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Abstract 11 

The oxygen isotope composition of chironomid head capsules in a sediment 12 

core spanning the past 5500 years from lake Svartvatnet in southern 13 

Spitsbergen was used to reconstruct the oxygen isotope composition of lake 14 

water (δ18Olw) and local precipitation. The δ18Olw values display shifts from the 15 

baseline variability consistent with the timing of recognized historical climatic 16 

episodes, such as the Roman Warm Period, the Dark Ages Cold Period and the 17 

Little Ice Age. The highest values of the record, ca. 3‰ above modern δ18Olw 18 
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values, occur at ca. 1900-1800 cal. yr BP. Three negative excursions increasing 1 

in intensity toward the present, at 3400-3200, 1250-1100 and 350-50 cal. yr BP, 2 

are tentatively linked to roughly synchronous episodes of increased glacier 3 

activity and general cold spells around the northern North Atlantic. Their 4 

manifestation in the Svartvatnet δ18Olw record testify to the sensitivity and 5 

potential of high Arctic lacustrine δ18Ochir records in tracking terrestrial climate 6 

evolution, but also highlight nonlinear dynamics within the northern North 7 

Atlantic hydroclimatic system. The Little Ice Age period at 350-50 cal. yr BP 8 

displays a remarkable 8-9‰ drop in δ18Olw values, construed to predominantly 9 

represent significantly decreased winter temperatures during a period of 10 

increased seasonal differences and extended sea ice cover inducing changes in 11 

moisture source regions. 12 

Keywords 13 

North Atlantic, Spitsbergen, Svalbard, Arctic, oxygen isotopes, climate, 14 

temperature, ‘Little Ice Age’ 15 

 16 

Introduction 17 

The Arctic, and particularly the region of the Nordic Seas has an enormous impact on 18 

the global distribution of heat and the ventilation of oceans via interconnected ocean-19 
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atmosphere feedback mechanisms involving surface winds, variable ice conditions, 1 

ocean stratification and deep water formation (Bond et al., 2001; McManus et al., 2004; 2 

Steffensen et al., 2008). The Svalbard archipelago (Figure 1) lies at the crossroads of the 3 

Arctic and North Atlantic Oceans and the major oceanic gateways connecting these, at 4 

an optimal position to record past fluctuations in the Arctic ocean-atmosphere system. 5 

The four largest islands of the archipelago are the main island Spitsbergen, 6 

Nordaustlandet to the northeast, and Edgeøya and Barentsøya to the southeast. As the 7 

northernmost extension of the North Atlantic Current, the West Spitsbergen Current 8 

carries warm, saline Atlantic water northward along the western coast of Spitsbergen. 9 

Cold, ice-laden, low salinity Arctic waters enter the North Atlantic via the western Fram 10 

Strait and are delivered south by the East Greenland Current. Additional cold Arctic 11 

waters are carried down from the Barents Sea along the eastern margin of Svalbard and 12 

around the southern tip of Spitsbergen by the East Spitsbergen Current. The climate of 13 

Svalbard is inseparably connected to the variations in the relative strengths of the flow 14 

of warm Atlantic and cold Polar/Arctic waters to the region (Marsz, 2013; 15 
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Walczkowski, 2013). 1 

 2 

Figure 1: Maps depicting the location of the study area, bathymetry of lake Svartvatnet and locations of 3 
the coring site, lake water sampling sites (crosses) and inlet stream sampling sites (triangles). The arrow 4 
on the eastern flank shows the approximate location of the outlet stream. Star symbols in the indicator 5 
map show sites of prior proxy studies mentioned in the text: 1= Mitrahalvøya a peninsula, 2= lake 6 
Kongresvatnet, 3= lake Skardtjørna.  7 

 8 

The Nordic Seas’ significance to global climate is reflected, for example, in the vast 9 

number of research efforts aiming to characterize and quantify the properties of the 10 

water masses, flow strengths and sea ice conditions in this region during the latest 11 

deglaciation and the Holocene (Belt et al., 2015; Berben et al., 2014; Bonnet et al., 12 

2010; Cabedo-Sanz and Belt, 2016; De Vernal et al., 2013; Dylmer et al., 2013; Łącka  13 

at al. 2015; Majewski et al., 2009; Moros et al., 2012; Müller et al., 2012; Perner et al., 14 
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2015; 2016; Rasmussen et al., 2007; 2012; Rasmussen and Thomsen, 2009; 2014; 1 

Risebrobakken et al., 2003; 2010; Sarnthein et al., 2003; Werner et al., 2013; 2014). 2 

However, the picture of Holocene terrestrial climatic development on Svalbard is far 3 

more limited. Terrestrially based investigations have largely focused on past 4 

characteristics and activity of glaciers on Svalbard (Reusche et al., 2014; Snyder et al., 5 

2000; Svendsen and Mangerud, 1991; 1997), with indirect climatic implications. 6 

Despite their sensitivity to post-depositional alteration (Pohjola et al., 2002), ice cores 7 

from Svalbard glaciers have yielded information on summer and winter temperatures, 8 

continentality, sea ice cover and sources of moisture and pollution (Beaudon et al., 9 

2013; Divine et al., 2011; Grinstedt et al., 2006; Isaksson et al., 2005) over the past 10 

centuries. However, except for the study of Divine et al. (2011) time series from 11 

Svalbard ice caps do not extend back in time beyond 1000 CE. Similarly, millennial 12 

timescale reconstructions of climatic variables based on lake sedimentary archives from 13 

the region are also very scarce (Birks et al., 1991; D’Andrea et al., 2012; Velle et al., 14 

2010). 15 

Environmental time series from terrestrial contexts are highly desirable owing to their 16 

potentially higher sensitivity, i.e. possibility for recording shorter lived and smaller 17 

scale fluctuations compared to the tendency of short-term variations to be smoothed out 18 

in oceanic records. Our study aims to provide a record of the development of the 19 

atmospheric component of northern North Atlantic hydroclimate over the mid to late 20 
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Holocene from an area extremely sensitive to the interplay of Arctic and Atlantic air 1 

masses (Majewski et al., 2009) where previous terrestrial records of climate evolution 2 

are very rare. To this end, we use lake sedimentary proxy archives preserving records of 3 

the past oxygen isotope values of precipitation (δ18Opr), which, in the right 4 

circumstances can bear information on surface air temperatures (Dansgaard, 1964; 5 

Rozanski et al., 1993). Especially at high latitudes, less complexities stemming from 6 

moisture recycling and re-evaporation, convection, variable condensation heights and 7 

source temperatures disturb the applicability of δ18Opr as a temperature proxy, and much 8 

of our understanding of the long term evolution of the thermal climate during the past 9 

800,000 years is based on the isotopic composition of past Arctic and Antarctic 10 

precipitation, stored as ice (Johnsen et al., 1997; Jouzel et al., 2007). Also in 11 

Spitsbergen, ice core δ18O values have been shown to be good proxies for surface air 12 

temperature over the last 1000 years (Divine et al., 2011; 2005; Grinsted et al., 2006; 13 

Isaksson et al., 2003). Where glacier ice, directly preserving past records of δ18Opr, is 14 

absent or ice cores are temporally limited by core length as is the case for Spitsbergen, 15 

other materials recording the δ18O values of environmental waters can be used. One 16 

such material is the chitinous exoskeleton of chironomid (Insecta: Diptera: 17 

Chrinomidae) larvae. Chironomid remains are generally abundant in lakes and they 18 

preserve well in the sediment record (e.g. Brooks, 2006). Chironomid species 19 

assemblages, and more recently the δ18O values of their larval head capsules, have been 20 
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demonstrated as being sensitive indicators of past δ18Opr values and temperatures 1 

(Brooks, 2006; Verbruggen et al., 2010a; Wooller et al., 2004). Using oxygen isotope 2 

analysis of chironomid head capsules in a lake sediment core retrieved from 3 

southernmost Spitsbergen, we aim to reconstruct variations in δ18O values of lake 4 

water (δ18Olw), and to evaluate how they relate to δ18Opr and changes in past air 5 

temperatures. The record spans the past 5500 years and demonstrates how, in optimal 6 

circumstances, chironomid δ18O values in high Arctic lakes faithfully track climatic 7 

oscillations, offering insight into past temperatures and sea ice oscillations. 8 

Study site 9 

Lake Svartvatnet (76.895°N, 15.676°E, 63 m a.s.l.) is a small, oligotrophic lake in 10 

Sørkappland, the sourthern part of Spitsbergen, ca. 1.5 km south of the Hornsund 11 

mouth, and 12 km south(west) of the Polish Polar Station (Figure 1). It has a surface 12 

area of 0.8 km2, a maximum depth of 26.5 m and a catchment area of ca. 15 km2 (Ojala 13 

et al., 2016). The lake comprises a main basin to the south, and a series of smaller, 14 

shallower sub-basins in its northern part (Figure 1). Lake Svartvatnet receives water 15 

through a network of seasonally active, shallow streams in its northern and southern-16 

southeastern margins, and drains to the adjacent fjord via a single outlet at its 17 

southeastern flank.  At the time of our surveying in July 2013, the lake water had a 18 

temperature between 4°C (bottom) and 4.5°C (surface), a surface pH of 7.2, a color of 0 19 
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CPU, conductivity at 50 µS cm-1 and total dissolved solids at 20 mg l-1 (Ojala et al., 1 

2016). Based on turbidity measurements the water column in the northern basin is less 2 

turbidic, because the main network of streams entering the lake and delivering 3 

allochthonous mineral matter is located in the southern part of the lake. In addition to 4 

turbidity measurements, 137Cs–based estimates of sediment deposition rate in different 5 

parts of the lake indicate that most of the allochtonous material appears to be effectively 6 

trapped in the deep southern basin, shielding the northern basins from massive 7 

deposition and disturbances by episodic inputs of allochthonous mineral material from 8 

seasonal runoff and erosion (Ojala et al., 2016). 9 

Lisbetdalen valley, the area surrounding Lake Svartvatnet is a typical periglacial 10 

landscape with glacial cirques, stone circles and solifluction tongues. The steep slopes 11 

bordering the lake in the west feature talus formations and cones of slided coarse-12 

grained debris. To the north, a series of ancient marine terraces dominate the setting 13 

between Lake Svartvatnet and the fjord.  14 

The local climate is typical for a high arctic, maritime site. According to monitoring 15 

statistics at the Polish Polar Station, the mean annual (MAT) and July air temperatures 16 

for 1979-2014 are -4.0°C and 4.4°C, respectively, and the mean annual precipitation  is 17 

438.6 mm (Institute of Geophysics, Polish Academy of Sciences, 2016). The mean 18 

annual and July temperatures for the past five years are distinctly higher, -1.9°C and 19 

5.2°C, consistent with observations of a 2-3°C increase in seasonal and mean annual 20 
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temperatures since 1979 (Marsz, 2013). Precipitation events are strongly linked to 1 

advection of warm and moist air from the southwest, and most precipitation falls during 2 

the months of August, September and October.   3 

Material and Methods 4 

Core sampling and chronology 5 

A 163 cm long sediment sequence (core SV4c) was taken from the northernmost sub-6 

basin (Figure 1) of lake Svartvatnet in July 2013 with a piston corer. In the laboratory, 7 

the core was sliced into 1 cm sections. The dating of the sediment sequence, consisting 8 

of clay gyttja, was established using a combination of radiometric and paleomagnetic 9 

methods. A detailed description and discussion regarding the age-depth model for the 10 

Svartvatnet sediment sequence depicted in Figure 2, the sediment properties and dating 11 

methods was presented by Ojala et al. (2016). The chronology relies on five AMS-14C 12 

dates obtained from terrestrial and aquatic bryophytes, 137Cs and 210Pb profiles, and 13 

comparisons of the paleosecular variation curves to regional reference curves described 14 

by Snowball et al. (2007). The resulting age model, constructed using a Bayesian P-15 

sequence deposition model in OxCal 4.2 (Bronk Ramsey, 2008; 2009) indicates that the 16 

core represents ca. 5500 years of deposition (Ojala et al., 2016). The sediment sequence 17 

shows no indication of erosion or slumping of sediment, suggesting stable and 18 

continuous sedimentation throughout the sequence, while the 210Pb record indicates 19 
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increased sedimentation during the 20th century. All dates in the text are calendar dates, 1 

discussed either as calendar years during the Common Era (CE) or before present (cal. 2 

yr BP; present = year 1950), or thousands of years before present (cal. kyr BP).  3 

 4 

Figure 2. The age model for the Svartvatnet sediment core SV4c, modified after Ojala 5 
et al. (2016). Data labels show the sample-ID and uncalibrated radiocarbon date. 6 

 7 

Chironomid oxygen isotope analyses 8 

The oxygen isotope analysis was performed on mixed chironomid taxa, following 9 

Wooller et al. (2004; 2008; 2012) and Verbruggen et al. (2010a). The most abundant 10 

chironomid taxa in the sediment were the benthic Micropsectra contracta-type and M. 11 

radialis-type that occurred throughout the stratigraphy (Luoto et al., in review). The 12 
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sampling plan aimed at analyzing δ18O values of chironomid larval head capsules 1 

(δ18Ochir) from 1 cm thick slices of sediment taken every four centimeters: 0-1 cm, 4-5 2 

cm etc. However, the number of chironomid head capsules per cc of sediment was 3 

relatively low and varied along the sediment sequence, and in most cases it was 4 

necessary to combine two to four adjacent 1 cm slices in order to achieve a satisfactory 5 

sample mass. A minimum mass of 50 µg was previously recommended by Verbruggen 6 

et al. (2010a; 2010b) and Wang et al. (2008), but we typically achieved >80 µg.  The 7 

analytical protocol followed that described in Wang et al. (2008) and a more detailed 8 

description is provided in Kurki (2016). The acid treatment step was left out as 9 

Svartvatnet sediment is carbonate-poor and there is some evidence that acids may 10 

induce oxygen isotope exchange (Verbruggen et al., 2010a; 2010b). 11 

Measurements of δ18Ochir values were performed on a Finnigan ThermoQuest TC/EA at 12 

1330°C coupled to a DeltaPlusAdvantage isotope ratio mass spectrometer (IRMS) at the 13 

Laboratory of Chronology, Finnish Museum of Natural History. Established δ18O values 14 

for the international reference materials IAEA-NO3 (25.6‰), IAEA-601 (23.3‰), 15 

ANU sucrose (36.4‰), baleen whale keratin BWBII (14.0‰), and an internally 16 

validated IAEA-CH3 cellulose (32.6‰) were used to normalize raw δ18O data. An 17 

initial set of four samples was analysed at the Alaska Stable Isotope Facility, where 18 

IAEA-601, BWBII and EMA P-1 were run along with the unknowns. Both analytical 19 

runs showed a 1:1 relationship and an r2>0.99 for measured vs. expected δ18O values of 20 
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the references. Chironomid concentration in the sediment sequence did not allow for 1 

replicate analysis of unknowns, but reproducibility of similar biogenic reference 2 

materials BWBII, Fluka crab shell chitin powder and ANU sucrose indicates a mean 3 

analytical precision (1 σ) of 0.5‰, with a range from 0.4 to 2.5‰ depending on signal 4 

(sample) size (see Appendix 1). All isotope data are reported as δ-values relative to 5 

Vienna Standard Mean Ocean Water (VSMOW). 6 

Environmental water samples 7 

To monitor modern δ18Opr values, samples of monthly precipitation were collected at 8 

the Polish Polar Station in 2013 and 2014. The sampling protocol strived to minimize 9 

any evaporative effects using a layer of paraffin oil in the collection bottles, and melting 10 

collected snow in closed containers. In addition, samples of Svartvatnet lake water and 11 

three streams supplying the lake were collected in July 2013. Lake water was sampled 12 

at the coring location and the southern main basin (Figure 1). The stream waters and 13 

lake surface water were collected in 100 ml HDPE flasks filled to the brim and sealed 14 

tightly. The subsurface water column was sampled at three levels – 0.9, 6 and 12 m; and 15 

0.9, 10 and 24 m for the coring site and southern basin, respectively - using 500 ml 16 

HDPE flasks in a Biothofen VP90 water sampler. 17 

The lake and stream waters, as well as the monthly precipitation samples for Jan-Jun 18 

2013 were analysed for their δ2H and δ18O values on a Picarro Isotopic H2O L1115-I 19 
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cavity ringdown spectrometer at the Department of Geosciences and Geography, 1 

University of Helsinki. All samples were measured in duplicate. Two internal reference 2 

waters calibrated against VSMOW and SLAP standards were used to normalize the 3 

results. Sample duplicates show a mean reproducibility (1 σ) of 0.1‰ and 0.2‰ for 4 

δ18O and δ2H, respectively, while the long-term reproducibility based on standards is 5 

0.2‰ for δ18O and 1‰ for δ2H. Precipitation samples from July 2013 to December 6 

2014 were analysed in quadruplicate at the Alaska Stable Isotope Facility on a Delta V 7 

Plus IRMS coupled to a ThermoQuest TC/EA pyrolysis unit. To ensure comparability, 8 

the same in-house references used at the University of Helsinki were included in the 9 

run.  Sample replicates showed a mean reproducibility (1 σ) of 0.3‰ and 2‰ for δ18O 10 

and δ2H values, respectively. 11 

Reconstructions 12 

The δ18Olw values were calculated from the measured δ18Ochir values using a previously 13 

established calibration based on δ18O value pairs (n=19) of chitinous head capsules of 14 

chironomid larvae from surface sediment and samples of the ambient lake water along a 15 

latitudinal transect extending from 40.9 to 68.4°N across Europe, and covering a δ18Olw 16 

range from -0.3 to -13.0‰ (Eq. 1; Verbruggen et al., 2011). 17 

𝛿 𝑂𝑐ℎ𝑖𝑟 = 0.76 × 𝛿18𝑂𝑙𝑤 + 21.09             𝑟2 = 0.90         (𝐸𝑞. 1)18  18 
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To estimate changes in MAT corresponding to changes in δ18O values, we calculated 1 

two indexed MAT reconstructions. Both rely on spatial δ/T relationships (Dansgaard, 2 

1964; Rozanski et al., 1993) derived from regressions of long-term means of δ18O 3 

values and MAT along climatic gradients around the Northern North Atlantic. In the 4 

first approach, MAT was calculated from δ18Ochir values using a calibration by Wooller 5 

et al. (2004) correlating δ18Ochir values of surface sediment chironomid larval chitin 6 

against projected MAT at four lake sites in coastal northeastern North-America and 7 

Greenland (Eq. 2). In the second approach, changes in MAT were calculated from 8 

changes in reconstructed δ18Olw values, based on the relationship between δ18Opr and 9 

MAT values (IAEA/WMO, 2016) on coastal stations with ≥5 years of observations 10 

adjacent to the Greenland Sea, including Spitsbergen (Eq. 3; see Appendix 1 for data). 11 

𝛿 𝑂𝑐ℎ𝑖𝑟 = 0.65 × 𝑀𝐴𝑇 + 14.5             𝑟2 = 0.98         (𝐸𝑞. 2)18  12 

𝛿 𝑂𝑝𝑟 = 0.71 × 𝑇 − 9.94             𝑟2 = 0.83         (𝐸𝑞. 3)18  13 

The composite error (1 σ) factoring in measurement uncertainty and calibration error 14 

associated with the reconstructed δ18Olw values, and MAT indices based on Wooller et 15 

al. (2004), was quantified for each sample depth using Equation 4, which represents a 16 

modification (Pryor et al., pers.comm. 2015) of formula number four presented and 17 

discussed in Pryor et al. (2014). Briefly, x is the reconstructed term, δx the total error for 18 

that term, y is δ18Ochir, δy is the measurement error for δ18Ochir, a is the slope of the 19 
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calibration, Sy/x estimates the natural variation around the fit, and n is the number of 1 

observations in the calibration data set.  2 

𝛿𝑥 = √((
𝑆𝑦/𝑥

𝑎
√

1

𝑛
+

(𝑦 − �̅�)2

𝑎2 ∑(𝑥𝑖 − 𝑥)̅̅ ̅2
)

2

+ (
𝛿𝑦

𝑎
)

2

)           (𝐸𝑞. 4) 3 

For the temperature estimates based on the Greenland Sea δ/T gradient, the composite 4 

errors were calculated using the formula for Z2-type conversions (Pryor et al., 2014). 5 

Throughout the text, the composite errors are given in parentheses, in contrast to 6 

measurement precision and standard deviation around calculated mean values. 7 

Results 8 

The δ18Ochir values range from 6.9 to 16.3‰ (Appendix 1). The lowest values in the 9 

sequence are recorded for sample depths 6-7 cm and 8-12 cm, and the highest at 52-53 10 

cm, corresponding to ca. 350-50 cal. yr BP and 1900-1800 cal. yr BP, respectively, 11 

according to the age model (Ojala et al., 2016). Two additional noteworthy negative 12 

fluctuations in δ18Ochir values occur around 30-35 cm (1250-1100 cal. yr BP) and at 88-13 

92 cm (3400-3200 cal. yr BP). Outside these perturbations, the rest of the δ18Ochir record 14 

is relatively stable, with most samples exhibiting values between ca. -14.5 to -12‰.  15 

 16 
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Table 1. The isotope composition of Svartvatnet lake water and inlet streams 1 

sampled in July 2013. 2 

 depth δ18O (‰, 
VSMOW) 

δ2H (‰, 
VSMOW) 

d-excess 

Northern basin surface -9.6 -67 9.8 
 0.9 m -9.8 -67 11.4 
 6 m -9.7 -66 10.8 
 12 m -9.5 -66 10.0 
Southern basin surface -9.4 -65 9.6 
 0.9 m -9.5 -66 9.5 
 10 m -9.4 -66 9.6 
 24 m -9.6 -67 10.4 
lake average  -9.6 ± 0.1 -66 ± 0.5  
     
Stream 1, south  -9.3 -66 8.6 
Sream 2, southeast  -8.8 -61 9.1 
Stream 3, north  -8.0 -55 9.0 

stream average  -8.7 ± 0.6 -61 ± 5  

 3 

The oxygen and hydrogen isotopic compositions of the environmental waters in the 4 

study area are presented in Tables 1 and 2. The lake is not isotopically stratified, and the 5 

water column shows uniform δ18Olw and δ2Hlw values at -9.6‰ ±0.1 and 66‰ ±0.5, 6 

respectively. The inlet stream waters show more variability, with δ18O and δ2H values 7 

of -8.7‰ ±0.6 and -61‰ ±5, respectively. The monthly precipitation samples collected 8 

at the Polish Polar Station 14 km northeast of the study lake indicate a mean annual 9 

δ18Opr value of -8.7‰ for 2013, and -7.6‰ for 2014. Mean monthly values of δ18Opr 10 

over the 2013-2014 period were related to air temperature (Institute of Geophysics, 11 

Polish Academy of Sciences, 2016) according to δ18Opr = 0.47*Tair – 7.07 (r2=0.66).  12 
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Using the station’s records of monthly precipitation amount for the collection period, 1 

we calculated amount-weighted annual mean δ18Opr values of -7.2‰ and -7.4‰ for 2 

2013 and 2014, respectively.  3 

Table 2. The isotope composition of monthly samples of precipitation collected 4 

at the Hornsund Polish Polar Station 2013-2014. 5 

 6 

 δ18O (‰, VSMOW)  δ2H (‰, VSMOW) 

 2013 2014 2-yr mean*  2013 2014 2-yr mean* 
January -8.8 -4.6 -6.7  -56 -19 -37 
February -10.8 - -10.8  -76 - -76 
March -10.2 -11.6 -10.9  -69 -89 -79 
April -11.9 -11.7 -11.8  -90 -73 -82 
May -8.1 -7.8 -7.9  -59 -51 -55 
June -1.2 -4.2 -2.7  -6 -33 -20 
July - -3.5 -3.5  - -29 -29 
August -7.2 -7.4 -7.3  -61 -62 -62 
September -4.9 -6.2 -5.5  -42 -49 -46 
October -9.3 -9.2 -9.2  -69 -73 -71 
November -9.3 -6.2 -7.7  -65 -51 -58 
December -13.5 -11.5 -12.5  -84 -83 -84 

mean annual* -8.7 -7.6   -62 -56  
mean ann. w.** -7.2 -7.4   -55 -56  

* arithmetic mean 
** amount weighted mean annual value, see Results  

 7 

The reconstructed sequence of lake Svartvatnet δ18Olw values (Figure 3a, Appendix 1) 8 

logically tracks the pattern of the δ18Ochir record, but is shifted to more negative values 9 

by 23.6‰ ±0.6  due to known biogenic fractionation effects between growth water and 10 

the chironomid head capsules (see Wang et al., 2009). Thus, the reconstructed δ18Olw 11 
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values range from -18.7‰ (± 2.4) to -6.3‰ (± 1.5), the values in parentheses 1 

representing the composite error (c.f. Pryor et al., 2014, see Methods). The δ18Olw  value 2 

for the top 2 cm of sediment, reflecting the average composition of lake Svartvatnet 3 

water for the past ~20 years (Ojala et al., 2016), is -9.2‰ (±1.9).  4 

Discussion 5 

δ18Olw reconstruction 6 

Approximately 70% of the oxygen in chironomid larvae is derived from growth water 7 

(Wang et al, 2009). The primary dependence of δ18Ochir values on δ18Olw has been 8 

demonstrated in field studies (Wooller et al. 2004; Verbruggen et al 2010a, 2011), and 9 

possible changes in, e.g., the relative contributions of different dietary sources and 10 

changes in their respective oxygen isotope fractionation systematics appear subordinate 11 

to the influence of ambient water, as observed by Wooller et al. (2008) in a study 12 

monitoring chironomid dietary shifts and δ18Ochir values. While the δ18Ochir value mainly 13 

tracks the δ18O value of lake water, the reliability of the δ18Olw reconstruction  is 14 

influenced by the applicability of the δ18Ochir - δ
18Olw equation describing the oxygen 15 

isotope fractionation between lake water and chironomid head capsules. The δ18Ochir - 16 

δ18Olw equation applied here (Verbruggen et al., 2011) might prove unsuitable in case of 17 

a significant dependence of fractionation effects on 1) formation temperature, or 2) 18 

species of chironomid analysed. Contrary to what is observed for the formation of many 19 
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carbonates and silicates, a direct temperature dependence of the O-isotope fractionation 1 

during chironomid head capsule biosynthesis is not expected (Wolfe et al., 2001; Heiri 2 

et al., 2012; Verbruggen et al., 2010a; 2011) but this remains to be experimentally 3 

verified. Temperature dependent fractionation would be problematic in circumstances of 4 

marked water temperature differences between the calibration conditions and those at 5 

the study lake. Unfortunately Verbruggen et al. (2011) do not report the temperatures of 6 

their lake profundal waters where chironomids live, but they sampled very deep lakes 7 

whose bottom water temperatures are likely to remain stable and relatively low.   8 

We followed the technique of previous down-core chironomid δ18O investigations in 9 

relying on a mixed-taxon approach (Verbruggen et al., 2010a; Wooller et al., 2004; 10 

2008; 2012), which was also applied in the δ18Ochir - δ
18Olw  calibration of Verbruggen et 11 

al. (2011). The notable similarity of δ18Olw reconstructions for Lake Rotsee in 12 

Switzerland based on lake carbonates and mixed-taxon δ18Ochir values (Verbruggen et 13 

al., 2010a) indicates that different chironomid taxa exhibit very similar relationships to 14 

ambient δ18Olw values and mixing species for the purpose of estimating past δ18Olw  15 

values does not induce significant errors in the reconstruction. Further, the observation 16 

of Wooller et al. (2008) that marked changes in δ18Ochir values along a Holocene-17 

covering sediment sequence from an Icelandic lake were not coeval with shifts in 18 

chironomid taxonomic assemblages supports this conclusion.  19 
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As an additional sensitivity test, we applied another δ18Ochir - δ
18Olw calibration from a 1 

rearing experiment relating δ18O values of whole bodies of Chironomus dilutus larvae to 2 

that of their growth water (Wang et al., 2009) to estimate past δ18Olw values for lake 3 

Svartvatnet. The Wang et al. (2009) equation (δ18Ochir = 0.69*δ18Ow + 20.1) is very 4 

similar to that of Verbruggen et al. (2011) despite obvious differences in study set-ups, 5 

and the reconstructed δ18Olw records are likewise highly comparable (Figure 3a). This 6 

points to relative insensitivity of the stable oxygen isotope fractionation to any potential 7 

species specific vital effects and possible differences in dietary source and water 8 

temperature, and further suggests a negligible offset between the isotope composition of 9 

chironomid larval chitinous head capsules and that of the whole body, as already 10 

observed for carbon and nitrogen isotopes (Heiri et al., 2012). Consequently, based on 11 

these observations and the fact that the measured present-day lake Svartvatnet δ18Olw 12 

value, 9.6‰ ±0.1, is well within the δ18Olw estimate for the top 2 cm of surface 13 

sediment, -9.2‰ (±1.9), we consider our δ18Olw reconstruction a realistic, robust 14 

representation of past changes in the oxygen isotope composition of lake Svartvatnet 15 

water.  16 



22 
 

 1 

Figure 3: Proxy records of Arctic climate. a) Lake Svartvatnet δ18O values calculated according to 2 
Verbruggen et al. (2011; solid line with markers) and Wang et al. (2009; dashed line). Shading 3 
represents the composite error of the reconstruction calculated based on Verbruggen et al. (2011). b) Air 4 
temperature reconstructions. Solid thin line and shading (composite error) shows calculated ΔMAT, 5 
assuming all variability in δ18Olw stems from changes in temperature. Solid bold line with markers depicts 6 
the ΔJuly-T reconstruction based on chironomid assemblage analysis from the same core (Luoto et al., in 7 
review.) Both reconstructions are expressed as deviations from the reconstruction mean. Additionally 8 
shown is the 100 yr-filtered reconstruction of summer temperature anomalies from Lake Torneträsk, 9 
northern Scandinavia, for the past 1500 years (Grudd, 2008). c) Sedimentary records of glacier activity 10 
from lake Hajeren on Mitrahalvøya, western Spitsbergen (Van der Bilt et al., 2015). d) Indicators of sea 11 
ice conditions in the eastern Fram Strait (Müller et al., 2012) and southeastern Barents Sea (De Vernal et 12 
al., 2013). e) Reconstructed summer sea surface (upper 10 m) temperature and δ18O values of N. 13 
pachyderma (sin) from the western Barents Sea (Sarnthein et al., 2003), and a stacked record of Ice 14 
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Rafted Debris indicators from four cores in the North Atlantic, with numbers referring to Bond Cycles 0 1 
through 2 (Bond et al., 2001). 2 

 3 

δ18Olw as a proxy for δ18Opr 4 

The δ18O value of lake water can be expected to represent the mean δ18O value of 5 

precipitation in the catchment area if it is not altered by evaporation, or does not receive 6 

significant input from non-local or non-contemporaneous waters, like melt waters from 7 

high altitudes or glaciers. Presently, the nearest glaciers Gåsbreen and Bungebreen lie 5-8 

7 km to the east and southeast of the lake (Figure 1), and the chain of highest peaks in 9 

Sørkappland reaching 925-142 m a.s.l. is ca. 11 km to the east. Our study lake is also 10 

shielded from the drainage of both glaciers and high altitude peaks by a N-S trending 11 

ridge of higher (ca. 400-500 m a.s.l.) ground. The δ18O values of the southern inlet 12 

streams (-9.3 and -8.8‰, Table 1) draining these higher terrains are close to mean 13 

annual values of δ18Opr and probably represent a mixture of June-July precipitation and 14 

the continued seasonal melt of snow from the slopes in the lake catchment area. 15 

Lake Svartvatnet has a relatively small volume compared to the size of its catchment 16 

(~15 km2), suggesting a relatively short residence time with the majority of the water 17 

mass replaced each year during snow melt. The short, ca. 2.5 month, period of time the 18 

lake remains free of ice cover annually, the generally low temperatures and high relative 19 

humidity (July 2013-2014 mean RH 87%) of the local air during the open-water period 20 
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minimize evaporative influences to the water body. At the time of sampling in mid-July 1 

the water column shows uniform δ18O values, with no indication of surface water 18O 2 

enrichment, which would otherwise indicate significant evaporation from the lake 3 

surface (Table 1). Furthermore, the δ18O and δ2H values of the samples collected from 4 

Svartvatnet lake water and the inlet streams plot along the local meteoric water line 5 

(Figure 4) describing the isotopic composition of precipitation on the western coast of 6 

Spitsbergen. 7 

Svartvatnet  8 

Figure 4: The δ18O and δ2H values of the water samples taken from lake Svartvatnet, inlet streams and 9 
monthly precipitation relative to the Local Meteoric Water Line for western Spitsbergen. Inset: 10 
comparison between amount weighted mean annual δ18O values of precipitation in Ny Ålesund, Isfjord 11 
Radio and Hornsund and those predicted by the Online Isotopes in Precipitation Calculator (OIPC; 12 
Bowen, 2016; Bowen and Revenaugh, 2003). 13 

 14 



25 
 

These data strongly suggest that the waters of lake Svartvatnet are sourced from local 1 

precipitation and evaporative isotopic enrichment is likely to be negligible. However, 2 

the isotopic composition of lake Svartvatnet water in mid-July 2013 was ~2‰ lower 3 

than the amount-weighted mean annual δ18Opr values for 2013-2014 recorded at the 4 

Polish Polar Station. There are several possible explanations for this observation. The 5 

difference may be a reflection of the considerable uncertainties in precipitation amount 6 

measurements at high latitudes (Aguado and Burt, 1999; Łupikasza, 2013) affecting the 7 

amount weighted δ18Opr values. According to Aguado and Burt (1999) Spitsbergen is 8 

located in a zone where the error may reach 20-39% of measured annual totals, with 9 

totals of snowfall having the highest potential errors (Łupikasza, 2013). Furthermore, 10 

the discrepancy may be related to the fact that autumn 2012 was not covered in the 11 

precipitation monitoring, although it can be expected to exert a major control over 12 

δ18Olw values of the lake sampled in July 2013, considering that the autumn months 13 

usually contribute almost 40% of annual precipitation (Łupikasza, 2013). Another factor 14 

that could explain the offset is the general seasonal variation of δ18Opr values. The 15 

degree to which lake water δ18O values are affected by seasonal variability in δ18Opr is 16 

determined by the residence time (e.g., Sauer et al., 2001). The relatively short 17 

residence time of lake Svartvatnet gives cause to expect that δ18Olw values are at their 18 

lowest during the summer snowmelt period, usually beginning in late May to early June 19 

in this region (Rotschky et al., 2011), and rise gradually towards the end of the open 20 
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water season (September; Ojala et al., 2016) with the accumulation of warm-season 1 

precipitation with higher δ18O values.  2 

We note that the δ18Olw values are ca. 2.5‰, and the amount weighted annual δ18Opr 3 

values  ca. 4.5‰ less negative than what the Online Isotopes in Precipitation Calculator 4 

(OIPC; Bowen, 2016; Bowen and Revenaugh, 2003) predicts for the site based on its 5 

location and elevation (see inset in Figure 4). Positive offsets of 1‰ and 2.5‰ are 6 

observed also for amount weighted annual δ18Opr values on IAEA’s Global Network of 7 

Isotopes in Precipitation monitoring stations at Ny Ålesund and Isfjord Radio 8 

(IAEA/WMO, 2016), respectively, suggesting that the OIPC tends to underestimate 9 

δ18Opr values for this region, and might not be a suitable point of reference for local 10 

δ18Opr values. 11 

Viewed against this background, it is reasonable to assume that lake Svartvatnet δ18Olw 12 

values track changes in mean annual δ18O values of regional precipitation. It is also 13 

likely, that they represent the absolute level of δ18Opr values with reasonable accuracy, 14 

with a possible bias towards somewhat lower δ18O values due to lingering effects of 15 

summer snow melt during the period of chironomid larval growth. However, to 16 

reconstruct past environmental conditions, we must be able to assume that the status 17 

quo regarding evaporation and glacier water influence to δ18Olw has remained 18 

unchanged for the past 5500 years. Based on the modest increases in temperatures 19 

inferred for the warmer early Holocene period in Svalbard (Birks, 1991) any significant 20 
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increase in evaporative demand is not expected. Also, there is no geomorphological 1 

evidence for presence of a glacier in the Lisbetdalen valley during the late Holocene 2 

(Lindner and Marks, 1993; Ojala et al., 2016), and records of glacier thickness since 3 

1899 (Ziaja, 2004), immediately after the LIA when Svalbard glaciers in general are 4 

thought to have had their largest Holocene extent (Snyder et al., 2000; Svendsen and 5 

Mangerud 1997; Werner 1993), suggest that the nearest glacier Gåsbreen did not 6 

advance over the ca. ≥400 m a.s.l. ridge separating it from lake Svartvatnet catchment. 7 

Thus it seems plausible that lake Svartvatnet has remained shielded from glacier melt 8 

water pulses even during (after) intervals of expanded glacier extent. 9 

Reconstructing paleoenvironmental conditions 10 

Some noteworthy challenges arise when attempting to interpret δ18Opr proxy records in 11 

terms of past air temperatures. An exhaustive review of these is beyond this paper, but 12 

we briefly visit some of the most relevant issues. Ideally, investigations of variations in 13 

past temperatures based on δ18Opr proxies should rely on temporal δ/T slopes, based on 14 

prior knowledge of the regional past relationship between changes in past surface 15 

temperature and δ18Opr, derived from, for example, paleogroundwaters (Darling et al., 16 

1997; Huneau et al., 2002; Loosli et al., 2001) or ice cores (Buizert et al., 2014; Jouzel 17 

et al., 1997; Vinther et al., 2008). Situations with independent knowledge of both MAT 18 

and δ18Opr changes are, however, regrettably rare, and most paleotemperature studies 19 

apply spatial δ/T slopes determined over large-scale geographical climatic gradients 20 
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(Dansgaard, 1964; Rozanski et al., 1992; 1993). Despite several reports of temporal δ/T 1 

slopes close to modern spatial slopes from both North-America and Europe (Beyerle et 2 

al., 1998; Edwards et al., 1996; Hammarlund, 1999; Remenda et al., 1994; Rozanski et 3 

al., 1992; Zuber et al., 2004), contradicting observations of temporal δ/T slopes in 4 

Greenland different from modern spatial gradients (Buizert et al., 2014; Jouzel et al., 5 

1997; Vinther et al., 2008) add considerable uncertainty to the general reliability of  6 

δ18Opr values as proxy for temperature. 7 

The δ18O value of precipitation, and thus, the observed δ/T slope, is a manifestation of 8 

the isotopic composition and conditions at the source of evaporation, and conditions 9 

along the moisture trajectories to the site of precipitation. Therefore a change in the 10 

dominant moisture source or its temperature, affecting the extent of fractionation of the 11 

water vapour (Dansgaard, 1964), can lead to a change in the δ18O of precipitation at a 12 

site (Masson-Delmotte et al., 2005; Steffensen et al., 2008; Vachon et al., 2010). For 13 

example Masson-Delmotte et al. (2005) explained the lower δ18O values of the NGRIP 14 

ice core compared to the GRIP record by a combination of lower condensation 15 

temperatures and a different moisture source with a higher temperature. In the Arctic, 16 

sea ice acts as insulation between the ocean and the atmosphere restricting the exchange 17 

of moisture and heat, and has been shown to exert a significant influence over the 18 

availability of and distance to moisture sources (Divine et al., 2008; Grinsted et al., 19 

2006; Klein et al., 2015). According to a recent simulation examining the effects of 20 
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changes in sea ice cover and sea surface temperatures on δ18O values of Arctic 1 

precipitation, especially the restriction imposed by increased sea ice to locally sourced 2 

water vapour causes significant decreases in the δ18Opr values (Faber et al., 2016). 3 

Interestingly though, the study reported fairly robust δ/T relationships, largely 4 

unaffected by sea ice variability, around the Arctic. 5 

δ18Opr proxies relying on modern spatial δ/T relationships will also lead to 6 

misinterpretation of air temperatures in cases where the seasonal distribution of 7 

precipitation is different from that of the present day. For instance, Wooller et al. (2008) 8 

interpreted seasonality changes as a contributing factor explaining large δ18O shifts 9 

leading to unrealistically large interpreted temperature changes in an Icelandic 10 

lacustrine sediment record covering the Holocene. 11 

Comparisons to other high Arctic proxy records 12 

5500-2500 cal. yr BP. As a whole, the earlier part of the δ18Olw record up to ca. 2500 13 

cal. yr BP shows relatively little variation and the δ18Olw values remain close to present-14 

day level, suggesting fairly stable hydroclimatic conditions similar to those prevailing 15 

today.  At ca. 3400-3200 cal. yr BP, the δ18Olw of lake Svartvatnet decreases to -12.8‰, 16 

representing the lowest value in the earlier part of the record. The timing of this episode 17 

of ca. 3‰ lower δ18Olw values is concurrent with a prominent centennial-scale glacier 18 

advance at 3380-3230 cal. yr BP on Mitrahalvøya Peninsula in northwestern 19 
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Spitsbergen (Figure 3c; Van der Bilt et al., 2015), attributed to North Atlantic forcing 1 

against a background of general Neoglacial cooling. In a wider context, the drop 2 

overlaps with the timing widespread evidence of increased Northern Hemisphere glacier 3 

activity (3.3-2.8 cal. kyr BP; Solomina et al., 2015) and low temperatures (3.3-2.5 cal. 4 

kyr BP; Wanner et al., 2011), as well as increased ice rafted debris indicators (Figure 5 

3e; Bond et al., 2001) and sediment markers of storminess and/or brine formation (ca. 6 

3500-3200 cal. yr BP; Sarnthein et al., 2003) indicating cool conditions in the northern 7 

North Atlantic. 8 

2500 cal. yr BP to the LIA. After ca. 2500 cal. yr BP the δ18Olw record shows more 9 

variability, in agreement with observations of more unstable conditions in the Nordic 10 

Seas (Berben et al., 2014; Rasmussen et al., 2012; Risebrobakken et al., 2010) and 11 

higher glacier activity around Svalbard (Lubinski et al., 1999; Røthe et al., 2015) 12 

towards the end of the Holocene. The highest δ18Olw value of the record occurs at ca. 13 

1900-1800 cal. yr BP (~50-150 CE), coinciding with a period of general warmth 14 

referred to as the Roman Warm Period (RWP). In the North Atlantic Ocean the RWP 15 

interval (ca. 2500-1500 cal. yr BP) is associated with, e.g., increased temperatures and 16 

productivity, decreased evidence of ice, and strengthened flow along the major flow 17 

path and the side branches of the North Atlantic Current (Bianchi and McCave, 1999; 18 

Dylmer et al., 2013; Moros et al., 2012; Perner et al., 2015; 2016; Risebrobakken et al., 19 

2003, Sarnthein et al., 2003).   Similarly, Northern Hemisphere terrestrial environments 20 



31 
 

widely display evidence of elevated temperatures between 1-300 CE (Ljungqvist, 1 

2010).  2 

The prominent double decrease in the Svartvatnet δ18Olw record at ca. 1250-1100 cal. yr 3 

BP suggests that southern Spitsbergen experienced a significant late Holocene cold spell 4 

prior to the onset of the LIA. These negative shifts overlap with the latter part of a 5 

cooling known as the Dark Ages Cold Period (DACP, ca. 1500-1000 cal. yr BP; 6 

Bianchi and McCave, 1999; McDermott et al., 2001).  The event is directly preceded by 7 

a minimum in total solar irradiation (Renssen et al., 2006; Steinhilber et al., 2009), and 8 

contemporaneous with records of expanded glaciers on the Northern Hemisphere at 1.2-9 

1.1 cal. kyr BP (Solomina et al., 2015). On Spitsbergen, glacier advances or increased 10 

glacier activity have been reported from different parts of the island (Guilizzoni et al., 11 

2006; Humlum et al., 2005; Røthe et al., 2015; Van der Bilt et al., 2015) and 12 

sedimentary records from lakes Kongressvatnet and Skardtjørna indicate cooled 13 

summers during the time period (D’Andrea et al., 2012; Velle et al., 2011). Further 14 

afield, low summer temperatures during this time interval were also reconstructed for 15 

northern Scandinavia (Figure 3b; Grudd, 2008). In the marine realm, elevated IRD 16 

markers (Figure 3e; Bond et al., 2001), cooler summer sea surface and subsurface 17 

temperatures (Risebrobakken et al., 2010; Sarnthein et al., 2003), and increased sea ice 18 

(Rasmussen and Thomsen, 2014) in the surrounding areas indicate a cooling of the 19 

North Atlantic overlapping with the time interval. Additionally, an intriguing peak 20 
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(Figure 3e) of the planktic foraminifer Neogloboquadrina pachyderma (sin.) δ18O 1 

values is observed in a number of long sediment cores retrieved from different locations 2 

in the Barents Sea (core 23258-2: Sarnthein et al., 2003; core JM02-460: Rasmussen et 3 

al., 2007; core PSh-5159N: Risebrobakken et al., 2010; core JM09-KA11-GC: Berben 4 

et al., 2014), perhaps associated with a cooling of the sea (sub)surface temperatures 5 

(Risebrobakken et al., 2010) or increased advection from the cold Barents shelf 6 

(Sarnthein et al., 2003) during a time of periodic freshening of the surface and 7 

stratification of the upper water column. 8 

LIA - the Little Ice Age. A wealth of proxy evidence testifies to the LIA cooling, thought 9 

to have been triggered by reduced solar irradiance, extended volcanism and internal 10 

characteristics of the ocean-atmosphere system (Miller et al., 2010; 2012; Wanner et al., 11 

2011). The isotopic composition of lake Svartvatnet shows a remarkable depression, 12 

with δ18Olw values ca. 8-9‰ below present-day values during the LIA period. There is 13 

an initial drop of 2.5‰ from present-day levels to -12‰ at ca. 800-700 cal. yr BP, and a 14 

further, more prominent decrease to -19‰ at ca. 350-50 cal. yr BP (ca. 1600-1900 CE).  15 

The timing of the event in our record agrees with that in large scale Arctic and Northern 16 

Hemisphere temperature compilations by Kaufman et al. (2009) and Marcott et al. 17 

(2013), respectively. Abundant proxy evidence on and around Svalbard, consistent with 18 

the timing and pattern of the LIA in the Svartvatnet δ18O record, testify to the climatic 19 

deterioration during the period. The flow of warm Atlantic water was significantly 20 
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reduced, Arctic/Polar waters dominated the surface ocean off western Spitsbergen and 1 

western Barents Sea (Dylmer et al., 2013) and the western Nordic seas experience their 2 

most extensive April sea ice cover since 1200 CE between the 17th and the 19th 3 

centuries (Macias Fauria et al., 2009). Terrestrial records from Spitsbergen indicate 4 

general glacier expansion and decreased air temperatures (Grinsted et al., 2006; 5 

Guilizzoni et al., 2006; Isaksson et al., 2003; Kekonen et al., 2005; Lubinski et al., 6 

1999; Røthe et al., 2015; Snyder et al., 2000; Svendsen and Mangerud, 1997; Van Der 7 

Bilt et al. 2015; Velle et al., 2011; Werner, 1993), with multiple reports of a two-step 8 

progression for the LIA. 9 

Factoring in respective age-model uncertainties, it appears that all major negative shifts, 10 

i.e. “cold” periods, in the δ18Olw record are roughly synchronous with periods of major 11 

negative anomalies in total solar irradiation and high modeled probabilities for 12 

extremely cold years in the Nordic Seas (Renssen et al., 2006), and widespread evidence 13 

of North Atlantic “cold spells” (Bond et al. 2001; Sarnthein et al. 2003; Solomina et al., 14 

2015; Wanner et al., 2008) linked to solar forcing. However, we emphasize that 15 

significant differences exist between the Svartvatnet δ18Olw record and the 16 

aforementioned records of solar forcing induced cold events (see e.g. Figure 3e). For 17 

example, one of the most prominent of these cold anomalies at ca. 2800 cal yr BP does 18 

not appear on the Svartvatnet δ18Olw record. Renssen et al. (2006) simulate 10-15°C 19 

lower spring (March) air temperatures and 40-60% enhanced sea ice cover for our study 20 
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area during this cold climatic anomaly, absent from our record. This highlights an 1 

intriguing non-linearity of the high arctic ocean-atmosphere hydroclimatic system. 2 

Additionally we would like to note, that both the 1900-1800 and 3400-3200 cal. yr BP 3 

fluctuations are only one-sample events in the record, and thus their apparent match 4 

with concurrent climatic trends may be fortuitous. In any case, as single-sample events 5 

they should not be considered representative of the actual regional strength, length or 6 

structure of the climatic episodes they are tentatively linked to.   7 

 8 

The cold spells: changed temperatures, moisture sources or seasonality? 9 

The northern North Atlantic has a central role in shaping the climate of the study area. 10 

There is a strong correlation between mean annual air temperatures measured at the 11 

Hornsund Polish Polar Station and temperatures of Atlantic waters from 2000 to 2007 12 

(Walczowski, 2013). While their influence on summer air temperatures in the study area 13 

is negligible, Atlantic water masses mitigate winter temperature minima through the 14 

flux of sensible and latent heat (Walczowski, 2013), and thus winter temperatures play 15 

an essential part in variations of mean annual temperatures. Due to the significant 16 

effects of sea ice cover on heat exchange with the atmosphere, winter climate of 17 

southern Spitsbergen exhibits a substantial sensitivity to seasonal sea ice extent, as 18 

demonstrated by high coefficients of determination (r2>0.75) of winter and spring sea 19 
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ice extents in the Greenland and Kara-Barents Seas on Hornsund MATs during 1979-1 

2009 (Marsz, 2013). Hence, the δ18Olw record can be expected to be strongly influenced 2 

by regional winter conditions, particularly by variability in the northward advection of 3 

warm Atlantic water masses, extent of sea ice and moisture availability from the 4 

adjacent Nordic Seas in addition to general insolation variability. These factors bear 5 

great significance to the interpretation of the Svartvatnet δ18Olw record. 6 

Yet a significant influence of air temperature on Svartvatnet δ18Olw values is suggested 7 

by the similarity of the δ18O record to a July air temperature (July-T) reconstruction 8 

based on chironomid assemblage analysis from the same sediment core (Figure 3b; 9 

Luoto et al., in review). The July-T reconstruction shows a similar general trend, and 10 

cold periods are indicated by both records at ca. 3400-3200, 1300-1200 and 350-50 cal. 11 

yr BP. Dissimilarities between the records are expected, because the July-T record is 12 

based on 1-cm-thick samples taken every four centimeters throughout the sequence, 13 

while the δ18O analyses predominantly reflect an average of 2-4 cm of sediment. 14 

Furthermore, based on observations of relative thermal stability of summers compared 15 

to the rest of the annual cycle in Spitsbergen for the past decades (Divine et al., 2011; 16 

Marsz, 2013) any reconstruction of MAT can be expected to show more variability 17 

compared to reconstructed summer temperatures. 18 

 If assumed to represent solely changes in MAT using δ/T gradients of 0.65 (Wooller et 19 

al., 2004) and 0.71 (Greenland Sea spatial slope; see Materials and Methods, and 20 
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Appendix 1), the local minima in δ18Olw values at 3400-3200 and 1250-1100 cal. yr BP 1 

translate to MATs 3°C (±3) and 6-8°C (±3) below the reconstruction mean.  For the 2 

LIA minimum between 1600 and 1900 CE the δ18Olw record suggests ca. 10-12°C (±6) 3 

lower MATs (Figure 3b). However, it is highly probable that the observed shifts in 4 

δ18Olw reflect additional environmental factors and cannot be interpreted as temperature 5 

changes alone. This is particularly evident for the drop in δ18Olw values associated with 6 

the LIA.  7 

The climate of the LIA. In notable contrast to the 10-12°C (±6) lower MATs inferred 8 

from the δ18Olw record, the summer air temperature reconstruction for lake Svartvatnet 9 

(Figure 3b; Luoto et al., in review) indicates only 2°C cooler LIA summers than the 10 

reconstruction mean, and  3.5°C lower than the calculated temperature for the surface 11 

sample. However, a more subdued drop in summer air temperature is consistent with the 12 

general thermal stability of summer climate in Spitsbergen over the long term (Divine et 13 

al., 2011; Marsz, 2013), and considering the strong influence of winter temperatures on 14 

the mean annual temperatures discussed above, a transient decoupling of summer and 15 

winter temperatures seems to have taken place during the 1600-1900 CE time interval. 16 

Indeed, increased seasonality or continentality, i.e. a greater amplitude between winter 17 

temperature minima and summer maxima, for the LIA time interval has been inferred 18 

based on increases in the amplitude of seasonal δ18O variations in ice core records from 19 

the Lomonosovfonna glacier in central Spitsbergen (Divine et al., 2011; Grinsted et al., 20 
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2006). The δ18O based Lomonosovfonna continentality index, mostly driven by winter 1 

temperature change, peaks at 1860 CE and declines rapidly thereafter (Grinsted et al., 2 

2006). Increased seasonal temperature variations for the 19th century are known also 3 

from Greenland (Box et al., 2009), Iceland, and northern Scandinavia (Hanna et al., 4 

2004; Klingbjer and Moberg, 2003). Considering larger scale trends, a more prominent 5 

lowering of winter temperatures agrees also with evidence characterizing the well-6 

known European cold of the LIA during the Maunder Minimum (1650-1700 CE; Eddy, 7 

1976) as mainly a spring and winter phenomenon, whereas summers and autumns do 8 

not show strong departures from the European 20th century average (Luterbacher et al., 9 

2004; Xoplaki et al., 2005). Thus, an enhanced drop in winter temperatures, leading to a 10 

more pronounced lowering of mean annual temperatures compared to summer, is 11 

plausible, and we argue that significantly lowered winter temperatures likely account for 12 

a part of the outstandingly low LIA δ18Olw values. However, considering that LIA 13 

winter temperatures on Svalbard are estimated to have been ca. 4°C colder based on ice 14 

core records (Divine et al., 2011), a 10-12°C drop in MAT appears disproportionately 15 

large, and requires further examination. 16 

In Greenland, a major drop in the GRIP ice core d-excess record at 0.35 ka (ca. 1600 17 

CE) indicates changes in moisture source conditions (Hoffmann et al., 2001; Masson-18 

Delmotte et al., 2005), with a reconstructed 1°C temperature drop on site in Greenland 19 

accompanied by a 2°C decrease in moisture source temperature. Similar to Greenland 20 
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(Johnsen et al., 1989), Spitsbergen receives much of its precipitation from evaporation 1 

taking place in the subtropics (Dickson et al., 2000; Divine et al., 2008; Humlum et al., 2 

2005). However, more proximal sources, most likely the Greenland and Norwegian 3 

Seas, seem to have played a significant role in supplying moisture to Spitsbergen 4 

(Beaudon et al., 2013; Divine et al., 2008; Hebbeln et al., 1994; Svendsen and 5 

Mangerud, 1991). With reference to evidence of much extended sea ice cover around 6 

Spitsbergen during the LIA (Grinsted et al., 2006; Macias Fauria et al., 2009; Müller et 7 

al., 2012) it is very likely that ice cover -induced changes in the moisture supply from 8 

the adjacent seas play a significant part in the prominent drop of δ18Olw values observed 9 

at 350-50 cal. yr BP in lake Svartvatnet. A decrease in the proportion of proximally 10 

derived, “cold source” moisture, i.e. a shift to greater dominance of more distant, 11 

southerly and hence, warmer, moisture sources would result in enhanced Rayleigh 12 

distillation of the water vapour leading to more 18O depleted precipitation on site. As 13 

inferred for the termination of the LIA in ice core proxies, the rapid recovery from the 14 

LIA δ18Olw minimum at ca. 50 cal. yr BP is likely related to fast decline of sea ice in the 15 

adjacent Nordic Seas (Divine et al., 2008; Grinsted et al., 2006). For example, the 16 

significant shift in the sea-ice cover of the Greenland Sea occurred right after 1880 CE, 17 

creating year-round open water conditions southwest of Spitsbergen (Divine et al., 18 

2008). The apparent sensitivity of lake Svartvatnet δ18Olw values to variations in sea ice 19 

extent in the surrounding seas, consistent with results of modeling and empirical data on 20 
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the dependence of δ18Opr values on sea ice on Spitsbergen (Faber et al., 2016; Macias 1 

Fauria et al., 2009), implies that comparable high quality (i.e. lake shielded from 2 

glacier/high-altitude melt waters, minimal evaporation, short residence time, stable 3 

deposition, sufficient resolution) lacustrine δ18Opr proxy records on Svalbard may be 4 

used as indicators of past major fluctuations in sea ice extent. 5 

It is additionally possible, that part of the lowering in the δ18Olw value is accounted for 6 

by a shift in the seasonal distribution of precipitation towards the cold season, i.e. 7 

increased snowfall during the winter months. This would be consistent with scenarios 8 

attributing the maximum extent of Svalbard glaciers during the LIA (D’Andrea et al., 9 

2012), and late-Holocene ice advances in general (Müller et al., 2012; Van der Bilt et 10 

al., 2015) to cold season precipitation rather than decreased summer temperatures. 11 

However, based on the two-year monitoring of precipitation δ18O values at the Polish 12 

Polar Station indicating winter minimum δ18Opr  values of ca. -13 to -12‰, the 13 

exceptionally low δ18Olw values observed for the LIA are not attainable even with 100% 14 

of precipitation received during the deepest winter. Thus, any seasonality change-15 

induced effects on lake Svartvatnet δ18Olw must be accompanied with an air temperature 16 

and/or moisture source related lowering of δ18Opr values. 17 

The rest of the record. The issues raised above are naturally pertinent to the 18 

interpretation of the negative δ18Olw shifts observed at 3400-3200 and 1250-1100 cal. yr 19 

BP. It is particularly clear, that any significant changes in sea ice cover over the 20 
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Greenland and Barents Seas will inevitably influence the Svartvatnet δ18Olw record. 1 

Unfortunately, much less precise information is available on sea ice conditions in the 2 

Nordic Seas over the 5500 year time span represented by our proxy record. The 3 

reconstructions available for the eastern Fram Strait region on the northern West 4 

Spitsbergen Shelf are not necessarily easily comparable nor mutually consistent. 5 

Although some similar trends can be discerned (Cabedo-Sanz and Belt, 2016), sea ice 6 

reconstructions based on the biomarker IP25 (Figure 3d; Cabedo-Sanz and Belt, 2016; 7 

Müller et al., 2012) and those derived from dinocyst assemblage variations (Bonnet et 8 

al., 2010; De Vernal et al., 2013) display clear differences. The biomarker based 9 

reconstructions show relatively low general variability, and display minor highs a little 10 

before 800 CE (1150 cal. yr BP; Cabedo-Sanz and Belt, 2016) and 1.1 cal. kyr BP 11 

(Müller et al., 2012). The dinocyst based reconstructions (Bonnet et al., 2010; De 12 

Vernal et al., 2013) show much larger variability, sometimes opposing trends, and do 13 

not support a scenario of particularly extended sea ice cover at 3400-3200 and 1250-14 

1100 cal. yr BP. To the south and south east of Spitsbergen, intermittent seasonal sea 15 

ice was inferred from biomarker IP25 indices for the mid to late Holocene in the 16 

Kveithola Trough, western Barents Sea, by Berben et al. (2014) and Belt et al. (2015), 17 

with somewhat elevated index values roughly between 3.5 and 3 ka cal. yr BP and 1 ka 18 

cal. yr BP onwards. For southeastern Barents Sea, peaks at 3.5 ka cal. yr BP and 1.1 ka 19 

cal. yr BP in the dinoflagellate cyst based reconstruction (Figure 3d; De Vernal et al., 20 
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2013) suggest increased sea ice cover during these periods. In summary, although 1 

conclusive evidence of significantly extended sea ice cover for the time periods of 2 

interest cannot be drawn from the dinocyst and biomarker based reconstructions, it is 3 

very likely that increased sea ice was associated with these periods of general cooling 4 

(Bond et al., 2001; Rasmussen and Thomsen 2014; Sarnthein et al., 2003). Thus, the 5 

negative shifts in Svartvatnet δ18Olw values probably include a component related to 6 

changes in moisture sources, and possibly, in seasonality of precipitation, and do not 7 

represent decreased MATs only. Nonetheless, the δ18Olw record from lake Svartvatnet 8 

provides solid evidence of the mid to late Holocene development of meteoric 9 

hydroclimate in the European sector of the high Arctic registering perturbations 10 

consistent with the timing of well-known historical climate episodes (the RWP, the 11 

DACP and the LIA), and clearly demonstrates the inseparable connection between the 12 

evolution of North Atlantic conditions and terrestrial climate in the region. Our δ18Olw 13 

record from Svartvatnet certainly sets the stage for future comparative studies from 14 

other lakes in the region. 15 

Conclusion 16 

The δ18Ochir values of chironomid head capsules from lake Svartvatnet in southern 17 

Spitsbergen yield a realistic, robust reconstruction of past changes in δ18Olw values over 18 

the past 5500 years. Owing to the relatively short residence time and minimal 19 
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evaporative influences, and absence of extraneous water inputs from e.g., glacier melt 1 

waters, the δ18Olw values are likely to represent the variations and the absolute level of 2 

δ18O values of regional precipitation with reasonable precision. The similarity of the 3 

trends between the δ18Olw record and a July-T reconstruction based on chironomid 4 

assemblages from the same core suggests that temperature plays a significant role in the 5 

variations of the δ18Olw record, but the record appears to also be influenced by changes 6 

in sea ice extent and possibly, the seasonal distribution of precipitation, limiting our 7 

possibilities to present precise estimates of past temperature changes. The strong 8 

influence of winter conditions on mean annual temperatures in the study area suggests 9 

that the δ18Olw record has particular value in offering insight into the climatic variations 10 

of the cool/cold season, in contrast to the majority of terrestrial climate proxies 11 

reflecting conditions during the growing season.  12 

The Svartvatnet δ18Olw record shows a peak at ca. 1900-1800 cal. yr BP, consistent with 13 

the timing of the Roman Warm Period, and negative excursions at 3400-3200, 1250-14 

1100 and 350-50 cal. yr BP, increasing in intensity towards the present-day. The time 15 

period of the Little Ice Age is manifested in the δ18Olw record as a two-step decrease in 16 

δ18Olw values, with a remarkable, 8-9‰ depression in δ18Olw values at 350-50 cal. yr BP. 17 

The δ18Olw record suggests that the LIA in southern Spitsbergen was associated with 18 

significantly lowered cold season temperatures, i.e. increased seasonal contrasts. 19 

Extended sea ice cover, and possibly increased proportion of cold season precipitation, 20 
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contributed to the prominent depression in δ18Olw values during the LIA. All the time 1 

periods of the negative shifts in the δ18Olw record are linked to widespread evidence of 2 

glacier expansion and “cold spells” in the northern North Atlantic testifying to the 3 

sensitivity and general potential of high Arctic lacustrine δ18Ochir records in tracking 4 

terrestrial climate evolution.  5 
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Appendix: δ18O data and reconstructed MAT changes 
The oxygen isotope composition of chironomid chitin (δ18Ochir) and lake Svartvatnet water (δ18Olw), and 
the interpreted changes in mean annual temperature (MAT-index) along the sediment sequence. δ18Olw 
was reconstructed using the calibration of Verbruggen et al. (2011). MAT-index 1 shows temperature 
changes relative to the reconstruction mean applying Wooller et al. (2004). Correspondingly, MAT-index 
2 was calculated from reconstructed δ18Olw values based on the spatial correlation between  δ18Oppt and 
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MAT at IAEA monitoring stations adjacent to the Greenland Sea (see sheet "Slope data" below).  Precision 
refers to IRMS measurement precision estimate determined by replicate analyses of similar biogenic 
materials of different sample mass, with larger measurement precision estimates for samples with 
smaller masses. The composite error represents the total error associated with the reconstructed δ18Olw 
value or index to the left including measurement and calibration errors (c.f. Pryor et al. 2014). See main 
text for explanations on calculations of MAT-indeces. 

         

depth 
(cm) 

δ18Ochir 

(‰) 
precision 
(‰) 

δ18Olw 

(‰) 
composite 
error (‰) 

MAT-index 
1 (°C) 

composite 
error (°C) 

MAT-index 2 
(°C) 

composite 
error (°C) 

0-2 14.1 1.5 -9.2 2.4 1.5 3.0 1.8 3.6 

2-3 13.3 0.4 -10.3 1.4 0.3 1.9 0.3 2.5 

4-5 13.0 0.4 -10.6 1.5 -0.1 2.0 -0.2 2.5 

6-7 7.7 0.4 -17.6 1.6 -8.2 2.3 -9.9 2.9 

8-12 6.9 2.5 -18.7 3.6 -9.5 4.5 -11.5 5.5 

12-16 11.5 1.5 -12.6 2.4 -2.4 3.0 -2.9 3.7 

16-20 11.9 0.4 -12.1 1.5 -1.8 2.0 -2.2 2.5 

20-24 11.9 0.4 -12.1 1.5 -1.8 2.0 -2.2 2.5 

24-28 13.8 0.4 -9.6 1.4 1.1 1.9 1.4 2.5 

28-30 13.2 0.4 -10.4 1.4 0.1 1.9 0.1 2.5 

30-31 9.1 0.4 -15.7 1.5 -6.1 2.1 -7.3 2.7 

32-35 13.9 0.4 -9.5 1.4 1.2 1.9 1.4 2.5 

34-35 9.0 0.4 -16.0 1.5 -6.3 2.2 -7.6 2.7 

36-40 14.0 1.5 -9.4 2.4 1.4 3.0 1.7 3.6 

40-43 14.1 0.4 -9.2 1.4 1.6 1.9 1.9 2.5 

44-47 14.5 0.4 -8.7 1.4 2.1 1.9 2.5 2.5 

48-51 12.5 0.4 -11.2 1.5 -0.8 2.0 -1.0 2.5 

52-53 16.3 0.4 -6.3 1.4 5.0 1.9 6.0 2.6 

56-58 13.3 0.4 -10.2 1.4 0.4 1.9 0.5 2.5 

60-62 13.4 0.4 -10.1 1.4 0.5 1.9 0.6 2.5 

64-67 14.8 0.4 -8.3 1.4 2.6 1.9 3.1 2.5 

68-72 14.3 0.4 -9.0 1.4 1.8 1.9 2.2 2.5 

72-75 13.3 0.4 -10.2 1.4 0.4 1.9 0.5 2.5 

76-80 13.3 0.4 -10.2 1.4 0.4 1.9 0.4 2.5 

80-84 13.6 0.4 -9.9 1.4 0.7 1.9 0.9 2.5 
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84-87 13.6 0.4 -9.9 1.4 0.8 1.9 0.9 2.5 

88-92 11.4 0.4 -12.8 1.5 -2.6 2.0 -3.2 2.6 

92-96 13.8 0.4 -9.6 1.4 1.1 1.9 1.3 2.5 

96-99 13.9 0.4 -9.5 1.4 1.2 1.9 1.5 2.5 

100-103 12.8 0.4 -10.9 1.5 -0.4 2.0 -0.5 2.5 

104-107 13.3 0.4 -10.2 1.4 0.4 1.9 0.4 2.5 

108-111 12.5 0.4 -11.3 1.5 -1.0 2.0 -1.1 2.5 

112-116 13.9 0.4 -9.4 1.4 1.3 1.9 1.6 2.5 

116-119 13.7 0.4 -9.7 1.4 0.9 1.9 1.1 2.5 

120-123 13.4 0.4 -10.2 1.4 0.4 1.9 0.5 2.5 

124-127 14.1 0.4 -9.3 1.4 1.5 1.9 1.8 2.5 

128-131 14.3 0.4 -9.0 1.4 1.8 1.9 2.2 2.5 

132-136 13.8 0.4 -9.5 1.4 1.2 1.9 1.4 2.5 

136-140 14.3 0.4 -9.0 1.4 1.8 1.9 2.2 2.5 

140-143 14.6 0.4 -8.6 1.4 2.3 1.9 2.7 2.5 

144-148 14.5 0.4 -8.7 1.4 2.1 1.9 2.5 2.5 

148-150 13.2 0.4 -10.4 1.4 0.1 1.9 0.1 2.5 

152-154 14.2 0.4 -9.0 1.4 1.7 1.9 2.1 2.5 

156-159 14.0 0.4 -9.4 1.4 1.4 1.9 1.6 2.5 

160-163 13.2 0.4 -10.3 1.4 0.2 1.9 0.3 2.5 
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Appendix:        
mean annual δ18Opr and MAT at stations adjacent to the "Greenland Sea sector"  

Station 
Long-term 
MAT δ18Opr* Number of years   

Prins Christians Sund, Greenland 0.9 -11.7 1 excluded   

Nord, Greenland -17.6 -25.0 12    

Danmarkshavn, Greenland -10.5 -17.8 24    

Scoresby Sund, Greenland -7.8 -13.9 5    

Groennedal, Greenland 1.2 -11.2 14    

Reykjavik, Iceland 4.9 -8.3 41    

Ny Ålesund, Spitsbergen -4.6 -11.7 24    

Isfjord, Spitsbergen -5.0 -9.6 7    

Hornsund, Spitsbergen -2.1 -7.3 2 excluded   

       

Except for the Hornsund Polish Polar Station, all data from IAEA/WMO (2016).   

IAEA/WMO, 2016. Global Network of Isotopes in Precipitation. The GNIP Database. 
Accessible at: http://www.iaea.org/water 

  

  

       

Regression statistics        

Multiple R 0.908828      

R square 0.825968      

Adjusted  R Square 0.791162      

Standard Error 2.644804      

Observations 7      

       

       

  Coefficients 
Standard 

Error t-stat p-value 
Lower 
95% 

Upper 
95% 

Intercept -9.94184 1.292088 -7.69439 0.000591 -13.2633 -6.62042 

x-variable 0.707979 0.145334 4.871381 0.004587 0.334385 1.081573 
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