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The rapidly evolving mobile applications (apps) have brought great demand for developers to identify new

features by inspecting the descriptions of similar apps and acquire missing features for their apps. Unfor-

tunately, due to the huge number of apps, this manual process is time-consuming and unscalable. To help

developers identify new features, we propose a new approach named SAFER. In this study, we first develop a

tool to automatically extract features from app descriptions. Then, given an app, we leverage the topic model

to identify its similar apps based on the extracted features and API names of apps. Finally, we design a fea-

ture recommendation algorithm to aggregate and recommend the features of identified similar apps to the

specified app. Evaluated over a collection of 533 annotated features from 100 apps, SAFER achieves a Hit@15

score of up to 78.68% and outperforms the baseline approach KNN+ by 17.23% on average. In addition, we

also compare SAFER against a typical technique of recommending features from user reviews, i.e., CLAP.

Experimental results reveal that SAFER is superior to CLAP by 23.54% in terms of Hit@15.
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1 INTRODUCTION

Recent years have witnessed the sharp growth of the number of mobile applications (apps). Up to
September 2018, two well-known app markets, namely, Google Play and Apple App Store, collect
over 2 million apps, respectively. In contrast to desktop software, apps update and evolve rapidly
(Carreño et al. 2013; Narudin et al. 2016; Wu et al. 2019). When facing abundant similar apps (apps
with similar functionalities or features), users tend to choose ones that provide their features of
interest. Hence, it is important for developers to identify and implement new features. These new
features can help developers in attracting and retaining users and promoting their apps (Lim et al.
2015). Our survey with more than 100 app developers (see Section 2) shows that 86.1% of developers
consider features that are offered by similar apps. Furthermore, an important way to identify these
features is to read the descriptions of similar apps in app markets. Unfortunately, due to the large
number of apps available in app markets, it is time consuming and labor intensive for developers
to manually identify features provided by similar apps (Sarro et al. 2015). Therefore, it would be
ideal if new features of apps can be automatically recommended.

In this study, we propose a new task of Feature Recommendation for Apps (FRA). When a devel-
oper implements an app, the new task takes in the initial features of this app as inputs and aims
to recommend new features of similar apps for the developer. In such a way, the developer can
determine which new features should be implemented in the new app. The main challenges of the
new task are as follows:

—Feature Identification: The descriptions detailing the features of apps are usually written in
free text containing a variety of information, e.g., brief introductions of apps, disclaimers,
and contact addresses (Berardi et al. 2015; Fan et al. 2018; Martin et al. 2017). Hence, a specific
tool should be developed to identify sentences that describe app features in the descriptions.

—Similar App Identification: There exists no explicitly defined product type within app market.
For example, over 2 million apps in Google Play are simply classified into 27 categories
without sub-categories, except for the Game category. Therefore, it is hard to detect closely-
related similar apps.

In the literature, a number of methods have been proposed to identify and recommend features
for software systems. Some traditional methods, e.g., Feature Oriented Domain Analysis (FODA)
(Kang et al. 1990) and Domain Analysis and Reuse Environment (DARE) (Frakes et al. 1998; Santo
et al. 2009), propose methodologies to manually extract features from requirement documentation.
Some other methods identify and rank requirements by analyzing a social network of stakeholders
and letting stakeholders to introduce new features and rate features proposed by other stakehold-
ers (Lim et al. 2011; Lim et al. 2010). These methods cannot be used to automatically recommend
features for apps. In contrast, a few automatic methods have been proposed to recommend features
(e.g., Alves et al. 2008; Chen et al. 2005; Rahimi et al. 2014). Some automatic methods employ data
mining and Natural Language Processing (NLP) techniques to recommend features from either
a repository of requirement specifications (Alves et al. 2008; Chen et al. 2005) or forums (Rahimi
et al. 2014). These automatic methods mainly extract features from either the artifacts or the stake-
holders of a software product itself and cannot recommend features from other software products.
In addition, these methods are not applicable for newly released apps or apps under development,
since there could be few or no users of such apps yet.

Recently, an automatic feature recommendation approach KNN+ is proposed for Softpedia.com,
a website collecting features for software products (Hariri et al. 2013). However, Softpedia.com
only covers thousands of apps, a small fraction of apps compared to existing apps in Google
Play. Moreover, KNN+ cannot be directly used for common app markets (e.g., Google Play) due to
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Recommending New Features from Mobile App Descriptions 22:3

several reasons. First, KNN+ cannot address the feature identification challenge, since the features
in Softpedia.com are explicitly provided in a bullet-point list format. In contrast, the features of
apps are implicitly provided in their descriptions mixed with other information, e.g., contact infor-
mation, and so on. Second, all the software products in Softpedia.com are organized hierarchically
in three layers; more specifically, 9 categories, 292 sub-categories, and 1,096 product types (Hariri
et al. 2013). Under such a hierarchical structure, a product type contains similar software products.
However, in Google play, apps are only coarsely partitioned into 27 categories. Hence, a non-trivial
strategy is needed to identify closely-related apps to address the similar app identification chal-
lenge. For KNN+ to adapt to the new task of FRA, we modify KNN+ in the following ways. First,
we use our developed tool (AFE) to extract feature-describing sentences from app descriptions and
input them into KNN+. In such a way, KNN+ can recommend the identified features. Second, to
obtain similar apps with the new app, we treat all the apps in the same category as potentials.

Another type of related studies to recommend features for apps leverages user reviews. Sev-
eral typical studies have been proposed to analyze and extract new features from user reviews
(Carreño et al. 2013; Nayebi et al. 2017; Chen et al. 2014; Panichella et al. 2015; Scalabrino et al.
2019). User reviews and app descriptions have different characteristics and both of them can be
used as sources to acquire and recommend features. User reviews are usually short with huge
amount, while app descriptions are relatively long containing mixed information. In addition, user
reviews are informal and colloquial. In contrast, app descriptions are formal. These different prop-
erties motivate us to compare the approaches of recommending features from user reviews and app
descriptions. Among these techniques, we select the most recent and effective approach, namely,
CLAP (Scalabrino et al. 2019), for comparison.

In this study, we propose a novel approach named Similar App-based FEature Recommender
(SAFER) to recommend features for new apps, which can tackle the above-mentioned challenges.
SAFER fully leverages domain specific information of apps, including features and API names, to
identify similar apps belonging to the same product type and recommend features for an app. More
specifically, SAFER contains seven components, i.e., Reference App Filter, App Feature Extractor
(AFE), API Extractor, App Profile Builder, Topic Model, Similar App Identifier, and Feature Recom-
mender. It works as follows. First, a Reference App Repository containing a large scale of apps with
different categories is constructed, and Reference App Filter is built to filter out low quality apps.
To better characterize apps in the Reference App Repository, AFE is developed to extract features
(i.e., feature-describing sentences) from the app descriptions, which tackles the feature identifi-

cation challenge (Jiang et al. 2014). At the same time, API Extractor identifies and leverages API
names to complement the features, since past studies have shown that specific features are often
correlated to specific API names (Bavota et al. 2015; Nguyen et al. 2016). Then, App Profile Builder
combines features in descriptions and API names together to generate profiles for apps. When a
new app with initial features is taken into SAFER, App Profile Builder also generates a profile for
the new app. Next, Topic Model is learned from the extracted app profiles to get topic distributions
for both apps in Reference App Repository and the new app, and Similar App Identifier leverages
the topic distributions to identify similar apps for the new app, thus breaking through the similar

app identification challenge. Finally, Feature Recommender aggregates and ranks all the features
of the identified similar apps, thus generating a feature list for the new app. Associated with each
recommended feature, SAFER also presents its apps ranked by user ratings. In such a way, we
hope that developers can receive some hints on what new features to implement to make their
apps complete, competitive, and attractive.

To evaluate the effectiveness of SAFER, we collect a total of 8,359 apps coming from five cat-
egories of Google Play to form the Reference App Repository. Out of them, we have volunteers
create an annotated dataset of 100 apps for testing. The descriptions of these selected apps consist
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of 1,218 sentences, and 533 sentences are identified as a golden set of features. Evaluated on the
annotated dataset, the effectiveness of AFE is tested and it can achieve a Recall value of 80.27% and
a Precision value of 61.79%. Experimental results over the annotated dataset verify that SAFER can
well recommend features to an app from the descriptions of similar apps. In 68.29% of cases, SAFER
can successfully identify new features when 15 features are recommended (i.e., Hit@15 = 68.29%).
On average, SAFER improves the baseline approach KNN+ by 17.23% in terms of Hit@15. Besides,
by comparing with an advanced technique CLAP, which aims to recommend features from user
reviews, we can find that SAFER significantly outperforms CLAP and improves Hit@15 by 23.54%
on average.

In summary, this study makes the following contributions:

—We collect 8,359 apps and build a new manually annotated dataset containing the features
from 100 apps. A total of 533 features (i.e., feature-describing sentences) are identified. We
have made this dataset publicly available for academic research.1

—We build a tool AFE to extract features from the descriptions of apps. Experimental results
illustrate that AFE could retain most of the feature-describing sentences, meanwhile filter
out a majority of non-feature-describing sentences.

—We propose a novel approach named SAFER to recommend new features for apps. SAFER
can effectively recommend new features by identifying similar apps and recommending
missing features that are implemented by similar apps.

This article is structured as follows. In Section 2, we present the usage scenario of SAFER and
a survey with its results, which motivate us to proceed with this study. In Section 3, we show
the process that we follow to download the 8,359 apps and to annotate the 100 randomly selected
apps. In Sections 4 and 5, we elaborate the design of AFE and SAFER. In Sections 6 and 7, we
illustrate the experimental design and empirical results, respectively. We discuss the threats to
validity in Section 8. Then, we mention related work in Section 9. Finally, we conclude this article in
Section 10.

2 MOTIVATION

In this section, we present the motivation of this study by describing the usage scenario of our
proposed approach SAFER (Section 2.1) and a developer survey (Section 2.2).

2.1 Usage Scenario

When a developer plans to implement an app, typically he/she has already conceived a set of initial
features of this app in his/her mind. As shown in Figure 1, our proposed approach SAFER can take
in these initial features to identify similar apps from a repository of apps. To identify similar apps,
SAFER extracts feature-describing sentences (features, for short) from the descriptions of apps (see
Section 4 for details). In addition, SAFER also extracts API names of these apps. With both features
and API names, SAFER identifies similar apps and recommends a ranked list of new features to
the new app from the descriptions of these similar apps. Developers can check the recommended
features from the top to the bottom to identify new features that should be implemented in the new
app. In addition, for every recommended feature, we also present three similar apps that possess
this feature. The three apps are ranked by their user ratings in the corresponding app market, e.g.,
Google Play. In such a way, developers can evaluate the recommended new features by checking
related apps.

1http://oscar-lab.org/SAFER/.
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Fig. 1. The application scenario of SAFER.

2.2 Developer Survey

We hypothesize that developers often consider features provided by similar apps when they im-
plement their own apps. To ascertain this hypothesis, we conduct a survey to app developers. The
survey only contains two questions so that developers can complete it quickly. These questions
investigate how developers identify new features to implement (see Table 1). The first question
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Table 1. A Survey Investigating New Feature Identification Methods

*Q1: When developing apps, will you examine the features of other apps of the
same product type?
A. Yes
B. No
+Q2: How do you find new features to implement?
A. Websites like Softpedia.com.
B. Similar app descriptions in app repositories, e.g., Google Play.
C. Customers’ feedback/reviews of my own app.
D. Websites of similar apps.
E. Others: _____________________ [please provide more information].

*: exclusive choice; +: multiple choices

Table 2. The Results of the Survey

# A B C D Other answers for Q2

Q1 86.1% 13.9% - -
1. Testing competitor apps

2. Brainstorm

Q2 4.3% 58.3% 46.1% 20.9% 3. Social media

investigates whether developers examine the features of apps in the same product type when de-
veloping their own apps, and they can choose yes or no. The second question investigates the dif-
ferent ways in which developers identify new features. To reduce the response time and improve
the response rate, we provide some predefined options with one blank option for developers to
choose. If there is no satisfactory answer, then they can also provide their own answers based on
their own methods of identifying new features. Other surveys also employ the same method to
organize the contents of surveys, namely, predefined options combined with an undefined option
(Zimmermann et al. 2010). These answer options are set up in a crowd-sourcing mechanism. We
recruit 10 app developers to participate in it, and they are required to provide the sources to find
new features to implement. By collecting and merging the results, the answer options are formed.
In such a way, we think that the inducement to the participants is reduced as much as possible.

To conduct the survey, we need to identify a population of app developers to contact. We check
the top ranked apps in app markets, namely, Apple App Store, Blackberry App World, and Google
Play, and visit the webpages of these apps to obtain the detailed information. Eventually, we totally
collect 5,610 distinct contact addresses of apps, including 665 from Apple App Store, 1,860 from
BlackBerry App World, and 3,085 from Google Play. Then, we send an email to each contact address
with the survey containing the two questions.

We receive 115 responses and summarize the responses in Table 2. There are three potential
reasons for the response rate of ∼2%. First, some developers may be unwilling to share their meth-
ods of acquiring new features, since they may view them as confidential data. Second, around 15%
of emails are bounced back. Third, some app email addresses may be maintained by the customer
service personnel rather than developers. Nonetheless, 115 responses from industry practitioners
are still a substantial number similar to many prior studies (e.g., Zimmermann et al. 2010).

Our survey results highlight the following findings: First, over 86% of app developers will ex-
amine the features of apps in the same product type (Q1 in Table 2). Hence, features of apps from
the same product type are important pieces of information to app developers when developing
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new apps. Second, app descriptions are the main sources for developers to find new features. Cus-
tomers’ reviews of their apps are other important sources for new features (Gao et al. 2018). Hence,
even though there is no customer review available for new apps with only some initial features,
in this study, we also employ a baseline approach CLAP to compare (Scalabrino et al. 2019). Ad-
ditionally, we find that developers also use other means to identify new features, such as testing
similar apps, brainstorming, and reading materials posted on social media.

After demonstrating the developer survey, we explain the difference between app descriptions
and other informal documents (e.g., the requirement documents), which may make app description
a good source to acquire and recommend new features. First, app descriptions are user-oriented,
whereas informal documents are developer-oriented. In such a way, the features described in app
descriptions are the most attractive functionalities, which are easy to understand. In contrast, the
contents in informal documents involve too many technical details, which make them hard to
understand. Second, app descriptions can be obtained easily, since they are publicly open to the
users. Whereas, informal documents are usually not publicly open, due to the business privacies.
The unique characteristics of app description make it a great source of acquiring and recommend-
ing new features.

In conclusion, most developers examine features from apps of the same product type, and this is
a common action that developers identify new features from similar app descriptions to implement.
These findings motivate us to propose a new approach to recommend new features mined from
the descriptions of similar apps, given an initial set of features of an app that a developer wants to
implement.

3 DATASETS

In this section, we first introduce a repository of apps that we use as an input to our approach
SAFER. Next, we present a set of apps, whose features have been manually identified, to test the
results of AFE and SAFER.

3.1 Reference App Repository

We create a repository of reference apps that we use as an input to SAFER. To create this repository,
we select five representative categories in Google Play, namely, Business, Education, Health and

Fitness, Finance, and Music and Audio. We select these categories as case studies to validate the
effectiveness of SAFER, since there are a large number of apps with plentiful distinctive features
in these categories. We download a collection of 8,359 apps from Google Play with a tool, namely,
Google Play Unofficial Python API.2 This tool can not only download the APK file of each app
but also obtain its description, user rating, and so on. To download apps and their information,
a category name should be specified. This tool returns at most 100 apps in each run. We specify
each of the five category names one at a time and run this tool 30 times. After removing the
duplicate apps, we eventually obtain a dataset with 8,359 apps in total belonging to the five different
categories. This repository of apps is used as an input of our approach to recommend new features
to new apps.

Table 3 presents the characteristics of the apps in this repository, which we refer to as the
Reference App Repository. In the table, we include the number of apps in each category, and the
average, maximum, minimum, and standard deviation of number of sentences in the descriptions
of the apps. In addition, we also present the average number of API names that an app makes for
each category.

2https://github.com/egirault/googleplay-api.
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Table 3. The Characteristics of the Reference App Repository

Category # of Apps
Sent. in Descriptions of Apps Avg. # of API

Avg. # Max. # Min. # Std. Dev. names
Business 2,118 5.24 124 1 6.35 2,437

Education 1,822 7.18 113 1 8.16 1,964
Health and Fitness 1,545 6.97 65 1 6.93 2,468

Finance 1,796 5.48 66 1 6.07 2,336
Music and Audio 1,078 6.85 182 1 10.44 2,208

Table 4. The Statistics of the Annotated Golden Features

Categories
Golden Features

Ave. # Max # Std. Dev.

Business 5.85 10 2.10
Education 6.40 12 2.75

Health and Fitness 5.00 8 1.76
Finance 6.10 11 2.23

Music and Audio 3.30 8 2.00

3.2 Annotated Feature Dataset

Since no dataset containing apps with annotated features is available, we have volunteers annotate
a collection of apps to evaluate the performance of different feature recommendation systems.

We recruit 6 graduate students from School of Software, Dalian University of Technology to
annotate the apps. These volunteers all major in computer science and have experience with
software development for at least 4 years. Thus, it is not difficult for them to identify the features
of apps from their descriptions. Before the annotation process, each volunteer is asked to read an
annotation guideline to explain the annotation procedure, criteria, and an example. After these
volunteers get familiar with the whole process, they are requested to pick out the sentences
detailing features. First, the descriptions are segmented into sentences with an open tool named
Lingpipe.3 Then, each sentence is given to three different volunteers to obtain convincing results
and reduce the impact of a single volunteer. These volunteers are required to pick out the
sentences detailing the features in the descriptions. When two or three volunteers agree on a
sentence detailing a feature, this sentence is regarded as a golden feature, which is the sentence
describing a functionality or a service that an app can provide for users. Finally, we collect the
annotation results from these volunteers to form our Annotated Feature Dataset (AFD).

Due to the large number of apps in the Reference App Repository, we cannot annotate all the
apps. Hence, we randomly select 20 apps from every category and employ volunteers to anno-
tate their golden features. Randomly selecting apps is a simple but effective method to reduce the
sampling bias. The descriptions of these apps contain 1,218 sentences in total, and for each cate-
gory, more than 200 sentences need to be annotated by three different volunteers. At the end of
the annotation process, we have annotated 533 sentences detailing the features of the 100 apps
(golden features). As shown in Table 4, the number of golden features varies among categories.
For example, the average number and the maximum number of the golden features are 5.85 and

3http://alias-i.com/lingpipe/.
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Fig. 2. The components of AFE.

10, respectively, for apps in the category Business. In contrast, the corresponding values in the
category Music and Audio are 3.3 and 8, respectively. We calculate the Fleiss’ Kappa agreement
between volunteers on evaluating the golden features and find that the Kappa coefficient is 0.45
showing moderate agreement. The 100 apps with the annotated golden features are removed from
the Reference App Repository and they are only used as new apps to test the effectiveness of AFE
and SAFER.

4 APP FEATURE EXTRACTOR (AFE)

Automatically extracting feature-describing sentences from app descriptions is non-trivial. To ad-
dress this feature identification challenge, we develop a tool named App Feature Extractor (AFE).
AFE consists of three components, namely, data cleaner, linguistic rule filter, and feature classifier
(see Figure 2). AFE first splits the descriptions of apps into sentences and removes the noisy sen-
tences (the data cleaner component). Then, AFE filters out the remaining sentences based on some
linguistic rules (the linguistic rule filter component). Finally, AFE employs a classifier to discrim-
inate sentences that describe features from those that do not (the feature classifier component).
More details of these components are presented below:

Data Cleaner. Data cleaner first uses LingPipe to partition the description of an app into sen-
tences. Then, sentences only containing non-letter symbols and punctuation marks (e.g., @, #, $,
%, &) are filtered out. Moreover, interrogative sentences ending up with “?” are filtered out, since
they are usually used to ask questions or seek for help and seldom describe features based on our
observation. Finally, sentences containing either email addresses or website URLs are removed,
since they also typically do not describe app features but rather contact information.

Linguistic Rule Filter. Linguistic rule filter removes additional sentences based on the Part-Of-
Speech (POS) tags of the constituent words in the sentences. Linguistic rule filter is proposed based
on both literature review and data analysis. On the one hand, Guzman et al. (2014) stated that verbs,
adjectives, and nouns play an important role in defining features. For example, adjectives and
nouns are often combined together to describe the characteristic of a software system. On the other
hand, after a deep observation on plenty of descriptions of apps, especially the difference between
POS of feature-describing sentences and POS of non-feature-describing sentences, we define nine
linguistic rules (see Table 5) to capture feature-describing sentences. The second column of Table 5
shows the linguistic rules. Each element in the rules corresponds to both the basic form of a POS
and its variants. For example, <NN> means <NN>, <NNS>, <NNP>, and <NNPS> in the Penn
Treebank Tags4. In the third column of Table 5, a simple example is presented for each rule. We
use the Stanford POS Tagger (Toutanova et al. 2003) to analyze each sentence and infer the POS
tags of each word. We then apply the nine rules sequentially. If a sentence does not meet any of
these linguistic rules, then it is filtered out. Otherwise, it is retained.

Feature Classifier. After filtered by the above two components, the remaining sentences are
predicted to be feature-describing or not by a classifier, namely, Naïve Bayes classifier in this
study. We also verify several commonly used classifiers, i.e., Decision Tree, Support Vector Ma-
chine (SVM), Random Forest, and Adaboost. Among them, the Naïve Bayes classifier achieves the

4http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.
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Table 5. The Linguistic Rules with Examples

# Linguistic Rules Examples
1 <VB><NN> watch the video
2 <NN><VB> promotion offered
3 <JJ><NN> 3D live wallpaper
4 <NN><JJ> user editable and changeable
5 <JJ><VB> lazy monitor
6 <VB><JJ> pause when asleep
7 <VB><VB> share and collect
8 <NN><NN> temperature measurement
9 <JJ><JJ> safe and fast

Fig. 3. The framework of SAFER.

best results. For example, leveraging the Naïve Bayes classifier, we can achieve a F-Measure value
of 69.11% in detecting feature-describing sentences. In contrast, the F-Measure values of the other
tested classifiers are all less than 69%. To train the feature classifier, we manually build a training
set containing both feature and non-feature sentences. For each of 27 categories of apps in Google
Play, we select the top 10 ranked apps (based on their ratings) and download their descriptions.
If the top-ranked apps belong to the 100 randomly selected apps of AFD, then we remove them
from the training set. We process these descriptions using the data cleaner and linguistic rule fil-
ter components, and collect a total of 2,152 remaining sentences. Then, we manually label them
and eventually obtain a set of 1,073 feature describing sentences (positive sentences) and 1,079
non-feature-describing sentences (negative sentences). With such a training set, we use the Naïve
Bayes classification algorithm that is implemented in Weka (Hall et al. 2009) to learn a classifier.
The class labels of sentences retained by the linguistic rule filter are predicted by the trained clas-
sifier, and only the positive sentences are retained. By following the three steps of AFE, we can
obtain feature-describing sentences in the description of an app.

5 SIMILAR APP-BASED FEATURE RECOMMENDER (SAFER)

In this section, we present the framework of SAFER with its main components (see Figure 3). Given
a new app, SAFER recommends features for it by analyzing apps in the Reference App Repository.
First, all the reference apps are processed by a Reference App Filter (see Section 5.1) to remove
low quality ones. Next, for each retained app, SAFER extracts its features using AFE (described
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in Section 4) and extracts API names using the API Extractor component (see Section 5.2). Then,
SAFER builds a profile for each reference app based on its features and API names (see Section 5.3).
Topic model is then used to analyze these profiles and infer the topic distributions of each reference
app (see Section 5.4). At the same time, a profile is also built for the new app from its initial features,
and this profile is taken into the topic model to identify similar apps (see Section 5.5). At last, the
features of the similar apps are recommended for this new app (see Section 5.6). We elaborate the
components of SAFER in the following subsections.

5.1 Reference App Filter

SAFER aims to mine features from similar competing apps. As a result, the quality of the similar
apps should be taken into consideration. To make a new app successful, developers want to be
inspired by high quality apps rather than low quality ones. Similar to past studies (Bavota et al.
2015; Guerrouj et al. 2015; Tian et al. 2015), we employ the user rating of an app as the indicator for
the quality and the success of the app. We set up two filtering criteria to remove low quality apps:

1. The average user rating of a selected app should be more than 3. A user rating ranges from
0 to 5 in Google Play, and we choose 3 as the threshold. The higher the user rating is, the
more satisfied with the app users are.

2. The number of ratings that a selected app receives (rating count) should be more than 100.
To make the average user rating reliable and reduce bias, we restrict that the rating count
should be more than 100. In this way, we indirectly set up the minimum number of times
a selected app is downloaded.

For each app in the Reference App Repository, if it meets both of the two criteria, then it is
selected. Otherwise, it is filtered out.

5.2 API Extractor

To better characterize an app, we extract API names that an app makes to complement features
extracted from the description of the app. We consider API names, since implementing a feature
generally involves the usage of some specific APIs (Bavota et al. 2015; Nguyen et al. 2016; Charrada
et al. 2015; Heimdahl et al. 1997). Mobile apps implementing a similar feature are likely to share
a substantial proportion of API names (Gorla et al. 2014). For example, just as the name suggests,
the API “android.hardware.Camera.takePicture” is related to the feature “take pictures using a
camera.” Although the names of identifiers may be obfuscated in Android PacKages (APKs), API
names will not change (Ruiz et al. 2012).

API Extractor extracts API names from these APK files by the following steps:

1. APK file decompression. We invoke the “tar” command to decompress the APK files and
obtain .dex files.

2. .dex file conversion. We leverage the dex2jar5 disassembler tool to convert the .dex files
into .jar files. We filter out all APK files that cannot be converted.

3. .jar file decompression. In the same way as step (1), we decompress the .jar files into the
.class files.

4. API name extraction. We leverage the JClassInfo6 toolkit to extract API names from .class
files.

Since there are plenty of API names in each app, we perform several additional heuristic steps
to reduce the number of API names and uncover important and representative ones (Shabtai et al.

5http://code.google.com/p/dex2jar.
6http://jclassinfo.sourceforge.net.
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2010). First, we remove invocations of methods that appear in generic API packages that are likely
to have little relevance with specific app features. We investigate the functions of each API package
in the Android API reference and check whether they have a strong relationship with the features
of apps. Finally, we pick out the generic API packages through an open discussion by the authors.
For example, the aim of the package “android.support” is to make an app compatible with old
Android releases, and the aim of the package “android.database” is to allow an app to manipulate
a database. The other generic API packages include “android.utils” and “android.sax.” Second, in-
spired from the IDF term weighting scheme from the Information Retrieval (IR) domain, we filter
out some non-discriminant API names that are commonly used across all the apps. We count the
number of apps an API name appears, and rank all API names based on it. We treat the top 5%
API names as non-discriminant API names and filter them out. Third, we only consider the class
name and the method name of an API name rather than the whole API signature. We do this step
to group related methods together.

At the end, for each app, API Extractor extracts a set of API names that are called in the app.

5.3 App Profile Builder

App Profile Builder builds a profile for each app from two sources: (1) the features of the app
extracted from its description using AFE and (2) the API names of the app. More specifically, App
Profile Builder first creates an API vector and a feature vector for every app separately, and then
combines the two vectors together to create a profile for this app.

Given all the API names invoked by an app, App Profile Builder performs a series of Natural
Language Processing (NLP) steps, namely, tokenization, camel case splitting, stemming, and stop
word removal (Butler et al. 2011; Annervaz et al. 2013). We add “Java” and “Android” keywords
to the list of stop words, since “Java” and “Android” keywords are the most common words in
API names. After that, every resulting term is mapped to a vector element whose value is its Term
Frequency (TF)–the number of times the term appears. In such a way, an API vector can be created
for each app.

For features extracted from the description of an app with AFE, we follow the same steps (except
camel case splitting) to form a feature vector for the app.

Given the API vector VAPI and the feature vector Vfeature of an app, the profile of the app is
created by merging the corresponding words from the API and feature vectors. The term weight
of each word in the profile is defined as follows:

Wi in profile = 2×Wi in feature+1×Wi in API, (1)

where Wi in profile is the weight of the ith term in the profile, while Wi in feature and Wi in API are
the weights of the ith term in the feature and API vectors accordingly. Inspired by prior studies
(Wang et al. 2008; Sun et al. 2010), we double the weights of the terms in the feature vector. In other
words, we consider the features extracted from descriptions to be more important than API names.
Two reasons lead us to make such a choice. On the one hand, the features in app descriptions
are expressed in natural language, which is convenient for developers to read and understand
(Hierons et al. 2016). On the other hand, there are plentiful API names invocated by apps, whereas
the features in descriptions are relatively infrequent. To reduce the influence of API names, we
give API names a lower weight than the features in descriptions.

App Profile Builder can create profiles for both reference apps and a new app. For a new app
with its initial features, its API vector VAPI is empty.

5.4 Topic Model

Inspired by the work of Hindle et al. (2012), we leverage Latent Dirichlet Allocation (LDA) to
identify the topic distribution of each app profile to identify similar apps. Two apps with similar
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Table 6. The Topics and Topic Distributions of Some Apps

Topic Most Representative Stemmed Terms Property Milestone Gig Harbor Real Estate
1 search, find, career, seek, company 20.1% 16.5%
2 file, document, pdf, text, office 3.3% 8.2%
3 expens, record, calcul, report, cost 0% 0%
4 map, locat, track, address, direct 4.9% 6.5%
5 send, email, photo, messag, attach 0% 5.9%
6 confer, session, attende, speaker, schedule 0% 0%
7 trade, market, bui, sell, exchang, 0.5% 0%
8 store, find, save, servic, offer 4.8% 4.6%
9 control, remot, record, secur, fast 1.6% 0%
10 share, social, push, receive, media 0% 1.5%

Property Milestone:

-property searches: search properties to buy or rent and view full properties details.

-agents search: quickly search real estate agents nearby about listings.

-map: view properties on map in normal, satellite or traffic mode.

-manage account: you can register or sign in to save property and real estate agent listing for view later.

-saved listing: view your favorite property and real estate agents.

Gig Harbor Real Estate:

-search homes for sale.

-filter searches by price, beds, baths, and more.

-view full screen color photos.

-map and get the directions to each listing.

-access to agent/broker website, phone and email.

topic distributions are likely to belong to the same product type (Gorla et al. 2014). We utilize the
LDA implementation that comes with the TMT toolbox.7 As suggested in Gorla et al. (2014), we
set the number of topics to 30, and the other parameters are set to their default values in TMT.
Actually, we also test other values for the number of topics (e.g., 15 and 45) and find that the
number of topics setting up to 30 achieves the best results. Better results may be achieved if we
calibrate these parameters carefully.

Table 6 shows an example of 10 main topics with representative stemmed terms mined by LDA
from the descriptions of apps in our annotated dataset (see Section 3.2) that falls in the category
Business. In the 3rd and 4th columns of Table 6, we list the topic distributions of two apps, namely,
Property Milestone and Gig Harbor Real Estate. Below Table 6, we also present the manually ex-
tracted golden features from the descriptions of the two apps. As shown in Table 6, the topic
distributions could well characterize the features of the two apps. For example, one of the main
features of Property Milestone is “property search,” and its probability for Topic 1, whose most
representative terms include “search” and “find,” is 20.1%.

5.5 Similar App Identifier

Given a new app, Similar App Identifier identifies similar apps based on the topic distributions
of the new app and reference apps in the Reference App Repository. More specifically, Similar
App Identifier computes the cosine similarity between the topic distributions of the new app and
those of every reference app, and ranks all the reference apps in a descending order based on their
cosine similarities. The top K similar reference apps are then returned for the next and final step
of SAFER.

7http://nlp.stanford.edu/software/tmt/tmt-0.4/.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 22. Pub. date: October 2019.

http://nlp.stanford.edu/software/tmt/tmt-0.4/


22:14 H. Jiang et al.

Table 7. The Algorithm of Feature Recommendation

Feature Recommendation Algorithm
Input: clusters and their connections
Output: the ranked recommended features

1
2
3
4
5
6
7
8
9

find all the occupied clusters;
locate all the neighboring clusters of occupied clusters;
rank exemplars of neighboring clusters based on their weights;
if (two exemplars have the same weight)

rank the two exemplars based on their sizes;
end if;

if (the number of recommended features is less than N)
rank the rest exemplars of clusters based on their sizes;

end if;

Given two apps Ai and Aj, the cosine similarity of Ai and Aj can be calculated as follows:

Simi (Ai,Aj) =

∑
∀t PAi∈t × PAj∈t√∑

∀t PAi∈t × PAi∈t ×
√∑

∀t PAj∈t × PAj∈t

, (2)

where PAi∈t and PAj∈t represent the probabilities of apps Ai and Aj belonging to a specific topic t.

5.6 Feature Recommender

After Similar App Identifier returns the set of the top K most similar apps, Feature Recommender
processes the features of the top K apps as well as the initial features of the new app, and recom-
mends features for the new app.

The top K similar apps may share similar features written in different forms. Hence, Feature
Recommender aggregates features using the Affinity Propagation (AP) clustering algorithm (Frey
et al. 2007), which is a density-based clustering algorithm. Using AP, we do not need to specify the
centers of clusters and the number of clusters. AP takes a matrix that defines the similarity between
any two data points as an input, and outputs the clusters with their exemplars. In this study, we
define the matrix by calculating the cosine similarity between every two features. After clustering,
the features belonging to a cluster are named by its exemplar. For example, the app Handy Lyrics

and the app Atomic Kitten All Lyrics have features “lyrics categorized by album” and ““browse
lyrics by album”, respectively”. After clustering, the two features belong to the same cluster, and
the exemplar “browse lyrics by album” is used as the representative of the two features.

After we cluster all the features, we connect all pairs of clusters by drawing lines between them.
Each line between two clusters has a weight, which is the number of top K apps that contain
the two features simultaneously. The weight of a line between two clusters shows the degree
of correlation between features. Feature Recommender ranks the feature clusters based on the
weights of the lines and the sizes of the clusters.

The pseudocode of the feature recommendation algorithm is shown in Table 7. Feature Recom-
mender first locates the clusters that the initial features of the new app belong to–we refer to these
clusters as occupied clusters. It then finds all neighboring clusters of the occupied clusters and ranks
these neighbors in a descending order based on the maximum weights of the lines linked with the
occupied clusters. If two neighbors have the same weight, then they are ranked based on their sizes.
If the number of the neighbors of the occupied clusters is less than N, then Feature Recommender
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Fig. 4. An example of the resulted clusters.

also includes and ranks non-neighboring clusters based on their sizes. By default, N is set to 15,
since recommending a small list is a common practice in software engineering (Wang et al. 2008).
The recommendation list is not so large so that developers can check them from the top to the
bottom sequentially without taking much time. In addition, SAFER associates each feature with
its apps ranked by user ratings. In such a way, we can obtain the ranked recommended features.

Taking Figure 4 as an example, each circle stands for a cluster and the size of the circle shows
the size of the corresponding cluster (the number of features in this cluster). The numbers over the
lines between the circles stand for the weights. In this example, the clusters 3 and 4 are occupied

clusters, namely, two initial features “turns radio automatically off, when you receive a call” and
“where you are, the latest political talk news present with you” are in the two clusters. As we can
see, the clusters 1, 2, and 5 are neighboring clusters. SAFER will first recommend the exemplar
“control audio and view track titles from the lock screen” in cluster 2 to developers, since the
maximal weight of its lines is the largest, i.e., 15. Then, the exemplars of clusters 1 and 5 are
recommended based on the weights, that is to say, “a player for listening to radio stations” and
“browse popular tags or genres of the week” are recommended successively. At last, the exemplar
“tracks interactive music chart of songs posted on Twitter” in cluster 6 is recommended, since it
has no connection with the occupied clusters.

6 EXPERIMENTAL SETUP

In this section, we describe our experiment settings, baselines, evaluation method, and evaluation
metrics.

6.1 Experiment Settings

All the experiments are conducted on a Core i5 CPU PC with 8G memory running Windows 7.
We implement all the algorithms in Java compiled by MyEclipse 10 using Weka 3.6.5 library (Hall
et al. 2009).

SAFER takes in a parameter K, namely, the number of similar apps. We set K = 60 as the default
parameter value. In Section 7.1, we will show the impact of modifying K.

6.2 Baselines

KNN+. As discussed in Section 1, no existing method in the literature can recommend new
features for an app from the descriptions of similar apps in app markets. The most similar approach
is KNN+, which aims to recommend new features from Softpedia.com, a website collecting features

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 22. Pub. date: October 2019.



22:16 H. Jiang et al.

for software products (Hariri et al. 2013). However, Softpedia.com contains a limited number of
apps, whose features have been created and listed explicitly in bullet-point form and categorized
into fine-grained product type. KNN+ thus does not address the feature identification challenge.
Furthermore, in the absence of fine-grained product types (Google Play does not have fine-grained
app categories), KNN+ does not fully address the similar app identification challenge.

KNN+ works as follows. First, an incremental diffusive clustering is employed to aggregate
and name features from a product type. Then, a product-by-feature matrix is created and several
association rules are mined from a frequent item set graph generated from the matrix. Last, when
some initial features of a new software product are provided, these initial features are extended
by the association rules and new features can be recommended based on the standard K Nearest
Neighbor clustering algorithm.

Since KNN+ cannot extract features from the descriptions of apps in app markets (e.g., Google
Play), we employ AFE to extract features, which are then used as the input to KNN+ to address
the feature identification challenge. We use the apps in the same category in the Reference App
Repository as the product type for KNN+ to address the similar app identification challenge.

CLAP. Even though there is no user review for new apps with only initial features, we also try to
compare SAFER against one of typical studies, which try to recommend features from user reviews,
to show which source (description or user review) is better to acquire and recommend features.
We employ a recent and similar study as another baseline approach, namely, CLAP (Scalabrino
et al. 2019). CLAP aims to analyze user reviews for release planning. It consists of three main com-
ponents to categorize, cluster, and prioritize user reviews. In the first component, CLAP uses the
Random Forest classifier to automatically categorize user reviews into new features, bug reports,
and others. Then, it clusters related reviews together using DBSCAN in the second component.
Finally, CLAP prioritizes the user reviews to be implemented in the next release. In this study, we
consider the top ranked user reviews (i.e., clusters with larger sizes) in the new features category as
the recommended new features. The same as SAFER, we also evaluate the top 15 ranked new fea-
tures for CLAP. If there are less than 15 recommended new features, then we evaluate all of them.

6.3 Evaluation Method

Ideally, a feature recommender is said to successfully recommend a feature for an app developer, if
this developer agrees that the recommended feature actually helps him/her in developing his/her
app. However, this process is highly subjective and it is hard to invite a large number of app devel-
opers from industry. Inspired from the baseline approach KNN+ and for fair comparison, we em-
ploy the same elimination-recovery evaluation method to verify the two feature recommendation
approaches SAFER and KNN+. Both SAFER and KNN+ are evaluated using the same evaluation
method, so the better approach (SAFER or KNN+) can be shown. The elimination-recovery method
works as follows. For each golden feature f in the golden feature set F of app A, we eliminate f

from the set F and let a feature recommender takes in all the remaining features in F-{f} as input.
After the feature recommender recommends a ranked list of features, we employ three volunteers
to check whether the eliminated feature f is hit in the ranked list. Here, a feature f is said to be hit
when two or three of the volunteers find f to be described by one of the features in the ranked list.

We conduct the leave-one-out (LOO) test over each category of apps. More specifically, we
choose every app A with golden features in AFD (see Section 3.2) as the test set, and have all
the apps in the same category in the Reference App Repository as the training set. For each golden
feature in app A, we follow the elimination-recovery method to evaluate the performance of SAFER.
After all the apps with golden features in FDA are used as test sets, we average the results over each
category of apps. This elimination-recovery method tested by LOO could reflect the real scenarios
to some extent when developing new apps.
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Table 8. The Confusion Matrix

True Condition
Positive Negative

Predicted

Condition

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

For the 20 randomly selected apps in each category in AFD, we also download their user reviews
submitted before the release date from Google Play. By using CLAP to analyze and prioritize these
downloaded user reviews, we can evaluate whether these user reviews can be used to acquire the
new features. Different from SAFER and KNN+, CLAP tries to find features from user reviews.
By comparing the results of the SAFER and CLAP, we can know which source (description or
user review) is better to recommend features. In addition, by comparing the results of SAFER and
KNN+, we can learn which approach is better to recommend features from descriptions.

6.4 Evaluation Metrics

In this study, Hit Ratio and Normalized Discounted Cumulative Gain (NDCG) are used as yardsticks
to evaluate the performance of feature recommendation systems. In the experiments, we recom-
mend 15 features for each app, and calculate Hit Ratio and NDCG at the top 15 ranked features.

Hit Ratio is a widely used metric in feature recommendation to evaluate how many features can
be successfully recommended (Hariri et al. 2013). Hit Ratio can be calculated as follows:

Hit Ratio =
# of hit features

# of features
× 100% (3)

In addition to Hit Ratio, we compute NDCG to further evaluate the quality of the recommended
list of features. NDCG is a well-known metric to evaluate a ranked list in Information Retrieval (IR)
and recommendation systems (Jiang et al. 2019). NDCG can fully evaluate a recommended list of
results from the top ranked result to the bottom ranked one with the gain of each result discounted
by lower ranks. NDCG is defined as follows:

NDCG =
G

ideal G
, G =

15∑
i=1

2scorei − 1

log2 (i + 1)
(4)

where scorei is equal to 1 when the ith recommended feature hits a golden feature, otherwise it is
equal to 0. Here, ideal G (Mcmillan et al. 2013) is a special form of G with the best rank, namely,
all 1s rank higher than 0s.

In addition, we also introduce Precision, Recall, F-Measure, and Accuracy to evaluate the perfor-
mance of AFE. The comparison results between the true condition and the predicted condition
can be shown in a confusion matrix in Table 8. Based on the confusion matrix, Precision, Recall,

F-Measure, and Accuracy can be calculated as follows: >

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F-Measure =
2 × Precision × Recall
Precision + Recall

, (7)

Accuracy =
TP + TN

TP + TN + FP + FN
. (8)
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Fig. 5. The results of Business. Fig. 6. The results of Education.

7 EXPERIMENTAL RESULTS

In this section, we investigate five Research Questions (RQs) to evaluate the performance of AFE
and SAFER.

7.1 RQ1: How does the parameter K influence the performance of SAFER?

Motivation. There is a parameter in SAFER, namely, K, which is the number of the top similar
apps used by SAFER to recommend new features. In this RQ, we try to find a good value of K and
investigate its impact on the performance of SAFER.

Approach. We investigate a set of K values, namely, {20, 40, 60, and 80}. Out of the five categories
in AFD (see Section 3.2), we evaluate the behavior of SAFER over the first two categories, namely,
Business and Education. We run SAFER with each value of K on the two categories and evaluate
the features recommended by SAFER using Hit Ratio and NDCG.

Results. In Figures 5 and 6, we present the experimental results of SAFER over the Business and
Education categories, respectively, for different values of K. As shown in Figures 5 and 6, the per-
formance of SAFER varies along with the change of K. However, the behavior of SAFER exhibits
similar trends over both categories. For example, the value of Hit Ratio over the category Business

improves from 60.20% to 73.99% when K grows from 20 to 60. When K grows to 80, the Hit Ratio

value drops to 69.48%. The NDCG curve of SAFER over the category Business also follows a similar
trend. We can also note similar findings for the category Education in terms of both Hit Ratio and
NDCG. For example, SAFER achieves the best Hit Ratio (78.68%) and NDCG (0.4955) values when
K is set to 60. The performance of SAFER declines when K is increased or reduced. Therefore, we
set K = 60 in the remaining experiments.

The findings indicate that as we increase the value of K, more and more closely related apps
are detected, hence it becomes easier to recommend new features for a new app. However, as the
value of K increases beyond a certain point, many unrelated apps may be introduced, which create
noise to the new feature identification process.

Conclusion. The parameter K influences the performance of SAFER. Based on the parameter
tuning results over two categories, the best results are achieved when K is equal to 60. Hence, K
is kept as 60 in the following RQs.
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Fig. 7. The average number of feature-describing sentences after each step of AFE.

Fig. 8. The average number of non-feature-describing sentences after each step of AFE.

7.2 RQ2: How effective is AFE in extracting features from app descriptions?

Motivation. To extract features from the descriptions of apps, we construct a tool named AFE.
In this RQ, we try to investigate how effective is AFE in identifying feature-describing sentences
from app descriptions.

Approach. We run AFE to extract feature-describing sentences from the descriptions of apps in
AFD (see Section 3.2). For each app in AFD, we use AFE to extract features from its description and
compare these extracted features with the golden features annotated by volunteers. To measure the
detailed performance of AFE, we count the average number of feature-describing (golden features)
and non-feature-describing sentences (non-golden features) before and after each filtering step of
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Table 9. The Results of AFE for Each Category

Category Precision Recall F-Measure Accuracy

Business 76.19% 82.05% 79.01% 75.94%
Education 66.88% 82.03% 73.67% 73.40%

Health and Fitness 56.61% 77.00% 65.25% 67.46%
Finance 66.19% 75.41% 70.50% 69.92%

Music and Audio 43.08% 84.85% 57.14% 61.11%
Average 61.79% 80.27% 69.11% 69.57%

AFE. In addition, we also show the other performance indicators for all the categories, such as
Precision, Recall, F-Measure, and Accuracy.

Results. For every category of apps, Figures 7 and 8 present the average number of golden fea-
tures and non-golden features remained before processing, after applying the data cleaner, after
applying the linguistic rule filter, and after applying the feature classifier. As seen from the fig-
ures, after applying the data cleaner, on average 5.70 golden features and 3.25 non-golden features
are retained for the category Business. It indicates that the data cleaner component is effective,
since only 0.15 golden features are falsely filtered out, meanwhile 1.5 non-golden features are cor-
rectly filtered out. After processed by the linguistic rule filter, we can find that no golden features
are removed, and 0.3 non-golden features are filtered out. After applying the feature classifier,
4.80 golden features are correctly predicted. Meanwhile only 1.50 non-golden features are falsely
predicted as features and retained. We can find similar phenomenon for the other categories. A
good tool for extracting features from the descriptions of apps should retain as many golden fea-
tures as possible, while retain as few non-golden features as possible. By comparing Figures 7 and
8, we can see that the areas of golden features are not reduced too much after each step. However,
the areas of non-golden features decrease substantially. It reveals that AFE could correctly retain
most of golden features and filter out most of non-golden features.

Table 9 summarizes the overall results of AFE in terms of Precision, Recall, F-Measure, and Accu-

racy for each category. For instance, when applying AFE on the category Business, it could achieve
a Precision value of 76.19% and a Recall value of 82.05%. When considering F-Measure and Accuracy,
AFE can achieve 79.01% and 75.94%, respectively. We can see from the table that AFE could achieve
an average F-Measure value of 69.11% and an average Accuracy value of 69.57%. That is to say that
AFE is an effective tool to distinguish features from non-features in the descriptions of apps.

Conclusion. AFE is an effective tool to extract features from the descriptions of apps. It can retain
most of the golden features and filter out a majority of the non-golden features.

7.3 RQ3: Does the introduction of API names contribute positively to SAFER?

Motivation. SAFER tries to combine features mined from app descriptions and API names to
construct a profile for an app. In this RQ, we try to explore whether API names can complement
features extracted from app descriptions.

Approach. We define and implement a variant of SAFER, namely, SAFER-API, which removes the
API Extractor component and keeps the other components the same. We run SAFER and SAFER-API

on the same annotated dataset. By comparing the results of SAFER against SAFER-API, we can
evaluate the benefit of introducing API names.

Results. Table 10 shows the comparison results between SAFER and SAFER-API. In terms of Hit Ra-

tio, we can see that SAFER achieves better results than SAFER-API in most of the categories, except

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 22. Pub. date: October 2019.



Recommending New Features from Mobile App Descriptions 22:21

Table 10. The Comparison Results Between SAFER and SAFER-API

Category
Hit Ratio NDCG

SAFER SAFER-API SAFER SAFER-API

Business 73.99% 69.30% 0.4802 0.4356
Education 78.68% 74.30% 0.4955 0.4697

Health and Fitness 69.92% 68.69% 0.4536 0.4431
Finance 54.49% 55.13% 0.3714 0.3696

Music and Audio 64.38% 61.25% 0.4327 0.4227
Average 68.29% 65.73% 0.4467 0.4281

for the category Finance, where the difference is trivial. For example, SAFER achieves a Hit Ratio

value of 73.99% and improves SAFER-API by 4.69% for the category Business. When considering the
category Finance, SAFER-API only outperforms SAFER by 0.64%. On average, SAFER outperforms
SAFER-API by 2.56%. In terms of NDCG, we can find that SAFER is superior to SAFER-API in all the
categories. Overall, SAFER outperforms SAFER-API by 0.0186 in terms of NDCG.

Conclusion. Taking API names into consideration can improve the results of SAFER. API names
can be used as good complements to the extracted features from app descriptions.

7.4 RQ4: To what extent can we obtain reasonable results when given a small

set of initial features?

Motivation. As the inputs to SAFER, the number of initial features may influence its performance.
Through this RQ, we want to explore to what extent the performance of SAFER depends on a small
set of initial features. Given a small set of initial features, we can test the performance of SAFER
in extreme situations to show its robustness.

Approach. In the real development process, developers may conceive different number of ini-
tial features. In this RQ, we investigate the effectiveness of SAFER when we vary the number of
initial features. Since we want to investigate the performance of SAFER starting with a small set
of features, we predefine some values by adjusting different number of golden features, namely,
{25%, 50%, 75%, and leave-one-out (LOO)}, as initial features. Since the average number of golden
features is only 5.33 in the app descriptions in AFD, by selecting 25% and 50% features as initial
features, we can test SAFER in extreme conditions (i.e., given less than 3 initial features).

Results. Figures 9 and 10 show the results of Hit Ratio and NDCG, respectively. We can see from
the figures that, as the percentage increases, both the values of Hit Ratio and NDCG show upward
trends. For example, for the category Business, when the inputs are 25% of all the golden features,
the Hit Ratio value is 63.86%. When the percentage is increased to 75%, the Hit Ratio value is 71.58%.
When using LOO, the Hit Ratio value is 73.99%. We can also observe the same phenomenon for the
other categories with some exceptions. The upward trends of the results may be due to the fact
that the more the initial features are, the more likely they can better model the profile of the app.
Hence, the recommended features have high probabilities to hit the target features. In addition, we
can also find that there is no big difference between 75% and LOO. The reason is that the average
number of features in AFD is close to 5. As a result, the input to SAFER using either 75% of the
golden features or LOO is typically the same number of features (i.e., 4 initial features).

When analyzing the reasons why SAFER performs well in some categories while not in the
others, we find that the dispersion of the features in the reference apps could influence the results
of SAFER. Intuitively, the more dispersive of the features the reference apps have for a category,
the more difficult for SAFER to detect similar apps, so the less likely that SAFER can recommend
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Fig. 9. The Hit Ratio results for different percentages of golden features used as initial inputs.

Fig. 10. The NDCG results for different percentages of golden features used as initial inputs.

features for the test apps in the same category. To explore the dispersion of the features in the
reference apps for a category, we first use AFE to identify features for all the apps in the Reference
App Repository. Then, we calculate the average number of features with its standard deviation
in the reference apps. We find that the average number of features is similar in all the categories.
However, the Finance category and the Music and Audio category achieve the two largest standard
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Table 11. The Comparison Results Between SAFERv1 and KNN+

Category
Hit Ratio NDCG

SAFERv1 KNN+ SAFERv1 KNN+
Business 73.99% 64.79% 0.4802 0.4258

Education 78.68% 56.10% 0.4955 0.4090
Health and Fitness 69.92% 54.70% 0.4536 0.3703

Finance 54.49% 38.01% 0.3714 0.3154
Music and Audio 64.38% 41.71% 0.4327 0.3476

Average 68.29% 51.06% 0.4467 0.3736

deviation values in all the categories in terms of the number of features in the reference apps, i.e.,
16.97 and 5.83. It means that the number of features is spread out over a wide range of values in
the two categories, making SAFER hard to detect similar apps and recommend features. Hence,
SAFER does not perform well in the two categories.

Conclusion. Along with the growth of the number of initial features, the Hit Ratio and NDCG

values increase. Even given a small set of initial features, SAFER still performs well and robustly.

7.5 RQ5: Can SAFER outperform the two baseline approaches?

Motivation. KNN+ can be adapted to recommend new features for apps as SAFER, and CLAP
can resolve the same problem by acquiring features from user reviews. In this RQ, we investigate
whether SAFER can achieve better results than the adapted KNN+ and CLAP. By investigating this
RQ, we can learn which source is better to find features (description or user review) and which
approach is better to recommend features from descriptions.

Approach. We run KNN+ on each app category in AFD. By conducting LOO and collecting the
results, we can compare the results of SAFER against KNN+. At the same time, we collect the
recommendation results from CLAP for the 100 apps in five categories in AFD. However, due to
two reasons, CLAP cannot recommend features for all the 100 apps. First, there is no user review
received before the release time of these apps. Different from our notion, some apps do not receive
many user reviews, and only the popular and widely used apps can get plentiful user reviews.
Second, since CLAP classifies user reviews into new features, bug reports, and others, no user review
is classified into the new features category possibly due to that users tend to submit bug reports or
others. Finally, CLAP can only recommend features for 36 apps in AFD. We collect the results from
CLAP and compare it against SAFER. Hence, we first compare SAFER against KNN+ in the 100
apps in AFD. Then, we compare SAFER against CLAP in 36 apps in AFD.

In addition, we introduce the paired Wilcoxon signed rank test to explore the statistical signif-
icance of the difference between the performance of SAFER and KNN+, and between SAFER and
CLAP in recommending features for new apps. We formulate the two test hypotheses as follows:

H0: There is no significant difference between the performance of the two approaches.
H1: There is significant difference between the performance of the two approaches.

In this study, we set the significance level to be 5%, which means that significant difference
between the performance of the two approaches could be detected if the p-value is below 0.05. In
contrast, a p-value larger than 0.05 implies that the two approaches perform similarly considering
the corresponding evaluation metric.

Results. Since the apps are different in KNN+ and CLAP for a category, we compare SAFER
against KNN+ and CLAP separately, and give SAFER different version (i.e., SAFERV1 in Table 11
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Table 12. The Comparison Results Between SAFERv2 and CLAP

Category
Hit Ratio NDCG

SAFERv2 CLAP SAFERv2 CLAP
Business 78.27% 60.00% 0.5074 0.4003

Education 81.44% 58.57% 0.5867 0.4657
Health and Fitness 77.50% 57.50% 0.5563 0.3874

Finance 71.54% 38.54% 0.4721 0.3239
Music and Audio 71.19% 47.62% 0.4936 0.2776

Average 75.99% 52.45% 0.5232 0.3710

and SAFERV2 in Table 12). The results of SAFER and KNN+ are summarized in Table 11. As shown
in Table 11, in terms of Hit Ratio, SAFER significantly outperforms KNN+ over all the categories
of apps in AFD. For example, SAFER improves KNN+ by up to 22.67% over the category Music and

Audio. On average, SAFER improves KNN+ by 17.23% in terms of Hit Ratio. This result implies
that SAFER can successfully recommend far more golden features than KNN+. In terms of NDCG,
SAFER also outperforms KNN+ for all the categories. On average, SAFER outperforms KNN+ by
0.0731 in terms of NDCG.

When we consider Hit Ratio as the evaluation metric, the p-value obtained by the Wilcoxon
test is 0.001, which means that H0 is rejected and there exists significant difference between the
performance of SAFER and KNN+. Similar phenomenon could be observed when we consider
the NDCG metric (p-value = 0.008). Considering that SAFER achieves better Hit Ratio and NDCG

values than KNN+ on average, we can conclude that SAFER is superior to KNN+.
The results of SAFER and CLAP are shown in Table 12. We can see that SAFER shows its ad-

vantages in all the categories. For example, SAFER achieves a Hit Ratio value of 78.27% in the Busi-

ness Category. In contrast, CLAP only achieves 60.00% in the same situation. On average, SAFER
achieves 75.99% and outperforms CLAP by 23.54% in terms of Hit Ratio. We can find similar results
in terms of NDCG. For instance, SAFER is superior to CLAP by 0.1522 on average. We also con-
duct the Wilcoxon test for Hit Ratio and NDCG, and the p-values are 0.003 and 0.009, respectively.
It means that there exits significant difference between SAFER and CLAP, and SAFER performs
better than CLAP.

On average, the time to recommend features for each test app takes less than one minute. Along
with the increase of the number of reference apps, the time required for SAFER to recommend
features for new apps only has a linear growth. Hence, SAFER can recommend features within
acceptable time, considering that there are thousands of apps in the Reference App Repository.
After demonstrating the comparison results, we would like to explain why SAFER could perform
better in recommending features from mobile app descriptions. First, SAFER is specially designed
for recommending features for mobile apps. SAFER fully leverages the domain specific knowledge
to retain high quality apps and detect similar apps, e.g., user rating, rating count, and API names,
so it can recommend features accurately. Second, AFE is built to precisely extract pure feature
lists from app descriptions, which can break through the Feature Identification challenge. Taking
the pure features as input, SAFER does not suffer from the noise to achieve better results. Third,
SAFER introduces API names as complements for features. Meanwhile, it utilizes topic model to
achieve similar apps to break through the Similar App Identification challenge.

Conclusion. SAFER outperforms KNN+ in terms of Hit Ratio and NDCG over all the five app
categories, and the improvement achieved by SAFER is statistically significant. In addition, by
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comparing the results of SAFER and CLAP, we find that app description is good source to acquire
and recommend features.

8 THREATS TO VALIDITY

In this section, we introduce the threats to the validity, including the threats to internal validity
and external validity.

Internal Validity. Since no dataset of golden features is available, we have volunteers annotate
a golden feature dataset and vote the resulting list of features. The backgrounds and personal
opinions of volunteers may influence the golden feature annotation and the evaluation of the
results. To reduce the bias of volunteers, we have three distinct volunteers annotate each feature
and vote for each result. A sentence is treated as a golden feature or a recommended feature hits
a golden feature if it receives at least two out of three votes. In addition, we provide them an
annotation guideline with annotation criterion, and they are required to read and understand them
thoroughly before conducting the experiments. In such a way, we think that this threat is reduced
as much as possible.

We construct a Reference App Repository to help SAFER recommends new features for apps.
The construction of the Reference App Repository may be a threat. Employing different reference
apps into the repository, SAFER may have different performance. If the Reference App Repository
is large enough, then all the available features are included in it. In such a situation, SAFER may
perform well. It is unknown how SAFER performs when the reference apps are changed in the
repository. In the future, we will explore the performance of SAFER when providing different
reference apps in the repository.

To avoid missing a feature, all the different granularities of features are taken into consideration,
ranging from low-level implementation to high-level capabilities. In this way, we hope that SAFER
can help developers analyze all the available features of similar apps in the market to make the final
decision. In the future, we plan to differentiate features of different granularities and recommend
them separately.

Besides, since it is labor intensive and time consuming to directly evaluate whether SAFER
can recommend new features for new apps, we evaluate SAFER following an elimination-recovery

method, which was proposed earlier to evaluate another feature recommendation approach (Hariri
et al. 2013). This evaluation method can reflect the real development process for new apps to some
extent. In addition, both SAFER and KNN+ are evaluated by the same method so that they are
evaluated equally. In such a way, we can learn which approach is better.

External Validity. In this study, we utilize an annotated dataset with hundreds of features of
100 apps from five app categories to evaluate the performance of SAFER. These 100 apps from the
five categories are randomly selected, so the sampling bias can be reduced. It is still uncertain how
well SAFER performs over other apps of other app categories. Still, we think that 100 apps and
533 features are large enough to illustrate the performance of SAFER. In the future, we plan to
explore the performance of SAFER on more apps in different categories.

SAFER aims to recommend new features for apps by inspecting and combining features from
similar apps. A winning app is expected to have some special features that are not possessed in
other apps. In this situation, SAFER can only provide some special combinations of features that
no apps have. In contrast, CLAP may provide some unique features that are suitable for new apps.
To achieve some specific features that no apps have, combining both SAFER and CLAP could be
a better solution. In the future, we plan to combine SAFER and CLAP together to help developers
acquire special features for apps.
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Table 13. Existing Work on Feature Recommendation

# Main Approach Source of Features References

1 Manual/semi-manual effort Requirement documentation
(Kang et al. 1990;
Frakes et al. 1998;
Santo et al. 2009)

2 Social networks Stakeholders
(Lim et al. 2011;
Lim et al. 2010)

3
Data mining and natural

language processing

Requirement specifications
(Alves et al. 2008;
Chen et al. 2005)

Forum or user feedback

(Rahimi et al. 2014;
Carreño et al. 2013;
Nayebi et al. 2017;
Chen et al. 2014;

Panichella et al. 2015;
Scalabrino et al. 2019)

Softpedia.com (Hariri et al. 2013)

9 RELATED WORK

Extracting software features from the textual software artifacts could help to resolve many soft-
ware development tasks. A number of past studies propose approaches to identify and recommend
features. These approaches can be roughly classified into three categories (see Table 13), i.e., the
approaches using manual/semi-manual effort, the approaches using social networks, and the ap-
proaches using data mining and natural language processing.

Studies in the first category propose methodologies to either manually or semi-automatically
extract features from requirement documentation. Studies under this category include Feature
Oriented Domain Analysis (FODA) (Kang et al. 1990) and Domain Analysis and Reuse Environment
(DARE) (Frakes et al. 1998; Santos et al. 2009). Kang et al. propose FODA to help developers conduct
domain analysis (Kang et al. 1990). FOAD consists of three basic activities, i.e., context analysis,
domain modelling, and architecture modelling. Based on these activities, FODS supports software
developers to understand and implement applications in the domain. Frakes et al. propose DARE, a
case tool to support domain analysis (Frakes et al. 1998). DARE captures domain information from
experts, documents, and code. In addition, DARE also helps to find reusable domain information
by providing a search mechanism.

The second category leverages a social network of stakeholders of different influence levels
to identify and rank requirements by asking each stakeholder to write new requirements and
rate requirements created by other stakeholders (e.g., (Lim et al. 2011; Lim et al. 2010)). Lim et al.
propose StackNet to identify and prioritize stakeholders (Lim et al. 2010). StackNet consists of three
steps, including identifying stakeholders, building a stakeholder social network, and prioritizing
stakeholders with some social network metrics. Furthermore, Lim et al. also propose StackRare
that leverages social networks to identify and prioritize requirements in a large-scale of software
projects (Lim et al. 2011). StackRare asks stakeholders to recommend relevant requirement using
collaborative filtering.

Approaches in the above two categories cannot automatically recommend features to apps,
since a lot of manual steps involving domain analysts or stakeholders are needed. In contrast, the
third category leverages data mining and Natural Language Processing (NLP) techniques to auto-
matically recommend features. The methods in this category could be further divided into three
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sub-categories, based on their sources of features, namely, repositories of requirement specifica-
tions (Alves et al. 2008; Chen et al. 2005), forums (Rahimi et al. 2014) or user feedback (Carreño
et al. 2013; Nayebi et al. 2017; Chen et al. 2014; Panichella et al. 2015; Scalabrino et al. 2019), and
Softpedia.com (Hariri et al. 2013).

Some automatic methods mine and recommend features from repositories of requirement spec-
ifications (Alves et al. 2008; Chen et al. 2005). For example, Alves et al. conduct an exploratory
study to investigate the performance of Information Retrieval (IR) techniques on identifying fea-
ture commonalities and variabilities in a large-scale of requirement specifications (Alves et al.
2008). However, a representative repository of requirement specifications does not exist for mo-
bile apps. Hence, a lot of researchers shift their attention to online forums and user reviews to ac-
quire features. Rahimi and Cleland-Huang recommend features from forums (Rahimi et al. 2014).
Carreño and Winbladh extract new requirements from user comments of apps (Carreño et al. 2013).
Nayebi and Abran systematically review the opinion mining studies from user reviews in mobile
app stores (Nayebi et al. 2017). Chen et al. propose AR-Miner to extract informative user reviews
(Chen et al. 2014). Panichella et al. combine Natural Language Processing (NLP), text analysis, and
sentiment analysis techniques to classify user reviews into different categories (Panichella et al.
2015). We also introduce a recent and effective approach to compare, i.e., CLAP (Scalabrino et al.
2019). CLAP categorizes, clusters, and prioritizes user reviews that need to be implemented in the
subsequent app releases. However, these approaches are not applicable for newly released apps
or apps under development, since there could be few or no users of such apps yet. The closest
work to ours is the one that recommend features based on Softpedia.com (Hariri et al. 2013). As
highlighted in Section 1, this work cannot directly work on app descriptions in app markets, since
it cannot solve the feature identification and similar app identification challenges. We have adapted
the approach proposed by Hariri et al. (namely, KNN+) so that it can work for our problem and
shown in our experiments that SAFER is superior to the adapted KNN+.

10 CONCLUSION AND FUTURE WORK

The features greatly impact the success of apps. To tackle the new task of recommending features
for new mobile apps, we propose a novel approach named SAFER in this study. SAFER employs the
descriptions of similar apps in app markets to help developers perform domain analysis. We have
evaluated the effectiveness of SAFER on an annotated dataset containing 533 features extracted
from 100 apps. Extensive experiments on the dataset show that SAFER can better recommend
features than the baseline approaches KNN+ and CLAP, and the improvement by SAFER is sta-
tistically significant. In this study, we do not distinguish different granularities of features and
employ student volunteers rather than developers from industry to evaluate the performance of
SAFER, which may be limitations of SAFER and could be improved in the future.

For future works, we intend to improve SAFER in several aspects. First, we plan to explore some
interesting research directions, e.g., integrating the other types of relationships among features
into SAFER. Second, we plan to better address the threats to validity of this study by including
more datasets and experiments. Third, we plan to combine SAFER, which recommends features
from the descriptions of apps and CLAP, which recommends features by mining user reviewers
together. In such a way, developers can better perform the domain analysis and develop attractive
apps.
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