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Abstract There are significant differences in the morphological and physiological 1 

responses of larch species with contrasting growth rates under fertilization. However, 2 

little is known about species-specific differences in responses to nutrient imbalance 3 

caused by fertilization. Therefore, in this study, the effects of nitrogen (N) and 4 

phosphorus (P) fertilization on the morphological, physiological and chloroplast 5 

ultrastructural traits of two contrasting larch species, fast-growing Larix kaempferi and 6 

slowly-growing L. olgensis, grown in larch plantation soil, were investigated during 7 

two growth seasons. It was shown that N and combined N and P (NP) fertilization 8 

increased plant photosynthesis, foliar N contents, chlorophyll contents, and dry mass 9 

accumulation and partitioning in aboveground organs in both larch species. Although P 10 

fertilization enhanced P accumulation, its presence reduced the N content in soluble 11 

proteins in the foliage of both larch species. Yet, P fertilization exhibited some 12 

differences in the two species: P fertilization increased photosynthesis, chlorophyll 13 

content and biomass accumulation of L. olgensis, while it decreased these parameters 14 

dramatically in L. kaempferi. P fertilization increased foliar N content in L. olgensis, 15 

while it reduced it in L. kaempferi. P fertilized L. kaempferi had more damaged 16 

chloroplast ultrastructure than L. olgensis. In addition, L. kaempferi exhibited lower 17 

acid phosphatase activities, and higher photosynthesis and biomass accumulation than 18 

L. olgensis, except under P fertilization. L. kaempferi allocated more biomass into 19 

needles, except under P fertilization, while L. olgensis allocated more into stems under 20 

fertilization. In conclusion, it was shown that nutrient imbalance caused by P 21 

fertilization has greater negative effects on a fast-growing species than on a slowly-22 
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growing one, and the negative effects are related to differences in acclimation strategies, 1 

N partitioning to photosynthetic components, and P transportation and metabolism in 2 

the foliage. 3 

 4 

Keywords contrasting growth rates, nutrient imbalance, biomass allocation strategies, 5 

N partitioning, chloroplast ultrastructure 6 

 7 

 8 

Abbreviations N, nitrogen; P, phosphorus; Pn, mass-based net photosynthesis rate; gs, 9 

stomatal conductance; Ci, intercellular CO2 concentration; E, transpiration rate; Chla,  10 

chlorophyll a; Tchl, total chlorophyll; NM, mass-based N content of needles; PM, mass-11 

based P content of needles; Ns, N content in soluble proteins; APA, acid phosphatase 12 

activity; TSS, total soluble sugars; NSC, non-structural carbohydrates. 13 
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1. Introduction 1 

 2 

Larch plantations are widespread in northern Asia (Wang et al., 2006; Kim, 2008), 3 

where they play an important role both in the functioning of boreal forest ecosystems 4 

(Wang et al., 2001; Gao et al., 2018) and in timber production (Lei et al., 2007). N and 5 

P are essential macronutrients for plant growth and development, and nutrients that 6 

most frequently limit primary productivity in larch plantations (Yang and Zhu, 2015). 7 

Therefore, fertilization with N and P has been employed as an important management 8 

measure to improve timber yield and primary productivity in larch plantations (Chen, 9 

2004; Na et al., 2007; Jia et al., 2010; Sun et al., 2011; Zhu et al., 2013). However, 10 

investigations on the effects of fertilization on larches have rarely considered 11 

interspecific differences and balance between nutrients, although it is known that 12 

larches possess diverse growth rates and respond differently to changes in the external 13 

environment (Zhao et al., 2007; Guo et al., 2016; Li et al., 2016), and the growth is 14 

influenced by relationships among nutrients (Leyton, 1956, 1957a). Yet, current 15 

knowledge of how eco-physiological traits of larches with contrasting growth rates 16 

respond to N and P fertilization and nutrient imbalance caused by fertilization is still 17 

scarce. 18 

 19 

The different ways how plants allocate to shoots and roots are important strategies for 20 

adapting to various habitats, and they reflect the evolutionary history of plants (Westoby 21 

et al., 2002; Fortunel et al., 2012). Differential allocation to organs must occur at the 22 
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expense of other structures, as there are trade-offs in allocation among distinct organ 1 

functions (Pearcy et al., 2005; McCarthy and Enquist, 2007). N and P addition can 2 

enhance biomass accumulation and eventually increase the primary production of 3 

plantations (Zhang et al., 2016). Considering plantation management and timber 4 

production, improved understanding of plants’ aboveground biomass allocation under 5 

N and P fertilization and of nutrient imbalances caused by fertilization may enhance 6 

our ability to predict the productivity of plantations in different environments. However, 7 

our understanding of variation in biomass allocation patterns across species and 8 

environments is insufficient (Poorter et al., 2012, 2015). For instance, how the 9 

allocation patterns and mechanisms of aboveground organs differ between larches with 10 

contrasting growth rates in response to N and P fertilization are still poorly understood. 11 

 12 

During evolution, plants with contrasting-growth rates have developed different 13 

adaptations and life-history strategies (Reich, 2014). Plants with contrasting growth 14 

rates exhibit different eco-physiological traits and responses to N and/or P treatments 15 

(Carson et al., 2004; Miller and Hawkins, 2007; Bown et al., 2009; Li et al., 2012; Luo 16 

et al., 2013a; Gan et al., 2015; Li et al., 2015, 2016). The fast-growing species always 17 

exhibit greater sensitivity to N availability (Li et al., 2012) and N forms (Li et al., 2015), 18 

higher N and P use efficiencies and enzyme activities related to N assimilation and P 19 

mobilization (Gan et al., 2015), more plasticity in biomass allocation (Miller and 20 

Hawkins, 2007), and greater aboveground biomass allocation (Carson et al., 2004; 21 

Bown et al., 2009) under N and/or P fertilization compared to slowly-growing species. 22 
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However, plant growth relies not only on absolute amounts of either element but also 1 

on the balance between N and P (Güsewell, 2004; Ågren, 2008; Li et al., 2016). It has 2 

been showed that N and P fertilization could drive some ecosystems into nutrient 3 

imbalance, consequently leading to N or P deficiencies (Braun et al., 2010; Elser et al., 4 

2010; Sardans et al., 2012; Li et al., 2016). Fast-growing species exploit relatively more 5 

resources when these are abundant, but there is a trade-off with the ability to avoid 6 

mortality under low-resource conditions (Kobe, 1999; Aerts and Chapin, 2000; Russo 7 

et al., 2005; Poorter and Bongers, 2006; Kursar et al., 2009; Wright and Zanne, 2010). 8 

Our previous study showed that fast-growing L. kaempferi suffered from N deficiency 9 

caused by P fertilization (Li et al., 2016), which suggested that although fast-growing 10 

species converge many traits to support fast growth (Reich, 2014), some of those 11 

advantages may be lost, in particular in stressful environments, e.g., under nutrient 12 

deficiencies (Zhang et al., 2014, 2017). 13 

 14 

According to previous studies (Xu et al., 2008; Chen et al. 2010, 2011; Zhang et al., 15 

2014, 2017; Chen et al. 2017), the slowly-growing species always exhibit better 16 

endurance and resistance under environmental stresses, e.g., drought, salinity, heavy 17 

metal stress and nutrient deficiency, than do the fast-growing ones. Consequently, we 18 

hypothesize that slowly-growing larch species are more resistant to N deficiency caused 19 

by P fertilization than fast-growing ones. To test this hypothesis, we exposed two 20 

widespread and important commercial timber species in northeastern China, fast-21 

growing L. kaempferi and slowly-growing L. olgensis (Yu et al., 2007; Zhu et al., 2010), 22 
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to N and P fertilization during two consecutive growth seasons to investigate the 1 

following questions: (1) how do N and P fertilization trigger contrasting growth rates 2 

and aboveground biomass allocation among branches, trunk and needles in larches, and 3 

(2) how does L. kaempferi develop a disadvantage in growth under N deficiency caused 4 

by P fertilization. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 
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2. Materials and methods 1 

 2 

2.1. Plant materials and experimental design 3 

 4 

The study was conducted at the Qingyuan Experimental Station, Institute of Applied 5 

Ecology, Chinese Academy of Sciences (CAS), located in a mountain region in the 6 

eastern part of the Liaoning Province, Northeast China (41º51'N, 124º54'E, 500-1,100 7 

m above sea level). The climate characteristics have been described in Zhu et al. (2007). 8 

Healthy one-year old saplings of L. olgensis and L. kaempferi were collected from a 9 

state-owned forest farm located in the Qingyuan Manchu Autonomous County Dasuhe, 10 

Liaoning Province, China. In May 2012, L. olgensis and L. kaempferi saplings were 11 

planted separately into 50-L plastic pots (one sapling per pot) with 40 Kg larch forest 12 

soil (organic C 41.78 g kg-1, total N 2.04 g kg-1, total P 1.23 g kg-1, available N 428.4 13 

mg kg-1, and available P 25.2 mg kg-1). In May 2013, after one year of acclimation to 14 

natural conditions, when the saplings were two years old and had been sprouting and 15 

growing for about two weeks, 80 L. olgensis and 80 L. kaempferi saplings with an 16 

approximately similar crown size, height, and root collar diameter were chosen for N 17 

and P fertilization experiments. There were no differences in the initial size of the 18 

sampled seedlings; also no size difference among treatments at the beginning of the 19 

experiment. The experiment followed a completely randomized design with eight 20 

factorial combinations of two levels of species (L. olgensis and L. kaempferi), N 21 

(fertilization and control) and P (fertilization and control). Each species was subjected 22 



 

9 
 

to 4 regimes: control, N fertilization, P fertilization, and combined N and P fertilization. 1 

In every regime, nutrients, 4.6 g N and 2.4 g P each time, were supplied three times 2 

during the main growth season (from May to August) in 2013 and 2014, in total 13.8 g 3 

N and 7.2 g P per tree annually. The amounts of nutrients follow those in Sun et al. 4 

(2011) and Zhu et al. (2013). When supplied, the fertilizer was first dissolved in spring 5 

water and then applied into a 5-cm deep groove around each tree trunk. After 6 

fertilization, the grooves were filled up with soil. Grooves were dug carefully to avoid 7 

damaging the root. Each treatment included twenty saplings and was replicated four 8 

times (with five saplings in each replicate). All saplings were watered every two days 9 

to avoid the drought effect. The treatments started on the 20th of May 2013, and the 10 

plants were harvested on the 5th of September 2014. 11 

 12 

2.2. Biomass measurements 13 

 14 

At the end of the experiment, one sapling from each replicate was harvested randomly 15 

(thus, four saplings per treatment) and separated into needles, lateral branches, trunk 16 

and roots. The dry mass of all biomass samples was measured after oven-drying at 70 °C 17 

to a constant mass, i.e. dry mass of needles, lateral branches, trunk and roots. Stem dry 18 

mass (lateral branches dry mass + trunk dry mass), aboveground dry mass (needles dry 19 

mass + stem dry mass), total dry mass (aboveground dry mass + root dry mass), 20 

root/total mass ratio, needles/total mass ratio, trunk/total mass ratio, branches/total mass 21 

ratio, aboveground/total mass ratio, and stem/total mass ratio were calculated. 22 
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 1 

2.3. Leaf gas exchange rates and C, N and P content measurements 2 

 3 

The upper mature needles of each sampling from each replicate were used for gas 4 

exchange and leaf chlorophyll pigment measurements. The net photosynthesis rate (Pn) 5 

was measured using a portable photosynthesis measuring system, LI-COR 6400 (Li-6 

Cor Inc., Lincoln, NE, USA), under the following conditions: leaf temperature of 25 °C, 7 

leaf air vapour pressure deficit of 1.5 ± 0.5 kPa, photosynthetic photon flux density 8 

(PPFD) of 1500 μmol m–2 s–1, relative air humidity of 50%, and ambient CO2 9 

concentration of 380 ± 5 μmol mol–1. All selected needles were allowed to equilibrate 10 

for at least 5 min at 1500 μmol m m–2 s–1 PPFD before the measurements. 11 

 12 

After Pn measurements, the used needles were picked off, the dry weights were 13 

determined to calculate mass-based Pn, and the dry samples were ground into fine 14 

powder and passed through a mesh (pore diameter ca. 275 µm) for the chemical element 15 

analysis. The mass-based N and P contents in needles from different treatments were 16 

determined by the semi-micro Kjeldahl method (Mitchell, 1998) and plasma emission 17 

spectroscopy (Hötscher and Hay, 1997), respectively. The C content was determined 18 

by the rapid dichromate oxidation technique (Nelson and Sommers, 1982), and the C 19 

content of each plant compartment and the whole tree was determined using the dry 20 

mass of each plant compartment. 21 

 22 
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2.4. Chlorophyll pigment and protein content measurements 1 

 2 

The upper mature needles (near the needles used for photosynthetic measurements) 3 

were clipped, and each needle sample was quickly immersed in liquid nitrogen and 4 

stored in liquid nitrogen until taken back to the laboratory, where they were stored at -5 

70 °C for chlorophyll and protein measurements. Chlorophylls were extracted from 6 

needle samples of ∼0.5 g with 10 ml 80% (v/v) aqueous solution of acetone 7 

(Lichtenthaler, 1987). After extraction, the samples were centrifuged and the 8 

absorbance of the solution was measured at 470, 663.6 and 646.6 nm using a Unicam 9 

UV-330 spectrometer (Unicam, Cambridge, UK) to determine chlorophyll a (Chla) and 10 

chlorophyll b (Chlb) according to the equations of Porra et al. (1989). Then, the total 11 

amount of chlorophyll pigments (Tchl) was calculated. 12 

 13 

The contents of water-soluble protein fractions were determined, as described by 14 

Takashima et al. (2004). About 2 g frozen needle material was powdered in liquid 15 

nitrogen in a mortar with a pestle and homogenized in 10 ml of 100 mM sodium 16 

phosphate buffer (pH 7.5) with 0.4 M sorbitol, 2 mM MgCl2, 10 mM NaCl, 5 mM 17 

iodoacetate, 1% (v/v) polyvinylpyrrolidone, 5 mM phenylmethylsulfonyl fluoride and 18 

5 mM dithiothreitol. The homogenate was centrifuged at 15,000 g for 30 min and the 19 

supernatant was retained for the determination of the water-soluble protein content. 20 

Water-soluble proteins were precipitated with 10% trichloroacetic acid (TCA) and 21 

washed three times with ethanol. The protein content was determined with the 22 
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ninhydrin method (McGrath, 1972) using bovine serum albumin as a standard. The 1 

nitrogen content of the soluble protein fraction was calculated using a conversion 2 

coefficient of 0.16 g N g−1 proteins (Hikosaka and Terashima, 1996). 3 

 4 

2.5. Acid phosphatase activity assays 5 

 6 

Acid phosphatase activity was assayed according to Kenton et al. (1999) with some 7 

modifications. Briefly, 0.3 g of needles were homogenized with 2.5 ml of ice-cold 50 8 

mM acetic acid–sodium acetate solution (pH 5.8) containing 1 mM EDTA, 5 mM DTT 9 

and 0.2 mM PMSF. The homogenates were centrifuged at 12,000 g for 5 min. Then, 10 

100 μl of the extract was incubated with 100 μl of p-nitrophenyl phosphate (pNPP, mg 11 

ml−1). After 30 min, the assay was stopped by the addition of 200 μl of 6 M NaOH, and 12 

the absorbance was read at 405 nm using a spectrophotometer. A pNPP-free incubation 13 

was included as a background for each incubation, and a standard curve in the range of 14 

0–2 mg ml−1 of p-nitrophenol was employed. 15 

 16 

2.6. Determination of hydrolysable amino acid contents 17 

 18 

Powdered dry leaf material (0.1 g) was transferred into a hydrolysis tube, 10 mL of 6 19 

mol L−1 hydrochloric acid was added and the solution was frozen by refrigerant for 5 20 

min. The hydrolysis tube was vacuumed and filled with purified N2 repeatedly for three 21 

times. Then, the hydrolysis tube was sealed and transferred into a constant temperature 22 
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drier for hydrolysis at 110 °C. After 22 h hydrolysis, the tube was removed from the 1 

dryer and cooled. The hydrolysis liquid was filtered, and the hydrolysis tube was 2 

washed with deionized water several times. The collected hydrolysis liquid was 3 

transferred into a 50 mL volumetric flask and diluted with deionized water to scale. 4 

Then, 1 mL diluted hydrolysis liquid was drawn into 5 mL volumetric flask and dried 5 

with a vacuum drier at 40-50 °C. The residue was dissolved by 1 mL of sodium citrate-6 

hydrochloric acid buffer solution (pH 2.2) for the analysis. The composition and content 7 

of amino acids were determined by a L8800 automatic amino acid analyser (Hitachi, 8 

Tokyo, Japan). 9 

 10 

2.7. Determination of starch, total soluble sugar and non-structural carbohydrate 11 

concentrations 12 

 13 

Total soluble sugars, fructose and sucrose were extracted from dried needles, stems, and 14 

roots in 80% (v/v) ethanol. Total soluble sugars were detected colorimetrically at 625 15 

nm following the anthrone–sulfuric acid method (Yemm and Willis, 1954). Fructose 16 

and sucrose were detected colorimetrically at 480 nm following the modified resorcinol 17 

method (Murata et al., 1968). Then, the starch content was determined for the pellet of 18 

plant material that remained after the removal of ethanol (Zhao et al., 2011). Solutions 19 

were filtered through Whatman GF/C filters and diluted in 10-ml volumetric flasks. The 20 

concentrations of starch as glucose equivalents were determined colorimetrically. The 21 

absorption of an enzyme blank was subtracted from each sample’s absorbance prior to 22 
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the calculation of the sugar content. The dry mass and concentrations of total soluble 1 

sugars, fructose, sucrose and starch in each organ were used to calculate their contents 2 

in organ and in the whole tree, as well as NSC of the whole tree (Jordan et al., 2013). 3 

 4 

2.8. Transmission electron microscopy 5 

 6 

Small leaf sections (2 mm in length), from the middle part of a leaf avoiding the midrib, 7 

were selected for the transmission electron microscope analysis (Zhao et al., 2009). The 8 

sections were fixed in 2.5% (v/v) glutaral pentanedial in 0.2 M phosphate-buffered 9 

saline (sodium phosphate buffer, pH 7.0) for 3 h at 22 °C and post-fixed in 2% osmium 10 

tetraoxide (OsO4) for 2 h. Then, the needles were sequentially dehydrated in 30, 50, 70 11 

and 90% acetone, and embedded in Epon 812 for 2 h. Ultrathin sections (80 nm) were 12 

sliced, stained with uranyl acetate and lead citrate, and mounted on copper grids for 13 

viewing in the H-600IV TEM (Hitachi, Tokyo, Japan) at 60.0 kV accelerating voltage. 14 

 15 

2.9. Statistical analyses 16 

 17 

The statistical analyses were carried out with the Statistical Package for the Social 18 

Sciences (SPSS, Chicago, IL, USA) version 19.0. Before analyses, all data were 19 

checked for the normality and homogeneity of variances and log-transformed to correct 20 

deviations from these assumptions when needed. Three-way analyses of variance 21 

(ANOVAs) were used to evaluate the effects of species, nitrogen, phosphorus and their 22 
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interactions. Individual differences among means were determined by Tukey’s tests of 1 

One-way ANOVAs at a significance level of P < 0.05.2 



 

16 
 

3. Results 1 

 2 

3.1. Plant biomass accumulation and partitioning 3 

 4 

All types of fertilization increased the biomass accumulation of L. olgensis, except for 5 

root dry mass under NP fertilization (Fig. 1 A-F). Contrarily, N and NP fertilization 6 

increased the biomass accumulation of L. kaempferi (Fig. 1 A-F), while P fertilization 7 

decreased branch dry mass, stem dry mass and total dry mass (Fig. 1 B, E, F). When 8 

the two species were compared, L. kaempferi possessed a higher biomass accumulation 9 

than did L. olgensis under most conditions (Fig. 1 A-F). 10 

 11 

All types of fertilization decreased root/total mass ratio (Fig. 2 A), increased trunk/total 12 

mass ratio, branch/total mass ratio, aboveground/total mass ratio, and stem/total mass 13 

ratio of L. olgensis, except for trunk/total mass ratio under N fertilization (Fig. 2 C-F). 14 

However, in L. kaempferi, N and NP fertilization increased needles/total mass ratio (Fig. 15 

2 B), and NP fertilization increased aboveground/total mass ratio (Fig. 2 E), while it 16 

decreased root/total mass ratio when compared to control (Fig. 2 A). In addition, 17 

although P fertilization increased trunk/total mass ratio of L. kaempferi (Fig. 2 C), it 18 

decreased branch/total mass ratio significantly (Fig. 2 D). 19 

 20 

3.2. Gas exchange and chlorophyll concentration parameters 21 

 22 
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All fertilization increased Pn, E, Chla and Tchl of both species, except for P fertilization 1 

decreasing Pn and having no effect on E in L. kaempferi (Fig. 3 A, D-F). In addition, N 2 

fertilization increased gs in L. kaempferi, P and NP fertilization increased Ci in L. 3 

olgensis, and NP fertilization decreased Ci in L. kaempferi (Fig. 3 B, C). L. kaempferi 4 

exhibited higher Pn, Chla and Tchl under all fertilizations (Fig. 3 A, E, F), and higher 5 

gs, Ci and E under N fertilization than did L. olgensis (Fig. 3 B-D). 6 

 7 

3.3. Foliar APA, nitrogen, phosphorus and hydrolysable amino acid contents 8 

 9 

N and NP fertilization enhanced mass-based foliar nitrogen contents (NM) in both 10 

species, but P fertilization reduced NM of L. kaempferi while it enhanced NM of L. 11 

olgensis. L. olgensis exhibited higher NM than L. kaempferi under N and P fertilizations 12 

(Fig. 4 A). Also, P fertilization increased mass-based foliar phosphorus contents (PM) 13 

(Fig. 4 B) but decreased the content of N in soluble proteins (Ns) (Fig. 4 C) in both 14 

species, while NP fertilization decreased PM of L. olgensis (Fig. 4 B) but increased Ns 15 

of L. kaempferi (Fig. 4 C). In addition, N fertilization decreased APA in both species, 16 

while P and NP fertilization increased APA in L. olgensis. Under all treatments, L. 17 

olgensis showed higher APA than did L. kaempferi (Fig. 4 D). 18 

 19 

N and NP fertilization generally increased the contents of hydrolysable amino acids and 20 

TAA (Tab. 1). Exceptions were the following: arginine under N and NP fertilization, 21 

valine, isoleucine, tyrosine, histidine, lysine and arginine under NP fertilization in L. 22 



 

18 
 

olgensis, and threonine, serine, tyrosine, histidine and proline under N fertilization in L. 1 

kaempferi (Tab. 1). P fertilization only increased lysine in L. olgensis and decreased 2 

serine in L. kaempferi (Tab. 1). In addition, most individual hydrolysable amino acid 3 

and TAA contents in L. olgensis were higher under N or P fertilization, but lower under 4 

NP fertilization than in L. kaempferi (Tab. 1).  5 

 6 

3.4. Differences in sugar and C contents 7 

 8 

All fertilizations decreased starch concentration in roots and branches, total soluble 9 

sugar (TSS) concentration in needles, branches and trunk, and NSC concentration in all 10 

organs in both species, except for starch and NSC concentrations in roots of L. 11 

kaempferi under P fertilization, TSS concentration in needles of L. kaempferi and NSC 12 

concentration in roots of L. olgensis under N fertilization (Fig. 5 A, C, F-L). N 13 

fertilization decreased needle and trunk starch concentrations and root TSS 14 

concentration in L. kaempferi (Fig. 5 B, D, E), and increased root TSS concentration in 15 

L. olgensis (Fig. 5 E). P fertilization increased trunk starch concentration in L. kaempferi 16 

(Fig. 5 D), and NP fertilization increased needle starch concentration and root TSS 17 

concentration, while decreasing trunk starch concentration in L. kaempferi (Fig. 5 B, D, 18 

E). 19 

 20 

All fertilization increased sugar, NSC and C contents in every organ and in the whole 21 

tree in L. olgensis, except for root C content under NP fertilization (Figs. 6, 7 A-E). N 22 
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fertilization increased total sucrose and fructose contents, as well as needle, branch, 1 

trunk and total C contents in L. kaempferi (Figs. 6 B, C; Fig. 7 A-C, E). NP fertilization 2 

increased sugar, NSC and C contents in every organ and in the whole tree in L. 3 

kaempferi (Figs. 6, 7 A-E). P fertilization decreased sugar and NSC contents in every 4 

organ and in the whole tree, and branch and total C contents in L. kaempferi (Fig. 6 A-5 

E; Fig 7 B, E). 6 

 7 

3.5. Differences in needle ultrastructure 8 

 9 

When compared with control conditions, both species had greater chloroplast volumes 10 

under N and NP fertilization (Fig. 5 A-D, G, H), while under P fertilization, L. olgensis 11 

exhibited normal and intact organelles (Fig. 5 E), but L. kaempferi organelles showed a 12 

strong degree of destruction with incomplete chloroplast structures, damaged thylakoid 13 

membranes, scattered laminated structures, and disordered mitochondria (Fig. 5 F). 14 

Under N and NP fertilization, both species showed smooth and continuous cell 15 

membranes and cell walls, and numerous organelles in the cytoplasm. They also 16 

possessed typical chloroplast structures and well-arranged thylakoids in the granal 17 

regions, and clear mitochondrial cristae (Fig. 5 C, D, G, H). In addition, both species 18 

exhibited, to some degree, starch and plastoglobuli accumulation in the cytoplasm 19 

under each treatment (Fig. 5 A-H). 20 

 21 

 22 
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4. Discussion 1 

 2 

4.1. Changes in biomass accumulation and partitioning under N and P fertilization 3 

 4 

N and P fertilizations during two growing seasons influenced growth, above- and 5 

below-ground biomass allocations, as well as the physiological and biochemical 6 

parameters of L. olgensis and L. kaempferi needles. A significant effect of species was 7 

discovered, which indicated that there are species-specific eco-physiological responses 8 

to N and P fertilization. Except for P fertilization decreasing the growth of stem, branch, 9 

and whole-plant mass of L. kaempferi, fertilizations significantly increased the biomass 10 

accumulation of each organ and the whole plant in L. olgensis and L. kaempferi. Both 11 

species exhibited similar changes in biomass allocation alteration from below- to 12 

above-ground organs. These results are consistent with previous studies (Gedroc et al., 13 

1996; Shipley and Meziane, 2002; Poorter et al., 2012; Freschet et al., 2013). 14 

Nevertheless, when nutrient limitation was relieved by fertilizations, these two species 15 

displayed highly contrasting above-ground biomass allocation patterns among needles, 16 

trunk and branches, which have different physiological functions (Pearcy et al., 2005). 17 

Our results suggest that L. kaempferi prefers allocation to needles, while L. olgensis 18 

prefers biomass allocation to stems, as long as there are adequate nutrient supplies, 19 

except for L. kaempferi under P fertilization. Different above-ground biomass allocation 20 

patterns in the two species showed the presence of contrasting trade-offs between 21 

organs that provide different functions related to fertilization (Poorter and Nagel, 2000; 22 
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Yagi, 2000; Taneda and Tateno, 2004; Poorter et al., 2012). The biomass of plantations 1 

has been of a critical importance for economic and ecological requirements (Egnell, 2 

2011), and the pattern of biomass allocation affects plant growth, biogeochemical 3 

cycling, ecosystem function (Peri et al., 2010; Uri et al., 2014) and the amounts of 4 

timber harvest in different scenarios (e.g., stem-only harvesting and whole-tree 5 

harvesting) (Yan et al., 2017). Therefore, it is necessary to take into account species-6 

specific responses and biomass allocation patterns to fertilization when designing 7 

plantation management. 8 

 9 

4.2. Different responses of physiological and biochemical parameters, and needle 10 

ultrastructure under P fertilization 11 

 12 

Photosynthetic capacity is one of the core nutrition-related physiological traits of leaves 13 

(Wright et al., 2004). Our results showing that different types of N and P fertilization 14 

increase Pn significantly are consistent with many previous studies on N and P 15 

fertilization effects (Fatichi et al., 2014; Zhang et al., 2014; Guo et al., 2016), with the 16 

exception that P fertilization reduced Pn in L. kaempferi (Fig. 3 A). It has been 17 

previously verified that P fertilization induces N deficiency in this species when grown 18 

in larch soil (Li et al., 2016). In the present study, the N content of soluble proteins (Ns), 19 

represented by Rubisco (Takashima et al., 2004; Feng et al., 2009; Dong et al., 2015), 20 

was measured and found to decrease in both species under P fertilization (Fig. 4 C). The 21 

amount of synthesized Rubisco is strongly controlled by nitrogen availability (Kattge 22 

et al., 2009). Also, variation in the amount of free amino acids, which represent the 23 

second most N-containing material in the leaves of woody plants (Millard, 1988; Ruan 24 
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et al., 2010), could reflect the influence of nutrients on N metabolism and acclimation 1 

(Fougere et al., 1991; Schubert et al., 1995). In previous reports on conifers (Påhlsson 2 

et al., 1992; Calanni et al., 1999), it has been demonstrated that when N supply is 3 

sufficient, N is often used to increase amino acids. In the present study, the 4 

accumulation of most hydrolysable amino acids was greatly enhanced under N and NP 5 

fertilization, while only little change was detected under P fertilization in both species 6 

(Tab. 1). The results of Ns and amino acids agree with previous studies showing that P 7 

fertilization induces N deficiency in the two Larix species (Li et al., 2016). However, 8 

the two species respond differently to N deficiency: Pn of only L. kaempferi reduces 9 

under N deficiency caused by P fertilization. 10 

 11 

Generally, photosynthetic inhibition is classified to be due to stomatal and nonstomatal 12 

limitation. However, a similar tendency between Ci and gs was observed in both species 13 

under P fertilization (Fig. 3 B, C), indicating that stomatal limitation did not contribute 14 

to the negative effect of P fertilization on the photosynthesis of L. kaempferi (see also 15 

Bown et al., 2009; Warren, 2011). Thus, the decrease of Pn in L. kaempferi is possibly 16 

due to non-stomatal factors, such as the chlorophyll content, N content and allocation, 17 

Rubisco content and activity, as well as the structures of organelles related to 18 

photosynthesis (Zhang et al., 2014). Nevertheless, P fertilization increased Chla and 19 

Tchl in both species. Therefore, chlorophyll contents did not cause decreases in Pn (Fig. 20 

3 E, F). A question arises, which factors are actually responsible for the reduction of Pn 21 

in L. kaempferi under P fertilization? It has been reported that there is a strong positive 22 

correlation between foliar N contents and Pn (Takashima et al., 2004; Wright et al., 2004; 23 

Zhang et al., 2014; Li et al., 2016), and N plays an essential role in photosynthetic 24 

processes (Güsewell, 2004). This is comprehensible, because N is a vital constituent of 25 
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proteins, chlorophylls and other substances in plants (Luo et al., 2013b). Usually 71-1 

77% of the leaf nitrogen is found in the form of proteins, most of which are involved in 2 

the photosynthetic machinery (Takashima et al., 2004; Yasumura et al., 2007). Thus, 3 

the decrease in Pn detected in L. kaempferi in the present study was induced to some 4 

degree by constrained NM under P fertilization (Fig. 3 A), as previously proposed by 5 

Reich et al. (1994). Decreased foliar N concentrations have been detected under P 6 

fertilization also in L. kaempferi (L. leptolepis in van Goor, 1953), Rhizophora mangle 7 

(Lovelock et al., 2004), four dominant savannah woody species (Bucci et al., 2006) and 8 

larch hybrid seedlings (Fujita et al., 2018). However, the reason for this phenomenon is 9 

not clear, but it may be caused by the response of water relations and hydraulic 10 

architecture to N or P addition (Goldstein et al., 2013). In a previous study, it has been 11 

revealed that the optimum N and P concentrations in L. kaempferi are 2.8 and 0.4 12 

percent dry mass (Lyeton, 1957a). In this study, the needle N and P concentrations 13 

ranged from 8.8 to 13.6 mg g-1 and from 1.9 to 5.2 mg g-1, respectively (Fig. 4 A, B). 14 

The N values were generally higher than the N concentrations reported in Guo et al. 15 

(2016) but lower than those in Yan et al. (2017), and the amounts of P were higher than 16 

P concentrations in Wang et al. (2018). However, the mean N concentration (11.2 mg 17 

g-1) observed in our study was more or less the same as detected previously in conifer 18 

and gymnosperm leaves (11.7 mg g-1) (Han et al., 2005). The reason for the discrepancy 19 

between our study and others is probably attributed to growth conditions (e.g., soil 20 

background, stand age, species relationships) and experimental methods. After all, even 21 

in the same tree, the composition of the foliage is not constant but varies according to 22 

its location on the crown, its age (i.e., in conifers bearing more than one year's needles), 23 

and the time of the year (Leyton, 1957b).  24 

 25 
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The presence of disrupted needle ultrastructure suggests that N deficiency caused by P 1 

fertilization exhibited more negative effects on L. kaempferi. These results are 2 

consistent with a previous investigation conducted on fast-growing P. cathayana 3 

females under N deficiency (Zhang et al., 2014). It has been reported that there is an 4 

excessive P uptake under a low N supply, but a dilution in the P concentration under a 5 

high N supply (Lajtha and Klein, 1988). In addition, symbiosis with ectomycorrhizal 6 

(EMC) fungi is prevalent in larch species under nutrient deficiency; larch seedlings 7 

infected with ECM have an enhanced N and P uptake (Kayama et al., 2015). Similarly, 8 

as in our study, P fertilization has been previously found to suppress belowground, 9 

aboveground and total dry mass in three larch species when taken EMC infection into 10 

account under N and P fertilization (Wang et al. 2018), and variation has been observed 11 

in needle P concentrations in Dahurian larch and Japanese larch under N and P 12 

fertilization (Wang et al. 2018). These results indicate that although symbiosis with 13 

EMC fungi plays an important role in leaf nutrient concentrations under deficient 14 

conditions, the effect may become weaker under nutrient addition. Also, excessive P 15 

accumulation may cause toxic effects (Shane et al., 2004). The physiology of P toxicity 16 

is not well understood. P toxicity symptoms (e.g., growth inhibition and photosynthetic 17 

rate suppression) have been thought to result from the interaction of celluar P with 18 

micronutrients (e.g. Zn, Cu, Mn and Fe), or from interference with leaf water relations 19 

at high celluar P (Shane et al., 2004). In the future, there is a need to explore the 20 

physiological mechanism of P toxicity in L. kaempferi under P fertilization. On the other 21 

hand, we found that L. kaempferi had a lower APA level than did L. olgensis under all 22 

treatments (Fig. 4 D). APA plays an important role in the production, transport and 23 

recycling of phosphates (Duff et al., 1991; Zhang et al., 2014). Such results indicate 24 

that L. kaempferi inherently possesses a lower efficiency or lower ability of P 25 
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metabolism than does L. olgensis. Therefore, we propose that L. kaempferi with a lower 1 

ability of P production, transport and recycling might suffer more toxic effects as 2 

induced by P accumulation. Also, decreasing NM in L. kaempferi under P fertilization 3 

could negatively impact the P metabolism (Fig 4 A), because APA requires a significant 4 

investment of N (Houlton et al., 2008).  5 

 6 

Sugars perform important regulatory functions in the life cycle of plants, including 7 

photosynthesis (Rolland et al., 2002; Halford and Paul, 2003; Lloyd and Zakhleniuk, 8 

2004) and carbohydrate partitioning (Rook and Bevan, 2003). N and P, as essential 9 

macronutrients for plant growth and development, affect, to various extent, sugar 10 

metabolism and/or carbohydrate partitioning between source and sink tissues (Hermans 11 

et al., 2006; Simon et al., 2010). The dynamics of NSCs is considered being an indicator 12 

of the source-sink balance, such as photosynthesis vs. respiration and growth 13 

(Richardson et al., 2013). In our study, in both species, sugar and NSC concentrations 14 

of each organ generally exhibited decreasing tendencies after N and NP fertilization 15 

(Fig. 5 A-L), which is consistent with previous reports (Curtis et al., 2000; Ludovici et 16 

al., 2002). This happens mainly because fertilization increases growth rates and the 17 

production of new organs, which enhances the utilization of carbohydrates (enhanced 18 

sink strength) (Millard and Grelet 2010) and then decreases concentrations of 19 

carbohydrates in tissues (Moore et al., 1999; Villar-Salvador et al., 2013). Furthermore, 20 

although sugar and NSC concentrations of each organ in both species mostly exhibited 21 

decreasing tendencies under P fertilization, decreases in L. olgensis were driven by 22 

enhanced sink strength, while decreases in L. kaempferi were caused by an insufficient 23 



 

26 
 

C source supply, as proven by decreased Pn, total NSC and C content in the whole tree 1 

as well as lowered biomass accumulation under P fertilization (Fig. 3 A; Fig. 6, 7 E; Fig 2 

1 B, E, F). 3 

 4 

Plant growth relies on the absolute nutrient status, as well as on the balance among 5 

nutrients (Güsewell, 2004; Garrish et al., 2010). The findings of our research suggest 6 

that larches with different growth rates grown in N and P co-limited soils exhibit 7 

opposite or different intensity responses in plant growth. In addition, although low N 8 

availability might limit plants’ responses to P fertilization (Fujita et al., 2010), N 9 

fertilization could benefit plants by allocating N to phosphatase production (Menge and 10 

Field, 2007; Hogan et al., 2010; Marklein and Houlton, 2012). Plants favor consuming 11 

N and adjusting C allocation to meet the demand for P (Deng et al., 2016). In accordance 12 

with those views, the results of the present study provide further evidence that N 13 

fertilization improves while P fertilization restrains the growth of L. kaempferi.   14 

  15 

5. Conclusions 16 

 17 

Although N and NP fertilization enhanced the growth of both studied Larix species, 18 

there were significant differences between L. olgensis and L. kaempferi in the responses 19 

to N deficiency caused by P fertilization when grown in larch soil: P fertilization 20 

increased growth, biomass accumulation, photosynthetic rate, NM, NSC and C content 21 

in L. olgensis, while it decreased these parameters in L. kaempferi. Several factors are 22 

responsible for species-specific differences in N deficiency effects caused by P 23 

fertilization, such as biomass partitioning, P fertilization modulating N content and 24 

partitioning in mesophyll cells, P accumulation and P metabolism-related enzyme 25 
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activities, as well as ultrastructural changes in needles. The higher NM and APA levels 1 

of the slowly-growing species L. olgensis enhance P metabolism that prevents the toxic 2 

effect caused by the excess P accumulation. While the fast-growing species L. kaempferi 3 

suffers from N deficiency and has disrupted chloroplasts, which inhibit photosynthesis, 4 

leading to decreased NSC and C contents, and, eventually, to a lower biomass 5 

accumulation and growth. Therefore, it is evident that the two species with contrasting 6 

growth rates employ different strategies to undergo N deficiency induced by P 7 

fertilization. Slowly-growing L. olgensis possesses a more effective N allocation in 8 

photosynthesis and P metabolism than fast-growing L. kaempferi. Our results were also 9 

consistent with previous studies indicating that fast-growing species are more sensitive 10 

and less tolerant to stressful external environments. Furthermore, various studies agree 11 

with the viewpoint that human activities have induced N and P imbalances and 12 

aggravated P limitation in temperate forests (Tessier and Raynal, 2003; Han et al., 2005; 13 

Xu et al., 2017; Zheng et al., 2017), including larch plantations (Yan et al., 2017). 14 

Because there are different responses among larch species to P fertilization and nutrient 15 

imbalance, the specific effects of fertilization should be considered when managing 16 

plantations for carbon binding or biomass production in future. For example, supplying 17 

balanced N and P nutrients would benefit L. kaempferi growth more than providing P 18 

alone when there is P limitation caused by human activities. The results generated in 19 

our study could enhance our ability to maintain the stability of larch plantations and 20 

improve their productivity, especially in Northeast China. 21 
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Table 1. Hydrolysable amino acid contents of L. olgensis and L. kaempferi needles as affected by N and P fertilization. 

Hydrolysable amino acid L. olgensis    L. kaempferi    

(mg g-1 DW) C N P NP C N P NP 

Aspartic acid 10.95 cd 14.07 a 11.51 bc 12.27 b 10.19 de 11.37 bc 9.55 e 14.66 a 

Threonine 5.65 cd 8.86 a 5.96 c 6.05 c 5.38 cd 5.89 c 4.96 d 7.54 b 

Serine 5.34 de 7.41 a 5.48 cd 5.87 c 4.92 e 5.31 de 4.43 f 6.92 b 

Glutamic acid 12.55 de 17.54 a 13.33 cd 14.06 c 11.42 f 12.69 de 11.88 ef 16.27 b 

Glycine 6.56 cd 8.53 a 6.84 bc 7.26 b 6.09 de 6.76 bc 5.62 e 8.73 a 

Alanine 7.65 de 11.64 a 8.16 cd 8.40 c 7.13 e 7.88 cd 7.08 e 10.22 b 

Valine 7.16 bc 9.06 a 7.64 b 7.87 b 6.60 c 7.55 b 6.43 c 9.58 a 

Isoleucine 5.84 cd 7.14 b 6.10 c 6.31 c 5.39 de 6.09 c 5.09 e 7.73 a 

Leucine 11.05 de 15.86 a 11.63 cd 12.22 c 10.31 ef 11.57 cd 9.92 f 14.76 b 

Tyrosine 4.15 cd 6.45 a 4.26 cd 4.66 c 3.95 de 4.40 cd 3.48 e 5.78 b 

Phenylalanine 6.96 def 10.25 a 7.30 cde 7.79 c 6.64 ef 7.40 cd 6.30 f 9.39 b 

Histidine 2.84 cd 5.54 a 2.93 bcd 3.15 bc 2.66 d 2.97 bcd 2.54 d 3.36 b 

Lysine 7.26 cd 8.70 b 8.55 b 8.17 bc 6.74 d 8.13 bc 6.92 d 10.23 a 

Arginine 7.55 bc 7.84 b 8.00 b 7.83 bc 7.07 cd 7.33 bcd 6.73 d 9.82 a 

Proline 5.54 def 9.37 a 5.91 cd 6.16 c 5.21 ef 5.75 cde 5.17 f 7.31 b 

TAA 110.62 cd 157.77 a 116.56 bc 122.39 b 103.23 de 113.85 bc 98.09 e 146.20 a 

Each value is the mean (n = 4).Values not sharing the same letters in the same row are significantly different at P < 0.05 according Tukey’s test. C, control; N, nitrogen 

fertilization; P, phosphorus fertilization; NP, combined N and P fertilization. 
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Figure legends 1 

 2 

Figure 1. The total dry mass and its components in L. olgensis and L. kaempferi as 3 

affected by N and P fertilization. Each value is the mean ± SE (n = 4). A, root dry mass; 4 

B, branch dry mass; C, trunk dry mass; D, needle dry mass; E, total stem dry mass; F, 5 

total dry mass. The values not sharing the same letters are significantly different at P < 6 

0.05 according to Tukey’s test. C, control; N, nitrogen fertilization; P, phosphorus 7 

fertilization; NP, combined N and P fertilization. 8 

 9 

Figure 2. Dry mass partitioning in L. olgensis and L. kaempferi as affected by N and P 10 

fertilization. Each value is the mean ± SE (n = 4). A, root/total mass ratio; B, needle/total 11 

mass ratio; C, trunk/total mass ratio; D, branch/total mass ratio; E, aboveground/total 12 

mass ratio; F, stem/total mass ratio; The values not sharing the same letters are 13 

significantly different at P < 0.05 according to Tukey’s test. C, control; N, nitrogen 14 

fertilization; P, phosphorus fertilization; NP, combined N and P fertilization. 15 

 16 

Figure 3. Gas exchange parameters and chlorophyll contents of L. olgensis and L. 17 

kaempferi as affected by N and P fertilization. Each value is the mean ± SE (n = 4). A, 18 

Pn, mass-based net photosynthetic rate; B, gs, stomatal conductance; C, Ci, intercellular 19 

CO2 concentration; D, E, transpiration rate; E, Chla, chlorophyll a content; F, Tchl, total 20 

chlorophyll content; The values not sharing the same letters are significantly different 21 

at P < 0.05 according to Tukey’s test. C, control; N, nitrogen fertilization; P, phosphorus 22 
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fertilization; NP, combined N and P fertilization. 1 

 2 

Figure 4. (A and B) Mass-based foliage N and P content (NM, PM), (C) N content of the 3 

soluble protein fraction (Ns), and (D) acid phosphatase activity (APA) in L. olgensis 4 

and L. kaempferi as affected by N and P fertilization. Each value is the mean ± SE (n = 5 

4). The values not sharing the same letters are significantly different at P < 0.05 6 

according to Tukey’s test. C, control; N, nitrogen fertilization; P, phosphorus 7 

fertilization; NP, combined N and P fertilization. 8 

 9 

Figure 5. (A - D) Starch concentration in roots, leaves, branches and trunks, (E - H) total 10 

soluble sugar (TSS) concentration in roots, leaves, branches and trunks, and (I - L) non-11 

structural carbohydrate (NSC) concentration in roots, leaves, branches and trunks in 12 

L. olgensis and L. kaempferi as affected by N and P fertilization. Each value is the mean 13 

± SE (n = 4). The values not sharing the same letters are significantly different at P < 14 

0.05 according to Tukey’s test. C, control; N, nitrogen fertilization; P, phosphorus 15 

fertilization; NP, combined N and P fertilization. 16 

 17 

Figure 6. (A - C) Total starch, sucrose and fructose content, (D) total soluble sugar (TSS) 18 

content, and (E) total non-structural carbohydrate (NSC) content of L. olgensis and L. 19 

kaempferi as affected by N and P fertilization. Each value is the mean ± SE (n = 4). The 20 

values not sharing the same letters are significantly different at P < 0.05 according to 21 

Tukey’s test. C, control; N, nitrogen fertilization; P, phosphorus fertilization; NP, 22 
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combined N and P fertilization. 1 

 2 

Figure 7. (A - D) Root, branch, trunk and needle carbon content, and (E) total carbon 3 

content of L. olgensis and L. kaempferi as affected by N and P fertilization. Each value 4 

is the mean ± SE (n = 4). The values not sharing the same letters are significantly 5 

different at P < 0.05 according to Tukey’s test. C, control; N, nitrogen fertilization; P, 6 

phosphorus fertilization; NP, combined N and P fertilization. 7 

 8 

Figure 8. Transmission electron micrographs of mesophyll cells in L. olgensis and L. 9 

kaempferi as affected by N and P fertilization. A, Control L. olgensis; B, Control L. 10 

kaempferi; C, N fertilization L. olgensis; D, N fertilization L. kaempferi; E, P 11 

fertilization L. olgensis; F, P fertilization L. kaempferi;; G, combined N and P 12 

fertilization L. olgensis; H, combined N and P fertilization L. kaempferi. The bars 13 

shown are 1 μm. Ch, chloroplast; CW, cell wall; M, mitochondrion; P, plastoglobulus; 14 

SG, starch grain; V, vacuole. 15 
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