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ETF Momentum

Weikai Li, Melvyn Teo, and Chloe Yang⇤

Abstract

We document economically large momentum profits when sorting ETFs on returns
over the past two to four years. A value-weighted, long-short strategy based on ETF
momentum delivers Carhart (1997) four-factor alphas of up to 1.20% per month. Nei-
ther cross-sectional stock momentum nor co-variation with macroeconomic and liq-
uidity risks can explain ETF momentum. Instead, the post-holding period returns are
most consonant with the behavioral story of delayed overreaction. While ETF momen-
tum survives multiple adjustments for transaction costs, it may be di�cult to arbitrage
as the profits are volatile and concentrated in ETFs with high idiosyncratic volatility
or that hold low-analyst-coverage stocks.
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versity. Address: 50 Stamford Road, Singapore 178899. E-mail: wkli@smu.edu.sg. Tel: +65-6828-9651.
Fax: +65-6828-0427. Teo is at the Lee Kong Chian School of Business, Singapore Management University.
E-mail: melvynteo@smu.edu.sg. Yang is at the Fanhai International School of Finance, Fudan University.
E-mail: chloe yang@fudan.edu.cn. We have benefitted from conversations with Shang-Jin Wei, as well as
seminar participants at Fudan University and Singapore Management University.

 Electronic copy available at: https://ssrn.com/abstract=3468556 



1. Introduction

Exchange-traded funds (ETFs) have surged in popularity in the recent years. By our esti-

mates, equity ETFs traded in the US collectively account for more than US$3.38 trillion of

assets under management (AUM) in 2018. The popularity of ETFs can be explained by their

low transaction costs and intraday liquidity; they allow investors to access the market con-

tinuously and at low cost (Ben-David, Franzoni, and Moussawi, 2017; 2018). The superior

liquidity of ETFs and the dearth of short sales constraints, imply that it will be relatively

easy for investors to take advantage of any predictability in ETF returns. Yet, financial

economists know little about what factors, if any, drive predictability in ETF returns. In

this paper, we fill this gap by investigating cross-sectional return momentum in ETFs

Cross-sectional momentum manifests in US stocks (Jegadeesh and Titman, 1993; 2001),

US industries (Moskowitz and Grinblatt, 1999), US corporate bonds (Jostova et al., 2013),

international stocks (Rouwenhorst, 1998; 1999; Chan, Hameed, and Tong, 2000), interna-

tional currencies (Menkho↵ et al., 2012), and commodities (Gorton, Hayashi, Rouwenhorst,

2013).1 However, there is little consensus as to the underlying factors that drive cross-

sectional momentum. Explanations proposed include (i) the behavioral models of under and

overreaction (Daniel, Hirshleifer, and Subrahmanyam, 1998; Barberis, Shleifer, and Vishny,

1998; Hong and Stein, 1999), (ii) risk models (Johnson, 2002; Pástor and Stambaugh, 2003;

Sadka, 2006; Liu and Zhang, 2014), and (iii) firm characteristics such as analyst coverage

(Hong, Lim, and Stein, 2000), credit ratings (Avramov et al., 2007), revenue growth volatil-

ity (Sagi and Seasholes, 2007), and probability of bankruptcy (Eisdorfer, 2008). At the same

time, since momentum profits are concentrated in small stocks (Hong, Lim, and Stein, 2000;

Jegadeesh and Titman, 2001), noninvestment grade corporate bonds (Jostova et al., 2013),

and minor currencies with high transaction costs (Menkho↵ et al., 2012), investors may face

1We draw a distinction between cross-sectional momentum strategies and the time series momentum
strategies that Okunev and White (2003), Moskowitz, Ooi, and Pedersen (2012), and others investigate. We
show that ETF momentum strategy returns cannot be explained by the time series momentum factor of
Moskowitz, Ooi, and Pedersen (2012).
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significant limits to arbitrage (Shleifer and Vishny, 1997) when harvesting those profits. In-

deed, Lesmond, Schill, and Zhou (2004) argue that transaction costs overwhelm the profits

from stock momentum strategies. However, limits to arbitrage such as transaction costs and

short sales constraints are less relevant for ETFs. Therefore, this asset class presents a novel

and interesting laboratory for exploring cross-sectional return momentum. Moreover, this

new testing laboratory could allow us to shed additional light on the underlying drivers of

momentum.

To study momentum in the cross-section of ETF returns, we follow Jegadeesh and Titman

(1993; 2001) and sort ETFs into decile portfolios. We evaluate the strategy that buys the

winner ETF portfolio with the highest past returns and shorts the loser ETF portfolio with

the lowest past returns. Our sample covers all eligible US equity ETFs. To ensure that there

are enough ETFs in the cross-section, our sample period starts in August 2004 and ends

in June 2018. At the start of the sample period, there are 50 US equity ETFs managing

US$166 billion in AUM. As a testament to the tremendous growth in the assets managed

by ETFs, by the end of the sample period, there are 396 US equity ETFs responsible for

US$1,674 billion in AUM.2

We find economically meaningful and statistically significant risk-adjusted returns when

sorting ETFs on past 24-month to 48-month returns. The value-weighted ETF momentum

strategy based on past 36-month returns and a one-month holding period delivers a Carhart

(1997) four-factor alpha of 1.20% per month (t-statistic = 2.71) or 14.40% per annum.3

The aforementioned ETF momentum strategy generates virtually identical abnormal returns

when evaluated relative to the Fama and French (2016) five-factor model. The standard risk

models’ inability to explain the ETF momentum profits can be traced to the fact that while

the strategy loads positively on the Carhart (1997) stock momentum factor (PR1YR), it also

2At the same time, there are 655 ETFs traded in the US that hold non-US equities. They collectively
manage US$1,714 billion in AUM. Our results are robust to including ETFs for which the underlying assets
are international equities.

3The analogous equal-weighted ETF momentum strategy generates an abnormal return of 0.58% per
month (t-statistic = 1.95) or 6.96% per annum after adjusting for co-variation with the four factors.
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loads negatively on the Fama and French (2016) stock value and investment factors (HML

and CMA).4

We show that the ETF momentum profits are robust to extending the holding period

from one month to three, six, nine, or twelve months, and forming overlapping portfolios as

in Jegadeesh and Titman (1993; 2001). The ETF momentum profits are also robust to using

net asset value (NAV) based returns, thereby suggesting that the momentum profits are not

driven by the potential divergence between ETF price and the NAV of the underlying assets

(Petajisto, 2017). One concern is that while we have controlled for exposure to PR1YR,

the momentum factor in the Carhart (1997) model, cross-sectional stock momentum could

still explain some of the abnormal returns from ETF momentum strategies. Therefore, we

construct several benchmark stock momentum portfolios that are based on the formation and

holding periods studied in Jegadeesh and Titman (1998). After controlling for covariation

with the benchmark stock momentum portfolios, the ETF momentum strategy based on

a 36-month formation and 1-month holding period still delivers an abnormal return of at

least 1.15% per month.5 Moreover, the ETF momentum profits also survive adjustments for

industry momentum (Moskowitz and Grinblatt, 1999) and the momentum everywhere e↵ect

(Asness, Moskowitz, and Pedersen, 2013).

Next, we examine the post formation period performance of the ETF momentum portfo-

lios. In line with Jegadeesh and Titman (1998; 2001), we find evidence of return continuation

and subsequent reversals over a period of several years. In addition, we show that the mo-

mentum profits are completely eliminated 78 months after portfolio formation. These results

are inconsistent with the Conrad and Kaul (1998) view that momentum is driven by cross-

sectional variation in the unconditional expected returns of individual securities. They also

do not support the behavioral stories of Barberis, Shleifer, and Vishny (1998) and Hong

and Stein (1999) that feature initial underreaction (and subsequent overreaction) since a

4Our findings are virtually identical when we use the Fama and French (2012) momentum factor UMD
instead of PR1YR.

5Our results are also robust to controlling for long horizon stock momentum strategies whose formation
and holding periods mirror those of the ETF momentum strategies that we study.

3
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key prediction of the underreaction explanations is that prices will not completely reverse,

i.e., the momentum profits will not be completely eliminated, in the post formation period.

The post formation period returns are also incompatible with models based on disposition

(Grinblatt and Han, 2005) and investor inattention (Da, Gurun, and Warachka, 2014) that

feature underreaction to fundamental information. Instead, they are consonant with the

behavioral model of delayed overreaction by Daniel, Hirshleifer, and Subrahmanyam (1998).

Our findings echo those of Goetzmann and Huang (2018) who uncover evidence of delayed

overreaction when studying cross-sectional stock momentum in Imperial Russia.

We carefully consider several alternative explanations for the ETF momentum profits.

These include (i) other risk based explanations such as macroeconomic and liquidity risks,

(ii) the characteristics of the underlying firms held by the ETFs, (iii) transaction costs,

and (iv) other limits to arbitrage. To account for macroeconomic and liquidity risk, we

follow Menkho↵ et al. (2012) and estimate time series regressions of the ETF momentum

winner-minus-loser spread portfolio returns on various macroeconomic and liquidity risk

factors while controlling for co-variation with the Carhart (1997) four factors. We consider

macroeconomic factors derived from industrial production (Chen, Roll, and Ross, 1986; Liu

and Zhang, 2008), consumption, inflation (Chen, Roll, and Ross, 1986), and labor income

growth (Jagannathan and Wang, 1996), as well as the changes in the term spread, default

spread, and the Chicago Board Options Exchange Volatility Index. We also evaluate liquidity

factors such as the change in the Treasury EuroDollar spread, the Pastor and Stambaugh

(2003) traded liquidity factor, the change in the aggregate Amihud (2002) illiquidity, and

the He, Kelly, and Manela (2017) primary dealer capital ratio factor. Our analysis indicates

that co-variation with these macroeconomic and liquidity risk factors cannot account for the

profitability of ETF momentum strategies. In addition, we find that ETF momentum profits

tend to be high when equity market index returns are low, i.e., when the marginal utility of

consumption is high, further casting doubt on the fundamental risk explanation.

To understand whether momentum can be explained by the characteristics of the under-

4
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lying firms held by ETFs, we create factor-mimicking stock portfolios for size, price, Amihud

illiquidity, return volatility, cash flow volatility, residual analyst coverage (Hong, Lim, and

Stein, 2000), analyst forecast dispersion, and credit rating. Next, we sort ETFs indepen-

dently based on past performance and on their loadings on the factor-mimicking portfolios.

We find little evidence to suggest that the momentum profits are concentrated in ETFs that

load on stocks that are harder to value, i.e., stocks with lower market capitalizations, lower

price, greater illiquidity, higher return or cash flow volatility, greater analyst forecast dis-

persion, and lower credit ratings. However, we do find that momentum tends to be stronger

for ETFs that are exposed to stocks with low residual analyst coverage (Hong, Lim, and

Stein, 2000). This finding is nonetheless congruent with the overconfidence-induced delayed

overreaction story of Daniel, Hirshleifer, and Subrahmanyam (1998) since investors may be

more overconfident when valuing low-analyst-coverage firms, for which there would be less

public information.

To adjust for transaction costs, we follow Lesmond, Schill, and Zhou (2004) and employ

multiple trading cost estimates to test whether cross-sectional ETF momentum profits are

sensitive to the imputation of transaction costs. The trading cost estimates that we consider

include the quoted spread from the NYSE’s Trades and Quotes database, the e↵ective spread

derived by comparing the quoted spreads to the contemporaneous execution prices, and the

Corwin and Schultz (2012) spread from daily high and low prices. Unsurprisingly, given the

superior liquidity of ETFs, we show that the alphas from the ETF momentum winner-minus-

loser portfolios are still economically meaningful and statistically relevant after adjusting for

transaction costs via these spread estimates.

We test whether other limits to arbitrage, such as the time series variation in ETF

momentum returns or ETF characteristics that proxy for valuation uncertainty, can hamper

investors’ ability to harvest the profits from ETF momentum. We find that while momentum

returns have been impressive during the sample period and exceed 2% per month over several

years, they are also volatile. For instance, there are two periods, namely January 2012 to

5
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March 2012 and March 2018 to June 2018, when the 36-month moving average excess returns

of the ETF momentum strategy with a 36-month formation period and a one-month holding

period are negative. Consequently, market participants with short investment horizons may

refrain from arbitraging ETF momentum. Moreover, we show that ETF momentum tends

to be stronger for volatile ETFs, which may be harder to value. Investors who are wary of

such ETFs may therefore be reluctant to arbitrage ETF momentum.

This paper sheds light on the anatomy of cross-sectional momentum in ETF returns.

By doing so, we contribute to the large body of work on momentum. We find that ETF

momentum di↵ers from stock momentum in several ways. First, during our sample period, we

find little evidence of stock momentum. Yet, we observe strong evidence of ETF momentum.

Second, the formation periods for ETF momentum, i.e., between two to four years, are

significantly longer than those established for stock momentum (Jegadeesh and Titman,

1998). Third, whereas stock momentum tends to be concentrated in small capitalization

stocks (Hong, Lim, and Stein, 2000; Jegadeesh and Titman, 2001), ETF momentum is

stronger for large capitalization ETFs and for ETFs exposed to large capitalization stocks.

Fourth, unlike stock momentum, we find that ETF momentum is not driven by exposure

to firm credit risk (Avramov et al., 2007) or firm cash flow volatility (Sagi and Seasholes,

2007). However, like stock momentum, we find that ETF momentum may be traced to firms

with low analyst coverage (Hong, Lim, and Stein, 2000). As per the post formation period

returns of stock momentum in the US (Jegadeesh and Titman, 2001) and Imperial Russia

(Goetzmann and Huang, 2018), the post formation period returns of ETF momentum are

also consonant with delayed overreaction (Daniel, Hirshleifer, and Subrahmanyam, 1998).

Our work resonates with the growing literature on ETFs.6 Research has shown that ETFs

can increase the volatility (Ben-David, Franzoni, and Moussawi, 2018), return comovement

(Da and Shive, 2018), and commonality in the liquidity (Agarwal et al., 2019) of their

underlying stocks.7 Furthermore, retail investors lose money when trading ETFs due to

6Ben-David, Franzoni, and Moussawi (2017) provide an excellent review of this literature.
7These findings are consistent with the theoretical model of Bhattacharya and O’Hara (2018) which shows

6

 Electronic copy available at: https://ssrn.com/abstract=3468556 



poor ETF timing and ETF selection (Bhattacharya et al., 2017). Also, prices of ETFs can

deviate substantially from their NAVs (Petajisto, 2017) despite the presence of authorized

participants who can arbitrage the di↵erence between ETF price and NAV. According to

Pan and Zeng (2019), balance sheet constraints may prevent authorized participants from

correcting such relative mispricings. Our findings indicate that ETF return momentum is

orthogonal to the divergence between ETF price and NAV envisaged in Petajisto (2017) and

Pan and Zheng (2019), and suggest that ETFs can engender predictability in underlying

stock returns.

The remainder of this paper is organized as follows. Section 2 describes the institutional

features of ETFs as well as the data. Section 3 reports the results from the empirical analysis

while Section 4 presents robustness tests. Section 5 concludes.

2. Data and methodology

2.1. ETF institutional details

ETFs are index fund-like investment structures that seek to mimic the returns of baskets of

securities.8 Unlike index funds, ETFs o↵er intraday liquidity and are traded on the stock

market. ETFs are traded both on the primary market and the secondary market. On the

secondary market institutional investors and retail investors trade the ETFs. The price of

an ETF is determined by demand and supply on the secondary market. As a result, the

price of an ETF can diverge from the NAV of its underlying assets.

To minimize the divergence between the price of the ETF and its NAV, the ETF sponsor

reports the NAV of the ETF’s underlying assets every 15 seconds during the trading day.

By doing so, the ETF sponsor helps facilitate arbitrage, which in turn reduces the tracking

error of the ETF. Arbitrage activities can take place in the primary and secondary markets.

that ETFs have the potential to introduce fragility via herding.
8The exposition in this section follows Section IA of Ben-David, Franzoni, and Moussawi (2018).
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On the primary market, institutions known as authorized participants (AP) can exchange

shares of the ETFs with the ETF sponsor for baskets of underlying assets, and vice versa.9

When the ETF trades at a premium relative to the price of the underlying basket of assets,

APs buy the underlying assets, exchange them for “creation units” from the ETF sponsor,

and sell those units on the secondary market, thereby harvesting the spread between the

price of the ETF and that of the underlying. By exerting downward pressure on the price

of the ETF and upward pressure on the price of the underlying, such arbitrage activity

reduces the ETF price premium. Conversely, when the ETF trades at a discount relative to

the price of the underlying basket of assets, APs buy the ETFs on the secondary market,

redeem them through the ETF sponsor for baskets of underlying securities, and o✏oad the

underlying securities in the market, thereby earning the spread between the price of the

underlying and that of the ETF. By exerting upward pressure on the price of the ETF and

downward pressure on the price of the underlying, such arbitrage activity narrows the ETF

price discount.10

On the secondary market, arbitrageurs such as hedge funds and high-frequency traders

can take advantage of the price di↵erential between the ETF and the underlying basket of

securities without accessing the primary market. When the price of the ETF exceeds that of

the underlying assets, the arbitrageur can long the cheaper underlying basket of assets, short

sell the more expensive ETF, and hold the position until convergence. Conversely, when the

price of the ETF falls below that of the underlying basket of assets, the arbitrageur can long

the cheaper ETF, short sell the more expensive basket of underlying assets, and hold the

position until convergence. Of course, since convergence does not always have to take place,

such activities may not be considered arbitrage in the strictest sense of the word. Moreover,

short sales constraints may prevent arbitrageurs from conducting such activities in the first

place. Nonetheless, to the extent that such activities are feasible, they should help reduce

9APs are dealers who have signed agreements with the ETF sponsor.
10Note that for some ETFs, such as those where the underlying are foreign or illiquid securities, the

creation and redemption of ETF shares can be done in cash.
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the divergence between the ETF price and the value of the underlying basket of securities.

According to an industry expert, statistical arbitrage accounts for more than 50 percent of

the volume in SPY, i.e., the massive ETF that tracks the S&P500.11

2.2. Data

We cull ETF data on monthly returns, prices, trading volume, and shares outstanding from

the Center for Research in Security Prices (CRSP) database by focusing on securities with the

historical share code equal to 73, which exclusively defines ETFs. To mitigate the impact

of illiquidity and possible non-synchronous prices due to infrequent trading, we limit our

sample of ETFs to those with market capitalization larger than US$20 million and share

prices greater than US$1.

In our analysis, we focus on ETFs where the underlying securities are US equities. To

zero in on such funds, we first limit the sample to ETFs with Lipper Asset Code “EQ” in the

CRSP mutual fund database. Next, we exclude foreign and global equity ETFs by dropping

ETFs with a Lipper Classification Name containing the words “global”, “world”, “ex-US”,

“emerging market”, or “international”.12

In order that we have enough ETFs in the cross-section to run the portfolio sort analysis,

we restrict the sample period to months where there are at least 50 US Equity ETFs in the

sample. This limits the starting date of the sample period to August 2004, since prior to

that the sample had fewer than 50 ETFs in the cross-section. Our sample period therefore

extends from August 2004 to June 2018.

Table 1 showcases summary statistics for our ETF sample. Columns (1) and (2) report

the total number and market capitalization of US equity ETFs in our sample each year.

Columns (3) and (4) report the analogous information for the other equity ETFs traded in

the US. The numbers are a testament to the tremendous growth in ETF assets over the

11See “Statistical arbitrage and the big retail ETF con-fusion.” Financial Times, 30 July 2009.
12Our baseline results are qualitatively unchanged when we include ETFs that hold international equities

in the sample.
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recent years. At the end of 2004, there are a total of 113 ETFs managing US$211 billion in

AUM. By the end of the sample period in 2018, there are a total of 1,051 ETFs managing

US$3,388 billion in AUM, representing a roughly nine-fold increase in number and a 16-fold

increase in AUM. The increase in number and assets managed by the US equity ETF sample

mirrors that of the broader ETF sample. At the end of 2004, there are in total of 74 US

equity ETFs managing US$166 billion in AUM. By the end of the sample period in 2018,

there are in total of 396 US equity ETFs managing US$1,674 billion in AUM, amounting to

a roughly five-fold increase in number and ten-fold increase in AUM.

[Insert Table 1 here]

3. Empirical results

3.1. Portfolio sorts

To begin, we test for di↵erences in risk-adjusted performance of ETFs sorted by past returns.

Every month, starting in August 2004, ten ETF portfolios are formed by sorting ETFs on

their past 24-, 36- and 48-month returns. For each sort, the post-formation returns on these

ten portfolios over the next month are linked across months to form a single return series for

each portfolio. As per Jegadeesh and Titman (1993; 2001), we label as the winner portfolio

the ETF decile portfolio with the highest past returns and label as the loser portfolio the

ETF decile portfolio with the lowest past returns. We then evaluate the performance of

these ten portfolios as well as the winner-minus-loser (WML) spread portfolio relative to the

Carhart (1997) four-factor model and the Fama and French (2016) five-factor model. The

advantage of the Carhart (1997) four-factor model is that it includes PR1YR, the factor

mimicking portfolio for stock momentum, which allows us to control for stock momentum.13

13PR1YR is the equal-weighted average return of firms with the highest 30 percent past 2-12 month returns
minus the equal-weighted average return of firms with the lowest 30 percent past 2-12 month returns. The
portfolios include all NYSE, AMEX, and NASDAQ stocks and are re-formed monthly. Our results are robust
to using Fama and French’s (2012) UMD momentum factor in place of PR1YR to account for exposure to

10
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We present results for both equal-weighted and value-weighted portfolios.

The results reported in Table 2, reveal substantial di↵erences in expected returns, on the

value-weighted ETF portfolios sorted by past returns, that are unexplained by the Carhart

(1997) four factors and by the Fama and French (2016) five factors. In particular, for the

sort on past 36-month returns, the value-weighted winner ETF portfolio outperforms the

value-weighted loser ETF portfolio by an economically and statistically significant 1.25%

per month (t-statistic = 2.17) or 15% per annum. After adjusting for co-variation with the

Carhart (1997) four factors, the outperformance is virtually unchanged at 1.20% per month

(t-statistic = 2.71). Similarly, after adjusting for co-variation with the Fama and French

(2016) five factors, the outperformance is also qualitatively unchanged at 1.28% per month

(t-statistic = 2.71). As in the rest of the paper, we base statistical inferences on Newey

and West (1987) heteroskedasticity and autocorrelation consistent standard errors with a

three-month lag.

[Insert Tables 2 and 3 here]

Overall, the Carhart (1997) four-factor adjusted performance of the value-weighted WML

spread portfolio is economically significant and statistically distinguishable from zero at the

5% level for all three formation periods considered. We obtain more modest results when we

evaluate equal-weighted portfolios. The four-factor alphas are only economically meaningful

and statistically significant at the 10% or 5% level when we sort ETFs based on past 36-

and 48-month returns. Specifically, after adjusting for co-variation with the four factors,

the equal-weighted WML spread portfolio from the 36-month sort delivers a return of 0.58%

per month (t-statistic = 1.95) or less than half that of the value-weighted WML spread

portfolio. This provides prima facie evidence that ETF momentum may be stronger for

large capitalization ETFs than for small capitalization ETFs.

stock momentum. UMD di↵ers from PR1YR in three ways. First, the construction of UMD involves
generating 2 x 3 portfolios based on size and past 2-12 month returns while PR1YR is simply based on a sort
on past 2-12 month returns. Second, unlike PR1YR, UMD uses NYSE breakpoints. Third, the portfolios
used in UMD are value weighted while those employed in PR1YR are equal weighted.

11
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Why do the standard risk models have di�culty explaining the ETF momentum profits?

Table 3 indicates that, for the value-weighted ETF momentum strategy with a 36-month

formation period and one-month holding period, the loadings on the Carhart (1997) four

factors, namely RMRF, SMB, HML, and PR1YR are -0.086, -0.125, -1.060, and 0.360,

respectively. Only the last two coe�cient estimates are statistically significant at the 5%

level. This implies that the ETF momentum strategy loads more on growth stocks than

on value stocks and also loads unsurprisingly more on winner stocks than on loser stocks.

Therefore, while stock momentum explains some of the returns from the ETF momentum

strategy, since ETF momentum loads negatively on HML, these e↵ects cancel out and the

four-factor model explains only 5 basis points of the 1.25% per month return of the ETF

momentum spread. Moreover, the loadings on the Fama and French (2016) five factors,

namely RMRF, SMB, HML, RMW, and CMA, are -0.231, -0.022, -1.020, 0.387, and -1.080,

respectively. Only the coe�cient estimates on HML and CMA are statistically reliable at

the 5% or 10% level. Given the negative loadings on these two factors, it is not surprising

that the five-factor alpha of the ETF momentum spread, at 1.28% per month, is even higher

than its return.

[Insert Fig. 1 here]

Fig. 1 complements the results from Table 2. It illustrates the monthly cumulative ab-

normal returns (henceforth CARs) from the portfolio of winner ETFs (Portfolio 10) and the

portfolio of loser ETFs (Portfolio 1). CAR is the cumulative di↵erence between a portfolio’s

excess return and its factor loadings (estimated over the entire sample period) multiplied by

the Carhart (1997) risk factors. The CARs in Fig. 1 indicate that the winner ETF portfolio

consistently outperforms the loser ETF portfolio over much of the sample period and suggest

that the outperformance of winner ETFs over loser ETFs is not peculiar to a particular year.

Following Jegadeesh and Titman (1993; 2001), we also consider sorts with longer holding

periods of three, six, nine, and twelve months. As in Jegadeesh and Titman (1993; 2001),

we construct overlapping sub-portfolios such that each successive sub-portfolio is formed one

12

 Electronic copy available at: https://ssrn.com/abstract=3468556 



month after the other. We define ETFMOM(n,m) as the ETF momentum strategy with a

formation period of n months and a holding period of m months. The results for the sort

on past 36-month return with longer holding periods are reported in Table 3. They indicate

that the Carhart (1997) four-factor alphas of the value-weighted WML spread portfolios

remain statistically significant at the 5% level when we extend the holding period beyond one

month. While the alpha of the spread decreases from 0.97% per month to 0.79% per month

when we lengthen the holding period from three to twelve months, it remains economically

meaningful. Similarly, the Fama and French (2016) five-factor alphas of the value-weighted

WML spread portfolios, which range from 0.76% per month to 1.04% per month, are all

economically relevant and statistically distinguishable from zero at the 5% level. As with

the results from the sorts with a one-month holding period, the findings from these sorts

are also weaker when we equal weight the portfolios. While the four-factor alphas of the

equal-weighted WML spread portfolios, which range from 0.47% per month to 0.54% per

month, are all economically meaningful, they are only statistically reliable at the 5% level

for the sort with a 12-month holding period.

[Insert Tables 4 and 5 here]

One concern is that the profitability of ETF momentum strategies may be driven by the

divergence of an ETF’s price from the value of its underlying basket of securities (Petajisto,

2017). The fact that ETF sponsors report the NAVs of the ETFs’ underlying assets every 15

seconds during the trading day as well as the presence of authorized participants and arbi-

trageurs suggest that any divergence between ETF price and NAV is likely to be short-lived.

Nonetheless, one possible alternative view is that ETF momentum is driven by momentum in

the divergence of prices from NAV. Specifically, ETFs whose prices diverge from NAV could

diverge even further, thereby driving momentum in ETF prices, even though the underlying

NAVs do not exhibit momentum. To test, we derive ETF returns from the NAV of the un-

derlying assets and redo the ETF momentum sorts with a 36-month formation period. The

results reported in Table 5 indicate that we also find evidence of momentum in NAV-based
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ETF returns. Specifically, Panel A of Table 5 indicates that ETF momentum strategies de-

rived from NAV-based returns with a 36-month formation period and a one-month holding

period yield WML spread returns and alphas that are economically and statistically signif-

icant at the 5% level regardless of whether we consider equal- or value-weighted portfolios

or whether we use the Carhart (1997) four-factor model or the Fama and French (2016)

five-factor model to adjust for risk. Moreover, Panels B to E of Table 5 reveal that the

profits from ETF momentum with a 36-month formation period largely survive extending

the holding horizon from one to three, six, nine, or twelve months. In addition, the spread

portfolio excess returns and alphas are statistically significant either at the 5% level or at

the 10% level.

Yet another concern is that while we have controlled for exposure to PR1YR, the momen-

tum factor in the Carhart (1997) model, cross-sectional stock momentum could still explain

some of the abnormal returns from ETF momentum strategies. To alleviate such concerns,

we estimate time series regressions of the excess returns from ETF momentum strategies with

36-month formation periods on the excess returns from four benchmark cross-sectional stock

momentum strategies. The benchmark stock momentum strategies include the MOM(3,3),

MOM(6,6), MOM(9,9), and MOM(12,12) portfolios of Jegadeesh and Titman (1993; 2001),

where MOM(n,m) denotes the cross-sectional stock momentum strategy with a n-month

formation period and m-month holding period.

[Insert Table 6 here]

The results reported in Panel B of Table 6 indicate that cross-sectional stock momentum

does not explain the profits from the ETF momentum strategies. After controlling for co-

variation with various benchmark stock momentum portfolios, ETFMOM(36,1) still delivers

an abnormal return of at least 1.115% per month. Moreover, the alpha of that strategy is

statistically significant at the 5% level regardless of the benchmark stock momentum port-

folio used. The other columns in Panel B of Table 6 reveal that the stock momentum also

does not explain the profits of the 36-month formation period ETF momentum strategy with
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longer holding horizons. With the exception of those from ETFMOM(36,12), after adjusting

for co-variation with the benchmark stock momentum portfolios, the alphas from the ETF

momentum strategies are all statistically significant at the 10% level. This is not surprising

as Panel A of Table 6 reveals that cross-sectional stock momentum does not generate statis-

tically significant returns during the sample period. In contrast, ETF momentum strategies

with a formation period of 36 months deliver returns that are economically and statistically

significant at the 10% level regardless of the holding period employed.

We also consider whether the ETF momentum profits can be explained by co-variation

with the returns from longer horizon cross-sectional stock momentum strategies, whose for-

mation and holding periods mirror those of the ETF momentum strategies. The results in Ta-

ble A1 of the Internet Appendix indicate that the performance of MOM(36,1), MOM(36,3),

MOM(36,6), MOM(36,9), and MOM(36,12) cannot explain the performance of the ETF

momentum strategies.

3.2. Post holding period returns

What drives the profitability of ETF momentum strategies? On one hand, Conrad and

Kaul (1998) posit that momentum profits are driven by the cross-sectional variation in

unconditional mean returns across ETFs. Winner ETFs outperform during the formation

and holding period as their prices simply feature higher unconditional drifts than do those

of loser ETFs. This also implies that the post holding period return of ETF momentum

spread should be consistently positive over time.

On the other hand, Daniel, Hirshleifer, and Subrahmanyam (1998) posit that momen-

tum can be explained by delayed overreaction while Barberis, Shleifer, and Vishny (1998)

and Hong and Stein (1999) argue that momentum is driven by an initial underreaction to

fundamental news that is followed by delayed overreaction. Specifically, Daniel, Hirshleifer,

and Subrahmanyam (1998) contend that investors su↵er from a self-attribution bias. Due to

that cognitive bias, they mistakenly attribute ex-post winning positions to their abilities and
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ex-post losing positions to luck. Therefore, investors who buy winner ETFs become over-

confident in their ability to predict the performance of winner ETFs. Conversely, investors

who short sell loser ETFs become overconfident in their ability to forecast the performance

of loser ETFs. This leads to short term momentum and delayed overreaction in ETF prices.

Barberis, Shleifer, and Vishny (1998) posit that market participants are susceptible to

both the conservatism bias as well the representative heuristic. The conservatism bias leads

investors to underweight new information and therefore drives the initial underreaction to

fundamental news. The representative heuristic leads investors to mistakenly believe that

ETFs with superior fundamental news will continue to deliver superior fundamental news in

the future, leading to overreaction in prices. Hong and Stein (1999) postulate that there are

two types of traders in the market: newswatchers who focus on fundamental news and tech-

nical traders who extrapolate from past prices. Newswatchers drive the initial underreaction

in ETF prices as they slowly incorporate fundamental news into stock prices. Technical

traders extrapolate based on past prices and drive prices beyond fundamental value, thereby

engendering delayed overreaction. A key prediction of these stories that feature underreac-

tion is that prices do not completely reverse or that momentum profits are not completely

eliminated in the post-formation period.

To distinguish between the Conrad and Kaul (1998) view and the behavioral explanations

advanced by Daniel, Hirshleifer, and Subrahmanyam (1998), Barberis, Shleifer, and Vishny

(1998), and Hong and Stein (1999), we follow Jegadeesh and Titman (2001) and examine post

formation period abnormal returns from the value-weighted ETF momentum strategy with

a 36-month formation period. Abnormal return is the di↵erence between a portfolio’s excess

return and its factor loadings multiplied by the Carhart (1997) four factors, where factor

loadings are estimated for each holding-period-month series as per Cooper, Gutierrez, and

Hameed (2004). Fig. 2 indicates that the cumulative abnormal returns are still increasing

up to 39 and 32 months after the formation period for the winner and loser ETF portfolios,

respectively. Thereafter, they start to decrease all the way to 78 months post formation.

16

 Electronic copy available at: https://ssrn.com/abstract=3468556 



Fig. 2 therefore alludes to a humped shaped pattern in post formation returns for the ETF

momentum spread.

This pattern is strongly inconsistent with the Conrad and Kaul (1998) view. They are

also not supportive of the behavioral underreaction story advanced by Barberis, Shleifer,

and Vishny (1998), and Hong and Stein (1999) since the momentum profits are completely

eliminated 78 months after portfolio formation. The post formation returns from ETF mo-

mentum are also incompatible with stories based on disposition (Grinblatt and Han, 2005)

and investor inattention (Da, Gurun, and Warackha, 2014) that feature underreaction to

fundamental information. Instead, they are supportive of the Daniel, Hirshleifer, and Sub-

rahmanyam (1998) view that momentum is driven by delayed overreaction. These results

echo those of Goetzmann and Huang (2018) who also uncover evidence of delayed overreac-

tion when investigating cross-sectional stock momentum in Imperial Russia.

[Insert Fig. 2 here]

3.3. Macroeconomic and liquidity risk

In this section, we test whether macroeconomic and liquidity risk factors can explain the

returns from ETF momentum strategies. Our analysis follows Menkho↵ et al. (2012).

Specifically, we estimate time series regressions of the ETF momentumWML spread portfolio

returns on various macroeconomic and liquidity risk factors while controlling for co-variation

with the Carhart (1997) four factors. As per Menkho↵ et al. (2012), we estimate regressions

separately for each macroeconomic and liquidity risk factor to guard against multicollinearity.

We consider the following macroeconomic risk factors: INDUSTRIAL PRODUCT de-

notes the industrial production growth rate or log(IPt) � log(IPt�1) as per Chen, Roll,

and Ross (p. 386, 1986) and Liu and Zhang (2008). CONSUMPTION denotes the real

per capita growth in non-durables and services consumption expenditures. INFLATION

denotes the inflation growth rate, where the inflation rate for month t is log(CPISAt) �

log(CPISAt�1) and CPISA is the seasonally adjusted consumer price index for month t
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as per Chen, Roll, and Ross (p. 387, 1996). TERM SPREAD stands for the change in the

term spread, where the term spread is the yield di↵erence between the ten-year Treasury

bond and the three-month T-bill. DEFAULT SPREAD stands for the change in the default

spread, where the default spread is the yield di↵erence between Moody’s BAA corporate

bond and the ten-year Treasury bond. LABOR INCOME is the labor income growth rate

or [Lt�1 + Lt�2]/[Lt�3 + Lt�3] where Lt�1 is the monthly per capita real labor income for

month t� 1 as per Jagannathan and Wang (p. 21, 1996). VIX is the change in the level of

the Chicago Board Options Exchange Volatility Index.

We also consider the following liquidity factors: TED is the change in the Treasury

EuroDollar spread. PS LIQUIDITY is the Pastor and Stambaugh (2003) traded liquidity

factor. AMIHUD ILLIQUIDTY is the change in the aggregate Amihud (2002) illiquidity.

HKM CAPRATIO is the He, Kelly, and Manela (2017) primary dealer capital ratio factor

that proxies for intermediary capital risk.

[Insert Table 7 here]

Columns one to three of Table 7 report the betas on these macroeconomic and liquidity

factors as well as the alphas and R-squareds from the regressions on the returns from ETF

momentum strategy with a 36-month formation period and a one-month holding period. We

caution that the alphas cannot always be strictly considered as risk-adjusted returns since

the regressions include nonreturn-based macro and liquidity factors. Nonetheless, since (i)

the beta estimates on the macroeconomic and liquidity factors are usually statistically in-

distinguishable from zero at the 10% level, (ii) the alpha estimates are largely unchanged in

magnitude relative to that from the Carhart (1997) four-factor model, and (iii) the alpha

estimates are typically statistically significant at the 5% level, we conclude that co-variation

with macroeconomic and liquidity risk factors does not account for the profitability of ETF

momentum strategies. The other columns of Table 7 indicate that inferences remain un-

changed when we analyze the performance of analogous ETF momentum strategies with

longer holding periods.
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Another way to test whether fundamental risk explains the returns from ETF momentum

is to simply evaluate the performance of ETF momentum strategies in both good and bad

economic states. If risk explanations holds then ETF momentum should deliver lower returns

during bad economic states when the marginal utility of consumption is high. For stock

momentum, the evidence from the literature is mixed as to whether momentum outperforms

during poor economic periods. On one hand, Chordia and Shivakumar (2002) find evidence

in favor of the risk view using US data. On the other hand, Gri�n, Ji, and Martin (2003) find

using international data covering 40 countries that stock momentum profits are statistically

significant in both good and bad economic states. Likewise, Goetzmann and Huang (2018)

obtain similar results with data from Imperial Russia.

[Insert Fig. 3 here]

To investigate whether ETF momentum profits are more meaningful in bad economic

states, we plot the returns from the ETF momentum strategy with a 36-month formation

period and a one-month holding period against the returns of the S&P 500. The third degree

polynomial line of best fit through the scatter plot in Fig. 3 reveals that ETF momentum

delivers greater returns when equity market returns are lower (and the marginal utility of

consumption is higher). This finding cast doubt on the view that ETF momentum profits

are driven by fundamental risk.

3.4. Characteristics of underlying stocks

Several researchers have argued that cross-sectional stock momentum tends to be stronger in

firms with low credit ratings (Avramov et al., 2007), high revenue growth volatility (Sagi and

Seasholes, 2007), high probability of bankruptcy (Eisdorfer, 2008), and low analyst coverage

(Hong, Lim, and Stein, 2000). In this section, we investigate whether the firm characteristics

that drive stock momentum can also account for ETF momentum.

In that e↵ort, we sort ETFs into 5 x 2 portfolios based on (i) their past 36-month
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cumulative returns and (ii) their loadings, estimated over the last 36 months, on factor-

mimicking stock portfolios for size, price, Amihud illiquidity, idiosyncratic return volatility,

cash flow volatility, residual analyst coverage, analyst forecast dispersion, and credit rating.14

Size is measured using firm market capitalization at the end of each month. Price is measured

using month-end closing prices. Following Amihud (2002), we measure the illiquidity of a

stock as the average daily ratio of absolute stock return to the dollar trading volume within

each month. Idiosyncratic return volatility is the standard deviation of residuals from the

regression of daily stock excess returns on the Fama and French (1993) three factors within

each month as per Ang et al. (2006). Cash flow volatility is the standard deviation of

quarterly return-on-assets over a rolling window of 20 quarters. We require a minimum of

eight quarters to compute this measure. Following Hong, Lim, and Stein (2000), residual

analyst coverage is the residual from the regression of the natural logarithm of the number

of analysts covering the stock in a month on the natural logarithm of market capitalization

and a NASDAQ dummy. Analyst earnings forecast dispersion is the cross-sectional standard

deviation of annual earnings-per-share forecasts scaled by the absolute value of the average

outstanding forecast as per Diether, Malloy, and Scherbina (2002). Credit rating is S&P

Domestic Long-Term Issuer Credit Rating from Compustat.

The factor-mimicking stock portfolio for size is constructed by going long stocks with

market capitalization below the NYSE 30th percentile and shorting stocks with market

capitalization above the NYSE 70th percentile. The factor-mimicking stock portfolio for

turnover is constructed by going long stocks with turnover above 70th percentile and shorting

stocks with turnover below the 30th percentile. The factor-mimicking stock portfolios for the

other firm characteristics are defined analogously. Value-weighted ETF portfolio returns are

computed over the next month and re-balanced monthly. We evaluate the performance of the

14We use ETF factor loadings, as opposed to actual ETF holdings of stocks, to study the characteristics
of ETF underlying holdings as Zhu (2019) finds that the Thomson Reuters 13F database omits many new
ETFs, especially those that have performed well in the past. This creates data selection biases when we
analyze the actual ETF stock holdings from the Thomson Reuters 13F database since we do not observe the
stock holdings for a disproportionate number of winner ETFs.
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ETF portfolios relative to the Carhart (1997) four-factor model. For the firm characteristics

to explain ETF momentum, the momentum profits should be concentrated in ETFs that

load more on stocks with greater uncertainty and are harder to value, i.e., firms with lower

market capitalizations, lower price, greater illiquidity, higher idiosyncratic return or cash

flow volatility, lower residual analyst ownership, greater analyst forecast dispersion, and

lower credit ratings.

[Insert Table 8 here]

The Carhart (1997) four-factor alphas from the WML spread portfolios of the double

sort reported in Table 8 indicate that ETF momentum profits are typically not greater for

ETFs with stocks that are harder to value. For instance, the WML spread alpha is higher

for ETFs that load more on large, high priced, low idiosyncratic return volatility, low cash

flow volatility, low analyst forecast dispersion, and high credit rating stocks. The exception

is residual analyst coverage. We find that the WML spread alpha is higher for ETFs that

load more on stocks with low residual analyst coverage than for ETFs that load more on

stocks with high residual analyst coverage. Nonetheless, this is still consonant with the

overconfidence-induced delayed overreaction story of Daniel, Hirshleifer, and Subrahmanyam

(1998) since investors would tend to be more overconfident when valuing low-analyst-coverage

firms, for which there would be less public information.

3.5. Limits to arbitrage: transaction costs

Do transaction costs swamp the profits from an ETF momentum strategy? In this section,

we test whether the abnormal returns from value-weighted ETF momentum strategies with a

36-month formation period survive various adjustments for transaction costs. Our approach

follows that of Lesmond, Schill, and Zhou (2004) who employ multiple trading cost estimates

to test whether cross-sectional stock momentum profits are sensitive to the imputation of

transaction costs.
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First, we compute quoted spread estimates that are similar to those employed by Stoll

and Whaley (1983) and Bhardwaj and Brooks (1992). Quoted spread estimates are obtained

from NYSE’s Trades and Quotes (TAQ) database for the August 2004 to June 2018 period.

For each ETF, we extract closing quotes for each trading day and then take the average for

each calendar month so that we have twelve estimates per year. Quoted spread estimates are

derived from the twelve monthly estimates obtained prior to the performance measurement

period. The monthly quoted spread measure is defined as

QUOTED SPREADit =
1

12

�1X

⌧=�13

(ASKit+⌧ � BIDit+⌧ )
1
2(ASKit+⌧ +BIDit+⌧ )

(1)

Second, we derive the e↵ective spread by comparing the quoted spreads to the contempo-

raneous execution prices. Following the standard approach, we define the e↵ective spread as

twice the absolute price deviation from the midpoint of the bid and ask. Trade direction is

inferred using an algorithm that loosely follows that in Lee and Ready (1991). Specifically,

if the trade price is higher than the midpoint of the quote, we classify the trade as a buy.

If the trade price is lower than the midpoint of the quote, we classify the trade as a sell. If

the trade occurs precisely at the midpoint of the quote, the e↵ective spread is zero. For each

month, e↵ective spread estimates are obtained using twelve monthly estimates derived prior

to the performance measurement period, similar to the method used for quoted spreads. The

monthly e↵ective spread measure is defined as

EFFECTIV E SPREADit =
1

12

�1X

⌧=�13

�����
PRICEit+⌧ � 1

2(ASKit+⌧ +BIDit+⌧ )

PRICEit+⌧

����� (2)

Third, we generate the Corwin and Schultz (2012) spread from daily high and low prices.

The Corwin and Schultz (2012) spread estimate is based on two reasonable assumptions.

First, daily high-prices are almost always buyer-initiated trades and daily low-prices are

almost always seller-initiated trades. The ratio of high and low prices for a day therefore

reflects both the fundamental volatility of the asset and its bid-ask spread. Second, the
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component of the high-to-low price ratio that is due to volatility increases proportionately

with the length of the trading interval while the component due to bid-ask spreads do

not. Corwin and Schultz (2012) show via simulations that, under realistic conditions, the

correlation between their spread estimates and true spreads is about 0.9 and their estimates

are substantially more precise than those from the Roll (1984) covariance spread estimator.15

After generating the trading cost measure for each ETF for each month, we then compute

the portfolio level trading cost for each decile portfolio following the same method used for

calculating returns. The net-of-trading cost portfolio return is simply the raw portfolio return

minus the portfolio level trading cost. Panels A to C of Table 9 report the Carhart (1997)

four-factor alphas and Fama and French (2016) five-factor alphas from ETF momentum

strategies with a 36-month formation period after adjusting for transaction costs. The alpha

estimates of the WML spreads indicate that our results are robust to adjusting for the quote

spread, the e↵ective spread, and the Corwin and Schultz (2012) spread. For example, after

accounting for the e↵ective spread, the ETF momentum strategy with a 36-month formation

period and one-month holding period still delivers an abnormal return of 1.06% per month

(t-statistic = 2.39) or 12.72% per annum when performance is measured relative to the four

factors.

[Insert Table 9 here]

3.6. Limits to arbitrage: time variation in momentum profitability

We test whether ETF momentum strategy profits are stable over time. Instability in mo-

mentum profits could pose an obstacle for arbitrageurs who have short investment horizons.

As noted by Stein (2005), a large majority of professionally managed investment vehicles

(e.g., mutual funds and hedge funds) are open-ended, which creates serious constraints as

they are exposed to the risk of redemptions if they underperform in the short run.16

15Our results are robust to using the Roll (1984) spread instead to adjust for transaction costs.
16Some hedge funds that invest in illiquid securities such as distressed debt do impose lock-ups that allow

them to access secure capital. However, the vast majority of hedge funds that trade liquid securities such

23

 Electronic copy available at: https://ssrn.com/abstract=3468556 



[Insert Fig. 4 here]

To analyse the stability of ETF momentum strategies, we plot in Fig. 4 the 36-month

moving averages of the excess returns and abnormal returns from the ETF momentum

strategies with a 36-month formation period and one-, three-, and six-month holding periods.

Abnormal returns are calculated relative to the Carhart (1997) 4-factor model. The leftmost

subplots showcase excess returns while the rightmost subplots showcase abnormal returns.

Fig. 4 indicates that momentum returns have been impressive during the sample period

and have exceeded 2 percent per month over several years. However, the figure also reveals

that ETF momentum returns can be volatile over time. For example, the top left subplot

reveals that between January 2012 to March 2012 and between March 2018 to June 2018 the

moving average excess return of the ETF momentum strategy with a 36-month formation

period and one-month holding period is negative. The other subplots also reveal significant

time series variation in ETF momentum excess return and abnormal returns when we extend

the holding period beyond one-month. Therefore, myopic market participants may view the

ETF momentum strategies as potentially risky. The time series variation in ETF momen-

tum profits could prevent some delegated portfolio managers from arbitraging away ETF

momentum.

3.7. Limits to arbitrage: characteristics of ETFs

We explore whether the characteristics of ETFs can engender limits to arbitrage that prevent

investors from harvesting ETF momentum profits. To that end, we sort ETFs independently

into 5 x 2 portfolios based on (i) their past 36-month cumulative returns and (ii) their char-

acteristics such as size, price, Amihud (2002) illiquidity, return volatility, and institutional

ownership. Size is measured using ETF market capitalization at the end of each month.

Price is measured using end of the month closing prices. Amihud (2002) illiquidity is the

as ETFs, e.g., equity market neutral and global macro funds, tend to impose minimal share restrictions on
their investors.
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average daily ratio of absolute ETF return to the dollar trading volume within each month.

Idiosyncratic return volatility is the standard deviation of residuals from the regression of

daily stock excess returns on the Fama and French (1993) three factors within each month

as per Ang et al. (2006). Institutional ownership is the sum of shares held by 13-F institu-

tions divided by total shares outstanding in each quarter. Institutional ownership data are

available from the Thomson Reuters Institutional Holdings database. Value-weighted ETF

portfolio returns are computed over the next month and re-balanced monthly. We evaluate

the performance of the ETF portfolios relative to the Carhart (1997) four-factor model. For

ETF characteristics to lead to limits to arbitrage, we expect the ETF momentum profits to

be concentrated in ETFs with greater uncertainty, i.e., ETFs that have lower market cap-

italizations, lower prices, higher illiquidity, higher return volatility, and lower institutional

ownership.

[Insert Table 10 here]

The results in Table 10 suggest that cross-sectional momentum tends to be stronger for

ETFs with high market capitalizations, low prices, high return volatility, low illiquidity, and

high institutional ownership. We note that the WML spread di↵erence between low- and

high-priced ETFs, at 22 basis points per month, is economically modest and statistically

indistinguishable from zero at the 10% level (t-statistic = 0.65). Consequently, ETF price

does not appear to exert a strong influence on the strength of ETF momentum profits. In

contrast, the WML spread di↵erence between high and low idiosyncratic volatility ETFs, at

61 basis points per month, is economically meaningful and statistically significant at the 10%

level (t-statistic = 1.74). Therefore, to the extent that investors are wary of high volatility

ETFs, this may prevent some investors from harvesting momentum profits.
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4. Robustness tests

In this section, we conduct a battery of robustness tests to ascertain the strength of our

empirical results.

4.1. Time series momentum

Moskowitz, Ooi, and Pedersen (2012) uncover evidence of time series momentum in 58 liquid

instruments that span equity indices, currencies, commodities, and bond futures. Moreover,

they argue that time series momentum is a driver of cross-sectional momentum. Therefore,

one concern is that the cross-sectional momentum in ETF returns that we uncover may stem

from time series momentum instead. To allay such concerns, we augment the Carhart (1997)

four-factor and Fama and French (2016) five-factor models with the Moskowitz, Ooi, and

Pedersen (2012) time series momentum factor and re-estimate the spread alphas from the

value-weighted ETF momentum strategies with a 36-month formation period and holding

periods that range from one to twelve months. The results reported in Panel D of Table 9

indicate that our findings are robust to controlling for time series momentum.

4.2. Momentum everywhere

Asness, Moskowitz, and Pedersen (2013) find consistent momentum (and value) return pre-

mia across eight diverse markets and asset classes, and a strong common factor structure

among their returns. To alleviate the concern that ETF momentum returns may be driven

by the Asness, Moskowitz, and Pedersen (2013) momentum everywhere factor, we augment

the four- and five-factor models with the Asness, Moskowitz, and Pedersen (2013) momen-

tum factor and re-estimate the spread alphas from baseline ETF momentum strategies. The

results reported in Panel E of Table 9 reveal that our findings are not driven by covariation

with the Asness, Moskowitz, and Pedersen (2013) momentum everywhere factor.
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4.3. Industry momentum

Moskowitz and Grinblatt (1999) argue that industry momentum can explain cross-sectional

stock momentum. To address the concern that ETF momentum may be explained by indus-

try momentum, we augment the four- and five-factor models with an industry momentum

factor constructed using Fama and French (1997)’s 48 industries. The industry momentum

factor longs the top five industries and shorts the bottom five industries, based on past six-

month industry returns, and holds the portfolio for six months.17 The results reported in

Panel F of Table 9 indicate that our findings are robust to controlling for industry momen-

tum.

4.4. Mispricing factors

Stambaugh and Yuan (2017) construct two mispricing factors that aggregate information

across 11 prominent anomalies. To test whether ETF momentum can be subsumed by

prominent anomalies, we augment the four- and five-factor models with the two mispric-

ing factors and redo our baseline portfolio sorts. We run the analysis from August 2004

to December 2016 as the mispricing factors are available only till December 2016.18 The

results reported in Panel G of Table 9 indicate that our findings are robust to controlling for

covariation with the Stambaugh and Yuan (2017) mispricing factors.

4.5. Alternative ETF sample

The sample of ETFs that Ben-David, Franzoni, and Moussawi (2018) study di↵ers slightly

from ours. While they also focus on ETFs holding US equities, they do so by restricting

their sample to the following Lipper Objective Codes for Broad based US Equity: CA, EI,

G, GI, MC, MR, SG, and SP. They also include Sector funds that invest in US firms with

17Moskowitz and Grinblatt (1999) also study an industry momentum strategy based on a six-month
formation period and six-month holding period. However, their strategy is based on a set of 20 industries,
and longs the top three and shorts the bottom three industries.

18See http://finance.wharton.upenn.edu/⇠stambaug/
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codes BM, CG, CS, FS, H, ID, NR, RE, TK, TL, S, and UT. To verify that our findings are

not peculiar to the ETF sample that we analyze, we redo our baseline portfolio sorts on the

Ben-David, Franzoni, and Moussawi (2018) ETF sample. The results reported in Panel H

of Table 9 indicate that our findings are robust to using this alternative sample of ETFs.

4.6. Lead lag e↵ects in returns

To ascertain that our findings are not driven by the lead lag e↵ects envisaged in Lo and

MacKinlay (1990), we redo our baseline portfolio sorts after including a one-month gap

between the formation and holding periods. The results reported in Panel I of Table 9

confirm that our findings are not driven by intra-month lead lag e↵ects in ETF returns.

4.7. Equity ETFs

One concern is that momentum may only be confined to ETFs that hold US equities. We

focus on US equity ETFs as it is easier to capture the risk exposures of such ETFs by

leveraging on the standard risk factors. Nonetheless, we redo our tests on ETFs that hold

either US or international equities. The results reported in Panel J of Table 9 indicate that

our findings apply to equity ETFs in general.

4.8. ETF time series momentum

Given the positive relationship between cross-sectional momentum and time series momen-

tum for country equity indices, currencies, commodities, and sovereign bonds (Moskowitz,

Ooi, and Pedersen, 2012) , it will be interesting to test for time series momentum in ETFs.

In that e↵ort, we follow Moskowitz, Ooi, and Pedersen (2012) and construct time series

momentum portfolios of ETFs based on a 36 month formation period and holding periods

ranging from one to twelve months. To construct the time series momentum portfolios, for

each month t, we consider whether the excess return over the past 36 months is positive and
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negative and go long the ETF if positive and short if negative. The results reported in Panel

K of Table 9 provide evidence of time series momentum in ETFs for formation and holding

horizons that mirror those for cross-sectional momentum in ETFs. However, the annualized

alphas from ETF time series momentum are smaller than (about two-thirds of) those from

ETF cross-sectional momentum.

5. Conclusion

This paper uncovers novel evidence of long-horizon, cross-sectional return momentum in

ETFs, an asset class that has become increasingly popular in the recent years owing to its

superior liquidity and lack of short sales constraints. By so doing, we contribute to the

literature in the following ways.

First, we show that cross-sectional momentum strategies with ETFs based on formation

periods that span two to four years can generate economically and statistically significant

risk-adjusted returns. Specifically, the value-weighted ETF momentum strategy based on a

36-month formation period and one-month holding period yields a Carhart (1997) four-factor

alpha of 1.20 percent per month. Second, we find that ETF momentum is orthogonal to cross-

sectional stock momentum. The ETFmomentum returns cannot be explained by co-variation

with the various benchmark stock momentum strategies assessed in Jegadeesh and Titman

(1993; 2001), with the Fama and French (2012) UMD momentum factor, with an industry

momentum (Moskowitz and Grinblatt, 1999) factor, or with the Asness, Moskowitz, and

Pedersen (2013) momentum everywhere factor. During our sample period, we observe little

evidence of stock momentum and yet strong evidence of ETF momentum. Third, we show

that neither co-variation with macroeconomic risk nor co-variation with liquidity risk can

explain ETF momentum. Explanations based on stock characteristics also have di�culties

accounting for ETF momentum since ETF momentum tends to be stronger for ETFs that

hold large capitalization stocks or easier-to-value stocks. The post-formation returns for
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ETF momentum are also incompatible with explanations that are based on fundamental risk

(Conrad and Kaul, 1998) or that feature underreaction (Barberis, Shleifer, and Vishny, 1998;

Hong and Stein, 1999). Rather, they are most congruent with the delayed overreaction story

of Daniel, Hirshleifer, and Subrahmanyam (1998). Fourth, we show that limits to arbitrage

can prevent some investors from harvesting ETF momentum profits. While the profits from

ETF momentum survive various adjustments for transaction costs, they exhibit significant

time series volatility, and manifest more in ETFs with high idiosyncratic volatility. To the

extend that investors have short investment horizons or are wary of volatile ETFs, this may

engender limits to arbitrage.

Our results therefore provide a useful starting point for understanding the drivers un-

derpinning return predictability in ETFs. They also highlight the constraints that market

participants who take advantage of such return predictability may face.
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Fig 1. Cumulative value-weighted abnormal return for the ETF momentum strategy with a 36-month formation period and a 1-month holding period. Each
month, all eligible US Equity ETFs are sorted into deciles based on their cumulative returns over the past 36 months and a long-short portfolio is formed by
buying the highest past return decile (winner) and shorting the lowest past return decile (loser). Abnormal return is the difference between a portfolio’s excess
return and its factor loadings multiplied by the Carhart (1997) four factors, where factor loadings are estimated over the entire sample period. The solid line
represents the winner portfolio and the dashed line represents the loser portfolio. The sample period is from August 2004 to June 2018.
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Fig 2. Cumulative value-weighted abnormal return of ETF momentum strategy portfolios with a 36-month formation period. Each month, all eligible US Equity ETFs are
sorted into deciles based on their cumulative returns over the past 36 months and a long-short portfolio is formed by buying the highest past return decile (winner) and
shorting the lowest past return decile (loser). Abnormal return is the difference between a portfolio’s excess return and its factor loadings multiplied by the Carhart (1997) four 
factors, where factor loadings are estimated for each holding-period-month series as per Cooper, Gutierrez, and Hameed (2004). The solid line represents the winner portfolio
and the dashed line represents the loser portfolio. The sample period is from August 2004 to June 2018.
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Fig. 3. ETF momentum profits during good and bad economic times. The monthly returns of the ETF momentum strategy with a
36-month formation period and a one-month holding period is plotted against the returns of the S&P 500 index. The line
represents the third degree polynomial line of best fit through the scatter plot. 

 Electronic copy available at: https://ssrn.com/abstract=3468556 



Fig 4. The 36-month moving average of the returns from the ETF momentum strategy with a 36-month formation period and 1-, 3-, and 6-month holding periods. Each month, all eligible US Equity ETFs are sorted into deciles based on their past 36-
month cumulative returns, and a long-short portfolio is formed by buying the highest past return decile and shorting the lowest past return decile. Value-weighted portfolio returns are computed over the next month and rebalanced monthly. Portfolios
are held for one, three, or six months. Excess return is return in excess of the risk free rate. Abnormal return is estimated relative to the Carhart (1997) 4-factor model. Excess returns are graphed in the leftmost subplots. Abnormal returns are graphed
in the rightmost subplots. The sample period is from August 2004 to June 2018.
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Year Number of ETFs Market Cap (US$bn) Number of ETFs Market Cap (US$bn)
2004 74 166 39 45
2005 76 199 48 68
2006 81 260 50 107
2007 95 359 70 158
2008 122 312 76 129
2009 196 382 125 251
2010 253 501 228 410
2011 258 519 284 462
2012 271 638 338 616
2013 311 852 417 716
2014 334 1016 488 883
2015 351 1031 522 997
2016 378 1253 566 1209
2017 414 1656 636 1677
2018 396 1674 655 1714

US Equity ETFs International Equity ETFs

Table 1
ETF sample
This table presents the number of ETFs and the total market capitalization of ETFs traded in the US each year.
Only ETFs with market capitalizations greater than US$20 million and prices higher than US$1 are included
in the sample. The number and market capitalization of ETFs are measured at the end of each calendar year,
except for 2018, when it is measured at the end of June. Market capitalization is reported in billions of US$.
The sample period is from August 2004 to June 2018.
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ETF portfolio EW VW EW VW EW VW

1 (Loser) 0.42% 0.04% -0.32% -0.61% -0.45% -0.67%
2 0.51% 0.64% -0.23% 0.00% -0.30% -0.15%
3 0.71% 0.58% -0.03% -0.11% -0.10% -0.17%
4 0.74% 0.77% 0.01% 0.06% -0.05% 0.04%
5 0.78% 0.79% 0.03% 0.08% 0.01% 0.02%
6 0.78% 0.75% 0.01% 0.02% 0.01% 0.00%
7 0.69% 0.63% -0.10% -0.17% -0.10% -0.17%
8 0.80% 0.66% -0.01% -0.16% -0.02% -0.13%
9 0.83% 1.01% 0.00% 0.27% 0.06% 0.29%
10 (Winner) 0.78% 1.01% -0.26% 0.31% -0.06% 0.44%
Winner - Loser 0.36% 0.96% 0.07% 0.92% 0.40% 1.11%
t-statistic (0.82) (1.70) (0.22) (2.13) (1.02) (2.31)

1 (Loser) 0.27% -0.01% -0.50% -0.66% -0.50% -0.68%
2 0.52% 0.41% -0.23% -0.22% -0.28% -0.31%
3 0.71% 0.59% -0.03% -0.11% -0.07% -0.14%
4 0.72% 0.75% -0.03% 0.02% -0.06% -0.01%
5 0.81% 0.72% 0.07% -0.01% 0.05% -0.04%
6 0.71% 0.70% -0.09% -0.05% -0.11% -0.09%
7 0.78% 0.78% 0.02% 0.01% -0.01% -0.01%
8 0.68% 0.70% -0.11% -0.10% -0.12% -0.11%
9 0.81% 0.66% 0.01% -0.12% 0.05% -0.10%
10 (Winner) 1.06% 1.24% 0.08% 0.53% 0.19% 0.60%
Winner - Loser 0.79% 1.25% 0.58% 1.20% 0.69% 1.28%
t-statistic (1.89) (2.17) (1.95) (2.71) (1.96) (2.71)

1 (Loser) 0.21% 0.05% -0.54% -0.63% -0.51% -0.58%
2 0.55% 0.41% -0.18% -0.24% -0.19% -0.25%
3 0.66% 0.59% -0.07% -0.12% -0.09% -0.13%
4 0.77% 0.80% 0.02% 0.10% -0.01% 0.05%
5 0.79% 0.73% 0.08% 0.01% 0.03% -0.04%
6 0.76% 0.77% 0.01% 0.06% -0.03% -0.01%
7 0.74% 0.77% -0.02% 0.03% -0.05% 0.03%
8 0.66% 0.63% -0.15% -0.19% -0.16% -0.20%
9 0.65% 0.57% -0.20% -0.27% -0.14% -0.19%
10 (Winner) 1.09% 1.07% 0.14% 0.31% 0.23% 0.37%
Winner - Loser 0.88% 1.02% 0.68% 0.94% 0.75% 0.95%
t-statistic (2.31) (1.97) (2.52) (2.19) (2.29) (2.18)

Panel C: ETFs sorted on past 48-month return and held for 1 month

Excess return 4-factor alpha 5-factor alpha

Table 2
Returns to ETF momentum strategy
This table reports the monthly average excess returns and alphas for decile ETF portfolios sorted on past returns.
Each month, all eligible US Equity ETFs are sorted into deciles based on their cumulative returns over the past 24
months (Panel A), 36 months (Panel B), and 48 months (Panel C), and a long-short portfolio is formed by buying
the highest past return decile and shorting the lowest past return decile. Portfolio returns are computed over the next
month and re-balanced monthly. Columns (1) and (2) report the excess return (raw return minus risk-free rate),
Columns (3) and (4) report the Carhart (1997) 4-factor alpha, and Columns (5) and (6) report the Fama and French
(2016) 5-factor alpha. “EW” denotes equal-weighted returns and “VW” denotes value-weighted returns. “Winner -
Loser” denotes the return spread between the top and bottom past return deciles. The t-statistics in parentheses are
based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors with three lags.
Winner - loser spread returns and alphas that are statistically significant at the 10% level or below are in bold. The
sample period is from August 2004 to June 2018.

Panel A: ETFs sorted on past 24-month return and held for 1 month

Panel B: ETFs sorted on past 36-month return and held for 1 month
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ETF portfolio EW VW EW VW EW VW

1 (Loser) 0.31% 0.03% -0.45% -0.61% -0.44% -0.61%
10 (Winner) 1.05% 1.07% 0.07% 0.36% 0.19% 0.43%
Winner - Loser 0.74% 1.03% 0.51% 0.97% 0.62% 1.04%
t-statistic (1.85) (1.86) (1.76) (2.30) (1.84) (2.39)

1 (Loser) 0.33% 0.07% -0.41% -0.57% -0.39% -0.55%
10 (Winner) 1.05% 1.03% 0.06% 0.32% 0.17% 0.38%
Winner - Loser 0.71% 0.95% 0.47% 0.89% 0.56% 0.93%
t-statistic (1.83) (1.80) (1.64) (2.29) (1.73) (2.35)

1 (Loser) 0.32% 0.08% -0.44% -0.56% -0.40% -0.52%
10 (Winner) 1.06% 0.97% 0.08% 0.27% 0.17% 0.32%
Winner - Loser 0.74% 0.89% 0.52% 0.83% 0.58% 0.84%
t-statistic (1.98) (1.70) (1.88) (2.15) (1.90) (2.15)

1 (Loser) 0.33% 0.10% -0.44% -0.56% -0.39% -0.49%
10 (Winner) 1.06% 0.92% 0.10% 0.23% 0.17% 0.27%
Winner - Loser 0.73% 0.83% 0.54% 0.79% 0.56% 0.76%
t-statistic (2.04) (1.66) (2.01) (2.09) (1.96) (2.05)

Table 3
ETF momentum strategies with 36-month formation period

This table reports the monthly average excess returns and alphas for decile ETF portfolios sorted on
past 36-month returns. Each month, all eligible US Equity ETFs are sorted into deciles based on their
past 36-month cumulative returns, and a long-short portfolio is formed by buying the highest past
return decile and shorting the lowest past return decile. Portfolios are then held for 3 months in Panel
A, 6 months in Panel B, 9 months in Panel C, and 12 months in Panel D. We follow Jegadeesh and
Titman (1993) to construct overlapping portfolios. Columns (1) and (2) report the excess return (raw
return minus risk-free return), Columns (3) and (4) report the Carhart (1997) 4-factor alpha, and
Columns (5) and (6) report the Fama and French (2016) 5-factor alpha. “EW” denotes equal-weighted
returns and “VW” denotes value-weighted returns. “Winner - Loser” denotes the return spread between
the top and bottom past return deciles. The t-statistics in parentheses are based on Newey and West
(1987) heteroscedasticity and autocorrelation consistent standard errors with three lags. Winner - loser
spread returns and alphas that are statistically significant at the 10% level or below are in bold. The
sample period is from August 2004 to June 2018.

Panel D: ETFs sorted on past 36-month return and held for 12 months

Excess return 4-factor alpha 5-factor alpha

Panel A: ETFs sorted on past 36-month return and held for 3 months

Panel B: ETFs sorted on past 36-month return and held for 6 months

Panel C: ETFs sorted on past 36-month return and held for 9 months
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Asset pricing model Portfolio MKTRF SMB HML PR1YR RMW CMA Adj. R-sq
Fama-French (1993) EW -0.022 -0.100 -1.070 0.257
3-factor model (-0.19) (-0.62) (-6.75)

VW -0.215 -0.105 -1.350 0.245
(-1.40) (-0.47) (-6.04)

Carhart (1997) EW 0.127 -0.129 -0.730 0.430 0.389
4-factor model (1.17) (-0.92) (-4.75) (6.67)

VW -0.086 -0.125 -1.060 0.360 0.292
(-0.57) (-0.61) (-3.90) (3.42)

Fama-French (2016) EW -0.037 -0.028 -0.770 0.365 -1.010 0.303
5-factor model (-0.32) (-0.15) (-3.70) (1.24) (-2.72)

VW -0.231 -0.022 -1.020 0.387 -1.080 0.269
(-1.51) (-0.09) (-3.34) (0.94) (-1.94)

Table 4
Factor loadings of ETF momentum strategy with 36-month formation and 1-month holding period
This table reports the factor loadings of a long-short ETF momentum strategy based on past 36-month returns with a one-month holding
period. Each month, all eligible US Equity ETFs are sorted into deciles based on their past 36-month cumulative returns, and a long-short
portfolio is formed by buying the highest past return decile and shorting the lowest past return decile. Portfolio returns are computed over
the next month and re-balanced monthly. We evaluate returns relative to three asset pricing models: the Fama and French (1993) three-factor
model, the Carhart (1997) four-factor model, and the Fama and French (2016) five-factor model, for both equal-weighted (EW) and value-
weighted (VW) ETF portfolios. RMRF is the market factor, SMB is the size factor, HML is the value factor, PR1YR is the Carhart (1997)
momentum factor, RMW is the robust profitability minus weak profitability factor, and CMA is the conservative investment minus
aggressive investment factor. “EW” denotes equal-weighted returns and “VW” denotes value-weighted returns. The t-statistics in
parentheses are based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors with three lags. Factor
loading estimates that are statistically significant at the 10% level or below are in bold. The sample period is from August 2004 to June
2018. 
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ETF portfolio EW VW EW VW EW VW

1 (Loser) 0.21% -0.05% -0.54% -0.71% -0.54% -0.71%
10 (Winner) 1.05% 1.25% 0.06% 0.55% 0.19% 0.63%
Winner - Loser 0.83% 1.29% 0.61% 1.26% 0.73% 1.34%
t-statistic (2.02) (2.27) (2.20) (2.96) (2.06) (2.86)

1 (Loser) 0.26% 0.00% -0.49% -0.65% -0.48% -0.65%
10 (Winner) 1.02% 1.04% 0.03% 0.34% 0.16% 0.43%
Winner - Loser 0.76% 1.04% 0.51% 0.99% 0.64% 1.08%
t-statistic (1.91) (1.89) (1.75) (2.38) (1.85) (2.48)

1 (Loser) 0.28% 0.06% -0.45% -0.58% -0.44% -0.57%
10 (Winner) 1.02% 1.02% 0.02% 0.32% 0.14% 0.39%
Winner - Loser 0.74% 0.96% 0.47% 0.90% 0.58% 0.96%
t-statistic (1.93) (1.82) (1.67) (2.34) (1.76) (2.41)

1 (Loser) 0.26% 0.07% -0.47% -0.57% -0.45% -0.54%
10 (Winner) 1.04% 0.97% 0.05% 0.27% 0.15% 0.34%
Winner - Loser 0.78% 0.91% 0.53% 0.85% 0.60% 0.88%
t-statistic (2.11) (1.78) (1.92) (2.22) (1.94) (2.26)

1 (Loser) 0.27% 0.08% -0.48% -0.58% -0.44% -0.51%
10 (Winner) 1.04% 0.92% 0.07% 0.22% 0.14% 0.28%
Winner - Loser 0.78% 0.85% 0.55% 0.80% 0.58% 0.79%
t-statistic (2.21) (1.74) (2.09) (2.16) (2.04) (2.16)

Panel B: ETFs sorted on past 36-month return and held for three months

Panel C: ETFs sorted on past 36-month return and held for six months

Panel D: ETFs sorted on past 36-month return and held for nine months

Panel E: ETFs sorted on past 36-month return and held for twelve months

Panel A: ETFs sorted on past 36-month return and held for one month

Table 5
ETF momentum strategies with NAV-based returns
This table reports the monthly average excess returns and alphas for decile ETF portfolios sorted on past 36-
month returns. Returns are computed using ETF NAVs. Each month, all eligible US Equity ETFs are sorted
into deciles based on their past 36-month cumulative returns, and a long-short portfolio is formed by buying
the highest past return decile and shorting the lowest past return decile. Portfolios are then held for one month 
in Panel A, three months in Panel B, six months in Panel C, nine months in Panel D, and twelve months in
Panel E. We follow Jegadeesh and Titman (1993) to construct overlapping portfolios. Columns (1) and (2)
report the excess return (raw return minus risk-free return), Columns (3) and (4) report the Carhart (1997) 4-
factor alpha, and Columns (5) and (6) report the Fama and French (2016) 5-factor alpha. “EW” denotes equal-
weighted returns and “VW” denotes value-weighted returns. “Winner - Loser” denotes the return spread
between the top and bottom past return deciles. The t-statistics in parentheses are based on Newey and West
(1987) heteroscedasticity and autocorrelation consistent standard errors with three lags. Winner - loser spread
returns and alphas that are statistically significant at the 10% level or below are in bold. The sample period is
from August 2004 to June 2018.

Excess return 4-factor alpha 5-factor alpha
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ETFMOM(36,1) ETFMOM(36,3) ETFMOM(36,6) ETFMOM(36,9)ETFMOM(36,12) MOM(3,3) MOM(6,6) MOM(9,9) MOM(12,12)
Mean return 15.00% 12.40% 11.40% 10.60% 9.92% 4.15% 5.22% 5.27% 3.06%

(2.17) (1.86) (1.80) (1.70) (1.66) (0.76) (0.89) (0.88) (0.55)
Sharpe ratio 0.53 0.45 0.42 0.40 0.38 0.20 0.24 0.24 0.15
Std deviation 25.93% 24.89% 24.28% 23.52% 22.73% 20.29% 21.94% 22.26% 20.66%
Skewness -0.01 0.00 0.02 0.01 0.01 -1.85 -1.68 -1.30 -1.35
Kurtosis 4.41 4.64 4.49 4.49 4.50 9.22 7.49 6.21 5.19

Dependent variable
MOM(3,3) 0.391 0.390 0.394 0.363 0.328

(2.78) (2.90) (3.06) (2.92) (2.72)
MOM(6,6) 0.557 0.537 0.542 0.512 0.475

(7.20) (7.17) (7.79) (7.76) (7.40)
MOM(9,9) 0.557 0.542 0.544 0.518 0.483

(6.92) (6.98) (7.49) (7.51) (7.09)
MOM(12,12) 0.604 0.591 0.588 0.561 0.526

(6.39) (6.40) (6.67) (6.55) (6.18)
Constant 1.224 1.117 1.115 1.206 1.093 0.994 0.990 1.077 0.954 0.855 0.852 0.941 0.917 0.820 0.815 0.900 0.863 0.770 0.765 0.843

(2.15) (2.16) (2.17) (2.36) (1.98) (1.97) (1.98) (2.16) (1.77) (1.75) (1.76) (1.94) (1.76) (1.72) (1.73) (1.92) (1.68) (1.64) (1.64) -1.82
Adj. R-sq 0.086 0.213 0.220 0.223 0.091 0.208 0.219 0.224 0.097 0.221 0.230 0.232 0.088 0.212 0.224 0.226 0.075 0.192 0.204 0.209

ETFMOM(36,12)

Table 6
ETF momentum and stock momentum
This table shows the annualized means, Sharpe ratios, annualized standard deviations, skewness, and kurtosis for excess returns from four benchmark cross-sectional stock momentum strategies (Jegadeesh and Titman, 1993; 2001) in Panel A. Panel B reports coefficient estimates from regressions of ETF
momentum monthly excess returns in percentage on a constant and monthly excess returns from each of these four cross-sectional stock momentum strategies. MOM(n ,m ) is the cross-sectional stock momentum strategy with a formation period of n months and a holding period of m months.
ETFMOM(n ,m ) is the ETF momentum strategy with a formation period of n months and a holding period of m months. The t-statistics in parentheses are based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors with three lags. Mean returns and coefficient
estimates that are statistically significant at the 10% level or below are in bold.  The sample period is from August 2004 to June 2018.

Panel B: Regressions of ETF momentum returns on returns from cross-sectional stock momentum

Panel A: Descriptive statistics for ETF momentum and stock momentum strategies

ETFMOM(36,1) ETFMOM(36,3) ETFMOM(36,6) ETFMOM(36,9)
ETF momentum strategy (formation period, holding period)

Stock momentum strategy (formation, holding)ETF momentum strategy (formation, holding)
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Factor alpha beta R-squared alpha beta R-squared alpha beta R-squared alpha beta R-squared alpha beta R-squared

INDUSTRIAL_PRODUCT 1.27% -1.00 0.01 1.03% -0.79 0.01 0.94% -0.70 0.01 0.88% -0.65 0.01 0.83% -0.56 0.01
CONSUMPTION 1.42% -2.22 0.01 1.19% -2.22 0.01 1.10% -2.08 0.01 1.01% -1.80 0.01 0.94% -1.53 0.00
INFLATION 1.19% 4.81 0.07 0.97% 4.50 0.06 0.89% 4.33 0.06 0.83% 3.91 0.05 0.79% 3.67 0.05
TERM_SPREAD 1.19% -0.37 0.00 0.97% -0.54 0.00 0.88% -0.83 0.00 0.82% -0.76 0.00 0.78% -0.75 0.00
DEFAULT_SPREAD 1.20% -1.00 0.00 0.97% -1.34 0.00 0.89% -1.74 0.00 0.83% -1.51 0.00 0.79% -1.48 0.00
LABOR_INCOME 1.30% -0.19 0.00 1.08% -0.20 0.00 0.87% 0.05 0.00 0.77% 0.12 0.00 0.71% 0.15 0.00
VIX 1.20% 0.00 0.00 0.97% 0.00 0.00 0.89% 0.00 0.00 0.83% 0.00 0.00 0.79% 0.00 0.00

TED 1.30% -0.06 0.04 1.04% -0.06 0.04 0.96% -0.06 0.05 0.89% -0.05 0.04 0.85% -0.05 0.04
PS_LIQUIDITY 1.30% -0.01 0.00 1.05% 0.00 0.00 0.95% 0.03 0.00 0.89% 0.05 0.00 0.84% 0.09 0.00
AMIHUD_ILLIQUIDITY 1.30% 0.38 0.00 1.04% -1.20 0.00 0.95% -2.45 0.00 0.89% -1.65 0.00 0.84% -1.76 0.00
HKM_CAPRATIO 1.30% 0.03 0.00 1.04% 0.02 0.00 0.96% 0.01 0.00 0.89% 0.01 0.00 0.85% 0.01 0.00

Table 7
Macroeconomic and liquidity risk
This table reports estimates from univariate time-series regressions of ETF momentum strategy Carhart (1997) 4-factor residuals on various macroeconomic and liquidity risk factors. Each month, all eligible
US Equity ETFs are sorted into deciles based on their past 36-month cumulative returns, and a long-short portfolio is formed by buying the highest past return decile and shorting the lowest past return decile.
Portfolios are held for one month, three months, six months, nine months, and twelve months. We follow Jegadeesh and Titman (1993) when constructing overlapping portfolios. Next, we regress the time
series of long-short momentum returns on the Carhart (1997) four factors. Then, we regress the residual returns from the four-factor model on each macroeconomic and liquidity risk factor separately. The
macroeconomic factors include industrial production growth (INDUSTRIAL_PRODUCT), real consumption growth (CONSUMPTION), change in inflation rate (INFLATION), change in term spread
(TERM_SPREAD), change in default spread (DEFAULT_SPREAD), labor income growth (LABOR_INCOME), and change in VIX (VIX). The liquidity factors include change in the Treasury-Eurodollar
spread (TED), the Pástor and Stambaugh (2003) traded liquidity factor (PS_LIQUIDITY), change in the aggregate Amihud (2002) illiquidity (AMIHUD_ILLIQUIDITY), and the primary dealers' capital
ratio factor of He, Kelly, and Manela (2017) (HKM_CAPRATIO). ETFMOM(n ,m ) is the ETF momentum strategy with a formation period of n months and a holding period of m months. Statistical
inferences are based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors with three lags. Coefficient estimates that are statistically significant at the 10% level or below
are in bold. The sample is from August 2004 to June 2018. 

Panel A: Macroeconomic factors

Panel B: Liquidity factors

ETF momentum strategy (formation period, holding period)
ETFMOM(36,1) ETFMOM(36,3) ETFMOM(36,6) ETFMOM(36,9) ETFMOM(36,12)
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ETF portfolio Small Big High Low High Low High Low High Low High Low High Low High Low
1 (Loser) -0.65% -0.36% -0.48% -0.51% -0.45% -0.43% -0.37% -0.59% -0.19% -0.71% -0.40% -0.63% -0.43% -0.56% -0.55% -0.32%
2 -0.12% -0.13% -0.13% -0.19% -0.06% -0.16% -0.11% -0.15% -0.32% -0.04% -0.20% -0.14% -0.31% -0.03% -0.08% -0.22%
3 -0.05% -0.01% 0.01% -0.18% -0.04% -0.02% -0.10% -0.02% -0.04% 0.03% -0.15% -0.01% -0.14% -0.02% -0.02% -0.13%
4 -0.25% -0.02% -0.01% -0.17% -0.09% -0.07% -0.16% 0.04% -0.19% 0.00% -0.17% -0.01% -0.14% 0.01% 0.06% -0.11%
5 (Winner) -0.17% 0.49% 0.36% -0.27% 0.01% 0.52% -0.17% 0.45% -0.08% 0.59% -0.30% 0.53% -0.25% 0.50% 0.49% -0.22%
Winner - Loser 0.49% 0.85% 0.84% 0.24% 0.46% 0.95% 0.19% 1.03% 0.12% 1.29% 0.10% 1.16% 0.17% 1.06% 1.04% 0.10%
t-statistic 1.32 2.24 2.11 0.73 1.15 2.68 0.55 3.01 0.31 3.48 0.26 3.39 0.57 2.65 2.72 0.29

Forecast dispersionResidual analyst coverageCash flow volatility Credit rating

Table 8
ETF portfolios sorted on past performance and on loadings on factor-mimicking portfolios for various stock characteristics

Every month, ETFs are independently sorted into 5 x 2 portfolios based (i) on their past returns over the last 36 months and on (ii) their loadings, estimated over the last 36 months, on factor-mimicking
stock portfolios for various stock characteristics. Value-weighted portfolio returns are computed over the next month and re-balanced monthly. “Winner - Loser” denotes the spread between the top and
bottom past return quintiles. The stock characteristics include size, turnover, Amihud illiquidity, idiosyncratic return volatility, cash flow volatility, residual analyst coverage, analyst forecast dispersion,
and credit rating. Size is measured using firm market capitalization at the end of each month. Price is measured using closing price at the end of each month. Following Amihud (2002), illiquidity is the
average daily ratio of absolute stock return to the dollar trading volume within each month. Idiosyncratic return volatility is the standard deviation of residuals from the regression of daily stock excess
returns on the Fama and French (1993) three factors within each month as per Ang et al. (2006). Cash flow volatility is the standard deviation of quarterly return-on-assets over a rolling window of 20
quarters. We require a minimum of eight quarters to compute this measure. Following Hong, Lim, and Stein (2000), residual analyst coverage is the residual from the regression of the natural logarithm
of the number of analysts covering the stock in a month on the natural logarithm of market capitalization and a NASDAQ dummy. Analyst earnings forecast dispersion is the cross-sectional standard
deviation of annual earnings-per-share forecasts scaled by the absolute value of the average outstanding forecast as per Diether, Malloy, and Scherbina (2002). Credit rating is S&P Domestic Long-
Term Issuer Credit Rating from Compustat. The factor-mimicking stock portfolio for size is constructed by going long stocks with market capitalization below the NYSE 30th percentile and shorting
stocks with market capitalization above the NYSE 70th percentile. The factor-mimicking stock portfolio for turnover is constructed by going long stocks with turnover above 70th percentile and
shorting stocks with turnover below the 30th percentile. The factor-mimicking stock portfolios for the other stock characteristics are defined analogously. We evaluate the performance of the ETF
portfolios relative to the Carhart (1997) four-factor model and report the four-factor alphas. The t-statistics in parentheses are based on Newey and West (1987) heteroscedasticity and autocorrelation
consistent standard errors with three lags. Winner - loser spread alphas that are statistically significant at the 10% level or below are in bold. The sample period is from August 2004 to June 2018. 

Size Price Amihud illiquidity Idiosyncratic return volatility
Stock characteristics
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Performance measure 4-factor 5-factor 4-factor 5-factor 4-factor 5-factor 4-factor 5-factor 4-factor 5-factor 

Alpha 1.09% 1.17% 0.87% 0.94% 0.79% 0.83% 0.72% 0.73% 0.68% 0.66%
t-statistic (2.46) (2.48) (2.05) (2.15) (2.02) (2.08) (1.87) (1.87) (1.81) (1.76)

Alpha 1.06% 1.14% 0.84% 0.91% 0.75% 0.79% 0.69% 0.69% 0.64% 0.62%
t-statistic (2.39) (2.42) (1.98) (2.08) (1.94) (1.99) (1.78) (1.78) (1.71) (1.66)

Alpha 1.06% 1.15% 0.90% 0.99% 0.78% 0.83% 0.74% 0.77% 0.68% 0.67%
t-statistic (2.07) (2.13) (1.81) (2.02) (1.61) (1.76) (1.59) (1.72) (1.49) (1.55)

Alpha 1.10% 1.02% 0.93% 0.84% 0.87% 0.76% 0.84% 0.70% 0.79% 0.64%
t-statistic (2.52) (2.29) (2.20) (2.01) (2.24) (1.97) (2.16) (1.83) (2.11) (1.76)

Alpha 1.15% 1.08% 0.94% 0.87% 0.87% 0.77% 0.82% 0.69% 0.78% 0.65%
t-statistic (2.64) (2.51) (2.25) (2.15) (2.24) (2.09) (2.12) (1.89) (2.08) (1.82)

Alpha 1.04% 0.96% 0.84% 0.76% 0.79% 0.68% 0.75% 0.62% 0.72% 0.58%
t-statistic (2.39) (2.22) (2.01) (1.88) (2.03) (1.83) (1.93) (1.67) (1.90) (1.61)

Alpha 1.52% 1.27% 1.21% 0.97% 1.11% 0.86% 1.03% 0.78% 1.00% 0.76%
t-statistic (3.08) (2.47) (2.58) (2.03) (2.58) (1.99) (2.41) (1.84) (2.38) (1.84)

Alpha 1.19% 1.27% 1.03% 1.10% 0.89% 0.93% 0.82% 0.83% 0.79% 0.78%
t-statistic (2.90) (2.84) (2.70) (2.71) (2.47) (2.47) (2.30) (2.28) (2.28) (2.22)

Alpha 0.89% 0.96% 0.86% 0.93% 0.83% 0.86% 0.78% 0.76% 0.72% 0.69%
t-statistic (1.95) (2.04) (2.07) (2.18) (2.11) (2.17) (2.00) (1.99) (1.91) (1.87)

Alpha 1.02% 1.17% 0.78% 0.92% 0.68% 0.82% 0.66% 0.75% 0.69% 0.74%
t-statistic (2.75) (3.03) (2.30) (2.67) (2.12) (2.55) (2.09) (2.46) (2.16) (2.47)

Alpha 0.78% 0.81% 0.71% 0.81% 0.55% 0.64% 0.55% 0.59% 0.57% 0.58%
t-statistic (2.28) (2.29) (2.19) (2.37) (1.91) (2.02) (2.01) (2.04) (2.18) (2.16)

Robustness tests
Table 9

This table reports alphas from ETF momentum strategies based on past 36-month returns. Each month, all eligible US Equity ETFs are sorted into deciles based on
their past 36-month cumulative returns, and a long-short portfolio is formed by buying the highest past return decile and shorting the lowest past return decile. Value-
weighted portfolio returns are computed over the next month and re-balanced monthly. “4-factor” denotes the Carhart (1997) 4-factor alpha and “5-factor” denotes the
Fama and French (2016) 5-factor alpha. ETFMOM(n,m) is the ETF momentum strategy with a formation period of n months and a holding period of m months. The t-
statistics in parentheses are based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors with three lags. Alpha estimates that are 
statistically significant at the 10% level or below are in bold. The sample period is from August 2004 to June 2018.

ETF momentum strategy (formation period, holding period)
ETFMOM(36,1) ETFMOM(36,3) ETFMOM(36,6) ETFMOM(36,9) ETFMOM(36,12)

Panel K: ETF time series momentum

Panel A: Taking into account transaction costs (quoted spread)

Panel B: Taking into account transaction costs (effective spread)

Panel C: Taking into account transaction costs (Corwin and Schultz (2012) spread)

Panel J: All equity ETFs traded in the US

Panel D: Controlling for the Moskowitz, Ooi, and Pedersen (2012) time series momentum factor 

Panel E: Controlling for the Asness, Moskowitz, and Pedersen (2013) momentum everywhere factor 

Panel H: Using the Ben-David, Franzoni, and Moussawi (2018) sample

Panel I: Inserting a one-month gap between formation and holding period

Panel F: Controlling for Moskowitz and Grinblatt (1999) industry momentum

Panel G: Controlling for the Stambaugh and Yuan (2017) mispricing factors
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ETF portfolio Small Large Low High Low High Low High Low High
1 (Loser) -0.57% -0.51% -0.73% -0.24% -0.51% -0.29% -0.29% -0.67% -0.46% -0.48%
2 -0.17% -0.08% 0.09% -0.06% -0.09% -0.05% 0.02% -0.31% -0.19% -0.03%
3 0.16% 0.01% -0.04% 0.00% 0.01% 0.10% 0.05% -0.36% -0.13% 0.04%
4 0.23% -0.11% 0.07% -0.14% -0.11% -0.04% -0.07% -0.07% -0.07% -0.15%
5 (Winner) -0.26% 0.24% 0.05% 0.33% 0.24% 0.19% 0.21% 0.44% 0.11% 0.35%
Winner - Loser 0.31% 0.76% 0.78% 0.56% 0.75% 0.48% 0.51% 1.12% 0.57% 0.83%
t-statistic (1.29) (2.20) (1.77) (1.62) (2.17) (2.23) (1.75) (2.62) (1.33) (2.60)

Institutional ownership

This table reports the monthly alphas of the ETF momentum strategy, with a 36-month ranking period and a one-month holding period, conditional on various ETF
characteristics. Each month, we sort all eligible US equity ETFs into two groups based on one of several ETF characteristics, including ETF market capitalization,
turnover, Amihud (2002) illiquidity, idiosyncratic return volatility, and institutional ownership. Market capitalization is measured at the end of each month. Price is
closing price at the end of each month. Amihud (2002) illiquidity is the average daily ratio of absolute ETF return to the dollar trading volume within each month.
Idiosyncratic return volatility is the standard deviation of residuals from the regression of daily ETF excess returns on the Fama and French (1993) three factors within
each month as per Ang et al. (2006). Institutional ownership is the sum of shares held by 13-F institutions divided by total shares outstanding in each quarter.
Institutional ownership data are available from the Thomson Reuters Institutional Holdings database. We then independently sort ETFs into quintiles based on past 36-
month cumulative returns and hold for one month. We report the value-weighted Carhart (1997) four-factor alphas of the quintile ETF portfolios. “Winner - Loser”
denotes the return spread between the top and bottom past return quintiles. The t-statistics in parentheses are based on Newey and West (1987) heteroscedasticity and
autocorrelation consistent standard errors with three lags. Winner - loser spread alphas that are statistically significant at the 10% level or below are in bold. The sample
period is from August 2004 to June 2018.

Table 10
ETF characteristics and momentum profits

Market capitalization Price Amihud illiquidity Idiosyncratic return volatility
ETF characteristics
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Panel A: Descriptive statistics for long-horizon stock momentum strategies

MOM(36,1) MOM(36,3) MOM(36,6) MOM(36,9) MOM(36,12)
Mean return 7.69% 5.42% 5.05% 5.03% 4.30%

(0.90) (0.69) (0.68) (0.71) (0.64)
Sharpe ratio 0.22 0.15 0.15 0.16 0.14
Std deviation 29.84% 27.40% 25.36% 24.06% 22.45%
Skewness -1.27 -1.28 -1.12 -1.00 -0.89
Kurtosis 6.96 6.82 6.14 5.42 4.93

Dependent variable
MOM(36,1) 0.493 0.475 0.471 0.445 0.413

(8.50) (8.64) (9.07) (8.46) (7.80)
MOM(36,3) 0.531 0.52 0.516 0.491 0.458

(7.96) (8.56) (9.11) (8.62) (8.09)
MOM(36,6) 0.578 0.567 0.567 0.543 0.510

(7.67) (8.15) (8.72) (8.33) (7.86)
MOM(36,9) 0.606 0.598 0.600 0.577 0.546

(7.10) (7.55) (8.15) (7.87) (7.48)
MOM(36,12) 0.642 0.636 0.640 0.619 0.588

(6.78) (7.23) (7.88) (7.69) (7.39)
Constant 0.934 1.010 1.007 0.996 1.020 0.730 0.799 0.795 0.783 0.806 0.652 0.721 0.715 0.703 0.724 0.600 0.664 0.657 0.643 0.663 0.563 0.620 0.612 0.598 0.616

(2.08) (2.21) (2.19) (2.18) (2.19) (1.71) (1.88) (1.87) (1.85) (1.87) (1.69) (1.89) (1.89) (1.87) (1.90) (1.58) (1.78) (1.78) (1.77) (1.80) (1.50) (1.70) (1.70) (1.69) (1.73)
Adj. R-sq 0.318 0.311 0.315 0.312 0.304 0.320 0.323 0.330 0.330 0.325 0.332 0.335 0.350 0.349 0.346 0.315 0.323 0.338 0.349 0.345 0.289 0.301 0.320 0.330 0.334

Table A1
ETF momentum and long-horizon stock momentum

This table shows the annualized means, annualized Sharpe ratios, annualized standard deviations, skewness, and kurtosis for excess returns from five long-horizon cross-sectional stock momentum strategies in Panel A. Panel B reports coefficient estimates from regressions of ETF momentum monthly
excess returns in percentage on a constant and monthly excess returns from each of these five cross-sectional stock momentum strategies. MOM(n ,m ) is the cross-sectional stock momentum strategy with a formation period of n months and a holding period of m months. ETFMOM(n ,m ) is the ETF
momentum strategy with a formation period of n months and a holding period of m months. The t-statistics in parentheses are based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors with three lags. Mean returns and coefficient estimates that are statistically
significant at the 10% level or below are in bold.  The sample period is from August 2004 to June 2018.

ETFMOM(36,12)ETFMOM(36,9)ETFMOM(36,6)ETFMOM(36,3)ETFMOM(36,1)

Panel B: Regressions of ETF momentum returns on returns from cross-sectional stock momentum

stock momentum strategy (formation period, holding period)

ETF momentum strategy (formation period, holding period)
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