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Abstract
We showon theoretical grounds that, even in the presence of noise, probabilisticmeasurement
strategies (which have a certain probability of failure or abstention) can provide, upon a heralded
successful outcome, estimates with a precision that exceeds the deterministic bounds for the average
precision. This establishes a newultimate bound on the phase estimation precision of particular
measurement outcomes (or sequence of outcomes). For probe systems subject to local dephasing, we
quantify such precision limit as a function of the probability of failure that can be tolerated.Our results
show that the possibility of abstaining can set back the detrimental effects of noise.

1. Introduction

Quantum-enhanced precisionmeasurements and sensors are some of themost disruptive quantum
technologies [1], with applications across various disciplines, e.g., optical communications [2, 3], cryptography
[4], brain and heartmedical diagnosis via atomicmagnetometry [5, 6], biologicalmeasurements [7, 8], and are
critical in gravitational-wave detectors [9, 10] andGPS and other current technologies that rely on atomic clocks
[11–14].

The above are examples of the so-called quantummetrology problems. In broad terms ametrology problem
can be cast as a four step process: the preparation of a probe, its controlled evolution that imprints in the probe
the (continuous) unknown parameter to be estimated, ameasurement on themodified probe, and a final data-
processing to obtain the value of the unknown parameter. The accuracy of the estimation is limited by the
experimental imperfections and, ultimately, by the noise inherent in any quantummeasurement. Classically,
one can reduce the effects of noise in a given setup by repeating the experiment on n independent preparations of
the probe [15]. The uncertainty of the estimation is thereby reduced by a factor -n 1 2 (the so-called standard
quantum limit, SQL). However, in a fully quantummechanical setting, the possibility of using entangling
operations in the preparation and in themeasurement steps gives rise to an uncertainty that scales as -n 1 (the so-
calledHeisenberg limit or scaling).

Recent experimental advances that enable an unprecedented control of diverse optical and condensed
matter systems at a quantum levelmake quantummetrology an extremely timely field of research [16]. In the last
years, the agenda of quantum-enhancedmetrology has been put under scrutiny by a number of results[12, 17–
21] that show that under quite generic (local, uncorrelated andmarkovian) experimental noise the quantum
enhancement amounts to a constant factor rather than a quadratic improvement. Thefield has revamped in
search for alternative schemes that push forward the limits and circumvent or diminish the detrimental effect of
noise. This has entailed the study of particular systemswith non-trivial noise-models [22–26], and nonlinear
interactions [6, 27] that enable quantum error-correction codes [28–31].

Most quantummetrology schemes found in the literature and their corresponding bounds are
deterministic. That is, these schemes are optimized in order to provide a valid estimate for each possible
measurement outcome, in such away that the average precision ismaximized. Recently it has been shown that
for afixed probe state, and in the absence of noise, the precision of some particular (favorable) outcomes can be
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greatly enhanced, well beyond the limits set for deterministic strategies[32–35]. The possibility to post-select,
i.e., to abstain fromproviding an estimate some times, can even change the uncertainty fromSQL toHeisenberg
scaling. It has also been shown that the limit on the precision of these probabilisticmetrology strategies agrees
with that found for deterministic strategies when the optimization over probe states is performed. So, for pure
states, probabilisticmetrology can compensate a bad choice of probe state, or in otherwords, it can attain the
optimal precision bounds in situations where the probe state is a given.

Here we study the performance of probabilisticmetrology in the presence of noise.Wewill show that
probabilisticmetrology can substantially lessen the effects of local dephasing noise, although not enough to
overcome the infamous loss of asymptoticHeisenberg scaling [17, 18]. In addition, and in contrast to the
noiseless ideal case, the ultimate precision bounds for probabilisticmetrologywill be shown to exceed those
attained by deterministic strategies optimized over probe states.

To put these results into context, we recall that inmost quantummetrology schemes the probe is a
compositemade up of a large number of elementary quantum systems [1–35].We then envisage the following
situation: an ensemble offifty-thousand two-level atoms has been prepared in a knownprobe state ρ and is
awaiting for a signal coming from a supernova, such as a gravitational wave or some byproduct of a gamma
burst. The experiment is designed in away that the signal will leave an imprint on the state of the atoms, r r q,
that will depend on the value of some relevant physical parameter θ of the signal. The experimenter will perform
ameasurement on the atoms andwill try to infer from the outcome the unknown value ofθ. The experimental
set-up is perfectly calibrated and characterized. At a certain time the long-awaited event occurs. Conditional on
the obtainedmeasurement outcome, the experimentalist reports a value of q = 2.23with amean square error
of s = -102 7. How should the community react if the reported error is smaller than the (deterministic) bounds
found in current literature, e.g. , sá ñ > = ´ -n1 2 102 4?

The direct answer is that the community should celebrate the result without reservation. The error obtained
in a single outcome can be smaller than the corresponding limits found in the literature, which are based on
bounds on the average error over all outcomes. It is no surprise that the precision depends onwhat particular
observation one happens to obtain: some observations are better,more informative, than others. The apparent
contradiction disappears when one realizes that ultra-precise outcomes can only occur if infra-preciseoutcomes
also exist (so as to respect the deterministic bounds).

Here we show that by a suitable choice ofmeasurement it is possible to obtain ultra-precise outcomes, whose
precision is still limited, but goes beyond the (average) bounds established for deterministic quantummetrology
protocols.We also show that such ultra-precise outcomes can only occurwith a small probability.

In a scenario where each outcome can have a different precision, the criterion for optimality is by nomeans
unique. In a classical setting there is no compromising choice to bemade.One canfind the optimal estimator
and precision for eachmeasurement outcome independently. However, in the quantum case one needs tofix the
POVM through some criteria. The ultimate quantum limit is obtained by choosing a POVM that produces an
outcomewith the highest possible precision; deterministic protocols are optimized in order to produce the
highest possible precision on average (over all possible outcomes). The protocols that we study here under the
name of probabilistic quantummetrology interpolate between these two cases, by optimizing the precision of
successful outcomeswith the constrain that they occurwith some prescribed probability.

Understanding the power of probabilistic operations in general quantum tasks is a highly non-trivial and
relevant problem. Probabilistic operations introduce through normalization a very particular nonlinearity that
is in stark contrast with the linearity of quantumdeterministic operations.Many no-go theorems stem from
linearity and probabilistic operationsmight revoke them, turning the once-thought impossible into possible.
Notable examples include unambiguous state discrimination, whereby non-orthogonal states can be
distinguishedwith no error[36] (see [37, 38] for generalizations); probabilistic cloning [39] the KLMscheme
[40], whereby Bellmeasurements can be realized by linear optical elements [41]; also, related to the current work
(see discussion)we find probabilistic amplification [42–47] andweak-value amplification[48–52].

Although the probability of attaining the ultimate bounds is often small, at a fundamental level it is
important to distinguish between ultimate versus de facto quantum limits. Nomatter howunlikely an event is,
once it occurs it is a certainty; and certainties cannot violate ultimate bounds [53]. This fundamental distinction
has alsomotivated the definition of a complexity class in quantum computing [54]. All in all, post-selection can
be considered a resource per se in quantum information tasks, and this paper is devoted to the study of its power
formetrological tasks in realistic noisy scenarios.

Ourwork becomes particularly relevant in applications where: (a) there are high demands on precision.We are
already at a stagewhere quantummetrology is required to push the limits of precision.Hence itmight well be
that a knownoptimal deterministic protocol, e.g., the phase covariantmeasurement, fails to provide the
precision required for a specific task, whereas a probabilistic scheme does not. There are tasks for which having
an estimate below a certain precision is at least as bad as having no estimate at all. For instance, when locating a
tumor in radiation therapy, or some deeply buriedmagnetizedmaterial for its extraction,missing the true
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position of the target bymore than certain threshold value can have disastrous consequences. (b)Resources are
fixed. As in the first example above, itmight be impossible to repeat an experiment (for a given instance of the
unknownparameter).

In real life applications, we care about the precision attainable in absolute terms.Wewish to add consistent
error bars to our estimates, not just demonstrate a particular scaling of the uncertainty as the number of
resources increases. Our results hold both forfinite and asymptotically large number of resources. Fixing the
number of resources is not only necessary to state optimality in a clear-cut way. Inmany situations the
limitations on the available resources are patent. Itmight be a given, as in themeasurement of themagnetization
of a particularmagnet; or in themeasurement of a parameter that changes rapidly with time (a requirement in
some feedback schemes). Last but not least, there are situations inwhich the experiment is impossible to
reproduce because the event under study is uncontrollable, e.g., a supernova or the arrival of a gravitational
wave. It is precisely in observational astronomywhere the (classical) bayesian approach to statistical inference,
onwhich our analysis relies, is widely used in current studies (see for instance [56]).

This paper is organized as follows. Section 2 describes the theoretical framework of this work.We state the
general working assumptions and discuss the statistical approach(es)used throughout the paper. Section 3
contains the corefindings of our work. To ease the presentation, we have divided it into different sections that
contain different results.We give general expressions for the uncertainty and probability of success for covariant
measurements, closed expressions for asymptotically large number of resources aswell as the optimal probe
states and the ultimate precision bounds.We also address the issue of the information left in the system after a
discarded event. In the last sectionwe state ourmain conclusions and discuss possible implementations of our
scheme.More technical results are presented in the appendices. In particular, appendix A introduces specific
notation that is used in the derivation of some of these results.

2. Framework

In this sectionwe introduce our framework in detail.We set out our physical assumptions and goals, and discuss
why, in view of these assumptions, the Bayesian formulation suits our purpose better, while also allowing for a
straightforward extension to the probabilistic case. Alternatively, theminimax approach, or worst case scenario,
is alsowell suited. For the problem at hand, the later is shown to be equivalent to the Bayesian formulation. The
relationshipwith the frequentist approach is discussed at the end of the section.

Our framework consists of the following:

(a) A model. We assume there exists a model that formalizes the ‘state of the world’ and the measurement. In
our case the former is given by the quantum staterq (see section 3) of a physical systemof interest, whereθ
is a real parameter. It can, of course, take into account noise sources and other experimental imperfections.
Themeasurement outcomes and the state of theworld are related through ameasurementmodel (Born’s
rule in our case) that gives the probability distribution of the outcomes for a given θ. The true value ofθ is
assumed to be unknown, while the rest of themodel parameters are knownwith high precision. Our goal is
to infer the value ofθ from the observedmeasurement outcome.

(b) A fixed amount of resources.We view the size of the probe state rq as the amount of resources of the problem.
More precisely, we quantify the amount of resources by the number n of qubits that the estate rq describes.
Accordingly, if an experiment consists of repeating ameasurement on independent copies of a systemofN
qubits a number ν of times, the total number of resources used is n=n N .

(c) An optimization over measurements. To establish ultimate bounds on the precision that can be achieved with
given resources, we optimize over allmeasurements, themost general being a single collectivemeasurement
on thewhole available resources, i.e., onrq. Hence, in our framework the inference protocols are single-
shot. Namely, in each instance of the problem the state of theworld is labeled by a particular (unknown)
value ofθ, and themeasurement returns a single outcomeχ out of the various possible outcomes of the
measurement. Based onχ, an estimateqc of the true value ofθ is produced.

Note that this characterization is fully general and includes strategies where each qubit or subsystem is
measured individually, inwhich case every collective outcome is labelled by a sequence of individual
measurement output labels.Without loss of generality, we can label themeasurement outcomes by the value q̂
of the corresponding estimate (see section 3).

(d) A report of precision. After a successful completion, the scheme should return an estimate q̂ of the true
parameter θ, togetherwith suitable error bars. Error bars are essential in any scientific or technological

3

New J. Phys. 18 (2016) 103049 J Calsamiglia et al



discipline, as they quantify the confidence one should place in conclusions drawn from existing data. Such
an assesment of the precision should be quantified bearing inmind that thewhole set-up is single-shot, i.e.,
the experiment will not be necessarily repeated, and that the true value of the parameter is unknown.Hence,
the precision assessment can only be based on themeasurement outcome and on the precise knowledge of
themodel in(a).

To carry out (c) and (d)weneed to introduce a so-called cost or loss functionℓ ( ˆ)q q, that quantifies how

well our estimate q̂ agrees with the true value of θ. There are a priory infinitelymany such functions, but two
common choices inmetrology are the quadratic loss function ℓ ( ˆ) ( ˆ)q q q q= -,q

2, and

ℓ ( ˆ) [( ˆ) ]q q q q= -, 4 sin 2p
2 if θ belongs to a periodic domain.Note that they are equivalent to leading order in

q̂ q- , when the estimate approaches the true value, q̂ q» .
The Bayesian formulation offers a very natural and rigorousway to assign a quantitative precisionmeasure

to a particular outcome q̂. In this formulation the unknown parameter θ is treated as a randomvariable and it is
assigned a (prior) probability ( )p q . This probability reflects the knowledgewe have on the state of theworld
prior tothemeasurement. After performing themeasurement, the observed outcome and our knowledge of the
model is used to update the prior ( )p q to the posterior probability distribution ( ∣ˆ)q qp . Using Bayes’ rule, we can

write ( ∣ˆ) (ˆ∣ ) ( ) (ˆ)q q q q p q q=p p p , with (ˆ) (ˆ∣ ) ( )òq q q q p q=p pd . Then the uncertainty of an outcome q̂ is
defined as

ℓ( ∣ˆ) ( ˆ) ( )ˆ ò q q q q q=qL pd , . 1

Thus, q̂L quantifies how the unknown value θ is scattered around its estimate q̂, in the light of the information
gathered by themeasurement.

In general, the various outcomes of a givenmeasurement have different precision.Hence, to quantify the
overall performance of ametrology scheme by a singlefigure ofmerit we take the average uncertainty over all
possiblemeasurement outcomes

ℓˆ ( ˆ) ˆ ( ˆ) ( ˆ) ( )ˆò ò òq q q q q q q q= =qL p L pd d d , , , 2

where the joint probability is ( ˆ) (ˆ∣ ) ( )q q q q p q=p p, . Equation (2) is the expected loss L, given by the average
over allpossible values of the unknown parameter θ andoverallmeasurement outcomes.

With this inmind, we now focus on probabilisticmetrology. As discussed in the introduction, we can
improve performance if we give up on the idea of deterministic protocols, by allowing for failures to perform the
tasks they have been designed for. Accordingly, probabilisticmetrology protocols will either succeed and
provide a precise estimate q̂, or warn of failure (abstain). Following these premises, thefigure ofmerit for such
protocols are givenby the average uncertainty of the successful outcomes, i.e.,by

ˆ ( ˆ∣ ) ( )ˆò q q= qL p Ld succ . 3s

Conditional expectations such as this are the cornerstone of bayesian estimation. Their use is wide-spread and
established in a number of disciplines, such as control theory or signal processing, where an accurate and
rigorous assessment of the precision is required—see for instance [57]. In order to give a complete
characterization of the probabilistic protocol, one should supplement the attained uncertainty Ls, with the
corresponding probability of success,S.Wewill derive the tradeoff curve ( )L Ss that gives theminimum
uncertainty for everyfixed value of the success probabilityS. In particular, by computing ( ) L SlimS 0 s wewill
show that there is an ultimate quantum limit in the precision of an estimate inferred from any outcome of a
quantummeasurement.

At this point, it should be clear that a probabilisitic protocol, as defined above, is notmeant to be repeated
until it succeeds [58]. Obviously, such a strategywould be ultimately deterministic (it will always end up
providing an estimate) and, thus, it could not outperform the optimal deterministic protocol for the same total
amount of resources. Only with some pre-establish success probability can probabilisticmetrology provide a
guaranteed precision for a given amount of resources.

We next outline an alternative approach that is often used in quantummetrology and point out the
differences with the global single-shot framework defined above. The so-called pointwise approach aims at
minimizing the dispersion of the estimatesq̂ that results from the noise inherent to quantummeasurements. It
assumes that the true value of the parameter θ isfixed (i.e., it is not a randomvariable), and that themetrology
protocol can be repeated an arbitrary number of times; it is a frequentist framework. It is customary to quantify
the precision of the protocol by themean square error
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ℓˆ ( ˆ∣ ) ( ˆ) ( )ò q q q q q=q pMSE d , , 4q

which indeed gives ameasure of how the estimates would scatter around the true value if the protocol is repeated
many times. Note that if a prior ( )p q were supplied, one could compute the average over θ, thus recovering the
expression of the Bayesian expected loss in equation (2) for the quadratic loss function.

The celebrated quantumCramer–Rao bound [59] provides a lower bound to qMSE that can be readily
computed. In addition, one can often argue that the Cramer–Rao bound can be attained in the asymptotic limit
of large number of resources by a suitable two-step adaptive protocol. However, the assumptions underwhich
the quantumCramer–Rao bound holds, and the conditions underwhich the bound is attained entail some
subtleties that are often ignored and that can lead to erroneous conclusions [60, 61] andmisleading accounting
of resources (see for instance [62, 63]). In the particular case of probabilisticmetrology, the direct application of
the pointwise approach can lead to unphysical results, as pointed out in [64].

The Bayesian approach has beenwidely used to assess the performance of quantum information protocols
such as teleportation, state estimation, universal cloning and quantummemories. Despite itsmany advantages,
which include a straightforward accounting of resources and its validity even for a small (non-asymptotic)
number of resources, it also has some drawbacks: optimal bounds are usually hard to compute and there is no
general prescription to choose the prior ( )p q . In the case at hand (estimation of a phase θ) these drawbacks can
be easily evaded, as the symmetry of the problem simplifies the calculations significantly while providing a valid
justification (Laplaces principle of insufficient reason) to choose a uniformprior on ( p- , ]p .

There is still another approach that suits our framework and does not require a prior distribution: themini-
max approach, whereby the average over the unknownparameter θ is replaced by its worst-case value:

ℓˆ ( ˆ∣ ) ( ˆ) ( )
( ]

ò q q q q q=
q p pÎ -

L psup d , succ , , 5wc
,

where the optimization is over all possible quantummeasurements. As shown in appendix F, for phase
estimation the optimal worst-case loss, equation (5), and the expected loss, equation (3) are equivalent.

3Results

3.1.Optimal probabilisticmeasurement forn-qubits
In the scope of this paper,metrology aims at estimating the parameter θ that determines the unitary evolution,

≔q q
ÄU u n, of a probe systemof n qubits in the presence of local decoherence, where ( ∣ ∣)q= ñáqu exp i 1 1 .

As depicted infigure 1, the initial n-partite pure state∣ ∣y y yñá = (this shorthand notationwill be used
throughout the paper) is prepared and is let evolve. The state is affected by uncorrelated dephasing noise, which
can bemodeled by independent phase-flip errors occurring with probability ( )= -p r1 2f for each qubit. Its

action on the n-qubits is described by amapD that commutes with theHamiltonian, so that it could aswell be
understood as acting before or during the phase imprinting process.

Next, the experimentalist performs a suitablemeasurement on D( )†r y=q q qU U and, based on its outcome,

decides whether to abstain or to produce an estimateq̂ for the unknownparameterθ. Note that this decision is

Figure 1.Probabilisticmetrology protocol. Pictorial representation of a probabilisticmetrology protocol with n qubits (depicted by
small Bloch spheres). The probe state ∣yñ, which needs not necessarily be a product of identical copies, undergoes an evolution

=q q
ÄU u n controlled by the unknown parameter θ. Experimental noise D decoheres the systembefore a collectivemeasurement on

all qubits is performed. Themeasurement apparatus either returns an ultra-precise estimate q̂ of the parameter or shows a failure
signal. In the event of a failure, some information could be in principle scavenged (see last section in results).

5

New J. Phys. 18 (2016) 103049 J Calsamiglia et al



based solely on the outcome of themeasurement as, naturally, the actual value of θ is unknown to the
experimentalist. Our aim is tofind the optimal protocol, e.g., themeasurement that gives themost accurate
estimates for a given probe state and for a givenmaximumprobability of abstention.

Motivated by the periodicity of the phase, we quantify the uncertainty of the estimated phaseq̂ by the
periodic loss function ℓ ( ˆ)q q,p defined in section 2, and to assess the performance of the protocol we use the
expected loss defined in equations (1) and (3)

ℓ

ℓ

ℓ

ˆ ( ∣ˆ) ( ˆ∣ ) ( ˆ)

ˆ ( ˆ∣ ) ( ˆ)

ˆ ( ˆ ) ( ˆ) ( )

òò
òò
òò

s q q q q q q q

q q q q q q

q q q q q q

º =

=

=

L p p

p

S
p

d d succ ,

d d , succ ,

1
d d , , succ , , 6

2
s p

p

p

where the success probability is ˆ ( ˆ )òò q q q q=S pd d , , succ . Throughout the rest of the paper wewill refer to s2

as the uncertainty for brevity. The uncertainty and the probability of successSwill fully characterize our
probabilisticmetrology strategies. In adition, in the asymptotic limit of large number of resources the
distribution (ˆ∣ )q qp , succ becomes peaked around the true valueθ and the uncertainty (expected loss)
approximates themean-square error (expected loss for quatratic loss functionℓq).

The set { }rq is a so-called covariant family of states [65], as it is generated by the action of a group of unitaries;
{ } ( ]q q p pÎ -U , in our case.We also note that ℓ ( ˆ)q q,p is invariant under the same group action, namely,

ℓ ℓ( ˆ ) ( ˆ)q q q q q q+ ¢ + ¢ =, ,p p for all ( ]q p p¢ Î - , . Because of this, there is no loss of generality in choosing the

measurement to be covariant [65]. Such covariantmeasurements are defined by{ ( )}ˆ ˆ ˆ
† ˆ ( ]p= Wq q q q p pÎ -M U U 2 , ,

whereΩ is the so-called seed of themeasurement. In addition, we have the invariantmeasurement operator
ˆ ( ) ˆ ˆ

† ò q pP = - W
p

p
q q-

 d U U2 that corresponds to the abstention event.With this, finding the optimal

estimation scheme reduces tofinding the operatorΩ thatmimimizes the uncertainty

ℓ( )
ˆ

( ˆ) ( ) ( )ˆ ˆ
†òs

q
p

q r= W
p

p

q qW -
S

S
U U

1
min

d

2
0, tr , 72

p

for afixed success probability [33]

ˆ
( ) ( )ˆ ˆ

†ò
q
p

r= W
p

p

q q-
S U U

d

2
tr . 8

In deriving equation (7)wehave used covariance tofix the value of θ to zero and thereby get rid of the integral
overθ in equation (6), and have defined D( )r y= accordingly.

3.2. Symmetric probes
Wenow focus on probe states consisting n-qubits that are initially prepared in a permutation invariant state.
This family includesmost of the states considered in the literature, our case-study ofmultiple copies of
equatorial-states, and also, as wewill show below, the optimal probe-state for probabilisticmetrology. The input
state is given by

∣ ∣ ( )åyñ = ñ
=-

c J m, , 9
m J

J

m

where =J n 2 is themaximum total spin angularmomentum (hereafter spin for short) ofn qubits and the set
of states {∣ }ñ =-J m, m J

J spans the fully symmetric subspace. Given the permutation invariance of the noisy
channel, the state D( )r y= inherits the symmetry of the probe, and can be conveniently written in a block
diagonal form in the total spin bases [66, 67] (see appendix C)

( )år r
n

= Ä


p , 10
j

j
j j

j

where the state r j has unit trace, pj is the probability of r having spinj, and j stands for the identity in the
nj-dimensionalmultiplicity space of the irreducible representation of spin j. The sumover j in equation (10) runs
from =j 0min ( =j 1 2min ) for n even (odd) to themaximum spinJ. Similarly, themeasurement operators, can
be taken to have the same symmetry and thus be of the form ∣ ∣c cW = å ñá Ä j j j j, where ∣ ∣c ñ = å ñf j m,j m m

j ,

 f0 1
m
j . Theminimumuncertainty ( )s S2 for a fixed probability of success S can hence be expressed in

terms of the uncertainty ( )s sj j
2 in each irreducible block and its corresponding success probability sj
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( ) ( ) ( )
{ }

å ås s= =S
p s

S
s S p smin , , 11

s j

j j

j j
j

j j
2 2

j

where ( )s sj j
2 [sj] is defined by equation (7) (equation (8))withΩ, ρ and q̂U projected onto the subspace of total

angularmomentum j. Recalling that ˆ ˆ= å Äq q
U Uj

j
j, [ ]ˆ

ˆd=
q

q
¢ ¢U ej

m m m m
m

, ,
i (  - ¢j m m j, ) and

ℓ ( ˆ) ˆ ˆq = - -q q-0, 2 e ep
i i , one can easily integrate q̂ to obtain

( )

( )
( ) 

å

å

s r

r

= -

=

+ +s
s

f f

s f

2
2

max ,

subject to .
12

j j
j f m

m
j

m m
j

m
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This formulation of the problem allows for a natural interpretation of the probabilistic protocol as a two step
process: (i) a stochastic filtering channel

F( ) ∣ ∣ ( )år r= F F F = ñá Ä f j m j m, , , , 13
j m

m
j

j
,

that coherently transforms each basis vector as ∣ ∣ñ  ñj m f j m, ,
m
j , so that itmodulates the input to a state with

enhanced phase-sensitivity, followed by (ii)a canonical covariantmeasurement with seed
˜ ∣ ∣W = å å ñá ¢ Ä¢ j m j m, ,j m m j, performed on the transformed state fromwhich the value of the unknown
phase is estimated.

By defining the vector x j with components given by ( )x r= f sm
j

m
j

m m
j

j,
1 2 and introducing the tridiagonal

symmetricmatrixHj, with entries
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d d d

r
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we can easily recast the former optimization problem as

≔ ∣ ∣ ( )
∣

s x xá ñ
x ñ

Hmin , 15j
j j j2

j

∣ ( ) ( ) x x x rá ñ = ssubject to 1 and 0 . 16j j
m
j

m m
j

j,
1 2

Note that a jm, and in turnH
j, depend on the strength of the noise but they take the same values for all symmetric

probe states, since r µ¢ ¢c cm m
j

m m, . For deterministic strategies (S=1, i.e., =s 1j for all j)nominimization is

required and one only needs to evaluate the expectation values ofHj for the ‘state’ ( )x r=m
j

m m
j

,
1 2. Forlarge

enough abstention, the problembecomes an unconstrainedminimization, so s j
2 is theminimal eigenvalue of

Hj, and ∣x ñj its corresponding eigenstate. From equation (16), we find that the corresponding filtering operation
only succeedswith a probability

( )* * *å
r

x
= =S p s s, min . 17

j
j j j

m

m m
j

m
j

,

2

Wewill refer to S* as the critical success probability, since the precisionwill not improve by decreasing the
success probability below this value: ( ) ( )*s s=S S2 2 for *S S .

3.3. Asymptotic scaling: particle in a potential box
In order to compute the scaling of the uncertainty as the number of resources becomes very largewe need to
solve the above optimization problem in the asymptotic limit of  ¥n .We start be analyzing the uncertainty

( )s sj j
2 for blocks of largej. As shown in appendixG, for each such blockwe define the ratios =x m j,

= - - + ¼m j j j, 1, , , that approach a continuous variable as  ¥j . In this limit, { }xj m
j approaches a real

function of x, ( )x jj xm
j , and the expectation value in equation (15) becomes

( ) ( ) ( )

≔ ∣ ∣ ( )

∣

∣


òs
j

j

j j

= +

á ñ

j

j
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ñ
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⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭j
x

x

x
V x x

j

1
min d

d

d

1
min , 18

j
j

j

2
2 1

1 2
2

2

wherewe have dropped some boundary terms that are irrelevant for this discussion, andwhere
≔ ( ) - +x V xd dj j2 2 plays the role of a ‘Hamiltonian’, with a ‘potential’
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. 19j

m
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2

2 2

Furthermore, in equation (18) the function ( )j x must be also differentiable andmust satisfy the conditions

∣ [ ( )] ( ) ˜ ( ) ( )òj j j j
j

á ñ = =
-

x x x
x

s
d 1, , 20

j1

1
2

where for a given large jwedefine ˜ ( )j x through

˜ ( ) ( )r j =j x x
m

j
, . 21mm

j

It is now apparent from equations (18) through(21) that our optimization problem is formally equivalent
tothat offinding the ground-state wave-function of a quantumparticle in a box (  - x1 1) for the
potential ( )V xj and subject to boundary conditions that are fixed by the probe state, the strength of the noise,
and the success probability. Other equivalent variational formulations can be found in [33, 34, 68] for pure states
and in [69] for the pointwise approach.

3.4.Multiple-copies
Although ourmethods apply to general symmetric probes, for the sake of concreteness we study in full detail the
paradigmatic case of a probe consisting of n identical copies of equatorial qubits:

∣ (∣ ∣ ) ( )y ñ = ñ + ñ Ä1

2
0 1 . 22

n
n

cop

Decoherence turns this symmetric pure state to a full rank state with a probability of having spin j givenby

( )
( )

( )


p -

-
-

-
p

J r

e

1
, 23j

J
j J r

r1

2

2

2

where this approximation is valid around its peak, at the typical value =j rJ0 . For each irreducible block and
beforefilteringwe have a signal

˜ ( ) ( )r j
p

 -⎜ ⎟⎛
⎝

⎞
⎠j x

jr
e 24mm

j
rj

x
2

1
4 2

that peaks at x=0with variance ( )á ñ = -x rj22 1.
For deterministic protocols (S=1) the constraints completelyfix the solution: ( ) ˜ ( )j j=x x . The

corresponding uncertainty is obtained by computing the ‘mean energy’ ˜s = á ñj jj
j2 2, in equation (18). For

large j it ismeaningful to use the harmonic approximation ( )  w+V x V xj j
j0
2 2, where ( ) ( )= -V j r r1 2j

0
2

and ( ) ( )w = -j r r1 4j
2 2 2 . The leading contribution to s j

2 comes from the ‘kinetic energy’ (i.e., thefirst term in

equation (18)), which gives ( )˜á ñ = á ñ =j
-p x jr1 4 22 2 1 , whereas the harmonic term gives a sub-leading

contribution. One easily obtains ( )s = -jr2j
2 1. The leading contribution to the uncertainty of the deterministic

protocol is given by s j
2 at the typical spinj0: ( ) ( )s = =- -Jr nr2det

2 2 1 2 1, in agreement with the previous known
(pointwise) bounds.

For unlimited abstention in a block of given spinj (sj very small) theminimization in equation (18) is
effectively unconstrained and the solution (thefiltered state) is given by the ground state ( )j xg of the potential

( )V xj .Within the harmonic approximation, we notice that the effective frequency of the oscillator grows as j ,
and the corresponding gaussian ground state is confined aroundx=0with variance

( ) ( )á ñ = - -x r j r12 1 2 2 1. In this situation both the kinetic and harmonic contributions to the ‘energy’ are sub-
leading, and so are the higher order corrections to ( )V xj . Thus, the uncertainty s j

2 for spinj is ultimately limited
by the constant termVj

0 of the potential. Up to sub-leading order one obtains
( )( ) [ ( ) ]s = - +-r jr r j1 2 1j

2 2 1 1 2 . Thefiltering of ˜ ( )j x to produce the gaussian ground state ( )j xg succeeds

with probability ( )* ~ - +s ej
j r2 log 1 (see appendixD). Note that in the absence of noise (r= 0) the potential ( )V xj

vanishes and the ground state is solely confined by the bounding box  - x1 1. Then, ( ) ( )j p=x xcos 2g ,
which results in aHeisenberg limited precision (the ultimate pure-state bound):s p= n2 2 2 [33, 68].

If the optimal filtering is performed on typical blocks, »j j0, one obtains ( ) ( )s = - r nr12 2 2 , which
coincides with the ultimate deterministic bound found in [17, 69]. This shows that a probabilistic protocol that
uses the uncorrelatedmulti-copy probe state ∣y ñcop can attain the precision bound of a deterministic protocol,
for which a highly entangled probe is required. This bound is attained for a critical success probability

( )* * ~ - +S s ej
nr rlog 1

0
.More interestingly, we can push the limit further by post-selecting on the blockwith

highest spin (by choosing dµf
m
j

j J, ) to obtain
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≔ ( )s s =
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⎛
⎝⎜

⎞
⎠⎟

r

nr

r

n

1
1

2
, 25j Jult

2 2
2

with a critical probability given by * *= ~ -S p s eJ J
n log 2, independently of the noise strength.We note that the

leading order is a factor r smaller than the previously established (deterministic) bound, ( ) ( )s = - r nr12 2 2

[17, 69]. This important enhancement in precision results frompost-selection of high-angularmomentum,
which does not commutewith the noise channel. Hence, in contrast to the noiseless scenario, post-selection is
not equivalent to a suitable choice of input state.

Having understood the two limiting cases of no abstention (the deterministic protocol) and unlimited
abstention, we can nowquantify the asymptotic scaling for an arbitrary success probability ( )s S2 .We use the
Karush–Kuhn–Tucker optimizationmethod tominimize equation (18) under the constraints in equation (20).
For a given value of sj, the so-called complementary slackness condition [34, 70] guarantees that the
solution ( )j x to equation (18) saturates the inequality in equation (20) for x in a certain region called
coincidence set, while it coincides with an eigenfunction of theHamiltonianj, defined after equation (18), for
x outside this region. The continuity of ( )j x and its derivative provide somematching conditions at the border
of the coincidence set and a unique solution can be easily found.

As shown infigure 2, in the case ofmultiple copies the tails of ( )j x coincide with the gaussian profile in
equation (24) scaled by the factor -sj

1 2 for ∣ ∣ >x xc (in the coincidence set), while for ∣ ∣ <x xc thefilter takes an
active part in reshaping the peak into the optimal profile. Clearly, thewider thefiltered region, the higher the
precision and the abstention rate. A simple expression for the leading order can be obtained if we notice thatwith
afinite abstention probability one can change the variance of thewave function in equation (24) but not its j1
scaling.Hence, as for the deterministic case, only the kinetic energy and the constant termVj

0 of the potential
play a significant role. The solution can then be easily written in terms of the pure-state solution [34], which
corresponds to a zero potential inside the box  - x1 1:

( ) ( ) ¯
( )s s s=

-
+ »

-r

nr
r S

r S

nr

1 1 2
, 26j

2 2
2

2 pure
2

2

20

where ¯ ≔ -S S1 is the probability of abstention, spure
2 is the uncertainty for pure states (r=1) and for an

effective number of qubits =n j2eff 0. The pre-factorr takes into account the scaling of the variance of the state
equation (24) as compared to the pure-state case. Thefirst equality of equation (26) uses the fact that only
abstention on blocks about the typical spinj0 is affordable forfinite S. This alsofixes the value ofS to be
approximately s j0

. The simple expression on the right of equation (26) is not an exact bound, but does provide a
good approximation formoderate values of S̄ (see figure 3).We notice that for low levels of noise ( »r 1) one
can have a considerable gain in precision already for finite abstention.

3.5 Finite n
Up to this point, we have given analytical results for asymptotically largen, the number of resources. In order to
get exact values forfinite nweneed to resort on numerical analysis. Themain observation here is that our
optimization problem can be cast as a semidefinite program:

Figure 2.Potential box equivalence: computing the action of the probabilistic filter and its precision is formally equivalent to
computing the ground state and energy of a particle in a one-dimensional potential box. The state ˜ ( )j x (empty circles) before the
probabilistic filter and the state ( )j x (solid circles) after thefilter are represented together with the potentialV(x) (diamonds),
corresponding to =j nr 2 (see equation (19)), for success probability S=0.75, noise strength r=0.8 and n=80 probe copies. The
unfiltered state (empty circles) has been rescaled so that it coincides with thefiltered state in the region ∣ ∣  =x x 9 32c . The effective
potential depends on the noise strength, as illustrated by the two additional dashed curves: for r=0.2 (above) and r=0.6 (below).
Numerical (symbols) and analytical results (lines) are in full agreement.
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( )


s = L
L

Hmin tr , 272

:

subject to a set of linear conditions on thematrixΛ given by ≔ { L L =0, tr 1, } rL p Smm
j

j m m
j

, , where

Λ andH have the block diagonal form L = ÅLj j and = ÅH Hj
j. Semidefinite programming problems, such as

this, can be solved efficiently with arbitrary precision [70].
Figure 3 shows representative results formoderate, experimentally relevant number of qubits n.We plot the

uncertainty as a function of the abstention probabilityS̄ and noise strength r=0.8.We observe that for small
values of n the precision increases ( sn 2 decreases) quite rapidly until the critical valueS* is reached. Past this
point the precision cannot be improved. For largern, the initial gain is less dramatic, but the critical point (or
plateau) is reached for higher abstention probabilities, hence allowing to reach a higher precision.We see that for
moderately large n, abstention can easily provide 60% improvement of the precision.When n is large enough,
e.g.,n=20 (see thefigure), there is a sharp improvement in precision as the success probability approaches the
critical value. In the asymptotic limit, ¥n , it gives rise to a critical behavior that interpolates between the
ultimate precision limit, equation (25), and the precision forfinite values of S̄ , equation (26).

Figure 4 shows the scaling of the uncertainty with the amount of resources, n, for low levels of noise =r 95%
and for different values of the abstention probabilityS̄ . Forlown all curves exhibit a similar ( -n 1 scaling, i.e.,
SQL). Aswe increase n, very soon the curve corresponding to unlimited abstention (solid line) shows a big drop
with a quantum-enhanced transient scaling given by ( )a- +n 1 , where a > 0 depends on the noise strength. For
very large n (∼500) this curve saturates the ultimate asymptotic limit in equation (25) (blue dashed line), which
has again SQL scaling. The numerical results forfinite S (circles, squares, diamonds) display the optimal scaling
up to the point where theymeet the asymptotic (dashed) straight lines given by equation (26). Past this point,
they fall on top of the corresponding straight lines, which display SQL scaling. The larger the abstention
probability, the later this transition takes place. In addition, the figure shows the ultimate scaling for =r 99% to
illustrate the fact that for weaker noise levels the transient ismore abrupt (α is larger).

3.6. Ultimate bound formetrology
So farwe have studied the best precision bounds that can be attained for afixed input state. A very relevant
question of fundamental and practical interest is whether this bounds can be overcome by an appropriate choice
of such state.We answer this question in the negative: the precision bound given by the uncertainty in
equation (25) is indeed the ultimate bound formetrologyin the presence of local decoherence and can only be
attained by a probabilistic strategy.

To this aim, wefirst show in appendix B that for any probe state and anymeasurement that attain certain
precision (or, equivalently s2)with success probabilityS, we can find a newprobe lying in the fully symmetric
subspace ( j=J) and a permutation invariantmeasurement that attain the very same precisionwith the very
same success probability. This shows that the formulation thatwe have introduced, with probe states in the fully
symmetric subspace, is actually completely general.

We now recall that theHamiltonianj is independent of the choice of probe state and that such choice
determines only the shape of the state ˜ ( )j x beforefiltering, and the probability pj of belonging to the subspace of
spin j. Since the bound in equation (25) is attained by the ground-state ( )j xg of the potential ( )V xJ , the choice

Figure 3. Small n precision.Numerical results for the rescaled uncertainty sn 2 are plotted as a function of ¯ = -S S1 for a noise
strength ofr=0.8 and various number of copies: =n 6, 10, 20 (diamonds, circles, squares). The critical success probability,

¯* *= -S S1 , is clearly identified at ¯* »S 0.46 forn=6, and at ¯* »S 0.9 for n=10. For n=20, one has *» - ´ -S 1 5 10 5,
which is not visible in thefigure. The solid line is the analytical approximation on the right of equation (26).
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of probe cannot further improve the precision, but only change the success probability. In particular onemight
increase S by choosing a probe state that gives rise to a profile ˜ ( ) ( )j j=x xg for j=J, without anyfiltering
within the block. In this case the critical success probability becomes [ ( )]* = = - - +S p eJ

n rlog 2 log 1 (see
appendix E), which is larger than that attained by ∣y ñcop .

At the other extreme, for deterministic strategies, the calculation of ( )s 1opt
2 can be easily carried out by

performing first the sumover j and then optimizing over the ( )+n 1 -dimensional probe state. In the
continuum limit (large n) such calculation can again be cast as a variational problem formally equivalent to that
offinding the ground-state of particle in a boxwith the harmonic potential ( ) ( )( )= - +-V y nr r y1 12 2 2 ,

 - =y m J1 1. The corresponding ground state wave function and its energy provide the optimal probe
state and uncertainty respectively:

( ) ( )
( )

( )
( )

y
p

=
- -

-⎡
⎣⎢

⎤
⎦⎥y

n r

r

1

2
e 28

n r
r

y
op

2

2

1
4

1
8 2

2

and

( ) ( )s =
-

+
-r

nr

r

n r
1

1 2 1
. 29op

2
2

2

2

3 2

These results agree with their pointwise counterparts in [17, 69]. The presence of noise brings the pointwise and
global approaches in agreement, as to both the attainable precision and the optimal probe state are concerned.
This agreement between global and pointwise approaches has been recently showed to be a generic feature in
noisy scenarioswith shot-noise limited precision [21]. This is in stark contrast with the noiseless case, where the
probe ( ) ( )y p=y ycos 2 is optimal for the global approach and gives s p= nopt

2 2 2, while theNOON-type

state ∣ (∣ ∣ )yñ = ñ + - ñ- J J J J2 , ,1 2 provides the optimal pointwise uncertaintys = n1opt
2 2.

It remains an open question tofind the optimal probe state given afinite values of S̄ . As argued above, a finite
Swill only be able tomoderately reshape the profile without significantly changing the scaling of its width.
Therefore, we expect the optimal state to be fairly independent of the precise (finite) value of S, and hence very
close to that obtained for the deterministic case (S= 1). Numerical evidence (optimizing simultaneously over
probes andmeasurements) suggests that this is indeed the case provided S is not too small.With this we are lead
to conjecture that the optimal probe state is given by

( )p
µ

+
- -⎛

⎝⎜
⎞
⎠⎟c

m

n
cos

2
e , 30m

r
r n

mopt
1 2

2 3
2

independently of S (finite), which agrees with equation (28) for asymptotically large n. Note that the cosine
prefactor guarantees that the solution converges to the optimal one for r 1and it keeps the state confined in
the box for all values of n and r. Such states continue to have a dominant typical value of =j j0 and in those

Figure 4.Moderate and large n scaling. Ultimate precision scalings (for  ¥n ) are of fundamental interest. However, from the
practical perspective, understanding the transient behavior is equally important. The plot shows the uncertainty s2 as a function of n.
The circles, squares and diamonds are numerical results (SDP) for r=0.95, corresponding respectively to ¯ =S 0, 0.5, 0.9. They fall
on top of the (gray, orange, green) dashed straight lines given in equation (26). The solid blue line corresponds to the ultimate limit (S̄
arbitrarily close to unity) for the same value of r, obtained via exact diagonlization ofHj in (15). Its asymptotic expression, given by the
leading order in equation (25), is the straight line plotted in dashed blue. The ultimate limit for lower level of noise, r=0.99, is also
plotted: the yellow dotted (dashed) line corresponds to the exact ultimate limit (its asymptotic leading-order expression in
equation (25)).
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blocks both the kinetic and harmonic contributions to the energy are of sub-leading order. Hence, for probes of
the form in equation (30) the enhancement due to abstention is very limited, up until very high abstention
probabilities where one can afford to post-select high spin states to reach the ultimate limit in equation (25).

3.7. Scavenging information fromdiscarded events
The aimof probabilisticmetrology is twofold. First, it should estimate an unknown phase θ encoded in a
quantum state with a precision that exceeds the bounds of the deterministic protocols. Second, it should assess
the risk of failing to provide an estimate at all (e.g., it should provide the probability of success/abstention).
Probabilisticmetrology protocols are hence characterized by a precision versus probability of success trade-off
curve, or equivalently by ( )s S2 . As such, no attention is payed to the information on θ thatmight be available
after an unfavorable outcome.Here, wewish to point out that one can attain ( )s Sopt

2 and still be able to recover,
or scavenge, a fairly good estimate from the discarded outcomes (seefigure 1).

The optimal scavenging protocol can be easily characterized in terms of the stochasticmapF in
equation (13), which describes the state transformation after a favorable event, and that associated to the
unfavorable events:

F̄( ) ¯ ¯ ¯ ¯ ∣ ∣ ( )år r= F F F = ñá Äq q f j m j m, , , , 31
j m

m

j
j

,

where theweights f̄
m
j
are defined through the equation ( ¯ ) ( )= -f f1

m
j

m
j2 2. The addition of the two stochastic

channels,F F¯ + , is trace-preserving, i.e., it describes a deterministic operation, with no post-selection. The
finalmeasurement is given by the seedW̃ defined after equation (13) for both favorable and unfavorable events.
Thus, we can easily compute ¯ ( )s S2 for the the latter, as well as ( )s Sall

2 , where all outcomes are included. Clearly,
wemust have that ( ) s sSall

2
det
2 [58], assdet

2 refers to the optimal deterministic protocol.
As shown infigure 5, a protocol that is optimized for some probability of abstention S̄ , performs only slightly

worsewhen forced to provide always a conclusive outcome. In particular, we notice that if such protocol is
designed towork at the ultimate limit regime, with uncertaintysult

2 , which requires a very large abstention
probability ( S 0) [58], its performance coincides with that of the optimal deterministic protocol. Actually,
this observation follows (see appendix I) fromWinter’s gentlemeasurement lemma (lemma 9 in [71]), which
states that ameasurement with a highly unlikely outcome causes only a little disturbance to themeasured
quantum state. This is in contrast to the claims in [58], where a random estimate is assigned to the discarded
events.

4.Discussion

Wehave shown that abstention or post-selection can counterbalance the adverse errors in a noisymetrology
task.Our results are theoretical and concern abstract systems of n qubits. However, they apply to different
quantummetrology implementations, ranging fromRamsey interferometry for frequency standards [11, 12],

Figure 5. Scavenging information.Uncertainty s2 versus probability of abstention S̄ fromnumerical optimization for n=50 and
r=0.8. The green solid (red dash-dotted) correspond to sopt

2 (s̄2), where only the favorable (unfavorable) events are taken into
account. The dashed curve corresponds tosall

2 , where an estimate is provided on all outcomes, favorable or unfavorable. For low
success probability (S̄ close to unity), boths̄2, andsall

2 , approach the uncertainty of the deterministic protocolsdet
2 (dotted line).
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atomicmagnetometry[5, 6], and quantumphotonics (single ormulti-mode setups), where the number
operator introduced herewill play the role of number of photons.

Post-selection is alreadywidely used for preparing quantum information resources, e.g., single photons
fromweak coherent pulses, heralded down-conversion for EPR-type states, orNOON states formetrology
applications. Although some degree of post-selection is common in experiments, its tailored optimized use is
not fully exploited. Only recently there have been important developments in this direction in the context of
weak value amplification [48, 49, 72].We note on passing that these schemes can be considered a particular
instance of our general set-up, and hence are subject to our bounds.

The optimal probabilisticmeasurement presented here can be understood as afiltering process selecting the
total angularmomentum followed by amodulating filter, and a final standard covariant phasemeasurement.
The latter can be implemented by the (almost) optimal adaptive scheme proposed in [55, 73]. Themodulation
could be implemented by sequential use of amplitude-damping channels taking inspiration from recent
experiments in state amplification [42, 44, 45]. In implementations that allow for an individual control of the
qubits, such as ion traps, the projection onto the angularmomentumbasis can be efficiently carried out [74]. For
implementations with less degree of control, the projection onto the fully symmetric sub-space can, as a last
resort, be implemented by post-selecting outcomes with this symmetry. For instance a simple SternGerlach
measurement could lead to outcomes (m=J)with a precision beyond the deterministic limits.

Regarding the implementation of our conjectured optimal probe state one can use available nonlinearN2-
type two-body interactions to turn themulti-copy gaussian profile to thewider optimal gaussian. Although, our
case-study focuses on local dephasing noise, ourmethods can be adapted and similar, if not greater, benefits are
expected formore general and implementation-specific noisemodels, including correlated noise.

In conclusion, we have shownwhat are the ultimate limits in precision reachable by any (deterministic or
stochastic) quantummetrology protocol in a realistic scenariowith local decoherence.We have derived the
optimal bounds that can be reachedwhen a certain rate of abstention is allowed and hence provided a full
assessment of the risks and benefits of the probabilistic strategy. The benefits are clear forfinite and for
asymptotically large number of copies, and the precision is strictly better than that attained by deterministic
strategies, which include optimal preparation of probe states. The ultimate quantummetrology scaling limit is
only reachedwith a large abstention rate. However, in that case we have shown that it is possible to obtain
estimates with standard (deterministic) precision from the discarded events. In this sense, seeking ultra-sensitive
measurements is a low-risk endeavour.
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AppendixA.Notation

Throughout this sectionwe use the following notation. The n-qubit computational basis is denoted by {∣ }ñ =
-b b 0

2 1n
,

where =b b b bn1 2 is a binary sequence, i.e., =b 0, 1i for = ¼i n1, 2, , .We denote by ∣ ∣b the sumof the n
digits of b, i.e., ∣ ∣ ≔ å =b bj

n
j1 . The digit-wise sumof b and ¢b modulo2will be simply denoted by + ¢b b ,

hence∣ ∣+ ¢b b can be understood as theHamming distance between b and ¢b , both viewed as binary vectors.
The permutations of n objects, i.e., the elements of the symmetric group Sn, are denoted byπ.We define the

action of a permutationπ over a binary listb as ( ) ≔ ( ) ( ) ( )p p p pb b b b n1 2 . This induces a unitary
representation of the symmetric group on theHilbert spaceÄn of the n qubits through the definition

∣ ≔ ∣ ( )pñ ñpU b b . The (fully) symmetric subspace ofÄn, whichwe denote by+
Än, plays an important role

below. An orthornormal basis can be labelled ∣ ∣b = b , where b = ¼ n0, 1, , :

∣ ∣ ( )åb
b

bñ = ñ = ¼
-

Î b

⎛
⎝⎜

⎞
⎠⎟

n
b nwith 0, 1, A.1

b B

1 2

where { ∣ ∣ }b= =bB b b: . It is well-known that the symmetric subspace+
Än carries the irreducible

representation of spin ≔=j J n 2 of SU(2). In this language, themagnetic numberm is related toβ by
b= -m n 2 (herewe aremapping ( )b  = - bm 1 2i i i for qubit i). In otherwords, wemap

∣ ∣b bñ  - ñn n2, 2 , wherewe stick to the standard notation ∣ ñj m, for the spin angularmomentum
eigenstates.

Wewill be concernedwith evolution under unitary transformations ≔q q
ÄU u n, where ( ∣ ∣)q= ñáqu exp i 1 1 ,

( ]q p pÎ - , . The operatorN such that =q
qU e Ni will be referred to as number operator for obvious reasons:
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∣ ∣ ∣∣ñ = ñN b b b . The effect of noise is taken care of by aCPmapD, so the actual evolution of an initial n-qubit
state ≔ ∣ ∣y y yñá is D( )†y y r =q q qU U .

With this notation the uncertainty and success probability in equations (7) and(8) can bewritten as

( ) ( )∣ ∣ ∣ ∣ås r d= - W
W ¢

¢ ¢ ¢ +S
S

2
2

max , A.2
b b

b b b b b b
2

,
, , , 1

( )∣ ∣ ∣ ∣å r d= W
¢

¢ ¢ ¢S , A.3
b b

b b b b b b
,

, , ,

where theKronecker delta tensors result from the integration ofq̂.

Appendix B. Local dephasing:Hadamard channel

In this paper we consider uncorrelated dephasing noise, which can bemodeled by phase-flip errors that occur
with probability pf. i.e., at the single qubit level, the effect of the noise is ( )  s s - +p p1 f f z z , where sz is

the standard Paulimatrix ( )s = -diag 1, 1z . For states ofn qubits, this, so called dephasing channelD, ismost
easily characterized through its action on the operator basis{∣ ∣}ñá ¢ ¢=

-b b b b, 1
2 1n

as

D(∣ ∣) ∣ ∣ ( )∣ ∣ñá ¢ = ñá ¢+ ¢b b r b b , B.1b b

where the parameter r is related to the error probabilitypf through = -r p1 2 f . The effect ofD on a general n-

qubit state ∣ ∣ = å ñá ¢¢ ¢ b bb b b b, , can then bewritten as theHadamard (or entrywise) product

D( ) ∣ ∣ ≔ ◦ ( )∣ ∣  å= ñá ¢
¢

+ ¢
¢r b b , B.2

b b

b b
b b

,
,

where ≔ ∣ ∣ å ñá ¢¢
+ ¢r b bb b

b b
, and hereafter we understand that the sums over sequences run over all possible

values of b (and ¢b ) unless otherwise specified.Note thatHadamard product is basis-dependent.

AppendixC. Symmetric probes

If the probe state is fully symmetric, i.e., ∣ yñ Î +
Än, it can bewritten as ∣ ∣y y bñ = å ñb b , where∣bñ is defined in

equation (A.1) and the components are related to those in equation (9) by y= -cm J m and can be taken to be
positive with no loss of generality (any phase can be absorbed in themeasurement operators).
Then, D( ) ◦r y y= = in equations (A.2) and(A.3) becomes

∣ ∣ ( )∣ ∣å å år
y y

b b

=

¢

¢ñá
b b

b b

¢

¢

Î ¢Î

+ ¢

b b¢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

n n
r b b . C.1

b B b B

b b

,
1 2 1 2

Since ρ is permutation invariant,Ω can be chosen to be so andwe can easily write equations (A.2) and(A.3)
in the spin basis.We just need the non-zero Clebsch–Gordanmatrix elements ∣ ∣á ¢ ¢ñá ñj m b b j m, , , where

implicitly b= -m J , b¢ = - ¢m J . If we introduce the shorthand notation ≔ ∣ ∣ á ¢ ñ¢ j m j m, ,m m
j

, , then
using [75], we have

∣ ∣

( ) [ ] ( )

∣ ∣

( )

 å å

å

= á ¢ ¢ñá ñ

= - D

¢
Î ¢Î

+ ¢

- - ¢ ¢

b b¢

r j m b b j m

r r r

, ,

1 , C.2

m m
j

b B b B

b b

J j m m

k
k

j
m
m k

,

2 2

where

[ ] ≔
( )!( )!( )!( )!

( )!( )!( )! !
( )( )D

- + - ¢ + ¢

- - + ¢- - ¢+
¢ j m j m j m j m

j m k j m k m m k k
C.3k

j
m
m

and the sums run over all integer values for which the factorialsmake sense. Recalling equation (10), a simple
expression, involving just a sumover k in equation (C.3), for (∣ ∣ )r r= ñá ¢ Ä¢

- p j m j mtr , ,m m
j

j j,
1 follows by

combining the above results. In short

( )r =

- ¢ -

¢
¢

¢⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

p

c c

n

J m

n

J m

1
, C.4m m

j

j

m m
m m
j

, 1 2 1 2 ,
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where

( )ån=

-

⎛
⎝⎜

⎞
⎠⎟

p
c

n

J m

C.5j j
m

m
m m
j

2

,

and themultiplicity is given by

( )n =
-

+
+ +

⎛
⎝⎜

⎞
⎠⎟

n

J j

j

J j

2 1

1
C.6j

and a jm in equation (14) becomes

( )


 
= +

+ +

a . C.7m
j m m

j

m m
j

m m
j

, 1

, 1, 1

AppendixD. Relevant expressions for themulti-copy state

If the input state is of the form given in equation (22), the above expressions, equations (C.4) and (C.5), become

( )



år n=

å
=¢

¢ -pand 2 , D.1m m
j m m

j

m m m
j j j

n

m
m m
j

,
,

,
,

where

( ) ( ) ( ) ( )å = -
+ - --

+ +
r

r r

r
1

1 1

2
D.2

m
m m
j J j

j j

,
2

2 1 2 1

The probability tofind the state in the fully symmetric subspace ( j=J) is important when assessing the
success probability of the the ultimate bounds. Since themultiplicity for themaximum spin J is equal to one, it
can be readily seen that pJ scales as

( )[ ( )]~ - - +p e , D.3J
n rlog 2 log 1

The critical probability *sj within a block can also be computed in the asymptotic limit j 1 from
equation (17)

( )
( )( )*

r

x
= ~ - +s e , D.4j

j j
j

j
j

j r,

2
2 log 1

where xm
j is the gaussian ground state, with ( ) ( ( ) )x ~ - - r j rexp 1 4j

j 2 2 . For = ¢ =m m j equation (C.2)

gives ( )= - -D r1j j
j J j
,

2 which togetherwith equations (D.1) and (D.2) gives [ ( )]r ~ +j rexp 2 log 1j j
j
, . This

scaling dominates over that of xm
j , and hence determines the scaling of *sj . Fromherewe obtain critical value for

the overall success probability * *= ~ -S p s eJ J
n log 2.

Appendix E.Ultimate boundwithout in-blockfiltering

In the results sectionwe discuss the possibility to prepare a probe state such that after the action of noise becomes
an optimal state within the fully symmetric subspace j=J. Here we give what its critical success probability,
which only entails computing pJ.

For this purpose we first recall that the optimal filtered state xm
j , defined before equation (14), has to fulfil

( )


x
n

=

-

⎛
⎝⎜

⎞
⎠⎟

f c

s p
n

J m

. E.1m
j

m
j

m
j m m

j

j j

,

The probability of falling in the block ofmaximum spin J for a given filtered statex j can be easily derived from
equation (E.1) recalling that the probe stateψ is normalized, and thus å =c 1m m

2 . Solving equation (E.1) for
c pm J

2 and summing overmwe obtain

15
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( )


å
x

=
-

=-

⎛
⎝⎜

⎞
⎠⎟ ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟p

s

n

J m

f

1
. E.2

J

J
m J

J

m m
J

m
J

m
J

,

2

Now, for our strategy all j but themaximumone, j=J, are filtered out, and no further filtering is requiredwithin
the block J, i.e. we have =f 1

m
J , for all +J2 1values ofm. Then sJ=1 and

( ) ( )


å x=
-

=-

-⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎪⎪

⎭
⎪⎪

p

n

J m
. E.3J

m J

J

m m
J m

J

,

2

1

In the asymptotic limit the probability pJ can be estimated by noticing that the optimal distribution ( )xm
j 2 is

muchwider than ( ) 
-
n

J m m m
J

, and can be replaced by( )xJ
0

2. Aroundm=0, we can use the asymptotic

formulas

( ) ( ) ( )
p

~ -
+-

+
-r

r

rj
1

1

2
e , E.4m m

j J j
j

rm j
,

2
2 1

2

( )
p-

~ -
⎛
⎝⎜

⎞
⎠⎟

n

J m J

2
e . E.5

n
m J2

They can be derived using the Stirling approximation and saddle point techniques. Equation (E.4) also requires
the EulerMaclaurin approximation to turn the sumover k in equation (C.2) into an integral that can be evaluated
using again the saddle point approximation. Retaining only exponential
terms, ( ) [ ( )]* = ~ + = - - +S p r1 2 eJ

n n n rlog 2 log 1 .

Appendix F. Equivalence ofworst-case and expected loss

Herewe give a simple proof that for phase estimation, and assuming a covariant signal, such as
D( )†r y=q q qU U , and aflat prior ( ) ( )p q p= 1 2 (see section 3.1), theworst-case loss in equation (5)

ℓˆ ( ˆ∣ ) ( ˆ) ( )
( ]

ò q q q q q=
q p pÎ -

L psup d , succ , F.1wc
,

and the expected loss in equation (6)

ℓˆ ( ˆ ) ( ˆ) ( )òò q q q q q q=L
S

p
1

d d , , succ , , F.2s

take the same value, and so do the corresponding success probabilities.
Wefirst rewrite equation (F.2) as

ℓ

ℓ

ˆ ( ˆ∣ ) ( ) ( ˆ)

( ∣ ) ˆ ( ˆ∣ ) ( ˆ) ( )

òò
ò ò

q q q q q q q

q q q q q q q

=

=

L
S

p p

p p

1
d d succ, succ, ,

d succ d , succ , , F.3

s

where in the second equality we have used the fact that ( ) ( ∣ )q q=p p Ssucc, succ .Whenwritten in this form,we
note the analogy between Ls in equation (F.3) and Lwc in equation (F.1), where the average over ( ∣ )qp succ is
replaced by the supremumoverθ. Because of this, we obviously have L Ls wc.We just need to show that the
opposite inequality alsoholds.

We remind the reader that theminimumexpected loss,Ls, can be attained by a covariantmeasurement,
M { ( )}ˆ ˆ ˆ

† ˆ ( )]p= = Wq q q q p pÎ -M U U 2 , , whereΩ is a suitable seed (the optimal seed). Because of covariance, we

note that for any phase q¢wehave (ˆ∣ ) (ˆ ∣ )q q q q q= + D ¢p p, succ , succ , where q q qD = ¢ - . Likewise, we have

ℓ ℓ( ˆ) ( ˆ )q q q q q= ¢ + D, ,p p . By shifting variables ˆ ˆq q q+ D  in equation (F.2), the integrant becomes
independent of the variable θ, which can be trivially integrated to give

ℓˆ ( ˆ∣ ) ( ˆ) ( )ò q q q q q= ¢ ¢L pd , succ , F.4s p

for any q¢. It follows that theworst case loss for this particularmeasurement, MLwc , satisfies
M =L Lwc s. SinceM

needs not to be themeasurement thatminimizes equation (F.1), we have M =L L Lwc wc s. Combining this with
the opposite inequality, derived after equation (F.3), we conclude that =L Ls wc.
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Proceeding along the same lines, we note that

ˆ ( ˆ∣ ) ˆ ( ˆ∣ ) ( )ò ò ò
q
p

q q q q q q= = ¢S p p
d

2
d , succ d , succ F.5

for any q¢. Hence =S Swc.

AppendixG. The continuum limit: particle in a potential box

Proceeding as in [33, 34, 68], one can easily derive from equations (12), (14) and(15) the following equation:

∣ ∣ ( )

( )

åx x x x x

x x

á ñ = - +

+ +
=-

-

+

- -

⎧⎨⎩
⎫⎬⎭H

V

j

a a , G.1

j j j

m j

j

m m
m
j

m

j j j j

1

1
2

2
2

2 2

where ( )= -V j a2 1m
j

m
2 andwe have dropped the superscript j in xm

j to simplify the expression. In the
asymptotic limit, as j becomes very large, =m j x approaches a continuumvariable that takes values in the
interval[ ]-1, 1 . Accordingly, the values { }xj m approach a real function thatwe denote by ( )j x .With this,
the former equation becomes

∣ ∣ ( ) ( ) ( )

∣ ∣ ( )

òx x
j

j

j j

á ñ = +

= á ñ

-

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭H
j

x
x

x
V x x

j

1
d

d

d
,

:
1

, G.2

j j j j

j

2 1

1 2
2

2

where

( ) ( ) ≔ ( ) ( )= - - +V x j a x V x2 1 , d d G.3j
xj
j j j2 2 2

andwe have dropped the boundary term [ ( ) ( )]j j- + - j1 12 2 that stems from the second line in
equation (G.1).Minimization of ∣ ∣x xá ñHj j j require the vanishing of this term, and equation (18) readily follows.
The formula

( )
( )

( )=
-

- -
V x j

r

r r x

1

2 1 1
G.4j

2

2 2

(also in equation (19)) follows from the asymptotic expression ofa j
m, defined in equation (14). Our starting

point are equations (C.7) and(C.2). The sumover k in the latter can be evaluated using the EulerMaclaurin
formula and the saddle point approximation.

AppendixH. Symmetric probe is optimal and no benefit in probe-ancilla entanglement

Wenext show that permutation invariance enables us to choose with no loss of generality the probe state ∣yñ
from the symmetric subspace+

Än and the seedΩ to be fully symmetric.
Wefirst write equations (A.2) and(A.3) in amore compact form.We defineΔ through the relation

( ) ( )s = + Dy
-

WS S1 min 22 1
, , where themaximization is performed also over the probe states since herewe

are concernedwith the ultimate precision bound.We also introduce a slightmodification of  that includes the
Kronecker delta tensor: ≔ ∣ ∣ då ñá ¢¢

+ ¢
¢ +r b bl b b

b b
b b l, , , l=0,1. Then

[( ◦ ) ] [( ◦ ) ] ( ) y yD = W = WStr , tr , H.11 0

wherewe have used that [ ( ◦ )] [( ◦ ) ]=A B C C A Btr tr if =B Bt . The result wewish to show follows from the
invariance of the noise under permutations of the n qubits, namely, from † =p pU Ul l , for any p Î Sn, which
implies that the very same value ofΔ and S attained by some givenmeasurement seedΩ and some initial stateψ,
i.e., attained by ◦y W, can also be attained by ( ◦ ) †y Wp pU U , and likewise by the aver-
age ( !) ( ◦ ) †yå Wp p p

-
În U US

1
n

.

The proof starts with yet a fewmore definitions: given a fully general probe state ∣yñ, we define the +n 1
normalized states ∣ ( )∣f y yñ = å ñb bÎ b

bb B b , b = ¼ n0, 1, , , where ∣ ∣y y= åb Î bb B b
2 2, andwrite

∣ ∣y y fñ = å ñb b b=
n

0 . Additionally, we define

∣ ∣ ∣ ∣ ( )åf
b

f f f fñ = ñ = ñá
b

b
=

⎛
⎝⎜

⎞
⎠⎟

n
, . H.2

n

0

1 2

17

New J. Phys. 18 (2016) 103049 J Calsamiglia et al



Weobviously have ◦ f W 0, as theHadamard product of two positive operators is also a positive operator,
and ( !) ( ◦ ) † få Wp p p

-
În U U 0S

1
n

, as this expression is a convex combination of positive operators. Similarly,

the seed condition - W 0 implies ( !) [ ◦ ( )] † få - Wp p p
-

Î n U U 0S
1

n
. But

!
( ◦ )

!
◦ ( )† †å å åf

b
f=

p
p p

b p
p b p

Î = Î

 

⎛
⎝⎜

⎞
⎠⎟⎛
⎝
⎜⎜

⎞
⎠
⎟⎟n

U U

n

n
U U

1
, H.3

S

n

S0n n

since the diagonal entries off and fb transform among themselves under permutations. The right-hand side
can bewritten as

!
∣ ∣

∣ ∣ ∣ ∣ ( )( )åå å åå
b y

y
ñá = ñá =

b p

p

b b= Î Î = Îb b

-



⎛
⎝⎜

⎞
⎠⎟

n

n
b b b b , H.4

n

b B S

b
n

b B0

2

2
0n

1

wherewe have used that, for any Î bb B , the set { ( )}p p
-

Îb S
1

n
contains exactly !( )!b b-n times each one of the

elements ofBβ. It follows from equations (H.3) and(H.4) that ≔ ( !) ( ◦ ) †fW å Wp p p
-

În U US
sym 1

n
satisfies

 W 0 sym and is invariant under permutations of the n qubits. It is, therefore, a legitimate fully symmetric
measurement seed.Moreover

!
( ◦ ) ( )†å åy

y y

b b

W =

¢

W
p

p p
b b

b b
b b

Î ¢

¢
¢ ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

n
U U

n n

1
, H.5

S ,
1 2 1 2

sym

n

where b is the projector into the subspacewith ∣ ∣ b=b , namely ≔ ∣ ∣å ñáb Î b
 b bb B . Thus, recalling the definition

of ∣bñ in equation (A.1), the right-hand side of equation (H.5) can be readily written as

∣ ∣ ◦ ◦ ( )åy y b b yñá ¢ W = W
b b

b b
¢

¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ , H.6

,

sym sym sym

where∣ ≔ ∣ y y bñ å ñ Îb b= +
Än nsym

0 . It follows from these results and equation (H.1) that the very same
uncertainty and success probability attained by any pair (∣ )yñ W, of probe state andmeasurement seed is also
attained by the state ∣ y ñ Î +

Änsym and the fully symmetric seed Wsym. This completes the proof.
Now that we have learned that no boost in performance can be achieved by considering probe statesmore

general than those in the symmetric subspace+
Än (in the subspace ofmaximum spin j=J), wemaywonder if

entangling the probewith some ancillary system could enhance the precision.Herewe show that this possibility
can be immediately ruled out, thus extending the generality of our result. For this purpose we take the general
probe-ancilla state ∣ ∣ ∣y cY ñ = å ñ ñbb b bPA , where ∣c ñb are normalized states (not necessarily orthogonal) of the
ancillary system. The action of the phase evolution andnoise on the probe leads to a state of the form

( ) ∣ ∣ ∣ ∣( )r q y y c c= å ñá ¢ Ä ñáq
¢

+ ¢ - ¢
¢ ¢r b beb b

b b b b
b b b bPA ,

i . This state could aswell be preparedwithout the need
of an ancillary systemby taking instead an initial probe state ∣ ∣y yñ = å ñbb b and performing the trace-
preserving completely positivemap defined by∣ ∣ ∣cñ  ñ ñb b b before implementing themeasurement. Thismap
can, of course, be interpreted as part of themeasurement. It would correspond to a particularNeumark dilation
of somemeasurement performed on the probe system alone, and hence it is included in our analysis.

Appendix I. Scavenging at the ultimate precision limit

The gentlemeasurement lemma [71] states that if ameasurement outcome occurs with very high probability,
then the corresponding conditioned state is hardly disturbed. For concreteness, let us assume that some
unfavorable event in a probabilistic protocol happens with probability F¯ [ ¯ ( )] r= = -qS tr 1 , then,
conditioned to this event, we have ¯  r r-q q 21 , where F¯ ¯ ( ) ¯r r= q S .

Indeed, from equation (7) or (A.2) , wefind that the uncertainty of the scavenged events, ¯ ( )s S2 , rapidly
approaches that of the optimal deterministicmachine ( )s =S 02 :

( ) ¯ ( ) ¯ ¯

[ ( ¯ )] ¯ ( )
¯

   
   

 

s s r r

r r r r

- = -

- -

q q

q q q q

W W

W

 



S W W

W S

0 max tr max tr

max tr 2 , I.1

2 2

0 0

0
1

whereW (likewise W̄ ) is shorthand for thematrix with entries d= W¢ ¢ ¢ +W 2b b b b b b, , , 1.

We recall that, as ( )s S2 approaches the ultimate bound ( ) ( )s = - - r nr1 1 4ult
2 2 , the success probability

S decreases exponentially. Equation (I.1) thus shows that such likely failure is not ruinous since in that event one
can still attain the deterministic bound, i.e., one has ¯ ( ) ( ) ( )s s= = - - r nr0 1 1 42 2 2 2 .
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