, 320 

the relative importance of ecology and evolution for co-existence has been observed to depend on the 321 

community structure and the type of consumers [21]. 322 

In our present study, we manipulated the initial trait variation in the inferior competitor (P. 323 

fluorescens). By doing this we aimed to manipulate the strength of the eco-evolutionary feedback and 324 

the speed of the trait evolution by providing different amounts of initial genetic variability. We 325 

hypothesised that with more within-species trait variation, it is possible that evolution is facilitated by 326 
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selection acting on standing genetic variation already present in the population [4,18] and population 327 

trait means can quickly shift as predicted by theory [3] ultimately even changing the competitive ranking 328 

between the species. Our findings support this idea, and when looking at the traits in the end of the 329 

experiment, we observed that not only the co-existence of our prey species but also the trait evolution 330 

of the competitor was affected by the P. fluorescens pre-adaptation treatment (Fig. 3d-e).  Furthermore, 331 

also the co-evolutionary history of the predator altered the final traits in E. coli, indicating that eco-332 

evolutionary mechanisms altering the co-existence of competitors constitute a process functioning in 333 

different trophic levels.  334 

Taken together, initial trait variability, ecological dynamics and further trait evolution are 335 

interconnected processes which need to be investigated together to fully understand the role of evolution 336 

in species coexistence. It is not mechanistically completely clear how traits at the end of the experiment 337 

and ecological dynamic are connected in our study since links are potentially very complex. We propose 338 

that understanding these feedbacks between ecological dynamics and potentially reciprocal trait 339 

changes between competitors is important for our understanding of the contribution of evolution to 340 

species coexistence as the focus has traditionally been mostly on ecological factors. Furthermore, we 341 

need to address the role of evolution in competitors as well as the role of co-evolution in consumers. 342 

When inspecting the coexistence of microbes, a recent study proposes that assembly rules in microbial 343 

communities can be predicted from two- and three-way interactions for more diverse communities [24]. 344 

In such a model, ecological interaction is the driving force, which seems applicable as long as these 345 

interactions are stable and do not change. Here we find standing genetic variation to be important at 346 

both the prey and the predator level and show how it can contribute to completely shifting the 347 

coexistence ratio between competitors, in turn, altering further trait change. Our study proposes that 348 

evolutionary aspects cannot be neglected as they might affect interactions and therefore alter 349 

coexistence. If genetic variation drives evolution, the initially estimated interaction might rapidly 350 

change and depend on further interactions in a more complex community. Finally, we argue that further 351 

experimental studies are needed to understand eco-evolutionary community dynamics in more species 352 

rich systems such as the one we present here. Findings from these relatively simple and “unnatural” 353 
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systems are still vital for providing mechanistic understanding on how ecological and evolutionary 354 

dynamics interact in more complex natural systems.   355 
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Figure legends 491 

Figure 1. Proportion of the P. fluorescens population over time. The rows represent the different 492 

bacterial population structures (rows in figure) for P. fluorescens (a–c = full-diversity; d–f = high-493 

diversity and g–i = ancestral P. fluorescens strain). The columns represent the different predator 494 

treatments that were also applied (columns in figure, a,d,g = ciliates coevolved with bacteria, b,e,h = 495 

naïve ciliate and c,f,i = no ciliates). The black line represents the proportion of P. fluorescens (mean ± 496 

s.e.), and the red line shows the equal proportion line as reference.  497 

 498 

Figure 2. Total densities for bacteria and ciliates. Rows represent data from the three different 499 

population structures (a–c = full-diversity; d–f = high-diversity and g–i = ancestral P. fluorescens strain 500 

without diversity) and columns represent the three different predation treatments (columns in figure, 501 

a,d,g = ciliates coevolved with bacteria, b,e,h = naïve ciliate and c,f,i = no ciliates). Orange lines and 502 

points (mean ± s.e.) show total bacterial density measured by absorbance, and blue lines and squares 503 

represent ciliate densities (mean ± s.e.). Bacterial density is shown as optical density at 600 nm, and 504 

ciliate density as cells ml–1, both normalized to 0–1 range. 505 

 506 

Figure 3. Divergence in trait space caused by the genetic diversity of P. fluorescens or predator 507 

evolutionary history (ellipses depict 95 % confidence levels). Growth is the biomass yield in the absence 508 

of predation and defence is the effect of predation (0 = predation has no effect) on the biomass yield 509 

(both in optical density area units). Panels a-c, P. fluorescens, and panels d-f, E. coli clones isolated 510 

from the end point of a microcosm experiment.  511 

 512 

  513 



Coevolution and coexistence 

21 
 

Table 1. A Generalized Estimated Equation model showed that the main effects `predation` and 514 
`diversity` had both significant effects on Pseudomonas fluorescens proportions 515 

 516 

 Df X2 P(>|Chi|)  
Time 1 5 0.0259 * 

Diversity 2 5.4 0.0689 . 

Predation 2 142 0.0000 *** 

Time x Diversity  2 6.1 0.0481 * 

Time x Predation 2 13 0.0015 ** 

Diversity x Predation 4 25.4 0.0000 *** 

Time x Diversity x Predation 4 22.7 0.0001 *** 

---     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   
 517 

 518 


