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integrated luminosity of 9.5 fb~!. The cross section is measured as a function of photon transverse energy,
EY., in the range 30 < E% < 500 GeV and in the pseudorapidity region |57| < 1.0. The results are compared
with predictions from parton-shower Monte Carlo models at leading order in QCD and from next-to-leading-
order perturbative QCD calculations. The latter show good agreement with the measured cross section.

DOI: 10.1103/PhysRevD.96.092003

I. INTRODUCTION

The measurement of the cross section for the production
of inclusive prompt photons (y) in proton-antiproton (pp)
collisions is an important test of perturbative quantum
chromodynamics, probing the parton distribution functions
(PDFs), and the parton-to-photon fragmentation functions
(FFs) [1-3]. In addition, prompt-photon production is a
major background for many other standard model (SM)
processes such as Higgs-boson decays into photon pairs
(H — yy) and in searches for non-SM physics with final
states containing photons [4-6]. The term ‘“‘prompt”
identifies photons that are produced directly in the hard
interaction and do not arise from hadron decays. In pp
collisions, events with prompt photons with transverse
energy E’. [7] smaller than approximately 100 GeV are
produced predominantly via quark-gluon Compton scatter-
ing gg — qy, while at higher energies, the quark-antiquark
annihilation process gg — gy plays a dominant role. In
addition, prompt photons are produced by initial- and final-
state radiation from partons; however, this contribution is
suppressed by requiring the photon to be isolated. The first
measurement of the prompt-photon production cross sec-
tion in hadron collisions came from the CERN Intersecting
Storage Rings pp collider, followed by measurements at
the SppS collider [8-11]. More recent prompt-photon
measurements have been performed at the Fermilab
Tevatron Collider by the CDF and DO collaborations using
pp collisions collected at a center-of-mass energy /s =
1.8 and 1.96 TeV [12—14] and at the CERN Large Hadron
Collider by the ATLAS and CMS collaborations using
pp collisions at /s = 7 [15-19], 8 [20], and 13 TeV [21].
This article presents a measurement of the inclusive cross
section for isolated prompt photons over the range
30 < E} < 500 GeV, based on the full data set collected
by the Collider Detector (CDF) during Run II (2001-2011)
of the Fermilab Tevatron Collider and corresponding to an
integrated luminosity of 9.5 fb=! [22].

II. CDF II DETECTOR

The CDF II detector [23] is a general-purpose spec-
trometer at the Fermilab Tevatron collider. It has a
cylindrical geometry with approximate forward-backward
and azimuthal symmetry. It includes a charged-particle
tracking system consisting of silicon microstrip detectors
and a cylindrical open-cell drift chamber, designed to

measure  charged-particle trajectories (tracks) and
momenta. The tracking system is contained within a
1.4 T axial magnetic field. It is surrounded by electromag-
netic (EM) and hadronic calorimeters segmented in pro-
jective towers and used to identify and measure the energy
and position of photons, electrons, hadrons, and clusters of
particles (jets). The central calorimeters cover the region
|| < 1.1 and have electromagnetic transverse-energy res-

olution of 6(Ey)/Er = 13.5%/+/E+(GeV) @ 1.5% and a
tower segmentation of Ay x A¢g ~0.1 x 15° in pseudor-
apidity-angular space [7]. At a depth corresponding
approximately to the maximum energy density in the
development of a typical EM shower, the EM calorimeters
contain detectors that measure the transverse shower
profile. The electromagnetic compartments of the calorim-
eter are equipped with a timing system measuring the
arrival time of particles that deposit energy in each tower
[24]. Drift chambers and scintillation counters located
outside the calorimeters identify muons.

III. DATA AND SIMULATED SAMPLES

A. Event selection

Photons are reconstructed using clusters of (up to three)
adjacent towers above threshold in the central EM calo-
rimeter [25]. The pseudorapidity is restricted to the fiducial
region |n”| < 1.0. The data are collected using a three-level
online event-filtering system (trigger) [26] that selects
events with at least one EM cluster consistent with a
photon in the final state. Since there can be multiple
collisions in the same bunch crossing, the event primary
vertex (pp interaction point) is chosen to be the one that
results in the best balance of the p; of the photon; the z
position of the reconstructed primary vertex is required to
be within 60 cm of the center of the detector. The photon
transverse energy is corrected to account for nonuniform-
ities in the calorimeter response and calibrated using
electrons from reconstructed Z-boson decays [27].
Photon candidates are required to satisfy E} > 30 GeV
and to meet requirements on calorimeter isolation [28], on
track isolation [28], and on the ratio of the energy deposited
in the hadronic calorimeter to the energy in the EM cluster
[25]. If more than one prompt-photon candidate is recon-
structed (=1% of the photon events), that with the highest
E; (leading photon) is chosen. Events with electrons from
Z- and W-boson decays, which can be misidentified as
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photons, are removed from the sample by requiring zero
tracks, or at the most one soft track (track isolation
<5 GeV), pointing to the EM cluster. This track is allowed
to account for underlying event and pileup energy around
the cluster. The number of electrons coming from W-boson
decays is further reduced by requiring the missing trans-
verse energy [7] of the event to be less than 80% of the
transverse energy of the photon candidate. This require-
ment also reduces backgrounds arising from other sources
that lead to energy imbalance, such as muons from cosmic
rays that may emit bremsstrahlung radiation in the calo-
rimeter and muons from beam-halo interactions with the
beam pipe, which may in turn interact with the detector
material producing photons. Finally, the EM signal timing
is required to be consistent with the pp collision time [25].
The residual backgrounds from Z- and W-boson decays,
cosmic rays, and the beam halo are expected to be less than
1% of the total sample. After applying all the selection
criteria, 2.1 x 10° events remain in the y + X data sample.
The dominant remaining backgrounds are due to jets
misidentified as photons.

B. Simulated events

Simulated events from the pyTHIA Monte Carlo (MC)
generator [29] are used in the background estimation and
to evaluate the product of the detector acceptance (A) and
the efficiency (e) for signal events. Monte Carlo samples
are generated with PYTHIA 6.216, a parton-shower gen-
erator at leading-order (LO) in the strong-interaction
coupling, with the CTEQSL PDFs [29]. The PYTHIA
predictions include 2 — 2 matrix-element subprocesses.
Higher-order QCD corrections are included by initial- and
final-state parton showers. For the study of systematic
uncertainties and for comparisons with the final results,
events are also generated with the SHERPA 1.4.1 MC
generator [30] with CT10 PDFs [31]. The SHERPA pre-
dictions include all the tree-level matrix-element ampli-
tudes with one photon and up to three partons. This
calculation features a parton-jet matching procedure to
avoid an overlap between the phase-space descriptions
given by the fixed-order matrix-element subprocesses and
the showering and hadronization in the multijet simulation.
The TUNE A [32,33] underlying event [34] model is used in
the PYTHIA calculation. Monte Carlo events are passed
through a GEANT-based simulation of the detector [35] and
subjected to the same reconstruction and selection require-
ments as the data.

IV. SIGNAL FRACTION

After the event selection, the remaining background
comes from the decays of hadrons (such as 7° — yy); they
cannot be rejected on an event-by-event basis, so a
statistical background-subtraction technique is used to
measure the signal cross section. To evaluate the signal

PHYSICAL REVIEW D 96, 092003 (2017)

fraction, an artificial neural network (ANN) is defined
using as input the shower-shape, transverse profile, and
isolation variables [36]. The inclusive-photon simulation
is matched to data by applying the same corrections as
derived in Refs. [13,37]. Further, MC events are
reweighted to the observed instantaneous luminosity pro-
file to account for luminosity-dependent effects. The
expected ANN output distributions (“templates”) for signal
and background samples are constructed using PYTHIA
inclusive-photon and dijet MC predictions, respectively.
These templates are validated using the Z — ete™ and
dijet data samples [37]. To estimate the prompt-photon
rate, the ANN output distribution observed in data is fit to a
linear combination of signal and background ANN tem-
plates, using a binned maximum-likelihood method that
accounts for uncertainties on both data and templates [38].
A fit is performed in each E% bin, yielding prompt-photon
fractions in the E range from 30 up to 500 GeV, as shown
in Fig. 1 for an example E’. bin. Figure 2 shows the
resulting signal fraction (photon purity) as a function of
E".. The systematic uncertainty on the signal fraction is
estimated by varying the fit configurations (i.e., different
binning and different fitting method [41]) and the values of
the ANN input variables within their uncertainties. The
dominant uncertainty on the shape of the ANN templates
originates from the modeling of calorimeter isolation
energy. The overall systematic uncertainty on the signal
fraction is estimated to be 8% at low E’., 6% at high E’.,
and 3% on average for the intermediate E’. range
40 < E% < 300 GeV.

10° 110<E;(GeV)<130

X

40—
35
305 —4— CDF v+ X data, L =9.5fb"’
5 253_ /| Signal MC
g Background MC
w
15—
10
55
\\\& ~ 77
0 AN .3 - i s AN ANV IVRRHNNAN
0 01 02 03 04 05 06 07 08 09 1
Photon ID ANN
FIG. 1. Observed ANN output distribution (points), the tem-

plates for signal and background processes, and the resulting fit
of the templates to the data distribution, for events restricted to the
photon transverse-energy bin 110-130 GeV. The left-hatched
histogram (blue in color) represents the background, and the
right-hatched histogram (red in color) represents the signal,
normalized so that the scale of the sum of the templates equals
the total number of data events.
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FIG. 2. Signal fraction as a function of leading-photon E7. The

points are plotted at the average E., of the data within each bin.
The error bars represent the statistical uncertainty, while bands
represent the total systematic uncertainty.

V. CROSS SECTION MEASUREMENT

The differential cross section for the production of
isolated prompt photons in a given phase-space bin is
calculated as

o Nf7
dEydy  AELAR LA x e’

(1)

where N is the number of data events in a given E. bin after
applying the full selection, f7 is the signal fraction, AE%. is
the width of the E. bin, £ is the integrated luminosity, and
A x e is a correction factor. Since the cross section is
measured for |7/| < 1.0, Ay’ is set to 2.0.

The factor A X e combines corrections for acceptance,
resolution effects, and efficiencies for selecting and recon-
structing the photon to infer the results at the particle level
(i.e., generator level). The correction is computed from
the bin-by-bin fraction of simulated particle-level prompt
photons in the reconstructed signal events, as determined
by the PYTHIA MC calculation. The numerator is obtained
by applying the same requirements to the PYTHIA-simulated
events as those applied to data. The denominator is
obtained by selecting generated particles [42] in the fiducial
region, with E% > 30 GeV and the same energy isolation
requirement as in the data. The photon efficiency is
calibrated by comparing the selection efficiencies for
Z — eTe” events in data and in simulation [37]. The
data-to-simulation ratio is then used to correct the simu-
lated photon efficiency.

The largest sources of systematic uncertainty for the
factor A x € arise from the photon energy scale at high
Er (R6%) and from the MC generator choice (%8%). The
latter is determined by a comparison of results from the
PYTHIA and SHERPA MC calculations. The overall system-
atic uncertainty on the factor A x ¢ is estimated to be
approximately of 10%.
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VI. THEORETICAL PREDICTIONS

The predicted prompt-photon production cross section
is calculated using the fixed-order next-to-leading-order
(NLO) program MCFM 6.8 including nonperturbative frag-
mentation at LO [43]. The calculation uses the MRST2008
NLO PDFs and the GdRG LO FFs [44]. The MCEM
prediction is a parton-level calculation that does not include
a model for the underlying event energy. This prediction
is corrected for the nonperturbative effects of parton-to-
hadron fragmentation and for underlying event energy. A
correction factor Cyg = 0.91 £0.03 is defined as the
overall ratio of the cross section obtained using the
PYTHIA MC generator, with and without modeling of both
multiple-parton interactions and hadronization [13].

The nominal renormalization (up), factorization (uy),
and fragmentation (uy) scales are set to the photon trans-
verse energy (Ur = pp = py = E%). The scale uncertainty
is evaluated by varying the three scales simultaneously
between the extreme values E./2 and 2E%.

In addition to comparison with the perturbative-QCD
prediction above, we also compare the measured cross
section to predictions from the PYTHIA and SHERPA MC
generators. Both are calculated at the particle level, mean-
ing that the photon isolation energy is estimated using
generated hadrons and the selection criteria are applied
to the hadron jets and are directly comparable to our
measurement.

VII. RESULTS

The differential cross section results for the production
of isolated prompt photons are listed in Table I, together
with statistical and systematic uncertainties. The system-
atic uncertainties on the differential cross section are
determined by propagating the sources of uncertainty
considered for f7 and A xe. At low E/, the total
systematic uncertainty is dominated by the uncertainties
in the ANN-template modeling (x16%), while the
dependence of the A x ¢ factors on the event generator
gives the dominant contribution (x~10%) to the uncertainty
at intermediate and high E’. The uncertainty from the
energy scale introduces an uncertainty on the measured
cross section that varies between ~3% and ~8% as E’,
increases. Finally, there is an additional 6% uncertainty on
the integrated luminosity [45].

These results are compared with the theoretical predic-
tions in Fig. 3. The ratio of the measured cross section over
the predicted ones is shown in Fig. 4. The full error bars on
the data points represent statistical and systematic uncer-
tainties summed in quadrature. The inner error bars show
statistical uncertainties only. The NLO predictions are
shown with their theoretical uncertainties arising from
the choice of factorization, renormalization, and fragmen-
tation scales.
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TABLE I. Measured cross section for the production of prompt
isolated photons within the pseudorapidity region |7’| < 1.0, in
bins of E% [Eq. (1)]. (E%), the average E’. within each bin, is
listed for illustration of the steeply falling spectral shape. The
measured-cross section uncertainties given are statistical only.
The column S0y gives the systematic uncertainties. The addi-
tional 6% luminosity uncertainty is not included in the table.

E} (E7) d*c/(dETdn") 00yst
(GeV) (GeV) (pb/GeV) (%)
30-40 34.1 (5.49 +£0.41) x 10! 23.3
40-50 443 (1.72 £0.23) x 10! 17.2
50-60 54.3 (6.72£0.11) x 10° 14.9
60-70 64.4 (2.95 4+ 0.04) x 10° 14.6
70-80 74.5 (1.45 £0.02) x 10° 13.7
80-90 84.6 (6.87 £0.10) x 10~ 13.2
90-110 99.7 (3.03 £0.05) x 107! 12.8
110-130 118.7 (1.324£0.03) x 107! 12.7
130-150 138.8 (5.65+0.15) x 1072 13.1
150-175 160.9 (2.37 £0.08) x 1072 12.6
175-200 185.9 (1.03 £ 0.03) x 1072 124
200-240 216.8 (4.01 £0.12) x 1073 132
240-290 259.2 (1.16 £ 0.05) x 1073 14.1
290-350 309.4 (3.08 £0.23) x 10~ 15.1
350-500 387.6 (1.83 +0.29) x 1073 16.1

The NLO calculations agree with the data up to the
highest E%-values considered. Observed cross sections are
moderately larger than the central values for the NLO
calculation for low E’. but agree within the theoretical
uncertainty of the NLO calculation.

10°L —+— CDF y+X data, L = 9.5 fb"
E [ ] Systematic uncertainty
102 e PYTHIA 6.216
~ = e SHERPA 1.4.1
o 104k e MCFM 6.8
= T
15 Foosge M=K =k =E;
-g_ 1= t‘L_L‘~ (corrected for UE contributions)
= E -
= oF bey
= =
§ 107
o= C Lagniay
T 102
© 107
4 .
107 £ 1| < 1.0 and E*°(R=0.4) < 2 GeV
1056l L e

| NI R
250 300 350 400 450 500
Ex(GeV)

50 100 150 200

FIG. 3. Measured y + X cross section as a function of leading
photon transverse energy. Data (markers) are centered at the
average E of each bin for illustration of the steeply falling
spectral shape. Data are compared with the PYTHIA, SHERPA, and
MCFM predictions (dashed lines). The vertical error bars show the
statistical uncertainties, while the shaded areas show the system-
atic uncertainties. The 6% luminosity uncertainty on the data is
not included. A correction Cyg to account for parton-to-hadron
fragmentation and underlying event effects is applied to the MCFM
theoretical predictions, as explained in the text.
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FIG. 4. Data-to-model ratio of the inclusive prompt-photon
differential cross section as a function of the photon transverse
energy, in the pseudorapidity region |5”| < 1.0. “Model” stands
for experimental and theoretical results (markers and dashed
lines, respectively). The inner error bars on the data points show
statistical uncertainties. The full error bars show statistical and
systematic uncertainties added in quadrature. The 6% luminosity
uncertainty on the data is not included. The LO pPYTHIA prediction
is multiplied by a factor of 1.5.

The PYTHIA and SHERPA predictions are also shown in
Figs. 3 and 4. The shape of the measured-cross section
distribution is well described by both models. The PYTHIA
prediction underestimates the observed cross section by
more than a factor of 1.5 across the whole E% range. This is
possibly due to the lack of higher-order terms in the PYTHIA
photon + jet matrix elements. The SHERPA calculation is
approximately 1.1 to 1.2 times larger than the observed cross
section, nearly uniformly across the E. range. This calcu-
lation includes up to three jet emissions associated with the
observed photon, but it is missing virtual corrections in the
matrix elements of the subprocesses, which could possibly
explain the discrepancy with data. Other possible reasons are
related to nonperturbative QCD processes, such as mistuned
fragmentation subprocesses leading to excessive rates of
photon production through fragmentation.

VIII. CONCLUSIONS

A measurement of the differential cross section for the
inclusive production of isolated prompt photons in pp
collisions at /s = 1.96 TeV is presented using the full data
set collected with the CDF II detector at the Tevatron. The
cross section is measured as a function of photon transverse
energy E. in the central pseudorapidity region || < 1.0.
The measurement spans the EY. kinematic range from 30 to
500 GeV, thus extending the reach by 100 GeV from the
previous CDF measurement [13]. Comparisons of our
measurement to three theoretical predictions are discussed.
Both pYTHIA and SHERPA predictions correctly describe
the shape of the differential cross section. The PYTHIA
generator predicts a smaller cross section compared to the
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data and the SHERPA prediction. The data are in good
agreement with the fixed-order NLO MCFM calculation.
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