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Abstract: Plant growth reduction (GR) is the most widely accepted damage parameter to assess the
sensitivity of trees to tropospheric ozone (O3) pollution since it integrates different physiological
processes leading to loss of photosynthetic activity and distraction of metabolic resources from growth
to defense, repair, and recovery pathways. Because of the intrinsic difficulty to assess the actual O3

risk assessment for forests in field conditions, foliar visible symptoms (FVS) induced by O3 have
been proposed as a proxy to estimate possible GR in forest trees. The rationale for this assumption is
that the onset of FVS implies a reduction of the photosynthetic capacity of plants. In this review, we
show that GR and FVS can be the consequences of independent physiological pathways involving
different response mechanisms that can cause both FVS without GR and GR without FVS. The onset
of FVS may not lead necessarily to significant GR at plant level for several reasons, including the rise
of compensatory photosynthesis, the time lag between growth processes and the accumulation of
critical O3 dose, and the negligible effect of a modest amount of injured leaves. Plant GR, on the other
hand, may be induced by different physiological mechanisms not necessarily related to FVS, such as
stomatal closure (i.e., carbon starvation) to avoid or reduce O3 uptake, and the increase of respiratory
processes for the production of metabolic defense compounds. Growth reduction and FVS can be
interpreted as different strategies for the acclimation of plants to a stressful environment, and do
not mean necessarily damage. Growth reduction (without FVS) seems to prevail in species adapted
to limiting environmental conditions, that avoid loss and replacement of injured leaves because of
the high metabolic cost of their production; conversely, FVS manifestation (without GR) and the
replacement of injured leaves is more common in species adapted to environments with low-stress
levels, since they can benefit from a rapid foliar turnover to compensate for the decreased rate of
photosynthesis of the whole plant.

Keywords: ozone; forest trees; foliar visible symptoms; growth reduction; field surveys; controlled
conditions experiments

1. Introduction

Sixty years ago Todd [1] described effectively the effects of tropospheric ozone (O3) on plants
in the Los Angeles region: “Damage to plants from pollutants such as those present in polluted Los
Angeles air may be manifested in at least two primary ways: first, as visible oxidant damage to the
leaves of susceptible plants, where it is apparent that leaf cells have been killed; and second, as a
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decrease in plant growth not accompanied by visible injury”. This dichotomy (foliar visible symptoms,
FVS vs. growth reduction, GR) produced, in the subsequent decades, two different approaches in
assessing and measuring the sensitivity of plants to O3. Consequently, various working methods have
been adopted to determine the critical levels of O3 for plant protection [2], intended as the maximum
acceptable threshold for protecting vegetation against significant adverse effects.

It is generally accepted that the responses of plants to O3 do not depend on the ambient
concentration of this pollutant (i.e., the level of exposure), but most likely on the dose absorbed by
leaves through stomata, calculated as cumulated O3 stomatal flux or phytotoxic ozone dose (POD)
above a certain threshold of instantaneous flux accounting for detoxification processes [3,4]. Plants
response to O3 pressure, in fact, can be modified by the biochemical pathways aimed at neutralizing
the oxidative stress induced by the reactive oxygen species generated by O3 in the sub-stomatal cavities
of leaves (detoxification) and at restoring the physiological functionality (reparation) [5].

To a general extent, however, the detrimental effects of air pollution on vegetation can be
distinguished as “injury” and “damage”. According to the classic definitions, “the term ‘injury’ includes
all plant responses that occur due to atmospheric pollution”, while “ . . . the term ‘damage’ includes all effects
which reduce the intended value or use of the plant. The useful value—determined by economic, ecologic,
and esthetic values—can be reduced through effects on growth, yield, or quality” [6]. Plant injury is the
first manifestation of an adverse effect and precedes plant damage. Growth reduction was chosen
as the response indicator of the O3 impact on trees and crops to set O3 critical levels [7] and should
be considered as a damage response variable that integrates the various physiological processes
responsible for reducing the photosynthesis and biomass production rate of plants. Foliar visible
symptoms should be considered as “injuries”, as they consist of single or groups of dead cells in a
specific plant organ (the leaf).

Relationships between O3-induced injuries (FVS) and damage (GR) were found, in scientific
studies, to be uncertain and contradictory, and are still object of debate. It is generally accepted that
both manifestations are consequence of the O3 stomatal uptake that compromise the photosynthetic
apparatus and function. As a logic consequence, FVS and the consequent leaf loss (defoliation),
two easily assessable indicators in field conditions, have been recently investigated and proposed as
potential proxies for O3 fluxes and, ultimately, for GR [8–10].

Most forests in Europe are exposed to O3 pollution exceeding the established “critical levels” [11,12];
therefore, impacts on plant leaves, growth, and vitality (defined by defoliation, [13]) can be expected.
However, the analysis of data of forest health condition from current monitoring programs (ICP Forests
networks, and National Forest Inventories) at national and European scale, combined with measured
and/or modeled meteorological conditions and O3 levels, provided no or contrasting evidence of the
above-mentioned impacts [8,14–18]. Cailleret et al. [19] conclude that the impacts of O3 on mature forests
seem to be negligible because of several confounding factors affecting the ecotoxicological response of
plants, including the variability of site conditions, ecological and management characteristics of the
forest stands and differences in methodological approaches.

In the present review paper, by considering experimental results of the present research group
and literature findings, we aim at exploring the relationships between FVS and GR due to O3 exposure
and/or fluxes in forest tree species, and the possible mechanisms of decoupling these two different
responses. We will evidence, in an integrative ecological perspective, the physiological patterns implied
in the plant responses to O3, at leaf and tree level, and the environmental factors that can affect them.

A simplified scheme of the different mechanisms and processes involved in plant response to O3

stress and their effects at plant level in terms of FVS and GR is reported in Figure 1.
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Figure 1. Relationships between the main physiological processes and mechanisms involved in plant
response to O3 stress at the leaf level, and their effects at plant level in terms of foliar visible symptoms
(FVS) and/or growth reduction (GR). Green, blue, and red arrows identify different pathways leading
to GR without FVS, FVS without GR, and FVS with GR, respectively.

2. Factors Implied in the Onset of Foliar Visible Symptoms

The term “foliar visible symptoms” summarizes and shows various events that occur in the leaves
resulting from physiological and biochemical reactions, triggered by the ROS generated by O3 inside
the leaf, possibly interacting with other stress factors (e.g., high light, drought, nutrient deficiency)
and the detoxifying and reparation capacity of the leaf tissue cells. The most typical foliar symptoms
consist of the clusters of palisade mesophyll cells collapsing, thereby simulating a hypersensitive
response (HR), by forming so-called stipples [20]. High-intensity sunlight radiations are considered a
key factor for the onset of symptoms [21,22] because, in such conditions, stomatal activity and gas
exchange rates are usually enhanced, maximizing the O3 uptake. In addition, high light intensity itself
enhances the production of ROS [23] and triggers the formation of screening pigments (anthocyanins)
that characterize the symptomatology of many species [24]. The sensitivity of leaves, and therefore the
capacity of O3 fluxes to produce symptoms, is variable during the life span of the leaves, and in many
species, symptoms become visible at the end of the growing season when the metabolic defenses are
declining [25].

In sensitive species, HR-like symptoms are tightly related to fluxes of O3 into the leaves, but there
are no linear relationships between the absorbed dose and the onset and extension of symptoms [26].
After the first appearance of symptoms, the following development and extension may follow patterns
independent from the absorbed dose of O3. The collapse of the cells adjacent to the damaged areas
and ethylene production [27] within mesophyll tissue are both physiological events that, although
triggered by the initial dose of O3, increase the extension of symptoms regardless of the additional
dose adsorbed [26]. Finally, leaves lose their overall functionality and no further response to O3

can be observed. In general, we can argue that O3 uptake is a necessary precondition to produce
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FVS, but the type of visible manifestation, the timing of onset, and the successive development
strictly depends on the physiological and biochemical interactions within the leaf tissues itself and the
environmental conditions.

3. Factors Implied in Growth Reduction

In very sensitive tree species, with large diffusion of symptoms in the crown and widespread
defoliation, the substantial quantitative reduction of the photosynthetic apparatus can lead to a
significant reduction of the plant’s growth rate [28].

Growth reduction without FVS, however, can be induced by different mechanisms which are more
related to a reduction of the photosynthesis functionality rather than to a reduction of the available
photosynthetic surface. Many studies (reviewed by Wittig et al. [29]) evidenced that photosynthetic
rates are reduced after exposure to O3, through a variety of physiological mechanisms. Fontaine et
al. [30] hypothesized that O3 contributes to the inactivation of Rubisco, so inhibiting the Calvin cycle
of the photosynthetic process. Bussotti et al. [31], through chlorophyll fluorescence analysis, proposed
a block of the electrons transport after the photosystem 1 (PSI), probably caused by a reduction of both
amount and functionality of Rubisco within the leaf mesophyll.

A second mechanism that can lead to GR consists of the stomatal closure as a response to high
levels of O3 [32,33], so preventing O3 uptake by leaves. This is an “avoidance” mechanism that can
protect the photosynthetic machinery, but at the same time, it can also reduce the stomatal uptake of
CO2, so depressing photosynthetic rates and growth. Stomatal closure induces a “carbon starvation”
like that induced by drought stress [34]. It can be stated that, in this case, it is not the level of O3

stomatal fluxes that inhibits growth, but instead, the reduction of CO2 entering the leaves.
The repair capacity of plants, although considered an element of resistance to O3, may be a cause

of GR because it induces the diversion of the photosynthetates [35] from growth processes to defense
mechanisms. O3-induced detoxification processes require energy for the regeneration and de-novo
synthesis of antioxidants and other related chemical compounds. The decrease of photosynthetates
may also be attributed to an increase of the dark respiration rate, due to an intense metabolic activity
to ensure the maintenance and repair processes [35,36]. In general, it is likely that detoxification, repair,
and down-regulation of Rubisco activity can lead to a change of carbon assimilation and allocation in
ozone-stressed plants and to GR on a long-term time scale.

Studies on the magnitude of the relationships between GR and O3 exposure and uptake were
carried out on tree seedlings, in controlled and semi-controlled conditions, to establish the critical levels
for the main representative forest species [3,37]. However, the possibility of applying the findings
of these studies on mature trees, in natural forest stands, remains problematic [19], although some
empirical attempts have been made [38].

4. Why Foliar Visible Symptoms and Growth Reduction Are Frequently Decoupled?

Foliar visible symptoms provoke the reduction of photosynthetic leaf surface, with a consequent
expected decrease in plant growth, then in ecosystem productivity and yield (e.g., in crop, forest, and
grassland systems). Several studies carried out in the past decades on both young and adult forest
trees have tried to characterize the effect of O3 considering FVS or GR. However, only a limited number
of those studies analyzed both kinds of responses on the same plants (reviewed in Tables 1 and 2).
Table 1 summarizes the literature, with related outcomes, of the last 35 years dealing with experimental
studies in controlled conditions (i.e., greenhouses, growth chambers, open-top chambers) on both FVS
and GR in forest tree species. The table contains information on the experimental setup and the most
relevant findings on the effect of O3 on FVS and GR of plants, highlighting all the situations in which
FVS and GR were found to be decoupled.

Although the results of studies on O3 effects on seedlings and adult trees are scarcely
comparable [39], it is possible to identify some general patterns in the responses of plants to O3.
Many controlled conditions experiments have considered species and genera already known as O3
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sensitive (based on previous literature and observations [24,40]) such as Populus sp. pl. (that is the
most studied genus), Fagus sylvatica L., Betula pendula Roth., Viburnum lantana L., and Prunus serotina
Ehrh. When O3 tolerant species were used (for example, Quercus sp. pl., an evergreen Mediterranean
species), no or slight FVS were observed, but GR was detected in many cases [41–44]. Overall, in a
total of 30 experiments considered (Table 1), 40 different species have been investigated (and several
Populus hybrids) with half of them showing no simultaneous manifestation of FVS and GR in at least
one experiment. For six species, there was at least one experiment reporting no effects of O3 at all
(no FVS and no GR). Only 14 of the 40 studied species showed a clear simultaneous presence of FVS
and GR in at least one experiment. Nonetheless, it is important to highlight that in some experiments
reporting no significant GR due to O3, plants growth was assessed by measuring only height and stem
diameter (no biomass) or by measuring only the above-ground biomass. However, it is well known
that in many species, root growth is more reduced than shoot growth in response to O3 [44–46], since
O3 can alter root physiology and reduce the belowground allocation of carbohydrates [47]. There is
high variability and sometimes contradictory results between different experiments due to factors
such as the genotype (clone or seed reproduced), the age of the plants, the duration and the technical
characteristics of the experiments. On this latter aspect, it is worth mentioning that greenhouses and
closed chambers systems may significantly reduce the UV radiation exposure of plants introducing
further bias to the results of these experiments.
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Table 1. Experimental studies on forest trees species which considered both foliar visible symptoms (FVS) and growth reduction (GR) due to O3 stress. Bold underlined
text highlights missing correspondence between FVS and GR in the results. Papers reporting results from the same experiment have been grouped in the same row.
Studies are listed in chronological order.

Authors Species Plant Age Experimental Set up O3 Treat. Duration Detection of FVS Detection of Significant GR Notes

Hogsett et al. [48] Pinus elliottii Seedlings O3 fumigation chambers 16 weeks Yes Yes

Wang et al. [49]
Populus tremuloides

(O3-tolerant and O3-sensitive
clones)

Saplings Open-top chambers 2.5 growing seasons Yes Yes

Wang et al. [50] Populus hybrid; Populus
deltoides; Robinia pseudoacacia Seedlings Open-top chambers 1 growing season No Yes

(Populus hybrid)

Only the above-ground biomass
of Populus hybrid was
significantly reduced

Temple [51] Pinus jefferyi; Sequoiadendron
giganteum 2-year old seedlings O3 fumigation chambers 2 months for 2

growing seasons

Yes
(P. jefferyi)

No
(S. giganteum)

No

Karnosky et al. [52]
Populus tremuloides

(various O3 tolerant and O3
sensitive clones)

Rooted cuttings Open-top chambers 1 growing season Yes Yes
Only the O3 sensitive clones
showed FVS and GR of the

above-ground biomass

Karnosky et al. [53] Populus tremuloides
(2 O3 sensitive clones) Rooted cuttings Open-top chambers 1 growing season Yes No

Pääkkönen et al. [54] Betula pendula 2-year old seedlings
Open field O3 fumigation

and O3 fumigation
chambers

2 growing seasons Yes Yes

Shimizu et al. [55]

Populus hybrids; Abies firma;
Quercus acutissima;

Cryptomeria japonica;
Viburnum odoratissimum

2-year old seedlings;
cuttings O3 fumigation chambers 3-4 weeks

Yes
(Populus hybrids; V.

odoratissimum)
No

(C. japonica; A. firma; Q.
acutissima)

Yes
(one Populus hybrid; C.

japonica; V. odoratissimum)
No

(one Populus hybrid; A. firma;
Q. acutissima)

Temple and Miller [56] Pinus ponderosa Seedlings Open-top chambers 3 growing seasons Yes Yes Only stem diameter was
measured

Samuelson [57] Prunus serotina; Acer rubrum 1-year old seedlings Open-top chambers 1 growing season Yes Yes (P. serotina)
No (A. rubrum)

Only plant height and root/shoot
ratio of Prunus serotina were

significantly reduced

Matyssek et al. [58] Betula pendula Rooted cuttings Open-top chambers 1 growing season Yes Yes No information on the statistical
significance of the GR

Karnosky et al. [59] Populus tremuloides Rooted cuttings Open-top chambers 2 growing seasons Yes Yes

Pääkkönen et al. [60] Betula pendula (4 clones) 2-year old seedlings
Open field growing in 3
different sites and open

field O3 fumigation
2 growing seasons Yes Yes

Only plant height was
significantly reduced and only
after the 2nd growing season

Günthardt-Goerg et al.
[61,62]

Fagus sylvatica; Prunus serotina;
Carpinus betulus; Fraxinus
excelsior; Sorbus aucuparia

Rooted cuttings; seedlings O3 fumigation Chambers 1 growing season Yes No

Karnosky et al. [63,64]
Populus tremuloides

(O3-tolerant and O3-sensitive
clones)

Rooted cuttings
Open field growing in 3

sites with different
ambient O3 levels

5 growing seasons Yes Yes Only volume growth was
measured
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Table 1. Cont.

Authors Species Plant Age Experimental Set up O3 Treat. Duration Detection of FVS Detection of Significant GR Notes

Inclàn et al. [65]
Quercus ilex; Olea europea;
Ceratonia siliqua; Arbutus

unedo
2-year old seedlings Open-top chambers 10 months

Yes
(Q. ilex; A. unedo)

No
(O. europea; C. siliqua)

No
(A. unedo)

Yes
(O. europea)

Only plant height and stem
diameter were measured

Yun and Laurence [66] Populus tremuloides
(2 clones) Rooted cuttings Open-top chambers 3 months Yes Yes

Paludan-Müller et al. [67] Fagus sylvatica Seedlings Open-top chambers 2 growing seasons No Yes Only the root/shoot ratio showed
a significant reduction

Ribas et al. [41] Quercus ilex; Ceratonia siliqua 1-year old seedlings Open-top chambers 2 growing seasons No Yes

Ribas et al. [42] Quercus ilex; Quercus ballota;
Ceratonia siliqua; Olea europea 1-year old seedlings Open-top chambers 2 growing seasons No

Yes
(Q. ilex; Q. ballota; C. siliqua)

No
(O. europea)

Only the above-ground biomass
was measured

Thomas et al. [68] Picea abies 2-year old seedlings Open field O3 fumigation 3 growing seasons Yes Yes
FVS and reduced shoot

elongation starting from the 2nd
growing season

Calatayud et al. [69]
Acer campestre; Acer opalus;
Acer monspessulanum; Acer

pseudoplatanus

3-year old 4-year old
seedlings; Open-top chambers 1 growing season Yes No Only plant height was measured

Novak et al. [70] Populus nigra; Viburnum
lantana; Fraxinus excelsior Seedings Open-top chambers 2 growing seasons Yes

Yes
(P. nigra)

No
(V. lantana; F. excelsior)

Only ring width was measured

Novak et al. [71] Fagus sylvatica; Viburnum
lantana 2-year old seedlings Open-top chambers 2 growing seasons Yes No

Nikula et al. [72] Populus tremula
Populus hybrid 1-year old cuttings Open field O3 fumigation 2.5 months Yes No

Gerosa et al. [73]
Marzuoli et al. [26]
Pollastrini et al. [74]

Populus hybrid; Fagus
sylvatica; Quercus robur 2-year old seedlings Open-top chambers 2 growing seasons

Yes
(Populus hybrid; F.

sylvatica)
No

(Q. robur)

Yes
(Populus hybrid)

No
(F. sylvatica; Q. robur)

Only the above-ground biomass
was measured

Calatayud et al. [43]
Quercus ilex; Quercus faginea,

Quercus robur;
Quercus pyrenaica

2-year old seedlings Open-top chambers 2 growing seasons
Yes
No

(Q. ilex)

No
Yes

(Q. pyrenaica)

Only shoot/root ratio of Q.
pyrenaica was affected. FVS were
slight on Q. robur and Q. faginea

Dìaz-de-Quijano et al. [45] Pinus uncinata 7-year old saplings Open field O3 fumigation 2 growing seasons Yes Yes Only the root biomass was
significantly reduced

Zhang et al. [75]

Lyriodendron chinense;
Liquidambar formosana;
Cinnamomum camphora;
Cyclobalanopsis clauca;

Neolitsea sericea; Schima
superba

1-year old Open-top chambers 6-7 weeks
Yes
No

(N. sericea)

Yes
No

(N. sericea; C. clauca)

Gerosa et al. [44] Quercus ilex 2-year old Open-top chambers 1 growing season No Yes
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Table 2. Observational field studies on forest trees that considered both foliar visible symptoms (FVS)
and growth reduction (GR). Bold underlined text highlights the missing correspondence between FVS
and GR. Studies are listed in chronological order.

Authors Species Plant Age Survey Methodology GR Variables
Considered Main Results

Relationship
between FVS and

GR?

Peterson et al. [77] Pinus jeffreyi Mature
forest

Comparison between
5 sites with

symptomatic trees
and 3 sites with

asymptomatic trees

Growth index
calculated from
radial growth

Mean annual radial
increment of trees with FVS
was 11% less than trees at

sites without injury

Yes

Peterson and Arbaugh
[79]

Pinus
ponderosa

Mature
forest

Comparison between
5 sites with

symptomatic trees
and 2 sites with

asymptomatic trees.

Growth index
calculated from
radial growth

No significant change in
growth associated with FVS

on trees
No

Peterson et al. [80] Pinus
ponderosa

Mature
forest

(>50 years)

Comparison between
4 stands from 7 sites
with symptomatic
trees and 4 stands
from 7 sites with

asymptomatic trees.

Radial growth

No evidence of widespread
regional growth decreases

during recent years, but in a
few symptomatic sites,

trees showed significant
growth decreases

Contradictory results

Somers et al. [78]

Prunus
serotina;

Liriodendron
tulipifera

Mature
forest

Comparison between
symptomatic and

asymptomatic trees of
the same species.

Analysis on 30 trees
for each species

Radial growth
over 5- and

10-year periods

No evidence that GR in P.
serotina was related to FVS.

In L. tulipifera GR was
significantly more intense

in trees with FVS

Yes
(L. tulipifera)

No
(Prunus serotina)

Gravano et al. [76] Ailanthus
altissima 3–6 years old

Comparison between
2 groups of 5 ramets,

with different
exposure to ambient
O3 (open field and

protected below trees
canopy)

Growth of the
main stem, n of

leaves

FVS and GR were stronger
in plants of the open field

site.
Yes

Vollenweider et al. [28] Prunus
serotina

86-year old
on average

Comparison between
symptomatic and

asymptomatic trees in
the same site

Tree diameter
and basal area

Over a 31-year period, trees
with FVS had 28% lower
stem growth rates than

asymptomatic trees

Yes

To understand what really happens in the field on trees exposed to ambient O3, several studies
have been carried out. The results of these field studies are showed in Table 2, where both FVS surveys
and GR assessments (mainly radial growth assessments) were considered. Also in this case, we report
the main findings and highlight the decoupling between FVS and GR.

In field studies, GR has been related to FVS on a very sensitive tree species, such as Ailanthus altissima
(Mill.) Swingle [76], Pinus jeffreyi Balf. [77] and Liriodendron tulipifera L. [78], while contrasting results
have been found on Pinus ponderosa Douglas ex. C. Lawson [79,80] and Prunus serotina [28]. In strongly
polluted sites such as the surroundings of Mexico City [81] and South California mountains [82], O3 was
considered an important factor contributing to the decline of conifer forests; however, those surveys did
not report data on potential relationships between FVS and GR. In an open-air fumigation system on
mature trees, widespread FVS were observed on the outer, sun-exposed, leaves of Fagus sylvatica [83],
but the GR of stem, estimated with a model during the same experiment, was attributed to stomatal
narrowing or closure of the inner leaves rather to the effect of O3 on net carbon gain [32]. Finally,
although the Populus species and clones were generally sensitive in controlled experiments (Table 1),
no FVS and/or GR was observed in a mature poplar plantation in Belgium despite a large O3 uptake
measured during the growing season [84].

The reasons FVS and GR cannot be necessarily related and coupled can be summarized as follows.

4.1. Compensatory Photosynthesis

Compensatory photosynthesis (CP) is the enhancement of the photosynthetic activity to cope
with stress induced by defoliation (i.e., leaf loss) and foliar injury [85], sustaining plant growth and
defense. Compensatory photosynthesis has been studied especially in relation to fungal infections and
herbivorous pest attacks [86], and may occur at both single-leaf and whole-crown levels. At foliar level,
CP consists in the increase of photosynthetic efficiency of the undamaged mesophyll cells, with special
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reference to those surrounding the damaged ones [87]. Halitschke et al. [88] observed in tobacco leaves
affected by the insect Tupiocoris notatus the activation of genes related to photosynthesis. According to
Meyer [89] CP represents an efficient tool when foliar damage has a limited extension, and the damaged
leaves are sparse in the crown. In such conditions, plant productivity and yield are maintained or
increased [90]. At the whole-crown level, CP consists of the substitution of the inefficient damaged
leaves with a new photosynthetic apparatus [91,92] and enhanced efficiency in the use of light in
partially defoliated crowns [56].

4.2. Modest Amount of Injured Leaves

Usually, injuries affect the upper and outer parts of the crown, especially the sun-exposed
leaves [93]. In some tree species, such as Fagus sylvatica, the prevalent role of the sun-exposed leaves
is to protect the inner foliage, most devoted to photosynthesis, from high light intensity radiation,
and the consequent photoinhibition [94]. In a mature tree, the number of injured leaves within the
crown may be therefore very small, and their negative effect on the total photosynthesis of the tree can
be negligible.

4.3. Late Season Onset of Foliar Visible Symptoms (After the End of the Growth Process of Plant)

Except for the most sensitive taxa (for example, poplar clones [70]), FVS usually appear in the
late summer [25,95]. There is likely an interaction during the growing season between O3 stress, the
exposure to high solar intensity radiation, and the onset of the leaf senescence process, which leads
to the decline of the photosynthesis and therefore to the decline of biochemical defense [96]. Plants
in which the growth and reproductive processes occur in the first part of the season can show the
late-season onset of FVS, avoiding any significant growth reduction [25,74]. Contrarily, the plants with
continuous growth over the whole season, such as poplar, are more susceptible to the reduction of
biomass accumulation [70].

5. Significance of Foliar Visible Symptoms Assessment in the Field

The European program for the monitoring of forest conditions in Europe (ICP Forests) includes
the assessment of O3-induced FVS on the native vegetation in field conditions. The rationale of this
activity is stated in the manual [93]: “The assessment of ozone visible injury serves . . . as a means to estimate
the potential risk for European ecosystems that are exposed to elevated ambient ozone”. In order to check the
reliability of such a statement, it is necessary to define what is “risk” for forests and how to quantify it.
There is agreement in literature [97] that the concept of risk is related to the probability that damage
can happen, and it can be measured through numerical exposure and dose indices [98], with special
reference to the O3 fluxes entering into the leaves. In this perspective, FVS caused by O3 have been
listed among the indicators of impact of pollutants on forests in the regulations of the European Union
(NEC, National Emission Ceilings, directive 2016/2284/EU, https://www.eea.europa.eu/themes/air/
national-emission-ceilings/national-emission-ceilings-directive). On the other hand, GR in terms of
decrease of plant biomass production has been selected within the CLRTAP [4] as the response variable
for quantifying and mapping O3 risk for vegetation based on critical levels exceedances in Europe. In
this context, some studies have unsuccessfully tried to find relationships between FVS, O3 stomatal
fluxes, and GR of trees in the field [9,10,14,16,19]. In the previous paragraphs, we have indeed shown
that there are no conceptual and mechanistic relationships between FVS and GR since these two
manifestations in the plant follow independent patterns and can be considered as indicative of the
effects of the different strategies applied by trees to cope with O3 pollution stress. There are, however,
additional reasons because the correlations between FVS and GR in field conditions are questionable.

5.1. Variability of the Symptomatology

Many FVS have low specificity [99,100] and can be more likely attributed to other factors than O3,
such as high solar radiation, early leaf senescence, or lack of nutrients. Leaf reddening and bronzing,

https://www.eea.europa.eu/themes/air/national-emission-ceilings/national-emission-ceilings-directive
https://www.eea.europa.eu/themes/air/national-emission-ceilings/national-emission-ceilings-directive
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two of the more widespread visible manifestation considered as O3 symptoms, are strongly dependent
on high light intensity. Intense solar radiation can be able to produce foliar visible injuries also without
the presence of the O3 itself [101].

5.2. Variability of O3 Sensitivity within the Same Species

Plants of the same species can react in different ways to the same O3 levels of exposure and/or
foliar uptake in relation to ontogenetic factors, ecological conditions, and genotypes. Epigenetic
factors [102] were not fully explored, but may also be relevant.

5.3. Variability in Plant Communities

The heterogeneity of specific plant composition within a plant community and the variability in
size, age and development, as well as the variability of the ecological conditions make different sites
not comparable each other [16]. The absence of foliar visible symptoms does not imply an absence of
O3 pollution and an absence of O3 risk for vegetation.

6. Discussion

Foliar visible symptoms represent a wide and heterogeneous biological aspect that includes
manifestations and processes with different physiological and ecological meanings. Relationships
between FVS and O3 uptake can be verified only on standard plant material, homogeneous for genetic
features and condition of cultivation, i.e., by applying a classic “bioindicator” approach [103]. In the
case of trees, poplars have been proposed as model species [104,105]. In a perspective of “passive”
bioindication, promising results were obtained by using one species at a limited regional scale [106].
Leaves of Viburnum lantana plants were found to have widespread symptoms (reddening) in sites with
higher O3 concentrations, with a response consistent across space and different years. Similar results
were obtained with Pinus cembra L. [9] and Pinus halepensis Mill. [107].

The most typical foliar symptoms, HR-like, are related to high O3 stomatal flux rates (that are, in
turn, connected to high stomatal conductance and photosynthetic rates) and low defense investments.
Plant species with these characteristics are also fast-growing species and have high nitrogen content
and specific leaf area (SLA). In addition, they show indeterminate growth and the ability to produce
new leaves for compensatory photosynthesis during the whole growing season. These features are
typical of early successional plant species [108,109], or demanding species growing in an optimal
condition of soil, mineral nutrition, and water supply. In such conditions, trees under stress tend
to not defend their leaves and to substitute the damaged ones (to limit respiration losses) with new
more efficient leaves. This is a way to sustain growth even under stressful situations. In opposite
conditions, i.e., in late successional species, especially growing on low fertility soils, leaves have low
SLA, and the metabolic investment per leaf is high. Trees under stress tend to defend their leaves
producing antioxidant compounds and closing the stomata, so reducing their photosynthetic rate,
and consequently, their growth rate. According to the universal adaptive strategy theory [110], FVS
are a typical response of ruderal and competitors plant species, whereas GR without FVS may be
more common in the stress-tolerant species. In other words, the strategies of resistance, recovery
and resilience of forest tree species are dependent on their functional group, successional position,
ecological behavior, and, ultimately, on their phylogenetic history. Only considering all these aspects,
it is possible to understand the different responses of trees to O3 and other environmental stresses.

Growth reduction, as an indicator of damage, has a clear meaning when it is referred to productive
systems (“economic” damage), but does not fit properly in natural ecosystems where biodiversity
conservation is the main purpose of the management. According to Körner [111], the biomass
production (yield) is an agronomic concept that can be applied in productive systems with no limitation
of environmental resources, but it does not apply to a plant community. In ecology, the state of a system
relies on the reproductive fitness and species abundance. There are no or limited field evidences about
a possible impact of O3 on the structure and composition of forest ecosystems, as well on their internal
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dynamics and the relationships between biotic and abiotic components, although a modeling approach
suggests that in many eco-regions O3 risks will persist for biodiversity at different trophic levels and for
a range of ecosystem processes and feedback [112]. In such a context, tropospheric O3 pollution should
be considered as a component of global change together with increasing drought and temperature,
CO2 atmospheric concentration, nitrogen deposition, UV radiations, and so on [113]. The interactions
are complex, both synergistic and antagonistic, and the contribution of each factor may vary in space
and time. Potters et al. [114] suggest that a maze of interchangeable physiological and molecular
processes, rather than a single pathway, is responsible for the induction of the responses of plants under
different stress conditions. In this perspective, GR can be considered as a form of acclimation for plants
reaching out for a new equilibrium in a changing/changed environment, rather than true damage at
physiological and/or ecological level [115]. Damage may occur when the progressive harshening of the
environmental factors or the recurrence of extreme events overcome the capacity of the ecosystems to
maintain or to restore the ecological equilibrium.

7. Conclusions

The findings present a claim for a reconsideration of the concept of O3 “sensitive” or “resistant”
species since such species classification may change, taking into consideration different physiological
responses within an ecological context. The analysis of the available literature on the relation between
FVS and GR due to tropospheric O3 stress suggests that the current knowledge and the state-of-art can
be biased by different factors: (i) the experiments in controlled conditions were carried out mostly
on species already supposed as sensitive (at least in relation to FVS), and these results can hardly be
used for the comprehension of the processes in natural conditions; (ii) mature trees have different
physiological behavior compared to seedlings, and controlled condition experiments on seedlings may
be used more properly to study the impact of O3 on tree regeneration in the gaps and at the edge of the
forest, rather than on mature trees.

Ecological indicators such as tree mortality and regeneration [116], or physiological indicators
such as the dynamic of non-structural carbohydrates [117] and photosynthetic efficiency [118], may be
more appropriate for assessing potential damage at ecosystem level.
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