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 30 

Abstract 31 

Free N-glycans (FNGs) are ubiquitous in growing plants. Further, acidic peptide:N-glycanase 32 

(PNGase) is believed to be involved in the production of plant complex type FNGs (PCT-33 

FNGs) during the degradation of dysfunctional glycoproteins. However, the distribution of 34 

PCT-FNGs in growing plants has not been analyzed. Here, we report the occurrence of PCT-35 

FNGs in the xylem sap of the stem of the tomato plant. 36 
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 39 

Free N-glycans (FNGs) ubiquitously occur in various eukaryotes, including animals and 40 

plants, and it is believed that some of these FNGs are produced from misfolded glycoproteins 41 

by cytosolic peptide:N-glycanase (cPNGase) and endo-b-N-acetylglucosaminidase (ENGase) in 42 

the ERAD system. On the other hand, in plants, an alternative acidic PNGase, (aPNGase, 43 

optimum activity at acidic pH), plays a pivotal role in the release of plant complex type N-44 

glycans bearing a-1-3 fucosyl and/or b-1-2 xylosyl residue(s) from glycopeptides or 45 

glycoproteins during metabolic degradation of such proteins when they have become 46 

dysfunctional. Plant aPNGases have been purified and their molecular characterization has been 47 

reported [1–5]; in addition, the enzyme products, FNGs carrying the chitobiosyl unit at their 48 

reducing end side (GN2-type), have been found in seedlings, fruits, seeds and tissue-culture 49 

broth [6–11]. Although the high-mannose type FNGs (HMT-FNGs) with one GlcNAc residue at 50 

their reducing end side (GN1-type) occur in the cytosol, the occurrences of GN1- or GN2-type 51 

PCT-FNGs in the apoplast fluid of growing plants is still unknown. We analyzed, therefore, the 52 

occurrences and structural analysis of free oligosaccharides in the xylem sap. In this study, we 53 

found for the first time that GN2-type PCT-FNGs and several exoglycosidase-activities 54 

involved in their degradation occur in the xylem sap of tomato plants, indicating that FNGs 55 

produced by aPNGase are secreted into the apoplast space and degraded in the apoplast fluid or 56 

xylem sap. 57 



 

 
 3 

Tomato seeds (KGM 172, Kagome Co. Tochigi, Japan) were placed on sterile vermiculite 58 

under a 16-h-light/8-h-dark photoperiod at 24℃ until germination. Nineteen-day-old seedlings 59 

were transferred to 10.5 cm pots containing sterile culture soil (Metro-Mix 350, Sun Gro 60 

Horticulture MA, USA) and incubated under a 16-h-light/8-h-dark photoperiod at 24℃. Water 61 

was supplied every two days, and a HYPONeX® solution (1,000 times diluted with water) was 62 

supplied every two weeks. Stems of 55-day-old seedlings were decapitated at approximately 5 63 

cm above the roots with a stainless-steel razor. After discarding the first two or three drops of 64 

exudate emerging from the cut surface on the root side, we washed the cut surface with distilled 65 

water and collected the exudate as xylem sap in tubes on ice [12]. The xylem sap extruding on 66 

the top of the stems was collected by micropipette with a 200-µL tip. The sample solutions were 67 

stored at -20oC until use. Total xylem sap (4.6 mL) was centrifuged and filtered with a 68 

VIVASPIN 15R (MWCO 10,000) (Sartorius Stedim Biotech, Goettingen, Germany) at 15,000 x 69 

g for 20 min. The resulting filtrate (4.0 mL) was used for the structural analysis of free glycans 70 

and the concentrated solution (0.6 mL, 700 µg protein/mL)) was used for the assay of 71 

exoglycosidase activities.  72 

Filtrates (1 mL each) were desalted by gel-filtration using a Sephadex G-25 superfine 73 

column (1.5 x 16 cm) in 0.1 N NH4OH, and the oligosaccharide-fraction was lyophilized. The 74 

resulting oligosaccharides were pyridylaminated by the method previously described [10,11]. 75 

After gel filtration to remove of excess 2-aminopyridine, PA-sugar chains were partially 76 

purified by RP-HPLC using a Cosmosil 5C18 AR column (6.0 x 250 mm, Nacalai Tesque, 77 

Kyoto) [10,11], and the pyridylaminated N-glycan fraction was pooled as indicated by a 78 

horizontal bar in Fig. 1-I. Structural features of the PA-sugar chains obtained by RP-HPLC 79 

were analyzed by SF-HPLC using an Asahipak NH2P-50 column (0.46 x 25 cm, Showa 80 

Denko, Tokyo) [10,11]. As shown in Fig. 1-II, five PA-sugar chains (peaks a-e) were observed, 81 

and each elution position was compared with that of authentic PCT N-glycans purified from 82 

water plant glycoproteins or Japanese cypress pollen allergen (Cha o3) [13,14]. The elution 83 

positions of peaks a, b, c, d, and e on SF-HPLC, coincided with those of 84 

Man2Xyl1Fuc1GlcNAc2-PA (M2FX), Man3Xyl1Fuc1GlcNAc2-PA (M3FX), 85 

GlcNAc1Man3Xyl1Fuc1GlcNAc2-PA (GN1M3FX), GlcNAc2Man3Xyl1Fuc1GlcNAc2-PA 86 

Fig. 1 
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(GN2M3FX), and Gal1Fuc1GlcNAc2Man3Xyl1Fuc1GlcNAc2-PA ((Lea)1GN1M3FX), 87 

respectively. These structures were further analyzed by exoglycosidase digestions (Fig. 1-II-2, -88 

3). Peak e was converted to peak d, (GN2M3FX), by the sequential digestion with a-1,3/4-89 

fucosidase and b-1,3/6-galactosidase, suggesting that PA-sugar chains in peak e must be 90 

modified with one unit of Lewis a epitope at the non-reducing terminals. Finally, PA-sugar 91 

chains, peaks c and d, and the enzyme digests obtained from peak e, were converted to peak b 92 

by jack bean b-N-acetylglucosaminidase, suggesting modification with N-acetylglucosamine 93 

(GlcNAc) residue(s). These results indicated that the GN2-type PCT-FNGs including the Lea-94 

containing glycan, but not GN2-type HMT-FNGs, dominantly occur in tomato xylem sap, 95 

suggesting that these GN2-type FNGs must be produced by aPNGase from the glycopeptides 96 

formed by proteolysis of secreted glycoproteins that have become dysfunctional.  In the 97 

previous report [11], we also found the GN2-type PCT-FNGs such as (Lea)1GN1M3FX , 98 

GN2M3FX, and M3FX in the culture broth of rice cells and M3FX was a major component, 99 

indicating a similar structural feature to that of GN2-FNGs found in the tomato xylem sap.  100 

However, in the rice culture broth, GN1-type HMT-FNGs were also found in the extract of rice 101 

cells [11].  These GN1-type PCT-FNGs, however, could not be detected from the xylem sap in 102 

this study, suggesting that GN1-type PCT-FNGs must be rapidly degraded by several 103 

exoglycosidases after secretion into the apoplast fluid while GN2-type PCT-FNGs accumulate. 104 

In fact, the a-mannosidases were more active toward GN1-type FNGs than GN2-type FNGs 105 

[15, 16], indicating that the reducing end GlcNAc residue in GN2-type FNGs decreased the 106 

reaction rate of the glycosidase.  On the occurrence of GN1-type PCT-FNGs in the cell culture 107 

broth, we have proposed a new biosynthesis mechanism responsible for the production of these 108 

GN1-type PCT-FNGs [11,17], since the plant ENGase was almost inactive toward the plant 109 

complex type N-glycans bearing a-fucosyl and/or b-xylosyl residue(s) [18,19].  The proposed 110 

mechanisms for the production of GN1-type PCT-FNGs are as follows. GN1-type HMT 111 

produced from the misfolded glycoproteins by PNGase and ENGase in the plant cytosol may be 112 

transported back to the ER, and then the GN1-type HMT-FNGs may be processed to the GN1-113 

type PCT-FNGs in the Golgi apparatus, and finally the resulting processed N-glycans, GN1-114 

PCT-FNGs, must be secreted into the extracellular or apoplast fluid [11,17]. In fact, we have 115 
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recently found that both GN1-type and GN2-type HMT-FNGs occur in the microsome fraction 116 

prepared pumpkin seedlings [20]. 117 

M3FX was a major FNGs in the xylem sap (196 pmol/mL as a pyridylaminated glycan), 118 

although other PCT-FNGs also occur as minor components (GN1M3FX; 61 pmol/mL, 119 

GN2M3FX; 45 pmol/mL, M2FX; 65 pmol/mL, (Lea)1GN1M3FX; 8.5pmol/mL). These results 120 

suggested that several kinds of exoglycosidases involved in the degradation of FNGs might 121 

occur in the xylem sap, and we analyzed a-mannosidase (a-Man’ase), b-N-122 

acetylglucosaminidase (b-GlcNAc’ase), b-galactosidase (b-Gal’ase), and a-fucosidase (a-123 

Fuc’ase) enzyme activities in the same xylem sap. Each exoglycosidase activity was assayed at 124 

pH 4.5 using various pyridylaminated N-glycans and the concentrated xylem sap (80 µL 125 

containing about 56 µg protein). The reaction mixtures were incubated at 37oC overnight. After 126 

stopping the enzyme reactions in boiling water, the enzyme products were analyzed by SF-127 

HPLC using an Asahipak NH2P-50 column (0.46 x 25 cm) as described previously [21-23]. 128 

As shown in Fig. 2, activity of all four exoglycosidases was detected in xylem sap. Significant 129 

activities were measured for a-Man’ase and b-GlcNAc’ase, while that of a-Fuc’ase was 130 

moderate. These results suggested that the GN2 PTC-FNGs produced by aPNGase are degraded 131 

in the xylem sap by a combination of several exoglycosidases, although the degradation rate of 132 

M3FX by a-Man’ase seems to be slow, which explains the predominance of this structure in the 133 

xylem sap. The accumulation of free M3FX in the tomato xylem sap seems to suggest that the 134 

occurrence of the b1-2 xylosyl and a1-3-fucosyl resides on the core penta saccharide structure 135 

(Man3GlcNAc2) should decrease the reaction rate of the tomato a-mannosidase as described in 136 

the previous report [21].  137 

Given that xylem sap flows from the roots to the leaves and fruits unidirectionally, it 138 

follows that the GN2 PCT-FNGs found in the xylem sap collected from the stem near the root 139 

must be transferred or distributed to the upper parts of the plant such as the leaves, fruits, and 140 

other developing tissues. Although the physiological function(s) of these free N-glycans is still 141 

unknown, our study has confirmed, for the first time, the occurrence of GN2 PCT-FNGs and 142 

several secreted exoglycosidases involved in their degradation, in the xylem sap.  143 

 144 

Fig. 2 
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Figure Legends 230 

Figure 1. HPLC-profiles of PA-sugar chains obtained from tomato xylem sap and their 231 

glycosidase digests.  232 

I, RP-HPLC profile of PA-sugar chain prepared from xylem sap.  233 

GN1 FNGs, elution range for GN1-type free N-glycans; GN2 FNGs, elution range for GN1-234 

type free N-glycans.  235 

II, SF-HPLC profiles of exoglycosidase digests of GN2 type FNGs obtained in I. 1, SF-HPLC 236 

profiles of PA-sugar chain obtained in I; 2, a-Fuc’ase digest of 1; 3, b-Gal’ase digest of 2; 4, 237 

b-GlcNAC’ase digest of 3. R means GlcNAcb1-4(Fuca1-3)GlcNAc-PA. 238 

 239 

Figure 2. Analyses of exoglycosidase activities (a-Fuc’ase, b-Gal’ase, b-GlcNAC’ase, and a-240 

Man’ase) by SF-HPLC.  241 

I, a-Fuc’ase activity. G2F2GN2M3FX-PA was used as a substrate and incubated with the 242 

xylem sap (80 µL containing about 56 µg protein) at pH 4.5, 37oC overnight. The reaction 243 

mixture was analyzed by SF-HPLC using a Shodex NH2P-50 column (4.6 x 250 mm) and the 244 

elution program as described previously [11,13,14]. 1, substrate; 2, treated with xylem sap. II, 245 

b-Gal’ase activity. G2GN2M3-PA was used as a substrate. 1, substrate; 2, treated with xylem 246 

sap. III, b-GlcNAc’ase activity. GN2M3FX-PA was used as a substrate. 1, substrate; 2, treated 247 

with xylem sap. IV, a-Man’ase activity. Man9GlcANc2-PA was used as a substrate. 1, substrate; 248 

2, treated with xylem sap. 249 

 250 

 251 
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