

Exploring issues in agile requirements engineering in the South

African industry

by

Yanda Sebega

Submitted in accordance with the requirements

for the degree of

Master of Science

In the subject

Computing

at the

UNIVERSITY OF SOUTH AFRICA

Supervisor: Prof Ernest Mnkandla

January 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unisa Institutional Repository

https://core.ac.uk/display/275589552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

The agile manifesto has certainly changed the way software is produced in the

Information Communications Technology (ICT) industry. However, many persistent

challenges cripple agile software development. One challenge is that the constant

change in technology makes the requirements hard to implement. Another is that issues

of the agile requirements engineering (ARE) process are abundant and pervasive

throughout software projects. The aim of this study is to determine common issues in

agile requirements engineering in the South African software industry and identify tools

and frameworks to mitigate risks emanating from such problems. This includes finding

out how much value software practitioners put in the agile principles. This study was

essentially quantitative, based on a cross-sectional survey. Self-administered

questionnaires were used to collect required data which was then subjected to

exploratory data analysis using SPSS (Statistical Package for the Social Sciences), a

tool for statistical analysis. The results show that software practitioners have a strong

penchant for principles of the Agile Manifesto. Major issues in agile requirements

engineering include lack of proper validation tools and techniques, scope problems, lack

of proper documentation, issues of prioritisation, as well as unavailability of customer

representative. A detailed baseline of issues in agile requirements engineering was

created along with a set of recommended tools and techniques used in the software

industry. As for the recommendation, it is suggested that companies invest more on

validation tools and techniques and consider non-functional requirements integration

during software development.

Keywords: Agile requirements engineering; agile tools and techniques; issues of agile
requirements engineering; customer collaboration; non-functional requirements

ii

Dedication

To my wife Chantal, my son Melvin and my daughter Murielle

iii

DECLARATION

Name: Yanda Sebega

Student number: 44934203

Degree: MSc in Computing

Exact wording of the title of the dissertation as appearing on the electronic copy

submitted for examination:

Exploring issues in agile requirements engineering in the South African industry

I declare that the above dissertation is my own work and that all the sources that I have

used or quoted have been indicated and acknowledged by means of complete

references.

I further declare that I submitted the dissertation to originality checking software and that
it falls within the accepted requirements for originality.

I further declare that I have not previously submitted this work, or part of it, for
examination at Unisa for another qualification or at any other higher education
institution.

(The dissertation will not be examined unless this statement has been submitted.)

__ ________ __12/04/2017____

 SIGNATURE DATE

iv

ACKNOWLEDGMENTS

First of all, I have my outstanding supervisor, Prof Ernest Mnkandla, to thank for this

dissertation. His availability, guidance, patience, made this journey possible. Tirelessly,

he provided me with valuable comments and suggestions to complete this study.

For giving me the opportunity to conduct this research, I thank the University of South

Africa. I am grateful for the financial support I received from the university. It made

things easier to conduct this study.

I am also especially appreciative of the companies in the software industry that took

time to participate in the survey questionnaire. The data collection section was entirely

achievable because of their participation and willingness to provide valuable

information.

My thanks go as well to my colleagues for their support and help. To those who used

their free time to proofread and give their input and others who directly contacted the

companies they knew would help, I am sincerely thankful.

Finally, but not the least, I owe a special thank you to my family for their patience and

support during this study. I particularly thank my wife for her understanding, support,

and tolerance.

v

CONTENTS

ABSTRACT .. I

DECLARATION ... III

ACKNOWLEDGMENTS.. IV

LIST OF FIGURES .. VIII

LIST OF TABLES ... IX

ABBREVIATIONS AND ACRONYMS ... X

CHAPTER 1: INTRODUCTION .. 1

1.1 Background information ... 1

1.2 Problem statement ... 2

1.3 Research questions ... 3

1.4 Research objectives... 3

1.5 Research methodology ... 4

1.6 Research ethics .. 4

1.7 Rationale for the study .. 5

1.8 Limitations and delimitations ... 5

1.9 Definitions of key terminology ... 6

1.10 Dissertation outline .. 7

CHAPTER 2: LITERATURE REVIEW .. 8

2.1 Introduction ... 8

2.2 Theoretical background .. 9

2.2.1 Agile project management .. 9

2.2.2 Agile requirements engineering .. 10

2.2.3 Agile requirements engineering tools and techniques .. 27

2.2.4 Agile requirements engineering in South Africa ... 30

2.2.5 Issues of agile requirements engineering in South Africa .. 32

2.3 Summary ... 33

CHAPTER 3: RESEARCH METHODOLOGY .. 35

3.1 Introduction .. 35

3.2 Research design .. 35

3.3 Methodology ... 38

3.3.1 Research instruments .. 38

vi

3.3.2 Target population and sample .. 43

3.3.3 Data analysis ... 44

3.4 Ethical considerations .. 45

3.4.1 Ethical issues in data collection .. 45

3.4.2 Ethical issues in data processing and analysis .. 46

3.5 Summary ... 47

CHAPTER 4: DATA PRESENTATION, ANALYSIS AND INTERPRETATION 48

4.1 Introduction .. 48

4.2 Response rate .. 48

4.3 Background of the participants .. 49

4.4 Results presentation and interpretation ... 49
4.4.1 What are the common issues in agile requirements engineering in the South African software

development industry? .. 49

4.4.2 What are the tools and techniques that help in dealing with such issues? 55
4.4.3 How do software practitioners value agile principles that relate mainly to requirements

engineering? ... 56
4.4.4 How collaborative are customers and software practitioners in terms of requirements

engineering? ... 58

4.4.5 How do agile requirements engineering issues impact project outcomes? 63
4.4.6 How do issues in agile requirements engineering impact the outcome of projects in the

software industry in South Africa considering today’s constantly evolving marketplace? 66

4.4.7 Other general data presented ... 68

4.5 Possible future research .. 71

4.6 Summary ... 72

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS .. 73

5.1 Introduction .. 73

5.2 Recapitulation .. 73

5.3 Theoretical implications ... 76

5.4 Recommendations .. 76

5.5 Limitations of this research ... 78

5.6 Conclusion.. 79

REFERENCES .. 80

APPENDICES ... 88

Appendix 1: The Agile Manifesto .. 88

Appendix 2: The principles of the Agile Manifesto .. 89

vii

Appendix 3: Agile Requirement Engineering - Survey Questionnaire ... 90

Appendix 4: Ethics clearance certificate ... 93

Appendix 5: Dissertation editing ... 94

viii

LIST OF FIGURES

Figure 1: Agility by Scrumhint (2015) .. 12

Figure 2: Issues in ARE (Source: Ramesh, Cao & Baskerville 2010:456) 16

Figure 3: South African market value forecast: $billion, 2011-2016 .. 31

Figure 4: Amount of NFR constraints on ASD .. 53

Figure 5: Proportion of NFR consideration as priority in ASD ... 54

Figure 6: Frequency of constraints from different activities of ARE ... 55

Figure 7: ARE Tools and techniques by order of preference .. 56

Figure 8: Preferred agile practices in the industry ... 58

Figure 9: Proportion of valued principles of the Agile Manifesto .. 60

Figure 10: Level of acceptance of dynamic requirements ... 61

Figure 11: Overall amount of requirements implemented ... 62

Figure 12: Customer experience in agile software development ... 64

Figure 13: Quality of requirements brought forth by customers ... 64

Figure 14: Awareness of customers towards the agile principles .. 65

Figure 15: Non-functional requirements .. 65

Figure 16: Agile methods used in the software industry in South Africa 69

Figure 17: Genre of applications requested by stakeholders .. 69

Figure 18: Activities used during agile requirements engineering ... 70

Figure 19: Proportion of on-site customer representative ... 70

ix

LIST OF TABLES

Table 1: Comparative analysis between agile and traditional requirements engineering........... 14

Table 2: Annual software market growth in SA ... 31

Table 3: Issues related to agile requirements engineering .. 50

Table 4: Overall constraints from different activities of ARE ... 54

Table 5: Preferred agile practices in the industry .. 57

Table 6: The perception of software practitioners towards agile principles 59

Table 7: Level of acceptance of dynamic requirements .. 61

Table 8: Top issues experienced in agile requirements engineering ... 63

Table 9: Customer satisfaction, collaboration and communication .. 71

x

ABBREVIATIONS AND ACRONYMS

 AM Agile Manifesto

APM Agile Project Management

ARE Agile Requirements Engineering

ASD Agile Software Development

DMS Defect Management System

DSDM Dynamic System Development Method

EDA Exploratory data analysis

FDD Feature-Driven Development

GORE Goal-oriented Requirements Engineering

ICT Information Communications Technology

JAD Joint Application Development

JIT Just-in-time

NFR Non-functional requirements

QC Quality Centre

RE Requirements Engineering

RAOD Right amount of documentation

RR Return rate

SPSS Statistical Package for the Social Sciences

XP Extreme Programming (XP)

1

CHAPTER 1: INTRODUCTION

1.1 Background information

Murphy et al (2013) empirically state that, over time, the tendency towards the adoption

of agile methods has increased. According to Janes and Succi (2012:313), being agile

is not a solution for everything, but agile methods are enormously popular and are on

the increase. Despite this growth of popularity of agile methods, software project

managers continue to face all sorts of challenges, for example, (a) software invisibility;

(b) the “methodology jungle - difficulty of selecting the appropriate methodology for a

given project” (Mnkandla 2008:3); (c) scarcity of scientific studies on agile methods

(Laanti, Salo & Abrahamsson 2011:276); (d) software complexity (Yonghee & Laurie

2008:47) and requirements volatility (Ferreira et al 2009:1568), etc. This study focuses

on issues related to Agile Requirements Engineering (ARE) in order to raise awareness

in the software industry and intends to determine tools and frameworks present in the

software industry to deal with these issues.

Lucia and Qusef (2010:214) suggest that 30% of the problems that take place in the

development of challenging systems relate to the requirements phases. The 2009 Circa

Report states that requirements changes are among the major cost drivers for software

applications (Jones 2009:2). Requirements engineering (RE) establishes a “solid base

for design and construction” and without it, the resultant software has a high probability

of uncertain outcomes (Pressman 2009:120). Furthermore, RE is one of the most

critical aspects in software development (Sillitti & Succi 2005:309) and perhaps the

more complex activity in agile software project management. Similarly, the idea of Silliti

and Succi (2005:309) applies to RE in the agile environment for the simple reason that it

is merely RE performed iteratively. Collecting, understanding, and managing

requirements (Silliti & Succi 2005:309) are not easy tasks especially when requirements

become more and more dynamic. Thus, dynamic requirements are indeed endemic to

the software industry (Jones 2009:438).

Today’s global marketplace is dynamic and extremely competitive (Bopp, Bing & Forte-

Trammell 2009:xvii), and therefore project managers may need to adopt new ways of

thinking (Cobb 2011:107) to remain relevant to stakeholders (Bopp et al 2009:xvii). The

2

agile idea of remaining relevant to the needs of customers is constant accommodation

of requirements through collaboration and negotiation. Agile software development

(ASD) is a collaborative effort from both the customer and developer. This can be very

challenging. Ambiguities and complexities of natural languages (Kamalrudin, Grundy &

Hosking 2010:255) are typical challenges that software practitioners encounter in

requirements elicitation. Another challenge is the undesirability of some requirements,

that is, some requirements that tend to evolve quickly and become obsolete even before

project completion (Cao & Ramesh 2008:60). The complexity of information technology

infrastructure, the dynamics of market-driven needs (Stober & Hansmann 2010:5), or

the lack of experience of stakeholders in agile development, are detrimental factors to

successful RE. Accordingly, questions related to issues observed in the ARE arise.

Change in the world of information technology is coming more quickly than ever before

(Cobb 2011:63) and RE is a fairly new subset of software engineering (Jones

2009:461). Little is known about how real agile projects conduct RE in practice (Cao &

Ramesh 2008:61; Shen & Zhang 2011:1). For the context of this topic, more research is

needed on ARE in South Africa, hence, this study is intended to shed light on the issues

related to ARE. The next paragraph clarifies the problem that this study seeks to

address.

1.2 Problem statement

Software companies in South Africa face issues related to dynamic requirements and

the influence of the current market change, as well as the non-functional requirements

integration in software production. These issues are current and pervasive throughout

ASD. The aim of this research is therefore to determine common issues related to

ARE, identify the tools and frameworks to help mitigate risks emanating from such

problems, evaluate the impact that these problems have on project outcomes and finally

explore the extent to which requirements engineering is adopted in the agile

environment context. The next paragraphs outline the research questions which are

aligned with this problem statement. This helped in proposing solutions to the research

problem.

3

1.3 Research questions

The main question for this research is defined as follows:

How do issues in agile requirements engineering impact the outcome of

projects in the software industry in South Africa considering today’s

constantly evolving marketplace?

The sub-questions to be addressed will be:

1. What are the common issues in agile requirements engineering in the South

African software development industry?

2. What are the tools and techniques that help in dealing with such issues?

3. How do software practitioners value agile principles that relate mainly to

requirements engineering?

4. How collaborative are customers and software practitioners in terms of

requirements engineering?

5. How do agile requirements engineering issues impact project outcomes?

The objectives of this research conformed to the above questions are now explored in

the next section.

1.4 Research objectives

This dissertation will:

a) delimit the scope of ‘agile requirements engineering’ in terms of best practices;

b) define and determine a baseline for agile requirements engineering problems;

c) determine project managers receptivity vis-à-vis requirements from customers

during software development at any point in time (final stage included);

d) compile a set of recommended tools and frameworks that to help deal with

these problems;

e) get the usability of agile principles such as customer satisfaction, simplicity,

communication, collaboration, or good design; and

f) Evaluates from a project manager’s perspective the degree of interaction that

exists between agile software practitioners and the stakeholders.

4

1.5 Research methodology

The objectives mentioned in the research objectives section are achieved through a

research methodology, that is, the overall scientific approach to the research process

(Oates 2006:35) to solve the research problem(s). This research was essentially

quantitative, based on surveys. Self-administered survey questionnaires were used to

gather data to get the required data for exploratory data analysis (EDA) through SPSS,

a tool for statistical analysis.

To justify the choice of an empirical approach for this study, the answers to the

questions outlined above as the research questions have quantitative measurable

outcomes which are in line with the research objectives. Quantitative methods such as

surveys are widely accepted and used in the field of information technology (Oates

2006:93). Research based on surveys “provides a quantitative or numeric description of

trends, attitudes, or opinions of a population by studying a sample of that population”

(Creswell 2009:146). This research also aimed to determine requirements issues

experienced in the field of agile software development (ASD) by surveying the

companies in South Africa. In addition, collecting large data from participants using

standardized instruments such as questionnaires proved to be relatively easy (Oates

2006:93).

1.6 Research ethics

It is important to state the adequacy of a survey questionnaire for this research, but

issues related to research ethics always emerge from the methodology adopted. Drew,

Hardman and Hosp (2007:56) suggest that research ethics become the “cornerstone for

conducting effective and meaningful research”. The quantitative nature of this research

requires direct interaction with participants and this may raise ethical concerns.

Research ethics in issues such as to obtain informed consent, protect from harm, and

ensure privacy (Drew et al 2007:57), and the anonymity, or confidentiality vis-a-vis

participants were primarily responsibilities of the researcher. A letter obtained from

Unisa to inform participants of the nature of the research was of great help. This helped

5

to avoid ethics breaches such as, raising false expectations, dishonest means of

persuasion or unrealistic promises (Walliman 2010:47).

1.7 Rationale for the study

Researchers argue that agile methods have gained popularity but no clear trends in

practise adoption are to be found (Cao & Ramesh 2008:61, Shen & Zhang 2011:1,

Murphy et al 2013). In addition, over one third of the problems that occur in the

development of challenging systems are attributed to the requirements phases.

Nowadays, people rely more and more on ICT solutions. The consequences of systems

failure caused by lack of proper RE can be a devastating disappointment for companies,

not to mention the financial and economic implications. The rationale behind the choice

of this topic comes from the penchant of the researcher for agile methodologies and the

aspiration to take on challenges relating to modern software development, considering

the failure rate of projects initiated every year.

In terms of the significance of this research, the contribution of this study would be of

interest to software practitioners, more especially to project managers in charge of

software projects as this study explores issues in ARE. The research objectives helped

to determine the following: (a) a baseline for issues experienced in ARE (i.e., so that

software practitioners are aware of the problems, and as a result will be more careful);

(b) a repository of tools and frameworks that contribute in mitigating risks in ARE.

1.8 Limitations and delimitations

Like any other study, this research has limitations. These limitations are mostly

encountered in the methodology used, that is, (a) limitations related to data collection,

for example, limited depth in answers of the survey questionnaire, time constraints, or

the lack of flexibility in response in particular (Walliman 2010:99); (b) the limitations

attributed to lack of resources about agile methodologies in South Africa (Noruwana &

Tanner 2012:41) despite the popularity that these methodologies have gained; or (c)

limitations in the findings (anticipated uncertainty about generalizations).

6

The aim of this study is to determine the most common issues in the ARE process.

These issues are limited to the RE aspects in an agile environment, more especially,

issues emanating from functional and non-functional requirements in ASD. Tools and

frameworks of the ARE, which are determined through a survey questionnaire, are also

part of this study. Thus, the population of this study (survey participants) is limited to

agile software practitioners, that is, individuals familiar with the concept of agile

development. In terms of the geographical scope, this research is exclusively limited to

companies in South Africa.

1.9 Definitions of key terminology

The meanings of the following key terms used in this study may be different when used

in different contexts.

Agile environment. This refers to the dynamic settings in which software is developed.

Agile Manifesto. This is also referred to as ’The Manifesto for Agile Software

Development’, which is “a formal proclamation of four key values and 12 principles to

guide an iterative and people-centric approach to software development” (WhatIs.com

2012).

Agile requirements engineering. This refers to requirement engineering that is done

iteratively (in an agile environment).

Agile software development. This is the process of developing software that is entirely

based on key values of the Agile Manifesto and its principles.

Change is defined by the Oxford dictionary as an act or process through which

something becomes different.

Exploratory data analysis. This is an approach to analysing data sets through

graphical methods.

7

Requirement. This is something that is needed or wanted, i.e., key features of software

applications.

Requirements engineering. This is “the process of studying user needs to arrive at a

definition of system, hardware, or software requirements” (IEEE Standards definition).

Software practitioners. This is to designate any person that is actively involved in the

software development process.

Stakeholders. This is “any person whose opinions, needs, or preferences are likely to

be relevant to the success of the project” (Berenbach, Paulish, Kazmeier, & Rudorferet

2009:140).

1.10 Dissertation outline

This section briefly outlines the remaining chapters of the dissertation. The second

chapter (“Literature Review”) explores different aspects of agile requirements

engineering, issues related to activities of requirements engineering. Chapter three

(“Research Methodology") refers to the overall approaches and perspectives to the

research process with the following main sections: research design, target population,

sampling frame and instrumentation, data analysis, and ethical considerations. Chapter

four (“Data Presentation, Analysis and Interpretation”) presents and discusses the data

collected. Chapter five (“Conclusion and Recommendations”) recapitulates the findings,

discusses the theoretical implications of this study, as well as its limitations. This is

followed by references (a full repository of resources cited in this dissertation) which is

also followed by appendices (supporting documents).

8

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In the ICT industry, change is pervasive and current (Stober & Hansmann 2010:75).

Responses to changes brought forth by different factors in the software industry led to

the creation of the Agile Manifesto (Williams 2012:72) over a decade ago. The global

tendency is the adoption of concepts such as agility to reinvent customer relationships

(Highsmith 2013:3). Thus, agility has become a business imperative (Highsmith

2013:3). Agility generates 30% higher profits (Highsmith 2013:4) and is a key to global

success; this includes economic success (Stober & Hansmann 2010:75).

Yet despite a noticeable growth in the adoption of agile methods, developing modern

software faces many challenges. There is always the “unknown” phenomena caused by

the complexity of the information technology used, the pressure of the accelerating

time-to-market (Stober & Hansmann 2010:xi); the intensity of the global recession

(Jones 2010:47); turbulence in business environments (Highsmith 2013:4); the inherent

invisibility software (Grand 2016:122; Brooks Jr 1987:11); or by the market dynamism

(Cao & Ramesh 2007:42). Agile software development (ASD) faces all these

challenges. Requirements engineering is a fairly new subset of software engineering

according to Jones (2009:461). Agile requirements engineering (ARE) is also fairly new.

Cao and Ramesh (2008:67) suggest that ARE is an iterative discovery approach. The

field of ARE is a large domain (Tripathi & Goyal 2014:215) which calls for more

research. Challenges in the ARE process are real and current for reasons already

mentioned. It is judicious to mention that no study has proven, to date, that the adoption

of ARE practices have successfully solved the problem of dynamic requirements which

remain a perpetual challenge in traditional RE (Inayat, Salim, Marczak, Daneva &

Shamshirband 2014:12). Classical phases of the traditional requirements engineering,

that is, elicitation, analysis, documentation, validation, and management, are subject to

many problems. Brooks (1987:11) enumerates complexity, conformity, changeability,

and invisibility as examples of these problems.

9

Indeed, these same problems are profuse and persistent in the ARE process. The

following four examples are a few ARE issues experienced in the software industry:

a) ambiguity in human languages, that is, lexical, syntactic, or semantic (Rojas &

Sliesarieva 2010:102);

b) requirements creep;

c) changeability of requirements; and

d) lack of trust between developers and customers (Cao & Ramesh 2008:63) etc.

Another persistent issue that draws less attention comes from deficiency in handling

properly non-functional requirements (NFR) during software development. Simplistically,

NFR refer to all the requirements related to the quality of the software being developed,

in other words “non-behavioural requirements” as Stellman and Greene (2005:113)

suggest. Quality is “the extent to which the product satisfies its specifications” (Schach

2011:156). And what makes quality difficult or NFR integration into software complex is

dynamic requirements.

Lastly, the purpose of this review is essentially to explore agile software project

management; and outline issues related to the different functions of ARE in today’s

dynamic and constantly evolving marketplace with special focus on the South African

software industry. Furthermore, this review explores tools and frameworks used by

software practitioners to tackle problems in ARE. Lastly, a review of the current state of

ASD in South Africa will also follow to reveal the problems experienced in the software

industry. That is in essence the structure of this chapter.

2.2 Theoretical background

2.2.1 Agile project management

Agile software project management is a modern technique that defines the way

software is produced. Augustine (2005:37) has comprehensively defined Agile Project

Management or APM as:

[T]he work of energizing, empowering, and enabling project teams to rapidly and

reliably deliver business value by engaging customers and continuously learning

and adapting to their changing needs and environments.

10

The above definition is significant and applicable in the field of ASD. Agile software

project management is set of agile project management practices applicable to

software. Customer implication, continuous adaptability to change, and rapid business

value delivery are key instances of agile principles. Agile Project Management

encompasses agile methods such as Scrum, Extreme Programming (XP), Dynamic

System Development Method (DSDM) or Feature-Driven Development (FDD) which are

well-known for their particular focus in rapidly responding to change (major goal),

although, they differ in their specifics (Coram & Bohner 2005). And this goal is

seamlessly substantiated in the Agile Manifesto (see Appendix 1 and 2) which is

defined in terms of values, twelve original principles and practices (Williams 2012:72).

Coram and Bohner (2005) have suggested that software is inherently challenging

because of its constant change. A couple years later, Cao & Ramesh (2007:42) put

forward that change varies with market dynamism and this comes with issues such as

velocity in requirements, requirements changeability and obsolescence which impede

the ARE process. In order to understand challenges of the ARE process, it is essential

to give a brief definition of ARE. That will be covered in the next paragraph before

dealing with issues related to this practice.

2.2.2 Agile requirements engineering

This section defines ARE, outlines agile principles related to ARE and finally explores

the activities of the ARE process as well as issues related to those activities.

Definition

Simplistically, ARE refers to RE in an agile environment. Cao and Ramesh (2008:67),

for instance, define ARE as an iterative discovery approach; as it is more dynamic and

adaptive. In addition, Pressman (2009:120) suggests that RE is a major software

engineering action that is performed during the communication and modelling activities.

He adds that it is “the broad spectrum of tasks and techniques that lead to an

understanding of requirements”.

11

The latter definitions could not apply more in today’s trends in the software industry, and

adequately merge with an agile environment, more especially when building computer

software is challenging (Pressman 2009:120). Agile requirements engineering makes

the RE process more flexible and consequently quicker (Batool et al 2013:1006) and it

encompasses many activities which are performed iteratively. Furthermore, agility

qualifiers are flexible and quicker. The next paragraph defines agility in the context of

software development.

Agility in software development

Agility is a term found in many disciplines and is not a concept unique to software

development (Cao & Ramesh 2007:42). But, according to Dr Rico ([sa]), in the context

of software development, agility is:

 the ability to create and respond to change in order to profit in a turbulent

global business environment;

 the ability to quickly reprioritise use of resources when requirements,

technology, and knowledge shift;

 a very fast response to sudden market changes and emerging threats, by

intensive customer interaction;

 the use of evolutionary, incremental, and iterative delivery to converge on an

optimal customer solution;

 maximising the business value with right-sized, just enough, and just-in-time

processes and documentation.

The Figure 1 depicts the general idea behind agility in ASD. One team, through

constant iterations, bound by the same common values (adaptability, transparency,

simplicity, and unity), accelerates a release of working software, by keeping in mind the

concept of visibility (velocity and tests). Thus, during iterations, requirements are subject

to change, in accordance with many factors such as cost, budget, or velocity.

12

Figure 1: Agility by Scrumhint (2015)

Undeniably, what define agility in the context of software development are the values

and principles outlined in the Agile Manifesto.

Agile principles related to agile requirements engineering

The Agile Manifesto encompasses four core values for enabling high performing teams

and these values are supported by twelve key principles (Sutherland 2010). Some

principles such as:

 customer satisfaction

 collaboration

 face-to-face communication

 simplicity

are indispensable to ARE; in other words, these principles are core to ARE (with

customer satisfaction of paramount importance). Thus, the customer has that role to

actively define and manage the project requirements, and he should feel just as

responsible for the project outcome as the development team (Cobb 2011:114). For a

country like South Africa, with advanced technology in some areas and extreme

13

disparities in others, what do agile principles of the ARE mean to software practitioners?

One of the objectives of this study is indeed to seek an answer to such question.

Activities of agile requirements engineering

According to Zhu (2009:24), RE phases or activities are unclear in the agile

environment; they are rather compounded and repeated through iterations. To reiterate,

ARE is an iterative discovery approach (Cao & Ramesh, 2008:67). Every iteration (in

ARE) depends on the nature of the project and encompasses the following classical

activities (Lucia & Qusef 2010:216; Zhu 2009:24). These activities are:

 requirements elicitation

 requirements analysis

 requirements documentation

 requirements validation

 requirements management

Conversely, Pressman (2009:121) suggests that RE encompasses the following seven

distinct requirements engineering functions: inception, elicitation, elaboration,

negotiation, specification, validation, and management. In addition, Pressman

(2009:121) adds that certain functions are inclusive of others. The requirements

elicitation, for example, combines elaboration, negotiation, and specification (Pressman

2009:128). To avoid confusion, and considering that ARE is more dynamic and

adaptive, the five classic activities will give a framework to this review. In addition to the

five activities mentioned above, other activities of the ARE process include

requirements modelling and requirements analysis, and negotiation. However, it is

imperative to point out that there is no linearity whatsoever in performing these activities

in an agile environment. These activities can follow a linear order if one decides to do

so, although it is not really against adaptability, one of the principles of agile

methodology. In addition, in comparison to traditional or open-source RE, ARE activities

differ. What make these activities of the ARE different from the other methodologies are

parameters such as change, customer satisfaction, and minimal reliance on

documentation. Table 1 depicts these differences.

14

Table 1: Comparative analysis between agile and traditional requirements
engineering

RE tasks Traditional

methods

Open-source methods Agile methods

Requirements

Elicitation

Determine all the

requirements

upfront prior to

developing the

system

Determine requirements

iteratively though discourse

analysis (chat rooms, forums,

bulletins, etc.), introspection,

focus group, questionnaire,

open-ended Interviews

Determine the

requirements

iteratively and

incrementally

throughout the

development

process

Requirements

Analysis &

Negotiation

Check the

requirements’

feasibility,

consistency, and

completeness; in

addition to

prioritising them

Check requirements through

requirements reading, logic,

accountability

Refine, change,

and prioritise the

requirements

iteratively

Requirements

documentation

Methodical way of

documentation

Informal documentation (chat

rooms, forums, emails, etc

are forms of documentation)

Minimal

documentation

Requirements

modelling

Provide a form of

visual

representation to

the entire system

Provide a continually

emerging webs of software

discourse (emails, system

vision statements, prior

domain-specific knowledge)

Communicate

understanding of

the minor part of

the system to be

developed

Requirements

validation

Ensure the

consistency and

the completeness

of the

requirements

document

Validate requirements. This

phase is Co-mingled with

design, implementation, and

testing descriptions and

software artefacts, as well as

with user manuals and usage

artefacts

Ensure that the

current software

release reflects

the current needs

of the customer

Requirements

management

Track changes in

requirements,

design, or

documentation to

understand why

any changes

purposes, through

keeping intensive

documentation of

the system

Requirements are largely

emergent; rapid change,

commonly owned,

continually evolving - "never"

finalised; so forever informal

management of requirements

Track changes

with minimal

documentation;

user stories are

written

electronically, and

are maintained in

the product

backlog list

Source: Elshandidy & Mazen 2013:478; Henderson 2000:28-30; Scacchi 2002

15

The APM, ARE, and agility are key concepts that help to put this study in perspective.

Definitions about these concepts have been previously outlined. Activities of ARE have

been identified and agile principles of the agile manifesto overviewed. The Agile

Manifesto supports efficient requirements engineering (Lucia & Qusef 2010:219), but

“extreme terminologies” such as agility, flexibility, dynamism, speed and adaptability are

characteristics of ASD and are liable to issues in the ARE process. Focus is now

directed to issues of ARE.

Issues related to agile requirements engineering

One of the many difficulties that a software engineer faces is to understand the

requirements of a problem (Pressman 2009:119). Irrespective of the agile method used,

issues about ARE emerge. Those are issues related to main activities of ARE such as

requirements elicitation, analysis, documentation, validation, management, as well as

NFR issues. Non-functional requirements in particular constitute a major concern (Cao

& Ramesh 2008:64) in ARE, but this topic will be discussed in detail in the NFR issues

section. The particularity of the ARE process (Figure 2) is that many parameters such

as ‘rapidly changing technology’, ‘evolving requirements’ and ‘time constraints’ impact

the ARE practices which always result in neglected non-functionals, inadequate

architecture, lack of requirements verification, or prioritization in single dimension. This

is what distances the ARE process from traditional methodologies.

Rather than following a formula to produce a complete documentation of the system,

ARE is more dynamic and adaptive (Cao & Ramesh 2008:67). It is dynamic for

requirements keep changing, and adaptive because of the inherent nature of agile

principles. Issues related to main activities of ARE processes are now discussed in

succession below.

16

Figure 2: Issues in ARE (Source: Ramesh, Cao & Baskerville 2010:456)

a. Requirements analysis issues

The requirements elicitation comprises elements of problem solving, elaboration,

negotiation, and specification (Pressman 2009:128). One main problem in ARE is that

the requirements elicited during that process have the tendency to become obsolete

(Cao & Ramesh 2008:60; Helmy, Kamel & Hegazy 2012:293). Issues of the

requirements elicitation can be categorised into three types: problems of scope,

problems of understanding, and problems of volatility (Elshandidy & Mazen 2013:473;

Pressman 2009:121-122). These three types cover, to a certain extent, a wide variety of

issues. Functions of requirements elicitation include interviews and questionnaires,

prototyping (Eberlein & Leite 2002; Paetsch et al 2003), brainstorming, focus groups,

use of case/scenarios (Paetsch et al 2003); questionnaires, requirements recovery,

discourse analysis, ethnography and re-use (Eberlein & Leite 2002). All these tasks,

17

when executed, do come with different issues that need to be handled. To provide a

better understanding, the outlines on how these functions are performed in practice

follow, along with issues sourced in them and their relevance to this study follow.

 Interviews and questionnaires. These are achieved through interaction between

stakeholders and software practitioners. Interviews require direct

communication and the presence of both parties (stakeholders and software

practitioners) is very important. However, issues such time, cost, lack of

experience in either party, misunderstanding, ambiguity in language used can

cripple this technique. Instead, questionnaires are easy to put in place, cost

effective, and can use a synchronous and an asynchronous type of

communication. Despite these advantages, questionnaires are limited only to

the view of developers. In other words, questionnaires will yield only

requirements that software practitioners intend to collect and sometimes, this

practice leads to ill-defined requirements. Whether one uses interviews or

questionnaires for requirements elicitation, the outcome is that there are always

issues involved in both techniques, not to mention cost and time constraints.

 Brainstorming. This is a popular technique for generating creative ideas

(Dugosh & Paulus 2005:313) or creative solutions for given problems (Paetsch

et al 2003). This technique is used across most disciplines. However, according

to Brown and Paulus (2002:208), research has shown that group brainstorming

is less effective than individual brainstorming. For the context of this study,

brainstorming is used to determine and define requirements. Unfortunately, the

“human cognitive model cripples the requirements elicitation process” for the

simple reason that “humans use distortion, deletion and generalization to

express their thoughts”, which can lead to ambiguous requirements (Ktata &

Lévesque 2009:59). An ambiguous requirement admits more than one possible

interpretation and it is notably incompatible with the goal of producing

deterministic software (Rojas & Sliesarieva 2010:102). Basically, ambiguous or

ill-defined requirements are issues that can possibly come out of this task.

 Prototyping. This is a well-known strategy or mechanism for identifying and

determining requirements from the perspective of the customer (Pressman

2009:44) with the help of developers. The experience of the customer in

18

defining his software needs is capital in this situation. Nevertheless, prototyping

causes issues such as scalability, security, and robustness, as well as

maintenance problems (Ramesh, Cao & Baskerville 2010:461). In addition,

some customers might get carried away or become overwhelmed by the

prototype. This produces potential hazards in prototyping (ur Rehman, Khan &

Riaz 2013:43).

 The focus group is a technique used to elicit requirements by inviting

stakeholders from diverse backgrounds with different sets of skills to a group

meeting (Paetsch et al 2003; ur Rehman et al 2013:45). Nonetheless,

considering the diversity of the group, one major issue is that focus group

requires lot of energy to conduct such meeting (ur Rehman et al 2013:43). For

the purpose of agility in software development, this technique might not be

ideal, for the simple reason that teams might spend much more time on their

divergence only to come to a consensus.

 Software reuse. This makes ARE tasks more prescriptive and systematic

(Elshandidy & Mazen 2013:479). Reuse refers to using existing software

artefacts to help develop a different product (Schach 2011:310) but requires

other adjacent activities such as testing which entails cost. With regard to the

issues in this task, software reuse could be chaotic if the source of the reused

requirements is uncertain. Thus leading to cost and time constraints, because

testers will have to spend more time fixing the requirements before reuse. In

addition, Elshandidy and Mazen (2013:479) suggest that there is lack of tools to

effectively and efficiently manage and document variability. And it is common

knowledge that change is pervasive throughout ASD. Minimal documentation is

one of the twelve principles of the Agile Manifesto. As a result, change and

minimal documentation can both impede requirements reuse.

Interviews and questionnaires, brainstorming, prototyping, focus group and software

reuse are only five of the many techniques used in the software industry for eliciting

requirements. Every technique has its own advantages and its problems. Despite the

efforts to satisfy the customers as discussed above, further obstacles to requirements

elicitation are: requirements variability, wastages (waste always generates further

waste), lack of clarity, list size, and requirements confusion or amalgamation (Silliti &

19

Succi 2005:320). Software complexity and lack of trust within the group (Cao and

Ramesh 2008:63), lack of flexibility and objectivity (Schach 2011:355) are also

challenging issues in eliciting requirements; not to mention unrealistic expectations,

inconsistent information, vague customer needs, and scope problems. Requirements

elicitation is considered to be the basis for successful software projects. All the issues

discussed here, if not handled properly would contribute to cripple the elicitation process

particularly, and in more general terms, impede the ARE process. Even though there is

no linearity in ASD, the requirements analysis would suffer a great deal if requirements

are not appropriately elicited.

b. Requirements analysis issues

The term requirements analysis refers to the process of refining and extending the initial

set of requirements that has been drawn up during requirements capture (Schach

2011:315). Agile practices of requirements analysis comprise joint application

development (JAD) sessions, prioritisation, and modelling (Jones 2010:118; Lucia &

Qusef 2010:216; Paetsch et al 2003). These tools and techniques help in checking the

requirements for necessity, consistency, completeness, and feasibility (Paetsch et al

2003) as well as minimising downstream changes (Jones 2010:118).

 The purpose of the JAD sessions is to define a special project by giving

meticulous details and help in further requirements elicitation (Paetsch et al

2003). The JAD participants are diverse and include JAD project and top

management, managers, systems analysts and other IT staff members, as well

as recorders (Shelly & Rosenblatt 2009:142). But, considering the diversity of

the team of JAD sessions, on the one hand discussions can be very productive,

and on the other hand chaotic for there is a risk of participants “running out of

course” (Paetsch et al 2003). In addition, the diversity of the group can be the

source of a clash of ideas during brainstorming as already indicated.

 Prioritisation is essentially a decision-making process (Daneva et al 2013:1334).

Both developers and customers have to collaboratively provide their input when

prioritising requirements (Paetsch et al 2003). However, this can be subject to a

clash of ideas, if not handled with care and thorough negotiation. Some

participants observed that performing re-prioritisation continuously, without

20

caution, leads to instability (Paetsch et al 2003). In addition, using business as a

“primary criterion for requirements prioritisation” can lead to major scalability

problems (Cao & Ramesh 2008:65). This last argument from Cao and Ramesh

seems to raise a contradiction in ASD. The primary goal of the agile manifesto

is to develop for the business. So throughout the entire process, either during

requirements elicitation, or analysis through prioritisation, everything is done for

the business.

In addition to handling issues of the elicitation process, issues in the analysis process

require proper management for the sake of the ARE process. What would be the point

of refining requirements if there were flaws during the initial stage? These are all

complications of the ARE process which make this topic more interesting and worth

exploring. Scalability issues, issues of prioritisation, and issues of requirements

negotiation are basically what impair most the ARE process through the analysis phase.

c. Requirements documentation issues

One of the four principles of the Agile Manifesto values (see Appendix 1) is ‘working

software over comprehensive documentation’. All agile methods focus less on

documentation. Heavy documentation is replaced by informal and frequent

communication and collaboration (Cao & Ramesh 2007:42). Conversely, Highsmith

(2003:4) suggests that documentation in moderation aids communication and preserves

historical information. Most of the time, requirements documentation in agile methods

revolves around user stories, product backlogs, index cards, burn down charts, etc.

(Inayat et al. 2014:10).

 User stories are extremely short descriptions of the feature of the system that

the development team implement (Sillitti & Succi 2005:322; Tripathi & Goyal

2014:215). They are brief and often transient (Abdullah, Honiden, Sharp,

Nuseibeh & Notkin 2011). It is a fact of life that some people are concise when

communicating, others are grandiloquent. Some things can be said in few

words, while others require many words to be expressed effectively.

Unfortunately, in this case, the risk of having multiple interpretations for these

short stories arises. Again, considering the iterative aspect of agile methods,

any early user stories could become superfluous or irrelevant because the

21

adaptability of the agile principles with regard to requirements (Lucia & Qusef

2010:219).

 Product backlog. This a technique mostly encountered in Scrum for

requirements. It is simply an ordered list of eventual ‘things’ that are needed in

the product and at the same time a single source of requirements for any

change in the requirements (Sutherland & Schwaber 2011:12). However, these

listed items are subject to constant change because of the nature of agile

methods. Manageability is the main challenge in product backlog.

 The index cards are where one can find the requirements documentation or

specification in the agile software management. The ARE process does not

waste time in building huge and complex documentation; instead it rather

develops only the concise documentation for future (Batool et al 2013:1009).

Minimal documentation as suggested by the Agile Manifesto can be a real

challenge in ARE. As an illustration, putting merely the essential thoughts on

index cards can be an obstacle to recollection or even interpretation and

elaboration considering the complexity of software development. Besides,

managing pieces of paper can also be cumbersome.

 In addition to user stories, product backlog, or index cards, Batool et al

(2013:1011) propose the term “right amount of documentation” (RAOD) to

qualify technique for requirements documentation in agile development. RAOD,

as the name indicates, lacks detailed requirements. Furthermore, Cao and

Ramesh (2008:64) suggest, minimal documentation can be challenging and

might cause a variety of problems such as communication breakdown. Coram

and Bohner (2005), for instance, suggest that without formal documentation,

there is high probability that turnover leads to loss of critical knowledge.

Moreover, Paetsch et al (2003) have proposed that, in ASD, consistency and

completeness in documentation is considered as unfeasible or, at least, not cost

effective.

Lastly, recent studies have acknowledged numerous difficulties resulting from the lack

of details in requirements documentation (Cao & Ramesh 2008:64). Admittedly, staff

turnover, dynamic requirements, unavailability of customer representatives, and minimal

22

documentation can cause serious problems in ARE. All these issues of the agile

manifesto are fortunately remediable through enough documentation to preserve

valuable information. However, there is serious lack of empirical studies on issues

regarding requirements documentation. Hence, this is more reason to scrutinise the

documentation process in ARE.

d. Requirements validation issues

The intention behind requirements validation is to reveal critical stakeholders needs,

expectations, interfaces, as well as constraints (Chrissis, Konrand & Shrum 2011:56) by

examining requirements for inconsistency, omissions, and ambiguity (Pressman

2009:145). Techniques for requirements validation encompass the following:

a) evolutionary prototyping (Chrissis et al 2011:472; Lucia & Qusef 2010:219);

b) requirements reviews, unit testing (Lucia & Qusef 2010:217);

c) acceptance testing (Cao & Ramesh 2008:66; Lucia & Qusef 2010:214);

d) frequent review meetings and face-to-face communication (Cao & Ramesh

2008:62; Ramesh et al 2010:455);

e) simulations and demonstrations (Chrissis et al 2011:472); and

f) requirements testing (Paetsch et al 2003).

Like any of the tasks discussed in previous phases, these tasks are always filled with

issues. The next paragraphs outline what these issues entail.

 The purpose of a prototype is to exhibit key functionalities of the software when

requirements are vague (Schach 2011:348). And once stakeholders have a

clear understanding of the final product, the prototype is thrown away (Brooks

1995:180). In the case where the prototype is really thrown away, issues related

to this task disappear in the process. Issues emerge usually when stakeholders

decide to keep prototype for whatever reasons. As an example, stakeholders

become too overwhelmed, due to a working prototype that displays what they

believe to be the exact representation of their needs. So they ask that the

intended software is based on it (evolutionary prototyping) or even worse ask to

use the prototype in a production environment. Assuming, that the prototype is

full of defects, evolutionary prototyping could be a serious concern since the

23

use of such system will cause nothing but agony to customers (Brooks

1995:241).

 Review meetings provide a “formal channel to validate requirements through

informal communication” between stakeholders and developers (Ramesh et al

2010:468). Informality is common in agile practice, but informal communication

is subject to errors, mistakes, and misunderstanding. In some instances, people

get carried away and review meetings become very difficult to control, thus,

leading to division and chaos.

Cao and Ramesh (2008:66) suggest that since there is no formal modelling, agile

methods do not properly address requirements validation. In contrast, Inayat et al

(2014:12) suggest that agile methods work well for requirements validation with the

support of feedback from stakeholders. However, considering the adaptability of agile

methods, it is up to software practitioners to decide how to properly perform

requirements validation. The reality is that addressing requirements validation is more

advantageous than no validation at all. Discussions on validation tasks such as

prototyping, review meetings have been done. This is enough to provide a baseline for

issues in validation which contribute to better understand the validation phase in the

ARE process.

e. Requirements management issues

The purpose of requirements management is to maintain the requirements and to

ensure that relevant plans and data are kept current (Chrissis et al 2011:473; Paetsch

et al 2003). It includes activities concerned with change and version control,

requirements traceability and requirements status tracking (Chrissis et al 2011:474).

These activities are subsequently explored along with the issues in order to find out the

relevance to this study.

 Change and version control includes version control of all artefacts, that is,

memos, pictures, blueprints, meeting minutes, stakeholder requests, and so on.

It is an important part of the ARE process for the simple reason that some of the

artefacts managed in this phase are elicited requirements, documentation such

as user stories, and validated requirements. Again change is pervasive

24

throughout the ARE process. Thus, a tool that keeps track of changes in the

artefacts is capital. There is a large number of version control or configuration

management tools available that can be used to control requirements artefacts:

however, one major issue remains; that of choosing appropriate tools for a

given activity (Mnkandla & Dwolatzky 2007).

 Requirements traceability is another activity of requirements management.

Berenbach et al. (2009:13) suggest that a requirement is traceable “if and only if

the origin of each of its component requirements is clear; and if there is a

mechanism that makes it feasible to refer to that requirement in future

development efforts”. However, Jones (2010:463) suggests that effective

traceability remains troublesome and imperfect in spite of hundreds of tools that

are meant for requirement traceability. Admittedly, the life of a requirement in an

agile environment is a turbulent one. Dealing with constant change and the

indecisiveness of choosing the proper tools make the ARE even more

complicated. Not to mention dimensions of agility such as flexibility, leanness,

speed, and responsiveness which give the impression of chaos in ARE.

Considering these terminologies, one can determine that agile requirements

traceability is an activity that needs special attention, although, Paetsch et al

(2003) suggest that agile methods provide a good base for requirements

management.

Finally, requirements management is a dynamic and often recursive sequence of events

(Chrissis et al 2011:66). Despite a good base for requirements provided by agile

methods as Paetsch et al (2003) suggest, a special focus should be put on

requirements management during the ARE process for adequacy and completeness of

requirements. The ARE is exclusively about requirements. Properly describing the life

of requirements from the initial phase until delivery is of paramount importance.

Change in requirements is inevitable in agile software development considering that it is

primarily the central focus of agile methods. Essentially, lack of requirements

traceability, lack of proper management tools can be chaotic to the survival of the ARE

process. Iterations after iterations, these issues remain and cripple the entire system in

construction. Requirements elicitation in detail is a good base for requirements analysis,

which in turn, is a good base for modelling, validation and management. This is reason

25

well enough to seek more answers to pervasive problems of the ARE outlined through

research questions defined in the introduction chapter. Besides issues discussed in

sections above, other issues, with equal consideration, seriously impede the ARE

process.

f. Other issues of the ARE process

The ARE process is not limited to just the five classic functions mentioned above. Other

activities such as requirements modelling, requirements negotiation, and NFR are

important aspects of ARE.

 Requirements modelling issues. The fundamental idea about this task is that

one does just barely enough modelling at the beginning of the project to

understand the requirements which will then be detailed on a just-in-time (JIT)

basis (Ambler 2001). Requirements modelling activity in agile development

encompasses initial requirements modelling, iteration modelling, model

storming, and acceptance test-driven development. It comes in any of three

forms: a) usage model; b) initial model domain; and c) user interface model.

Goal-sketching is another technique used in modelling agile requirements

(Inayat et al 2014:8). It intends to provide intuitive and easy-to-read goal graphs

to developers (Boness, Harrison & Liu 2007:3). Yet again, change is the

constant factor that modelling has to deal with. Unavailability of project

stakeholders, complexity of the proposed technology solutions, customers’

narrowness, rigidity and ignorance to modelling artefacts, or conflicting priorities

are common challenges of agile requirements modelling (Ambler 2001). In

addition, requirements modelling in ARE develop models that are mostly throw-

away models for the simple reason that these models are drawn on the

whiteboard and erased after fulfilling their purpose (Paetsch et al 2003). As a

result, this can be a serious challenge for requirements documentation or even

for recollection.

 Requirements negotiation issues. Negotiation is an essential part of agile

software development. It is not a contest or a game (Pressman 2009:102).

Software developers and stakeholders are constantly in negotiation to come to

a common agreement on some aspect of the software to be developed.

26

According to Schach (2011:354), the ability of both parties to negotiate with

either developers or stakeholders is a constant challenge. He suggests that it is

often essential to scale down what the clients want but that is not easy

especially when one has to deal with determined customers who consider that

what they need is critical to the final product. Similarly, Pressman (2009:121)

suggests that it is not unusual for different customers to come up with conflicting

requirements, firmly believing in the authenticity of their requirements. The

resolution of such crisis needs proper negotiation skills. He (2009:102) adds

that it works best when both parties win. Not surprisingly, almost every

stakeholder would love to have a product that includes everything that he

conceivably needs (Schach 2011:354). However, this may cause scope

problems. In addition, in a case where the requirements brought forth are low-

level requirements, re-negotiation (Hull, Jackson and Dick 2005:150) in this

situation may cause a shift in the schedule, a budget amendment, or even code

alteration.

 NFR issues. The NFR specifies properties of the target product itself.

According to Zhu (2009:24), NFR are poorly defined in agile approaches. Singh

and Saxenna (2014:547) suggest that sometimes software systems fail due to

lack of consideration of NFR. The NFR cover “portability, maintainability,

scalability, safety, or performance” (Cao & Ramesh 2008:64). The list from

Stellman and Greene (2005:114) is even longer. In addition to Cao and Ramesh

(2008:64), Stellman and Green (2005:114) enumerated the following as

features of NFR: a) availability, b) efficiency, c) flexibility, d) portability, e)

integrity, f) performance, g) reliability, h) reusability, i) robustness, j) scalability,

k) and usability. NFR is essentially about quality requirements.

Although these are very important features to have, the obvious fact is that no

application can encapsulate all these characteristics and even their implementation will

certainly raise some issues. Potential issues in NFR encompass a) hidden or

inappropriate functionality, b) misleading cue, c) inadequate IT solutions, d) conflicting

priorities, and even more general issues like e) views inconsistencies, f) customer

rigidity, g) vague requirements, h) problem domain complexity, or i) budget problems.

Ignoring these issues compromises the quality of software. According to Humphrey

(2005:19), software marketplace focuses more and more on cost, schedule and

27

function. Little attention is given to quality (in his words, quality “is lost in the noise”).

Unfortunately, the root cause of most problems related to software cost and schedule is

poor quality performance.

Consequently, common issues of the ARE process are countless and diverse. All the

issues discussed above are not an exhaustive list of enumerated issues in ARE. But the

sum of all the issues previously elaborated in the five phases and the other issues

discussed afterwards is enough to provide good foundation to the research problems.

To conclude this section, in the ARE process, the main driving factor of issues in NFR,

modelling or negotiation is change. The same applies to issues in requirements

elicitation, analysis, documentation, validation and management. The pervasiveness of

change (Pressman & Lowe 2009:13) in agile methods make the ARE process a more

complicated task, partly due to the inherent complexity of software itself. In addition,

software invisibility is a challenge through software engineering. Requirements are a

means to make software visible. Accordingly particular attention should be given to RE.

This surely will increase the results for positive software projects outcome. It is now time

to explore the ARE tools, techniques and frameworks that are used by software

practitioners in the industry which is one of the objectives of this study.

2.2.3 Agile requirements engineering tools and techniques

Sillitti and Succi (2005:322), simplistically suggest that, in RE, and more especially in

several agile methods, paper, pencil, and pin board prove to be the most popular tools.

The existing literature mentions a plethora of distinct techniques and tools for ARE. As

already mentioned briefly above, many issues cripple activities of the ARE process. A

few more examples of these issues are: a) requirements variability, b) ambiguity, c)

minimal documentation, d) lack of trust between customer and developers, e) wastes, or

f) the human cognitive model that cripples requirements elicitation. Techniques and

tools exist to help solve, if not mitigate risks related to these issues during ASD.

Techniques for ARE have been discussed along with the problems experienced in that

field in paragraphs above. The following sections are about tools (software program and

frameworks) developed by leading companies for RE in agile environments. This also

includes handling NFR during development.

28

Zhu (2009:36), in his thesis, investigated how RE is conducted under an agile

environment. He proposed three tools relevant to requirements used by agile teams:

Scrumworks (to store backlogs), Quality Center (or QC to log use cases) and Defect

Management System (or DMS to log defects). Carrillo de Gea et al (2011:7) have put

forward that the most capable tools for both requirements elicitation and requirements

validation are Cognition Cockpit, Cradle, QPack, and Reqtify. More tools explicitly

designed for requirements elicitation include MKS Integrity, Polarion Requirements, or

JAD. The Method for Elicitation, Documentation and Validation of Software User

Requirements (MEDoV) guide stakeholders during requirements elicitation (Dragičević,

Čelar & Novak 2014:66). A simple application like Microsoft Excel is a very good tool for

product backlog.

Agile methods focus less on documentation. The little documentation that one can have

can be done using simple tools such Microsoft Word or Excel, Notepad, Open Office, vi

Editor, etc. Microsoft Visio or Caliber by Borland can be used for minimal modelling.

MEDoV, already mentioned above, can also be usable for documentation.

Requirements validation is performed with the help of tools such as Aligned Elements,

Case Spec, GMARC, IRqA, PACE, ReqMan, and TraceCloud (Carrillo de Gea et al.

2011:7). Other tools for requirements validation include QPack and Reqtify which are

also used for requirements gathering.

The secret of the success of agile requirements engineering is (a) customer

collaboration; (b) good agile developers; and (c) experienced project managers (Lucia &

Qusef 2010:219), but it is not always easy to have all three sets of skills in order to

build a good agile team. Assuming that a team is constructed around the three

parameters above, other issues such as a) requirements inconsistencies, b)

redundancy, c) incompleteness and omissions resulting from the complexities and

ambiguities of natural language would emerge (Kamalrudin et al 2010:255). It is in that

perspective that Rojas and Sliesarieva (2010:106) developed a tool for lexical analysis

using Perl’s engine for regular expressions. This technique is common and simple and

allows identification of key words or phrase structures that reveal specific weaknesses

in requirements. More specifically for ambiguities, it allowed for the location of adverbs

and non-deterministic constructs.

29

Tools for requirements management include Jira Agile, Rally, HP Agile Manager,

Mingle, VersionOne etc., Agilo, Jazz, or even the generic Microsoft Project can all help

in managing requirements. Another example is RE-KOMBINE, a tool that can provide

answers regarding which requirements to work on or manage evolving requirements

(Ersnt, Borgida, Mylopoulos & Jureta 2012).

As a final point, Highsmith (2013:15) suggest that ‘agilists’ focus more on the velocity in

requirements and forget quality. NFR is everything about the quality of software. It is the

forgotten aspect of RE or rather the aspect that developers pay least attention to. There

are tools for NFR. For instance, FURPS (Functionality Usability Reliability Performance

Supportability) developed by Hewlett-Packard, is a model for classifying software quality

attributes and NORMAP, which stands for Non-functional Requirements Modeling for

Agile Processes, is a conceptual framework to integrate NFR into agile processes (Farid

2012:323).

This section is a sufficient but not an exhaustive coverage of tools and techniques to

handle issues in ARE. However, this is enough background to help achieve the

objectives of this study which is to determine a set of set of recommended tools and

techniques in the software industry. For extensive study on tools, the internet is a great

resource where one can find tools of all genres for ARE. Atlantic Systems Guild Ltd has

done an excellent job by compiling requirements used in the software industry both

traditional and agile environment. They can be found on the link

http://www.volere.co.uk/tools.htm. The following is an excerpt of what can be found on

the website:

 Borland CaliberRM 2005

 ARCWAY Cockpit or Accompa (tools for managing requirements)

 Balsamiq Mockups (a useful tool for sketching)

 CaseComplete (helps with use cases and Axure with requirements

specification)

 Gatherspace.com and Innoslate (powerful tools that provide features

collaborative requirements engineering activities).

Despite such a collection of tools and techniques to handle ARE issues, there is lack of

tailored tools that are adaptable to all projects. Every project is inherently specific and

requires unique solution. In this perspective, it is a business imperative to invest in tools

http://www.volere.co.uk/tools.htm

30

in order to achieve good software quality (Highsmith 2013:8) and software costs

reduction.

Since the geographical scope of this study is limited to South Africa attention is now

turned to grasp the current state of ASD in this country. This, indeed, includes issues

related to ARE experienced by software companies in the industry.

2.2.4 Agile requirements engineering in South Africa

Current state of software in South Africa

South Africa is a country that has characteristics of both an advanced and a developing

economy (Gillwald, Moyo & Stork 2012). The advanced economy in South Africa has

good infrastructure in big cities. The developing economy (reflected in the social lives in

townships) is not any different from some other places in developing countries. The

education system is in crisis and in constant need of restructuring because of the shift

from the old regime to a more democratic system. The consequences of severe

inequalities in the education system in South Africa can be attributed to correlated

dimensions such as wealth, school location, language and province (Spaull 2013:7).

The South African economy is certainly in a constant state of emergence, and so is the

technology.

Although technology is changing faster than we can master it (Highsmith 2003:3), its

pervasiveness impacts the economy and the education system, both pillars for countries

growth. As Siriram (2011:13) has suggested, technology is a “catalyst for competitive

advantage”. Since the technology integration within the community goes through the

education system, the demand for software projects will certainly grow with the needs

from the community. However, in their recent empirical study, De Wet and Visser

(2013:14) indicate that the average success rate of software projects in South Africa is

very low.

Marketline (formerly Datamonitor) is an international company providing a variety of

data analyses. In their empirical reports, they have reported increases in the software

market in South Africa from 2009 to 2016 (including software market forecast). The

31

table below (Table 2) give a summary of four years of annual growth, with a slight

decline in the fourth year. While Figure 3 denotes a market value forecast (2011 –

2016).

Table 2: Annual software market growth in SA

 2009 2010 2011 2013

Growth 4.2% 9.0% 11.9% 7.0%

Source: Marketline 2009-2014

The growth forecast from 2011 until 2016 denotes an average constancy (see Figure 3).

Figure 3: South African market value forecast: $billion, 2011-2016

(Source: MarketLine 2012:9)

Clearly, the future lies with software (Hislop 2011:2) considering the ubiquity of

technology. Nonetheless, despite the noticeable growth in the software market in South

Africa, 27% still represents a significant waste of financial resources, time and effort

(Marnewick & Labuschagne 2009:81). Indeed, the success rate of completing software

projects to specifications in South Africa is low (De Wet & Visser 2013:10) and needs to

be addressed. That is where South Africa stands in term of software in general.

Considering all of the above, where does South Africa currently stand in terms of ASD?

A tentative answer to this question follows next.

32

Agile software development in South Africa

A decade ago, Mnkandla & Dwolatzky (2004:236) noted that, “in South Africa, the

majority of the software development organizations are small to medium sized and most

of the applications are developed without following any development methodologies and

sometimes without following any project management methodology”. A few years later,

in an empirical study, Ferreira and Cohen (2008:51) suggested that there is a large

room for improvement for South African software development projects. In another more

recent case study, Noruwana and Tanner (2012:41) uncovered empirical evidence on

the adoption of agile methods by South African companies as well as disparities

between agile prescriptions and practices. They have indicated that the popularity of

agile methods with regard to software development in South Africa continues to rise;

however, little has been said about the approach and its adoption challenges in the

South African context. In addition, De Wet and Visser (2013:15) suggest that the

adequacy and suitability of agile methods is questionable, arguing that these methods

originated from Western or European countries, and were designed to address risks in

their respective settings. However, one could also argue that most of the computer

principles that currently direct our lives are adopted from Western or European

countries. The unfortunate truth is that the literature, with regard to the adoption of agile

methods in the South African context, is limited (Noruwana & Tanner 2012:42). That

constitutes a real challenge in ASD and indeed, that inevitably includes ARE

challenges. Tentatively, that is where South Africa stands in terms of ASD in general.

But the central focus of this study is rather more narrowed to ARE issues.

2.2.5 Issues of agile requirements engineering in South Africa

South Africa encounters many problems in the software industry, especially when it

comes to ASD. Friedrich and Van Der Poll (2007:189) identified a serious

communication gap between IT specialists (i.e. project manager, systems architects,

business analysts, system analysts) and clients (users) leading to incomplete or

incorrect requirements. A lack of understanding of business requirements is another

challenge experienced by software development companies (Noruwana & Tanner

2012:53).

33

Sonnekus and Labuschagne (2003:9) and Labuschagne, Jakovljevic, and Marnewick

(2008:18) consistently reported a lack of communication between stakeholders and

developers, lack of strategy to handle change, lack of user involvement and executive

support as major factors for failed projects. Communication, welcoming change and

user involvement are principles of the agile manifesto, per se, functions of ARE. Thus,

companies in the software industry that are agile ought to improve on these areas that

are fundamental to project success.

Software is currently the dominant force of change of new products (Hull et al 2005:1).

To reiterate, software complexity is exacerbated by problems such as rapid changes,

technology changes, time-to-market pressures and rapid changes in competitive threats

(Cao & Ramesh 2008:60). As stated above, Noruwana and Tanner (2012:41)

mentioned a growth in popularity on the adoption of agile methodologies by software

practitioners in South Africa. Unfortunately, there is a lack of documentation that

properly lists the common problems experienced in ARE in the software industry in

South Africa. Hence, the questions outlines in this study with regards to exploring the

issues in the software industry.

This study contributes in raising more awareness on the common issues experienced in

ARE. As suggested by Ferreira and Cohen (2008:53), future research into agile

methods practice would also “benefit South African developers in understanding the

contexts in which agile development is most appropriate, as well as long-term

implications for system quality and maintainability”. Therefore, there are positive

implications on the software industry.

2.3 Summary

The future of the world lies in software. The pervasiveness of technology is global and

the impacts are social and economic. As time passes, the prediction on how a

computer-based system will evolve is practically impossible. Pressman (2009:66)

suggests that, “in the modern economy, market conditions change rapidly, end-user

needs evolve, and new competitive threats emerge without warning”. The ability of

organisations to adapt to rapid change is the most significant challenge of the 21st

34

century (Ktata & Levesque 2009:59). The fact is that ARE is not an easy process as it is

filled with challenges and problems. More generally, reports have stated that South

African projects failure is similar to those of the world. And it is argued that over 90% of

contributive factors in project failure emanate from requirements. Researchers have

argued that there is lack of resources in the field of software engineering in South

Africa. Some question the adequacy of these agile procedures by arguing that agile

methods and frameworks were created in the Western or European context which is not

necessarily a match for the reality of the software industry in South Africa. ASD is a vast

area. So is the area regarding issues of the ARE process. Focus must therefore be put

on requirements as the market is so demanding and software must conform to

requirements. This chapter overviewed concepts such as the agile manifesto and agile

principles, and covered classic issues related to ARE and finally reviewed tools and

techniques to help mitigating requirements problems experienced by agile practitioners.

In addition, few paragraphs highlighted the current state of ASD in South Africa, as well

as issues related to ARE in the country. In the light of all the above-mentioned, and

considering the pace at which the technologies evolve, there is a pressing need to do

more research on ARE in order to remain relevant to current technology trends. Thus,

exploring common issues of the ARE in South Africa is an achievable goal.

35

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction

Prior to the objectives section in chapter 1, a series of questions were asked in the

research questions section. To seek answers to these questions, a survey was used as

the main “strategy of inquiry” (Williams 2011:18). Documents, interviews, observations

and questionnaires are the four distinct types of data generation techniques used in

survey research. A questionnaire is adequate to collect data for this study. Succinctly,

the Oxford English Dictionary (OED) defines a questionnaire as “a formulated series of

questions by which information is sought from a selected group, usually for statistical

analysis”. Data collected were subjected to statistical analysis.

Oates (2006:93) suggests that surveys are quantitative and are mostly associated with

the philosophical paradigm of positivism which underlies what is called “the scientific

method”. Exploratory data analysis (EDA) was selected as the main method for

statistical data processing and analysis. According to Jackson (2013:50) despite the

efforts of the quantitative researcher to seek scientific truth, in some cases, choices of

the positivist are oriented by his subjectivity. Unfortunately, that is a panoply of

impediments that positivists have to deal with in order to remain objective and scientific

in their studies. This chapter encompasses several sub-sections.

3.2 Research design

Creswell (2009:3) distinguishes three types of research design: quantitative, qualitative

and mixed methods. The present study is conducted within the quantitative paradigm. A

quantitative study is “one in which the data we collect and analyse involves the accurate

measurement of phenomena and, often, the application of statistical analysis” (Murray &

Hughes 2008:200). This study used cross-sectional surveys as a strategy of inquiry.

Surveys are non-experimental designs for collecting data through questionnaires. A

survey questionnaire designed for the circumstance is discussed in the instrumentation

section below along with the variables that meet the research questions and the

objectives outlined in the initial phase of this study. Questionnaires and survey research

36

are interrelated, in most cases, responses from questionnaires are analysed through

means of statistical techniques (Berndtsson, Hansson & Olsson 2007:63). Before

subjecting the data collected to statistical analysis, the survey questionnaire was piloted

using a small group of people. The underlying philosophical paradigm is positivism as

surveys are strongly associated with such a paradigm (Oates 2006:93).

Regarded as set of scientific procedures for data collection, surveys have pros and

cons. The advantages of surveys are as follows: (a) cost (surveys are relatively

inexpensive); (b) flexibility (surveys can be administered in many modes); and (c)

dependability (anonymity) (Oates 2006:104). Survey research produces empirical data

on real-world observation (Kelley, Clark, Brown & Sitzia 2003:262) and provides a

numeric representation of trends, attitudes, or opinions of a population being studied

(Creswell 2009:145). In addition, from Sincero’s (2012) perspective, surveys provide

participants with a standardised stimulus, there is little or no subjectivity from the

researcher, and they yield statistically significant and precise results.

Notwithstanding the popularity of surveys in the field of computer science, many critics

consider it as inefficient. Kelley et al (2003:262) and Oates (2006:105) suggest that data

produced using surveys are likely to lack depth. Oates (2006:299), for instance,

suggests that surveys are weaker than experiments, arguing that surveys can only

confirm an association (with reference to interpretations of patterns observed in the

responses of the participants). He adds that surveys do not establish cause and effect.

Accordingly, Kelley et al (2003:266) suggest that sometimes survey research is

regarded as an easy design method for the simple reason that, in some cases, surveys

do not stand up to academic scrutiny and have less value in terms of a contribution to

knowledge. Another negative point about questionnaires is from Gillham (2008:1) who

suggests that no single method has been so much abused. The limitations of the

respondents vis-à-vis closed questions are also much criticised because of

predetermined answers.

Finally, attention is now directed to the reasons that led to a choice of such research

strategy. Survey research may be considered a “quick fix” for research methodology

(Gillham 2008:1), nonetheless, there are three main reasons to justify the choice of an

empirical approach for this study:

37

 It is suggested that surveys are widely accepted and used in the field of

information systems and computer science and it is relatively easy to collect

large data from participants through standardised instruments such as

questionnaires (Oates 2006:93), which are entirely adequate to bring answers

to the research questions underlined in this study. In addition, there is the

versatility and efficiency of surveys (Check & Schutt 2011:183) that justify the

choice of such research paradigm.

 The main objectives of this research encompass the following three key points:

a) determine issues related to agile requirements engineering; b) develop a set

of recommended tools to deal with these issues; and c) determine the extent to

which key principles of the Agile Manifesto are perceived by software

practitioners. Only agile software practitioners are holders of such knowledge

(their problems). All these objectives are achievable by surveying directly

software industries.

 In addition to the fact that objectives in this study are quantifiable, cost and time

are other reasons that led to an empirical study. Relative to some other

strategies, surveys can produce a lot of data in a short time at a reasonably low

cost (Oates 2006:104). Judiciously, cost and time can also be predicted in

advance, which considerably helps in terms of planning and managing the

project.

Quantitative methods are adequate for deductive approaches (Borrego, Douglas &

Amelink 2009:54). Some researchers, have manifestly criticised the use of surveys as

research methodology as too simplistic or may have less contribution to knowledge but

despite all these criticisms and after proper scrutiny of the objectives of this study,

surveys are a good fit for this research. The pros of surveys certainly overcome the

cons from the perspective of this study. To reiterate, overall, this study is descriptive,

quantitative in nature, based on cross-sectional surveys, with questionnaires as primary

source of data. The next section justifies the objectives in the instrumentation section

and the choice of an empirical approach for this study.

38

3.3 Methodology

The term ‘methodology’ is etymologically from an old Greek word (Berndtsson et al

2007:13). It is the amalgamation of research strategies and data generation techniques

used during the entire research process (Oates 2006:112) and is concerned with main

issues such as bringing answers to the research questions (Jackson 2013:57). This

section encompasses the research instrument, the target population and sample, as

well as the data processing piece.

3.3.1 Research instruments

Instrumentation

The instrumentation section of a methodology chapter describes the particular variables

used to give answers to the research questions and hypotheses (Rudestam & Newton

2014:88). As previously mentioned, this study is based on survey-based research. The

core of a survey is its questionnaire (Krosnick & Presser 2010:263). The research

instrument was designed to achieve the research objectives outlined in the introduction

chapter. The designed research questionnaire is divided into seven sections.

The first section (“General Information”) is for demographic purposes, in other words, it

helps to collect information about the identity of the respondents. Information such as

the company name, the role of the respondent in the company, and his/her contact

details are collected in this section. Although this section is of less importance to the

study it gives structure to the questionnaire and it would be odd to have a survey

questionnaire without demographic details section.

Section two (named “Agile Processes”) includes variables to collect data about agile

methods used in order to get a sense of agile framework, method, or methodology used

in the software industry. Respondents were asked to select from the list of the ten most

popular agile methods listed, in other words, they were given explicit response

categories (Check & Schutt 2011:168). They also had the ability to list theirs in the

‘other’ field. This helps to point out the most common agile method in the South African

software industry.

39

The third section (called “Agile Requirements Engineering”) has two questions. The first

question is a Likert-type question varying from 1 to 5. This section collects data

regarding the extent to which agile practices are adopted. The agile practices listed

were the ones related to ARE practices such a) face-to-face communication; b) iterative

requirements engineering; c) requirements prioritisation, etc. The second question

intends to determine activities of the ARE performed during iterations. Since the ARE

process is performed in iterations (Cao & Ramesh 2008:67), main traditional activities of

the RE were listed to select from along with a field to extend the list. Answers from both

questions helped to delimit the scope of ARE in terms of best practices. That is, the first

objective of the study.

Section four (or “Issues related to Agile Requirements Engineering”) collects data about

different issues during activities of the ARE process. This question relates to the second

objective which seeks to define and determine a baseline for ARE problems. It is

divided into six sub-sections. Issues in elicitation, analysis, documentation, validation,

management are explored to allow respondents to select all listed issues during those

respective phases. The same applies to issues resulting from negotiation, modelling, or

evolution in the ARE process which are consolidated in the ‘other issues’ section.

Section five (titled “Tools for Agile Requirements Engineering”) includes variables that

help to collect information to determine set of recommended tools used to tackle issues

related to ARE. That is the fourth objective of this study. This section is essentially

defined by questions of type list.

Customer interaction and collaboration is the sixth section (named “Stakeholders

Interaction & Collaboration”) of the survey questionnaire. In this section, variables

measure a) customer experience on ASD; b) gather information about the type of

software companies usually develop the most; and c) give the ratings of ARE principles.

The ratings of the ARE principles (Likert-type), for instance, are to d) get the degree of

comprehension of these principles from e) the software practitioners’ perspective in

order to achieve the fifth objective. Then f) to evaluate the degree of interaction between

software practitioners and customers constitutes the sixth objective. Another sub-

question in this section is to find out the amount of requirements implemented or

thrown-away. In this sense, a Likert-scale question was created to find out whether or

not developers consider dynamic requirements during software development. This also

40

determines how interactive agile teams are. Further, this question also helps to achieve

the third objective which relates to the receptivity of software practitioners regarding

dynamic requirements.

Finally, section seven (“Non-Functional Requirements”) is about the NFR aspect of

software development, which is usually forgotten or given less attention. The NFR

constitute a major concern for software development (Cao & Ramesh 2008:64). This

section gathers data about the types of NFR considered during ASD, and the

constraints that NFR put on projects. This contributes to the achievement of the second

objective which seeks to determine common problems of the ARE. The formats of the

questions in this section are in the Likert-type format and lists type.

The questionnaire was developed in accordance with objectives stated above. Variables

encompassing the instrument were consistently defined to collect all information

necessary for data analysis. Before commencing data collection, the instrument needed

piloting.

Pilot test

Researchers usually carry out a preliminary test of the questionnaire before it is used

extensively (Walliman 2010:98) and this is termed the ‘pilot study’. It is usually

performed on a small group of people (Oates 2006:226) representative of the target

population with the intention to refine and improve the data instrument, explicitly, in this

case the survey questionnaire. Therefore, the questionnaire was piloted before

commencing data collection from the participants.

Data collection

Data was gathered using a questionnaire attached to the emails (see Appendix 3). An

online version, designed using Google forms was also used. Indeed, the Internet has

become a very promising medium to collect information (Benfield 2006). The

participants were from LinkedIn, from BizCommunity or Top500, both online repositories

of companies in South Africa. Some of the participants who were very enthusiastic

about this study volunteered to help by inviting other participants via email by stipulating

the importance of this research. This technique, termed the ‘snowball technique’, helped

41

in getting more participants and positive responses came out of it. The participants

listed online as software developers were contacted by telephone. Those who agreed to

participate in the survey questionnaire were sent three files which included the survey

information letter, the survey informed consent letter and the questionnaire.

The LinkedIn participants were selectively contacted. The criterion for selection was

based on the job title of the participants (project manager, java developer, agile

developers, etc.). A short email was sent introducing the motif of the research with a

request to be added to the researcher’s network. Those who agreed to participate in the

survey did accept the LinkedIn invite and then, were sent an email with the survey

questionnaire. A few LinkedIn participants who were interested in the research survey

did invite other friends to also participate (another good advantage of the snowball

technique). Follow-up emails were sent almost every week as a reminder. During the

last month of data collection, telephone calls were made to respondents every week to

use the advantage of synchronous communication. All responses (electronic versions

and online versions) were consolidated in Google forms.

Finally, the philosophical paradigm of positivism is the central focus of surveys. This is

based on the notion that scientific methods yields results that are valid, reliable and

replicable and that the researcher is independent (Pather & Remenyi 2005:142). In

addition, the quality of a positivist research is assessed using criteria such as, reliability,

validity or objectivity (Oates 2006:287).

Reliability

The accuracy of the research method (meaning), and the accuracy of the

implementation method (the questionnaire) in measuring an honest representation of

findings define reliability (Berndtsson et al 2007:56, Jackson 2013:57). Ensuring the

simplicity of survey questionnaire, the clarity and understanding (non-ambiguity) of

these questions is the responsibility of the researcher.

To determine the degree of correlation between items in a questionnaire, the researcher

made use of reliability analysis which is the “overall index of the repeatability or internal

consistency” (SPSS IBM 2011:460), and Cronbach’s alpha () was used. Briefly,

Cronbach’s alpha (also called the coefficient alpha) is a regularly used technique to

42

determine an internal reliability of an instrument. Cronbach (1951:302) suggests that a

coefficient alpha is the “mean of all possible split-half coefficients”. Its value varies from

0 to 1. When alpha is less than 0.6, it indicates that the consistency reliability is

unsatisfactory, but it is interpreted otherwise if the value of alpha is over 0.7 for basic

research (Panayides 2013). For this study, the Cronbach’s alpha coefficient is 0.906

and the coefficient based on standardised items is 0.869.

Validity

Validity indicates the extent to which a test in fact measures what it purports to measure

(Rudestam & Newton 2014:96; Thanasegaran 2009:37). Berndtsson et al (2007:56)

suggest that validity is “the relationship between what you intend to examine and what

you actually examine”. Validity involves accurate questioning, collected data, and

interpretation in relation to the research question (Jackson 2013:57). The literature

distinguishes different types of validity: a) construct validity, b) content validity, and c)

factorial validity. For the context of this study, only construct validity and content validity

vis-à-vis questionnaires will be discussed.

 Construct validity is concerned with the structural aspects of the questions

(Oates 2006:227). Hence, the instrumentation section consistently discussed

the objectives of this research by matching them with the sections of the survey

question.

 Content validity is a non-statistical type of validity. It is simply concerned with

the intentions behind the questions asked (Oates 2006:227).

Only items related to the objective of this study were selected (sampling adequacy) to

include in the survey questionnaire. And to achieve construct validity, the survey

questionnaire was piloted. This technique achieves construct validity.

Objectivity

Zikmund et al (2012:8) suggest that applied research ensures objectivity through

scientific methods by gathering evidence and testing new ideas. More exhaustively,

Reiss and Sprenger (2013) suggest that objectivity “expresses the idea that the claims,

methods and results of science should not be influenced by particular perspectives,

value commitments, community bias or personal interests, to name a few relevant

43

factors”. Thus, giving full opportunity to participants to complete the survey

questionnaire (no invasion of any kind), and using statistical tests to uncover values of

the data collected (Stanford Encyclopedia of Philosophy 2014; Williams 2011:66) was

one way to ensure objectivity.

3.3.2 Target population and sample

Target population

The target population are all members of the entire agile team involved in software

production. Comprehensively, what constitute the target population are the following

agile team members:

 project managers

 software architects

 engineer managers

 product developers

 software quality assurance engineers

 software testers

 software requirements engineers.

A sample came from the target population or rather the accessible and available

population.

Sample

Selecting a sampling frame was a challenge since there was only a vague idea of the

target population (non-existence of list of all agile companies in South Africa). In

addition, uncertainty about the representativeness of the sample (Oates 2006:97) hung

over this study. For obvious reasons, the researcher relied on a published list from

Top500, that is, a repository of best managed companies in South Africa. This list was

used in conjunction with another list in platforms such as Google or BizCommunity

(another South African website repository for software development companies). Owing

to the extent of the target population, determining a sampling frame in this context was

a cumbersome and superfluous task. Considering the uncertainty of the

44

representativeness of the sample (Oates 2006:97), convenience sampling, a non-

probabilistic sampling technique, was used to determine a tentative sample. As this

research progressed, participants were added based on the criteria for inclusion (which

was the ability to develop software in the agile environment) and on their accessibility

and availability. Participants who were suggested by other participants were included in

the study, provided that they agreed to participate (this is termed the snowball technique

as suggested by Oates (2006:98)). Thus, the final sample was defined using a

convenience sampling technique alongside a snowball technique. In terms of the size

limit of the sample, the expectation was to have conveniently 200 returned

questionnaires. All data collected from the respondents was collated for eventual data

analysis.

3.3.3 Data analysis

Statistical analysis commenced once data collection was over. This task was to subject

the information collected from participants to statistical analysis. Oates (2006:245)

suggests that the idea of quantitative data analysis is to look for patterns in the data and

draw conclusions. Seventy-five percent of the responses were done online. The other

25% were captured onto Google forms. Thus, all responses were exported to a file and

then imported into SPSS. The IBM SPSS Grad Pack Premium v23 was used in

conjunction with Microsoft Excel v10 for quantitative data analysis. Greasley (2007:7)

suggests interval or ratio, ordinal, and categorical or nominal as three distinct types of

data for statistical analysis. During the import process 157 variables of types nominal,

ordinal and interval were created in SPSS to accommodate the entire questionnaire. It

is important to mention that the number of variables created in SPSS is high because of

the number of multiple responses question. Every item of multiple responses set is

treated as a separate variable in SPSS. On a different note, one particular aspect of this

research is the moderate response rate or return rate (RR).

With regard to the statistical analysis, keeping in mind that this study is descriptive,

exploratory data analysis (EDA) was used. Simple analysis or visual aids (Oates

2006:249) and simple descriptive statistical techniques are examples of EDA practices.

The survey questionnaire has two scales of measurement: multiple response questions

or dichotomies (categorical), and ratings questions (Likert-scale). For multiple response

questions, a variables set was computed in order to group variables by question and

45

then frequencies were calculated. It was then much easier to get visual aids (such as

bar charts, histograms, or pie charts) once the frequencies were computed. For the

Likert-scale type questions, cumulative frequencies on those variables were computed.

Bar charts usefully displayed the results and tables based on the cumulative

frequencies were drawn.

3.4 Ethical considerations

Ethical questions are apparent today in issues such as: a) personal disclosure; b)

authenticity and credibility of the research report; c) the role of researchers in cross-

cultural contexts; d) and issues of personal privacy through forms of internet data

collection (Creswell 2009:87). Another apparent area in research ethics that needed

attention was missing data. Missing data constitutes an impediment to ethically sound

research. Briefly, missing data is information that variables fail to capture (Enders &

Gottschall 2011:358). To reiterate, the philosophical paradigm for this study was

positivism which was materialised by data collection from participants through

questionnaires. Pursuing this objective while considering the participants rights,

presents complex issues (Drew et al 2007:66). Main ethical issues concerned data

collection and issues related to data processing and analysis.

3.4.1 Ethical issues in data collection

Ethical issues are always raised in any research when working with participants,

especially humans (Walliman 2010:42). Participants have basic rights that are

inherently fundamental to their lives such as:

 the right not to participate

 the right to withdraw

 the right to give informed consent

 the right to anonymity

 the right to confidentiality.

Participants were treated with due ethical consideration, meaning that everyone

involved in this research was treated fairly and with honesty.

46

The Unisa guidelines mention that before commencing any data collection for research

purposes, an ethical clearance must be obtained. The Ethical Clearance Application

form was fully completed and submitted to the School of Computing for approval. Only

after receiving the ethics clearance certificate (Appendix 4), were participants contacted

and sent the instruments for data collection. Ethical issues in data collection are of

paramount importance for research in any academic study, more especially in computer

science. Equally important are ethical issues in data processing and analysis.

3.4.2 Ethical issues in data processing and analysis

Ethical issues arise in discussions about codes of professional conduct for researchers

and in commentaries about ethical dilemmas and their potential solutions (Creswell

2009:87). As already mentioned, information collected was subjected to statistical

analysis, essentially EDA. The importance of EDA in this study was to help understand

raw data. Ethical issues in data collection have been discussed in the previous section.

Data processing and analysis is heavily dependent on data collection procedures.

Jerry, Jack and Stephen (2015:79-83) have suggested the following “seven areas of

scientific dishonesty” which are believed to have serious impact on data processing and

analysis. These areas are:

 plagiarism

 fabrication and falsification

 non-publication of data

 faulty data-gathering procedures

 poor data storage and retention

 misleading authorship

 unacceptable publication practices.

Fabrication and falsification, faulty data-gathering techniques, plagiarism or devious

publication practices are self-explanatory and were avoided as any of these four areas

can seriously influence the outcome of a research and tarnish the image of the

researcher. Poor data storage and retention can be a potential risk to the privacy of the

participants. The researcher is responsible to find solutions to all seven areas noted

above if these problems threaten the research. One set of solutions to these problem

areas was to follow principles of an ethical researcher such as “no unnecessary

47

intrusion”, “behave with integrity” or “follow appropriate professional codes of conduct”

(Oates 2006:60). Honesty is one of the main criteria for ethically sound research so any

type of dishonesty and use of furtive methods (Walliman 2010:49) such as being

selective in the data used or data distortion were avoided. Such potential ‘lapses of

honesty’ were handled with care in order to maintain scientific objectivity in this study.

3.5 Summary

This section has discussed the appropriate scientific method used to answer the

research problem. To reiterate, this study’s aim is to list issues in the ARE process as

37% of problems experienced by software practitioners are in the requirements phases.

Another important aspect of this study is to determine a set of recommended tools and

frameworks used to tackle issues mentioned above. The dynamism of the global market

place and customer needs are contributing factors to software complexity. Questions in

this study that relate to:

a) values of agile principles;

b) collaboration and interaction between stakeholders and developers; or the

c) the importance of NFR in ASD

 require quantitative data.

Thus, this study is quantitative in nature. Within the quantitative paradigm, surveys were

adequately selected as a research strategy. Two non-probability sampling techniques

were used. Convenience sampling technique and snowball technique were used to get

a representative sample for this research. Questionnaires were used to collect

quantitative data through surveys (research strategy). Issues of validity and reliability

have been discussed as well as ethical issues related to the research.

This research design will bring some answers to issues related to the ARE process in

ASD. According to some researchers, these problems are endemic to the software

industry. In addition, these are constant issues of modern software production. The next

chapter shows what the data really represented.

48

CHAPTER 4: DATA PRESENTATION, ANALYSIS AND

INTERPRETATION

4.1 Introduction

Behavioural science uses questionnaires as powerful tools to acquire information

(Mangal & Mangal 2013:339). The objectives of this research required data collected

from the survey questionnaires. The intention was to collect data from software

companies in South Africa to get the sense of ARE issues in the industry. Self-

administered survey questionnaires were conducted as outlined in the previous chapter,

i.e., the methodology chapter. Different sets of answers were received from different

participants. Answers from respondents varied from the unavailability of time to take the

survey questionnaire, to the irrelevancy or inadequacy of the survey in their field of

work, not to mention their strong beliefs in keeping private the company data even

though this data collection does not cover sensitive data aspect.

This chapter encompasses the results presentation section, the response rate section,

as well as the discussion about the findings. The results presentation is outlined through

tables, graphs and histograms and narrative preceding each of them. The discussion

section focuses on interpreting and explaining some of the findings in this study. And as

with any human deeds, there is a section allocated to limitations. Possible future

research section and a conclusion follow on to close this chapter.

4.2 Response rate

A total of 227 participants were contacted. Out of 227, only 107 agreed to participate in

the survey. About 20% of participants were contacted via the professional social

network LinkedIn. Approximately 10% of all the participants were either not interested in

participating in the survey, or found this study irrelevant to their field of work. Some did

not have time altogether. Basically, 10% of the companies contacted develop software

in South Africa but have not yet adopted the agile principles or are completely

inexperienced with the concept of ASD. Other participants agreed to participate in the

49

survey but distance themselves after receiving the survey questionnaire. It became

important to keep reminding them of the importance of their participation. To remain

objective, and do ethical and sound research with a low response rate is very

challenging. Variation in willingness and ability to respond (Frary 2003:169) to these

questionnaires remain an impediment to “behavioural science” in general. Overall, 25

participants responded, which makes about a 23% response rate (or return rate) for this

study from the 107 participants who agreed to participate.

4.3 Background of the participants

This study involved participants from diverse backgrounds. Those who participated are

in positions such as senior developer, software engineer, solution architect, business

analyst, project manager, solutions engineer, and IT manager.

4.4 Results presentation and interpretation

The returned questionnaires were captured into SPSS (Grad Pack Premium v23).

Collected data are systematically analysed and presented through tables, bar charts

and pie charts in subsequent paragraphs. The objectives are tied to the five research

sub-questions. Discussions about the steps performed to answer every research

question and achieve every research objective in this study follow every question. This

is exclusively based on the primary source of data generated.

4.4.1 What are the common issues in agile requirements engineering in the

South African software development industry?

Issues of the ARE process are diverse and are encountered throughout software

development. As already mentioned, traditional phases have been used to better

segregate and group issues related to this process in general. Whether issues of

elicitation, documentation, analysis, validation, management, or other issues such as

negotiation, modelling, or evolution, the same statistical analysis techniques have been

performed. Variables sets were defined respectively for elicitation, analysis,

documentation, validation, management and other issues and then frequencies were

50

computed to get the total number of occurrences and percentages of each issue. The

output is a table (see Table 3) listing all issues grouped by phase.

Table 3: Issues related to agile requirements engineering

Responses Percent-
age of
cases

N Percent

Issues of

Elicitations

Scope problems 17 13.5% 68.0%

Lack of clarity 13 10.3% 52.0%

Wastages 8 6.3% 32.0%

Lack of trust 8 6.3% 32.0%

Incompleteness 8 6.3% 32.0%

Misinterpretations 11 8.7% 44.0%

Omissions 12 9.5% 48.0%

Unrealistic expectations 11 8.7% 44.0%

Vague customer needs 12 9.5% 48.0%

Inconsistent information 9 7.1% 36.0%

Scalability issues 3 2.4% 12.0%

Issues of prioritisation 14 11.1% 56.0%

Issues of

Analysis

Scalability issues 3 12.0% 13.0%

Issues of prioritisation 14 56.0% 60.9%

Issues of requirements

negotiation

8 32.0% 34.8%

Issues of

documentation

Lack of proper documentation 16 29.1% 64.0%

Staff turnover 8 14.5% 32.0%

Minimal documentation 16 29.1% 64.0%

Unavailability of customer

representative

15 27.3% 60.0%

Issues of

validation

Evolutionary prototyping

issues

10 37.0% 43.5%

Lack of proper validation tools

& techniques

17 63.0% 73.9%

51

Responses Percent-
age of
cases

N Percent

Issues of

management

Lack of proper management

tools

12 28.6% 50.0%

Lack of Requirements

Traceability

12 28.6% 50.0%

Requirements changeability 14 33.3% 58.3%

Problem with version control 4 9.5% 16.7%

Issues of

Others

Customer rigidity 6 5.3% 25.0%

Limited access to project

stakeholders

9 8.0% 37.5%

Indecisive project

stakeholders

12 10.6% 50.0%

Views inconsistencies 8 7.1% 33.3%

Misleading cue 4 3.5% 16.7%

Hidden functionality 7 6.2% 29.2%

Missing functionality 7 6.2% 29.2%

Vague requirements 12 10.6% 50.0%

Conflicting priorities 12 10.6% 50.0%

Overwhelming participation 2 1.8% 8.3%

Inadequate IT solutions 6 5.3% 25.0%

Problem domain complexity 3 2.7% 12.5%

Ambiguous requirements 10 8.8% 41.7%

Inappropriate functionality 5 4.4% 20.8%

Budget problems 10 8.8% 41.7%

The first question intended to find out the common issues of the ARE process. The

objective was to determine the issues that impact the most RE during ASD. Table 3 lists

issues experienced in the software industry in general. Table 8 (which is an excerpt

from Table 3) presents the top thirteen most common issues in the ARE process. Lack

of proper validation tools & techniques (73.9%) is highly ranked as a major problem in

the industry, followed respectively by scope problems (68%), lack of proper

52

documentation (64.0%), minimal documentation (64.0%), or issues of requirements

prioritisation (60.9%). The top 13 issues extracted from Table 3 are encountered in all

phases of software development process. This indicates that during agile development,

focus should be put on every aspect of iterations, with special focus on the validation

phase, an area where software practitioners need help the most.

The Agile Manifesto focuses on a minimum essential amount of documentation (Cobb

2011:7) in order to lessen the lack of information in case of staff turnover. This study

shows that lack of proper documentation (Table 3) remains a major concern. One

technique for requirements validation is face-to-face communication (Cao & Ramesh

2008:66, Ramesh at al 2010:469). However, this technique is not suitable for the

validation phase since 73.9% still lack proper validation tools & techniques. To correct

issues emanating from the documentation phase, there is a need to fix the ambiguity

created by the choice of appropriate tools and techniques in the software industry which

remains a major issue. This was exhaustively emphasised by Highsmith (2003:4),

Mnkandla (2008:3), and Elshandidy and Mazen (2013:479).

Common issues of the ARE process also include NFR. Cao and Ramesh (2008:64)

suggest that non-functional requirements constitute a major concern for software

development in general. The constraints that NFR put on ASD sometimes depend on

the nature of the software developed. To determine whether or not lack of consideration

of NFR cripples software production, the pie chart below (Figure 4) portrays the varied

opinions of the respondents.

53

Figure 4: Amount of NFR constraints on ASD

With reference to the issues related to the process, NFR always presents problems in

the software industry because it is given little or no attention. Sometimes, lack of

consideration to NFR leads to software systems failures (Singh & Saxenna 2014:547).

Only 4% believe that NFR put major constraints on ASD; while 4% think NFR does not

influence ASD; yet a 46% are neutral about the topic; however, 29% opt for moderate

constraints and 17% for minor constraints. These results show how divided software

practitioners are on the subject. This is an indication that NFR are poorly defined in

agile approaches (Zhu 2009:24). This requires more scrutiny. One consequence of

poorly defined NFRs is the following illustration. Seventy-six percent of the applications

that customers request are web-based applications. Web-based applications are

accessed via the Internet. ‘Cloud computing’ is a new term that properly describe this

trend. Web-based applications are always at risk because of public accessibility. The

NFR on these applications must be properly defined in order to remain fully operational

and safe. The confidentiality, integrity and availability (or CIA) of the data of the

company depends intrinsically on how NFR are defined. Web-based applications

security ought to be up to standard, because of the threats constantly encountered over

the Internet. This can be done by putting more emphasis on NFR such as security,

usability, performance, and scalability etc. For instance, Figure 15 shows that usability

(60.9%) and performance (73.9%) are considerably important in this study. These are

also main key features of web-based applications. Considering the divergent views of

software practitioners on NFR considerations (Figure 5), NFR integration remains an

issue of the ARE.

Major
constraint

4%
Minor

constraint
17%

Moderate
constraint

29%

Neutral
46%

No
constraint

4%

54

Figure 5: Proportion of NFR consideration as priority in ASD

The following table (Table 4) with cumulative counts was computed to give the overall

idea about the activities of the ARE process that put too much constraint on the

projects. In addition, a bar chart (see Figure 6) based on the above table is presented.

Table 4: Overall constraints from different activities of ARE

Responses Percentage of

cases N Percent

Elicitation 7 12.3% 30.4%

Analysis 8 14.0% 34.8%

Documentation 9 15.8% 39.1%

Validation 9 15.8% 39.1%

Management 9 15.8% 39.1%

Modelling 3 5.3% 13.0%

Negotiation 6 10.5% 26.1%

Traceability 3 5.3% 13.0%

Evolution 3 5.3% 13.0%

Total 57 100.0% 247.8%

Not a priority
8%

Low Priority
13%

Medium
Priority
33%

High Priority
21%

Essential
25%

55

Figure 6: Frequency of constraints from different activities of ARE

Overall, requirements documentation, requirements validation and requirements

management are the areas that need improvement in terms of RE. And as for NFR, it

should be integrated during software development, not during post-delivery

maintenance.

4.4.2 What are the tools and techniques that help in dealing with such issues?

The second question intended to find tools and techniques used in the software

industry. The objective relating to this question sought to determine a set of

recommended tools and techniques to deal with the above issues. Frequencies were

run to get the total number of counts for each tool or technique along with percentages

after defining a variables set to group all tools and techniques. The tools and techniques

with higher percentages are represented in Figure 7 to show the popular tools and

techniques used or adopted in the software industry. Tools and techniques for agile

requirements engineering include tools for requirements prioritisation, JAD sessions,

ScrumWorks, Documentation Management System and so on. Other tools and

techniques mentioned by participants included Trello, Asana, or SQL (see Figure 7).

0% 10% 20% 30% 40% 50%

Elicitation

Analysis

Documentation

Validation

Management

Modelling

Negotiation

Traceability

Evolution

Frequency

A
g

il
e

 R
e

q
u

ir
e

m
e

n
ts

 A
c

ti
v
it

ie
s

56

Figure 7: ARE Tools and techniques by order of preference

Figure 7 shows that requirements prioritisation is the most popular technique (66.7%) in

ASD. According to Inayat et al (2014:8), requirements prioritisation is an intrinsic part of

iterations during ASD. Tools or techniques such as JAD sessions (42.9%), ScrumWorks

(28.6%), requirements splitting (19.0%), and documentation management system

(23.8%) are relatively common tools used in the software industry, yet the issue of

selecting appropriate tools and techniques for given problems remains (Mnkandla

2008:3). No study can stress this complexity enough. Nevertheless, to achieve the

objective noted in this section, Figure 7 can be considered the set of recommended

tools and techniques (this include commonly used tools such as SQL, Asana, or Trello

listed by the participants).

4.4.3 How do software practitioners value agile principles that relate mainly to

requirements engineering?

The objective (tied to this question) was to get a sense of agile principles such as

customer satisfaction, simplicity, and communication and so on. The perception of the

respondents was measured using five items on a 5-point Likert scale (where 1 is less

important and 5 very important). Essentially, the Cronbach alpha for the reliability test

for this subset is 0.819; thus satisfactorily valid for analysis (Tavakol & Dennick

2011:54).

0% 20% 40% 60% 80%

Cogntion Cockpit

Craddle

QPack

Rectify

Requirements Decoupling

Quality Center

Requirements Splitting

DMS

Scrumworks

JAD Sessions

Requirements Prioritization

Frequency

A
g

il
e

 R
e

q
u

ir
e

m
e

n
ts

 T
o

o
ls

 &

F
ra

m
e

w
o

rk
s

57

The adequate statistical analysis for a ratio question is to run frequencies on every agile

principle and then cross-tabulate the results (see Table 5). Afterwards, a graph based

on the percentages calculated (Figure 8) is drawn to show the perception of the

respondents on agile principles.

Table 5: Preferred agile practices in the industry

Not

Important

Somewhat

important

Quite

important

Very

important

Extremely

important

Face-to-face

communication

0.0% 0.0% 16.7% 45.8% 37.5%

Iterative

requirements

engineering

0.0% 0.0% 41.7% 33.3% 25.0%

Requirements

prioritisation

0.0% 0.0% 20.0% 40.0% 40.0%

Prototyping 0.0% 12.5% 29.2% 29.2% 29.2%

Test-driven

development

0.0% 4.2% 37.5% 33.3% 25.0%

Review meetings

and acceptance test

0.0% 4.2% 20.8% 33.3% 41.7%

Continuous

validation

0.0% 4.3% 17.4% 39.1% 39.1%

The following figure is a graphical representation of the Table 5 above.

58

Figure 8: Preferred agile practices in the industry

The third question sought to determine how much value software practitioners put on

agile principles that relate mainly the ARE process. In agile development, frequent

review meetings, face-to-face communication, or prototyping are agile principles that

define requirements engineering. Figure 8 shows that while all seven agile principles

are important to a certain extent; two in particular are extremely popular than others: a)

the review meetings and acceptance test principle, and b) the requirements prioritisation

principle. Principles such as: a) face-to-face communication; b) requirements

prioritisation; and c) continuous validation are very important to software practitioners.

Another observation is that all these seven principles were rated by the majority as quite

important. This confirms the philosophy behind the Agile Manifesto. It is good to value

tools and processes, or comprehensive documentation, or contract negotiation, but it is

more important to value the principles that relate to customer interaction.

4.4.4 How collaborative are customers and software practitioners in terms of

requirements engineering?

Customer collaboration and face-to-face communication are principles of the ARE

process that demonstrate a degree of interaction between customers and software

practitioners. Two objectives relate to this question: a) determine the degree of

interaction between customers and software practitioners; and b) determine the

receptivity of software practitioners towards dynamic requirements. For the first

objective, all ten principles of the agile manifesto are rated in a 5-point scale question

0% 10% 20% 30% 40% 50%

Face-to-face communication

Iterative requirements engineering

Requirements prioritization

Prototyping

Test-driven development

Review meetings and…

Continuous validation

Percent

A
gi

le
 P

ri
n

ci
p

le
s

Extremely Important

Very Important

Quite Important

Somewhat Important

Not Important

59

varying from 1 (less important) to 5 (very important). The Cronbach alpha coefficient

(reliability test) for this subset is 0.886; thus adequately valid for analysis (Tavakol &

Dennick 2011:54).

In order to know how collaborative customer and developers are, a cross-tabulation is

computed (Table 6) to get cumulative frequencies. In addition a stacked bar chart

(Figure 9) shows the valued principles of the AM.

Table 6: The perception of software practitioners towards agile principles

Not

important

Somewhat

important

Quite

important

Very

important

Extremely

important

Customer satisfaction 0.0% 4.3% 13.0% 17.4% 65.2%

Welcome changing

requirements

8.3% 4.2% 16.7% 41.7% 29.2%

Frequent working

short releases

0.0% 0.0% 20.8% 33.3% 45.8%

Collaboration

(business people &

developers)

0.0% 0.0% 20.8% 37.5% 41.7%

Face-to-Face

communication

0.0% 0.0% 33.3% 25.0% 41.7%

Working software is

measure to progress

0.0% 0.0% 41.7% 29.2% 29.2%

Continuous attention

to technical

excellence

0.0% 4.2% 20.8% 29.2% 45.8%

Simplicity (is

essential)

0.0% 4.2% 20.8% 33.3% 41.7%

Team self-

organisation

0.0% 4.2% 33.3% 20.8% 41.7%

Frequent refactoring 4.2% 4.2% 33.3% 37.5% 20.8%

60

Figure 9: Proportion of valued principles of the Agile Manifesto

Welcoming change is the general idea behind the twelve principles espoused by the

Agile Manifesto. These principles shape the philosophy of all of the agile methods to

quickly deliver, or welcome dynamic requirements at any stage of the software

production. Receptivity towards dynamic requirements defines a certain level of

collaboration. For the second objective, to get the perception of software practitioners

to welcome dynamic requirements, five items are listed in a 4-point scale question

asking whether or not requirements are accepted or rejected at different stages of

software development. To answer this question, a cross-table below (Table 7) shows

cumulative percentages. Furthermore, another stacked bar chart (Figure 10) shows the

same level of acceptance in the requirements.

0% 20% 40% 60% 80% 100%120%

Customer satisfaction

Welcome changing…

Frequent working short…

Collaboration (business…

Face-to-Face Communication

Working software is measure…

Continuous attention to…

Simplicity (is essential)

Team self-organization

Frequent refactoring

Cumulative counts

A
gi

le
 P

ri
n

ci
p

le
s

o
f

th
e

M
an

if
e

st
o

Not important

Somewhat important

Quite important

Very important

Extremely important

61

Table 7: Level of acceptance of dynamic requirements

Figure 10: Level of acceptance of dynamic requirements

In addition, the following graph (Figure 11) shows the overall amount of requirements

accepted and/or implemented by developers.

0% 20% 40% 60% 80% 100%

¼ of completion

½ of completion

¾ of completion

Final Stage

Post-maintenance delivery

Frequency

S
ta

g
e

s
 o

f
s

o
ft

w
a

re
 d

e
v
e

lo
p

m
e

n
t

Ignore

Somehow consider

Consider

definitely Consider

Ignore Somehow

consider

Consider Definitely

consider

¼ of completion 0.0% 16.0% 28.0% 48.0%

½ of completion 0.0% 36.0% 24.0% 32.0%

¾ of completion 16.0% 20.0% 28.0% 28.0%

Final stage 24.0% 16.0% 28.0% 24.0%

Post-maintenance

delivery

16.0% 8.0% 32.0% 36.0%

62

Figure 11: Overall amount of requirements implemented

One group of people in the centre of ASD are stakeholders or customers. The Agile

Manifesto mentions customer involvement in every aspect of software development

through customer collaboration (fourth question). Figure 9 shows that almost the entire

stacked bar is composed with 3 of the 5 items of the Likert-scale. These results (Figure

9) show that agile principles are quite important for some, but considered very important

and extremely important for others. From the three colours that compose the entire

stacked bar, one can deduce that agile principles are really valued in the agile software

industry. As six of these principles mostly define collaboration and interaction between

customers and software practitioners on the graph (Figure 9), consequently two parties

are really collaborative. With regard to the second objective related to this question - the

degree of acceptance of dynamic requirements - it is not evenly spread throughout

software project timeline. Not every requirement accepted (Table 7) is necessary

implemented (Figure 11). But in order to reinvent customer relationships, the global

tendency is the adoption of agile principles (Highsmith 2013:3) such as face-to-face

communication, welcome changes, or even customer collaboration. Figure 10 shows

that at any stage of software development, from the requirements brought forth by

customers, a big proportion is considered. It also shows that half way through software

completion, all requirements are considered. Software practitioners start rejecting

requirements towards the end of software completion. During the final stage, for

instance, 24% of requirements are ignored. Sixteen percent are also rejected during

post-delivery maintenance. However, Figure 11 shows that, overall, 96% of

0%

20%

40%

60%

80%

100%

120%

<25% 25-50 % 50-75% 75-100%

C
u

m
u

la
ti

v
e

 c
o

u
n

ts

Percent Intervals

63

requirements from the customers are implemented. Thus, not much is rejected after all.

This is again an indication of good collaboration between customers and software

practitioners.

4.4.5 How do agile requirements engineering issues impact project outcomes?

This question is inclusive of some aspects of the questions already answered above.

The impacts that issues of the ARE have on project outcomes depend exclusively on

the common issues determined above. Common issues of the ARE process included

issues of the phases of ARE, dynamic requirements and constraints from NFR. For

obvious reasons, common issues negatively impact project outcomes. Table 8 below

shows the top thirteen issues of the ARE that impede most software projects. Table 6

created as answer to the previous question, already determines the degree of

receptivity towards changing requirements.

Table 8: Top issues experienced in agile requirements engineering

Rank Issues Percent

1 Lack of proper validation tools & techniques 73.9%

2 Scope problems 68.0%

3 Minimal documentation 64.0%

4 Lack of proper documentation 64.0%

5 Issues of prioritisation 60.9%

6 Unavailability of customer representative 60.0%

7 Requirements changeability 58.3%

8 Issues of prioritisation 56.0%

9 Lack of clarity 52.0%

10 Indecisive project stakeholders 50.0%

11 Lack of requirements traceability 50.0%

12 Lack of proper management tools 50.0%

13 Vague requirements 50.0%

In ASD, the contribution from the customers or stakeholders is critical (Buresh 2008) for

the success of the software projects. Thus, the experience of the customers is

fundamental in ensuring successful software deliveries. This is shown in Figure 12

below.

64

Figure 12: Customer experience in agile software development

In addition, Figure 13 shows the quality of requirements that customers come up with is

essential in the software being developed.

Figure 13: Quality of requirements brought forth by customers

Equally important is the customer awareness to software development. It is certain

that a degree of knowledge on the topic impacts project outcomes. As Olsson,

Bosch, and Alahyari (2013), customer involvement results in significantly faster

deliveries of software increments. The experience and knowledge of the customer

are vital in this context. This is revealed in Figure 14.

Novice
12%

Intermediate
40%

Experienced
32%

Expert
16%

Poor
4%

Fair
16%

Good
56%

Very Good
16%

Excellent
8%

65

Figure 14: Awareness of customers towards the agile principles

Consideration towards NFR is also important in project outcomes. The proportion of

every non-functional requirement is represented in Figure 15.

Figure 15: Non-functional requirements

Question five reads: how do issues of the ARE process impact projects outcomes?

The Top 13 (Table 8) issues of the ARE show that during iterations, every classical

phase is impacted. For instance, a) issues of prioritisation negatively impact both

Not at all
4%

Slightly
25%

Somewhat
34%

Moderately
29%

Extemely
8%

0% 20% 40% 60% 80% 100%

Portability

Safety

Integrity

Reusability

Robustness

Scalability

Availability

Efficiency

Flexibility

Maintainability

Usability

Performance

Reliability

Cumulative counts

N
o

n
-f

u
n

c
ti

o
n

a
l
re

q
u

ir
e

m
e

n
ts

in

s
ta

n
c

e
s

66

elicitation and analysis phases, b) the documentation phase suffers from minimal

documentation and lack of proper documentation; c) the validation phase is crippled

by serious lack of proper validation tools and techniques; and d) the management

phase suffers from requirements changeability. Basically, when the processes of the

methodology are impacted, the whole methodology is impacted. Thus, the whole

project is compromised. And that is the snowball effect.

Another issue that impact projects is the choice of proper methodology. Figure 16

shows Scrum as the most popular agile method used. Recent studies have

suggested that Scrum has gained popularity and remains the most popular

methodology (or framework) in the industry (Weinreich Neumann, Riedel & Müller

2015:566). The figures in this study certainly corroborate this fact.

Dynamic requirements have always been endemic (Jones 2009:438) to RE. Figure

10 shows that requirements are rejected towards the end of project completion.

Reasons for rejecting requirements are diverse: poor quality, fear of missing target

date, scope problems, etc. The dilemma here is that accepting requirements would

mean facing all the reasons for requirements rejection, and rejecting requirements is

against agile principles. This does not seem to cause problem in the software

industry in South Africa as results show that only 4% of requirements from

customers are rejected towards the end of software completion.

The consequence of ignoring non-functional requirements is a final product that is

not in accordance with security standards. Figure 4 shows that 46% are neutral

about the constraints put on software projects by NFR. This indicates that NFR

integration is a serious problem and needs to be addressed.

4.4.6 How do issues in agile requirements engineering impact the outcome of

projects in the software industry in South Africa considering today’s

constantly evolving marketplace?

This question is inclusive of all the other questions previously answered. The phrase

‘today’s constantly evolving marketplace’ is the element that distances this question

from sub-question 5. There is no need to repeat what has been said about the

67

negative impacts of the different issues on project outcomes. The world is driven by

constant change which impacts today’s requirements. Software practitioners

welcome change half way through software completion by accepting all requirements

from customers (Figure 10).

On a more general note, the South African software industry makes use of agile

principles extensively (Figure 9). Although the participants converge in their views

regarding their acceptance of change in requirements (Figure 10), they diverge in

their consideration towards NFR as a priority (Figure 5). Web-based applications

(Figure 17) are more and more requested these days certainly because of the cloud

computing trends. Results (Figure 7) show diverse tools and techniques to choose

from to help develop more efficiently under the agile methodology.

Despite all these challenges, the software industry is up to date in terms of the

adoption of agile principles (Figure 9), or the consideration towards dynamic

requirements. Issues of inadequate IT solutions (Table 3) are minor in the software

industry. This also indicates that IT solutions in South Africa are moving at a

reasonable pace. Although one can infer from all of the above that the software

industry is not considerably impacted by the technological trends, the methods for

software development need improvement because of the issues enumerated here.

Before ending this section on results presentation and interpretation, it is judicious to

mention the difference that this study made to the body of knowledge. The main

difference is the level of detail with regard to the issues in the ARE process in spite

of lack of empirical evidence in the adoption of agile principles in South Africa. The

issues enumerated in this study are known to software developers. To tackle general

issues in areas where the sources of these issues are known is of great advantage.

The set of recommended tools and techniques is an advantage in dealing with these

issues.

The results also show that agile principles of the manifesto, more specially the ones

related to the ARE process, are used in earnest. All pieces put together are

instrumental to the awareness of software practitioners be there awareness in terms

of:

 common issues of ARE;

68

 good practices such as values of agile principles; or

 the indifference of some participants towards NFR.

In addition, the results show that 68% have on-site customers. One positive impact

on software projects is the availability of a customer representative. The presence of

customers at site may give clear direction to the team members during change

dependent on the customers understanding of the project (Inayat et al. 2014:9).

Empirical studies show that the unavailability of a customers’ representative

constitutes the overall challenge in software development (Ramesh et al 2010:467)

which always results in project failure (Labuschagne et al 2008:17; Sonnekus &

Labuschagne 2003:9). This also raises awareness in terms of customer collaboration

and interaction.

Finally, this study corroborated a popular fact: the popularity of Scrum as agile

technique. South Africa is moving with the trends of technological innovations at a

reasonable pace, that is, with cloud-based computing, as pointed out earlier. There

is a moderate consideration towards NFR that needs to be noted. Since the study is

entirely about requirements, only 4% of the suggested requirements are poor quality.

These are all facts to know in ASD.

4.4.7 Other general data presented

Sometimes, common issues are consequences of choices of agile methods used.

The graph (Figure 16) shows what these agile methods are and the proportion of the

adoption in agile software projects in the South African software industry.

69

Figure 16: Agile methods used in the software industry in South Africa

More generally, stakeholders request software that falls under the following

categories: a) web-based applications; b) business applications; c) systems or real-

time applications. Figure 17 presents the proportion of these requests.

Figure 17: Genre of applications requested by stakeholders

0% 10% 20% 30% 40% 50% 60%

Agile embedded software development

Pomodoro technique

Rational unified process

Crystal

Open unified process

Kanban

Extreme programming

Agile unified process

Lean software development

Feature-driven development

Scrum

Frequencies

A
g

il
e

 m
e

th
o

d
o

lo
g

ie
s

0% 10% 20% 30% 40% 50% 60% 70% 80%

Artificial intelligence

Embedded

Engineering and scientific

Personal computer

Real-time applications

Systems

Business

Web-based

Frequencies

A
p

p
li

c
a
ti

o
n

s
 d

e
v
e

lo
p

e
d

70

The ARE process encompasses a set of activities that are performed in a non-linear

order. That is because of the adaptability of agile methodologies (Lucia & Qusef

2010:213). Major activities are defined on the following graph (Figure 18).

Figure 18: Activities used during agile requirements engineering

The availability of a customer representative is determined in Figure 19.

Figure 19: Proportion of on-site customer representative

0% 20% 40% 60% 80% 100%

Evolution

Traceability

Elicitation

Negotiation

Validation

Management

Modelling

Documentation

Analysis

Cumulative counts

A
c

ti
v
it

ie
s
 o

f
a

g
il

e
 r

e
q

u
ir

e
m

e
n

ts

e
n

g
in

e
e
ri

n
g

Yes,
68%

No,
32%

71

4.5 Possible future research

People are moving gradually towards web-based solutions because of the ubiquity of

IT solutions (Veersamany & Labuschagne 2014). Smartphones nowadays have all

the functions of personal computers or laptops. Applications are cross-platform and

work well on mobile devices without any conversion of any type. Software requests

from customers are more orientated towards web-based applications. Could this be

triggered by the fact that customers are embracing more cloud-based solutions? Or

considering the pace at which the technology advances, are these solutions

proposed by developers to remain competitive on the market?

Another observation in this study regarding NFR is the even and low consideration

towards safety (34.8%) and portability (34.8%). It would be excessive and

unsubstantiated to conclude that applications in South Africa, and more especially

web-based applications, suffer serious security issues or vulnerabilities, and that

these applications lack cross-platform functionalities. This topic also needs more

academic scrutiny.

Agile principles such as customer satisfaction, collaboration, or face-to-face

communication have been considered (very and extremely) important by developers

(see Table 9 below).

Table 9: Customer satisfaction, collaboration and communication

 Not

important

Somewhat

important

Quite

important

Very

important

Extremely

important

Customer

satisfaction

0.0% 4.3% 13.0% 17.4% 65.2%

Collaboration

(business people

& developers)

0.0% 0.0% 20.8% 37.5% 41.7%

Face-to-face

communication

0.0% 0.0% 33.3% 25.0% 41.7%

72

Getting the views of the stakeholders on these principles is altogether another topic

of research and requires more intensive studies. As suggested by Inayat et al

(2014:12), more empirical results are required to get the real impact of these ARE

practices. While all of the above are avenues for future research, the issues of the

ARE on their own are serious difficulties in ASD. These issues are pervasive

throughout software development. In addition, the lack of prior research in the

domain (Noruwana & Tanner 2012:56) makes it even harder.

4.6 Summary

A considerable number of questionnaires were distributed. The return rate (RR) was

moderate but usable responses were acquired in the process. An electronic version

(Word document) was used in conjunction with an online version (Google forms) to

collect data from companies in the ASD field. Whittaker (2013:146) suggests that

technology extends our ability to change the world. The findings from this study are

intended to extend companies knowledge of the recurrent problems in the software

industry, more especially in an agile setting. The aim is to outline the most common

problems of ARE in the South African industry, and determine tools and frameworks

used to tackle some of the issues. This also raises awareness in terms of problems,

their sources and solutions.

Finally this study lays out avenues for future research. It is known that applications

are more and more cloud-based; thus more research should focus on NFR such as

usability, scalability, safety, or portability to ensure that applications that are

developed adhere to basic security requirements. Thus, companies in the software

industry that are agile ought to improve on these areas that are fundamental to

project success. Considering the lack of documentation that properly lists the

common problems (Noruwana & Tanner 2012:44), and taking into consideration the

findings emanating from this research, the outcomes can be considered a repository

of common problems experienced in ARE in South Africa.

73

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This study aimed to determine common problems experienced by software

practitioners in the ARE process, determine a set of recommended tools and

techniques adopted to deal with these issues, get a sense of how they value agile

principles, comprehend the level of collaboration and interaction between customers

and software practitioners.

Agile methods are certainly popular methods but there are no clear trends of their

adoption in practice (Cao & Ramesh 2009:61, Shen & Zhang 2011:1; Murphy et al

2013). Requirements engineering are the foundation to software construction

(Pressman 2009:120) and the most critical characteristic of software development

(Sillitti & Succi 2005:309). Analogously, ARE processes, as a subset to ASD, are the

foundation to agile methods. This area of ASD remains under-researched or lacks

empirical studies and is filled with challenges. It was in this perspective that

questions regarding ARE processes in the context of ASD in South Africa arose. A

literature review was conducted to put this research in an academic perspective.

This study was designed as essentially quantitative, conducted within the positivism

paradigm. It was based on a survey questionnaire and SPSS was used as the tool

for statistical analysis.

This chapter is linearly structured as follows: recapitulation, theoretical implications;

recommendations for future research, limitations of this research and a conclusion.

5.2 Recapitulation

The instrument for data collection was designed, piloted and deemed valid to collect

data. A total 107 questionnaires were distributed and only 25 responses were

collected. The data subjected to data analysis indicated a reliability coefficient

(Cronbach alpha) of 0.906 and the statistical procedures were (in general) limited to

cumulative frequencies, counts, and cross-tabulation. The visual aids used were

74

limited to tables, plotting of histograms and pie charts. The previous chapter

extensively presented the results from the data collected and discussed the findings

that emerged from this study. A recapitulation of these findings follows.

The first question intended to determine common issues in agile requirements

engineering in the software industry. Major issues in this study include: lack of proper

validation tools and techniques (73.9%); scope problems (68%); lack of proper

documentation (64%) issues of prioritisation (60.9%); unavailability of customer

representative (60%); or requirements changeability (58.3%), etc. These are

common in ARE and consistent with reasons for project failure such as handling

change, customer involvement, and requirements definition defined by Sonnekus

and Labuschagne (2003:10) and Labuschagne et al (2009:18). The validation

process is another major challenge to ARE due to the lack of proper validation tools

and techniques. Minimal documentation is another serious impediment to the ARE

process. Lastly, there is a noticeable indifference of software practitioners towards

NFR integration as 46% are neutral about the constraints that this has on software

projects.

The second question sought to find tools and techniques to deal with issues

elaborated above. The amount of tools and techniques in the software industry used

for the ARE process is overwhelming. Among the panoply of agile tools and

techniques listed by the existing literature, the top five tools or frameworks used by

developers to speed up software development or mitigate risks emanating from

issues during development are, in order of preference: requirements prioritisation;

JAD sessions; ScrumWorks, Documentation Management System, and

requirements splitting.

The third question attempted to find out how software practitioners value agile

principles, more especially the ones related ARE. The results show, for instance,

that: customer satisfaction (65.2%); face-to-face communication (41.7%); continuous

attention to technical excellence (45.8%); and collaboration (41.7%) are among the

principles that are valued the most by agile practitioners. Thus, one major finding in

this sub-section is that software practitioners have a high opinion of agile principles

in general.

75

The fourth question intended to determine the degree of collaboration that one can

find between customers and software practitioners. The results reveal that 68% of

companies have customers at site. As already noted in the previous paragraph,

software practitioners have a strong penchant for agile principles. This is significant

in promoting customer involvement through agile principles such as customer

satisfaction, collaboration, and face-to-face communication. It is also an indication of

collaborative effort from both sides. Basically, in terms of ARE, customers and

software practitioners are very collaborative. This is essentially one of the reasons

influencing project success in South Africa (Sonnekus & Labuschagne 2003:9,

Labuschagne et al 2009:18).

Determining ARE issues that impact project outcomes is essentially the content of

the fifth question. Empirical studies in South Africa suggest that strategy to handle

change, user involvement, lack of communication, or executive support are

parameters that influence the most project outcomes (Marnewick & Labuschagne

2009:84). Issues of the ARE process are abundant, and range from problems

regarding customers to the ones related to software practitioners. For instance, one

major finding from the results is about scope. Scope challenges are a source of

budget problems, requirements changeability can change the project timeline. With

regard to customer involvement, customer experience is critical in eliciting

requirements. Cost, time, and quality therefore are attributes to successful projects.

The marketplace is driven by technology which, in turn, drives the request for

software development. The results revealed that software practitioners are

somewhat receptive vis-à-vis dynamic requirements at any stage during software

development. This study also showed that agile principles that relate to the customer

in particular gained high attention. The consequence of this high penchant to the

agile principle is customer satisfaction. Constant changes in marketplace (Cao &

Ramesh 2007:42) do put constraints on software projects. Software practitioners

attributed 58.3% to requirements changeability issues. Results show that more than

96% of the requirements brought forth by customers are implemented. Basically,

from these figures, issues of the ARE do put constraints on software projects but not

to the extent to cripple the entire process.

76

5.3 Theoretical implications

It was established in the previous chapter that all these findings are consistent with

previous empirical studies. For instance, a more recent study shows that Scrum

remains the most popular of the agile methods (Machado, Pinheiro & Tamanini

2015:1) which is also confirmed in this study. Another example relates to the tools

and techniques. Software practitioners tend to use popular tools and techniques.

Over 60% lack customer representatives. Some agile practices such as

requirements prioritisation need revision. Results show that 83.8% preferred

validation through face-to-face communication. However, Friedrich and Van Der Poll

(2007:189) identified a serious communication gap between IT Specialists and

stakeholders. And since 73.9% lack proper validation tools and techniques, this

contradiction needs further scrutiny.

Implications related to the findings are diverse. Firstly, this study gives a better

understanding of the ARE process in terms of the adoption agile principles and best

practices. Secondly, it raises awareness in terms of common issues experienced in

ARE. Thirdly, in practice, this study shows that software practitioners value principles

of the Agile Manifesto. Fourthly, it was also established that developers build more

web-based applications than any other type of software. This either implies a “new

ubiquitous computing and new communication era” (ITU 2005:2) or customers just

trying to “capitalize on new technology” (Johnson, Becker, Estrada, & Freeman

2014:26). Finally, it is argued that a proper definition of requirements plays a

considerable role in project success (Marnewick & Labuschagne 2009:18). This

implies that tackling issues of scope, prioritisation, minimal documentation, or

increasing the use of proper tools and techniques inevitably reduce risks in software

project outcomes.

5.4 Recommendations

Agile software development has always been a passionate topic. At the same time

topics related to RE in the agile environment are also an obsessive and vast area of

interest. However, one can be easily overwhelmed by the depth of agile methods,

and more especially the ARE process. Issues in ASD are also abundant. Marnewick

77

and Labuschagne (2009:17) group all the main reasons for project failure under two

categories: people and processes (this includes tools and techniques).

This study shows fair consideration to people through agile principles such as face-

to-face collaboration, customer satisfaction, and communication. Focus should be

put more on the processes for the mere reason that it is an area filled complexities.

Major issues pointed out in this study include lack of adequate tools and techniques

for validation, scarcity of studies in the ARE process, and lack of NFR integration.

Companies should invest more on tools for requirements validation, documentation

and management as these areas are not properly handled during ASD. This study

showed that companies lack adequate requirements validation tools and techniques.

Tools for requirements validation such as Cognition Cockpit, QPack, or Reqtify can

be of great help. The Method for Elicitation, Documentation and Validation of

Software User Requirements (MEDoV) is adequate not only for validation but also

guide stakeholders during elicitation (Dragičević, Čelar & Novak 2014:66). MedoV

can also be the solution to the requirements documentation problems experienced

by software practitioners. As for requirements managements, tools such Jira Agile,

HP Agile Manager, or Microsoft Project are deemed user-friendly and thus adequate

for requirements traceability and volatility. Taking into consideration the budget, the

OPEN Process Framework Repository Organization has a repository of open-

sources and free applications for requirements.

As change is due quicker than ever before (Cobb 2011:63), it is apparent that

applications are becoming increasingly cloud-based. This study shows that 76% of

the applications requested are cloud-based. As already mentioned, to ensure

confidentiality, integrity and the availability of the data of the companies, NFR

integration should be seriously taken into consideration as 46% of the companies

remain neutral about this topic. Tools for NFR integration include FURPS

(Functionality Usability Reliability Performance Supportability) developed by Hewlett-

Packard and NORMAP (Non-functional Requirements Modeling for Agile

Processes). The use of these tools can improve the quality of cloud-based

applications in terms of usability, scalability, safety, and portability to ensure that

these applications adhere to basic security requirements. Another recommendation

78

is that NFR should be integrated during software development, not during post-

delivery maintenance. This is vital for software project success.

Exploring these options as future research strategies can help software practitioners

adopt a new mindset and be more competitive in a modern and constantly changing

world driven by technology. Further, empirical research into agile methods is sparse

(Ferreira & Cohen 2008:48), and little is said about agile methods (Noruwana &

Tanner 2012:41) in South Africa, or about how it is implemented in practice (Cao &

Ramesh 2008:61, Shen & Zhang 2011:1) in general. Thus, additional studies in the

ARE field are expected to raise awareness in particular areas such as requirements

documentation, validation, management, and NFR integration.

If the agile approach is considered to be more an attitude than process, or more

environment than methodology (Highsmith 2003:3), then, there is a need to fully

embrace an agile attitude in order to create an agile environment that suits everyone

(software practitioners and stakeholders). This goal is achievable through further

research. This will help to identify “best practices and generate insights valuable to

managing software development projects in the future” (Ferreira et al 2009).

5.5 Limitations of this research

Limitations, also known as potential weaknesses (Simon 2011) or restrictions in the

study (Rudestam & Newton 2014:105) were encountered in three specific areas

which are the review of the literature, the data collection and the data analysis.

Firstly, with regard to the limitations in the review of the literature, empirical research

into agile methods in South Africa is sparse (Ferreira & Cohen 2008:48) and prior

research in ARE is limited (Noruwana & Tanner 2012:42). Some articles that relate

to ARE in the context of South Africa are over a decade old. This impediment also

goes against the contemporary nature of this research.

Secondly, the survey questionnaire used as the data collection strategy has

limitations in that: a) the survey questionnaire lacks flexibility in the responses but

are moderately easy to organise (Walliman 2010:99); and b) sometimes the honesty

79

of the response of the participants is questionable. Other limitations encountered in

this study included: time constraints during data collection; a non-exhaustive list of

software development companies (which needs a regular update); unavailability of

participants due to strict policies regarding their participation in research surveys of

any kind which create a feeling of rejection.

Thirdly, keeping in mind the Cronbach alpha coefficient (=0.906 mentioned above)

which demonstrates the reliability of this study, one would easily assert that this

study is reliable and therefore valid for generalisation. However, statistical inference

requires much more data and the sampling size and the RR (of 23%) reflect

otherwise.

As a final point, the scarcity of the literature on agile processes, the impediments

encountered during data collection and lack of generalizability of this study are the

limitations encountered during this research. Despite the best efforts to construct a

well-designed study by taking into consideration all possible confounding variables, it

is almost impossible to cover all bases (Murray & Hughes 2008:168).

5.6 Conclusion

In spite of the challenges encountered in the theoretical review due to lack of

resources, or in the data collection and analysis, this study has been very productive.

The major findings that emerge from this study are: 1) a baseline for issues of ARE

is defined (Table 3); 2) a repository of recommended tools and frameworks (Figure

7) is determined; 3) more importantly, in theory, software practitioners do value

principles such as customer satisfaction, collaboration, face-to-face communication,

and continuous attention to technical excellence. These are key principles in eliciting

requirements; 4) although neglected, software practitioners in South Africa do

consider NFR, but it has been suggested that more emphasis should be put on the

topic as the integration of NFR to ASD can improve software production in terms of

software quality.

80

References

Abdullah, NNB, Honiden, S, Sharp, H, Nuseibeh, B & Notkin, D. 2011.
Communication patterns of agile requirements engineering. Paper presented at the
1st workshop on agile requirements engineering ACM. UK, Lancaster, July1.

Ambler, SW. 2001. Agile requirements modeling. The Official Agile Modeling (AM)
Site. Available at http://agilemodeling.com/essays/agileRequirements.htm (accessed
on 15/01/2016).

Augustine, S. 2005. Managing agile projects. Virginia, Annadale: Prentice Hall PTR.

Batool, A, Motla, YH, Hamid, B, Asghar, S, Riaz, M, Mukhtar, M & Ahmed, M. 2013.
Comparative study of traditional requirement engineering and agile requirement
engineering. Paper presented at the IEEE’s 15th International Conference on
Advanced Communication Technology (ICACT). Pakistan,Rawalpindi:1006.

Benfield, J. A., & Szlemko, W. J. (2006). Internet-based data collection: Promises
and realities. Journal of Research Practice, 2(2), Article D1. Retrieved [date of
access] from, http://jrp.icaap.org/index.php/jrp/article/view/30/51

Berenbach, B, Paulish, D, Kazmeier, J & Rudorfer, A. 2009. Software & systems
requirements engineering: in practice. McGraw-Hill, Inc.

Berndtsson, M, Hansson, J & Olsson, B. 2007. Thesis projects: a guide for students
in computer science and information systems. London: Springer Science & Business
Media.

Boness, K, Harrison, R & Liu, K. 2009. Goal sketching: an agile approach to
clarifying requirements. International Journal on Advances in Software 1(1):1-13.

Bopp, MA, Bing, DA & Forte-Trammell, S. 2009. Agile career development: lessons
and approaches from IBM. Indiana, Crawfordsville: Pearson Education.

Borrego, M, Douglas, EP & Amelink, CT. 2009. Quantitative, qualitative, and mixed
research methods in engineering education. Journal of Engineering Education
98(1):53-66.

Brooks Jr, FP. 1987. No silver bullet-essence and accidents of software engineering.
IEEE Computer 20(4):10-19.

Brooks Jr, FP. 1995. The mythical man-month. Essays on software engineering.
Anniversary edition. USA: Pearson Education.

Brown, VR & Paulus, PB. 2002. Making group brainstorming more effective:
recommendations from an associative memory perspective. Current Directions in
Psychological Science 11(6): 208-212.

Buresh, D. 2008. Customer Satisfaction and Agile Methods. IEEE Reliability Society.

http://agilemodeling.com/essays/agileRequirements.htm
http://jrp.icaap.org/index.php/jrp/article/view/30/51

81

Cao, L & Ramesh, B. 2007. Agile software development: ad hoc practices or sound
principles? IT professional 9(2):41-47.

Cao, L & Ramesh, B. 2008. Agile requirements engineering practices: an empirical
study. Software, IEEE 25(1):60-67.

Carrillo de Gea, Juan M, Nicolás, J, Alemán, JLF, Toval, A, Ebert, C & Vizcaíno, A.
2011. Requirements engineering tools. Software, IEEE 28(4):86-91.

Check, J & Schutt, RK. 2011. Research methods in education. USA, California: Sage
Publications.

Chrissis, MB, Konrad, M & Shrum, S. 2011. CMMI for development: guidelines for
process integration and product improvement. USA, Boston: Pearson Education.

Cobb, CG. 2011. Making sense of agile project management: balancing control and
agility. USA, New Jersey, Hokoben: John Wiley & Sons.

Coram, M & Bohner, S. 2005. The impact of agile methods on software project
management. Paper presented at the 12th IEEE International Conference and
Workshops on Engineering of Computer-Based Systems. 2005 (ECBS'05),
April:363-370.

Creswell, JW. 2009. Research design: Qualitative, quantitative, and mixed methods
approaches. USA, California: Sage.

Chrissis, MB, Konrad, M & Shrum, S. 2011. CMMI for development: guidelines for
process integration and product improvement, 3rd edition. USA, Massachusetts:
Pearson Education.

Cronbach, LJ. 1951. Coefficient alpha and the internal structure of
tests. Psychometrika 16(3):297-334.

Daneva, M, Van Der Veen, E, Amrit, C, Ghaisas, S, Sikkel, K, Kumar, R, Ajmeri, N,
Ramteerthkar, U & Wieringa, R. 2013. Agile requirements prioritization in large-scale
outsourced system projects: An empirical study. Journal of Systems and Software
86(5):1333-1353.

De Wet, B & Visser, J. 2013. An evaluation of software project risk management in
South Africa. South African Journal of Industrial Engineering 24(1):14-29.

Dragičević, S, Čelar, S & Novak, L. 2014. Use of method for elicitation,
documentation and validation of software user requirements (MEDoV) in agile
software development projects. Paper presented at the Sixth International
Conference on Computational Intelligence, Communication Systems and Networks
(CICSyn2014). Macedonia, Tetova.

Drew, CJ, Hardman, ML & Hosp, JL. 2007. Designing and conducting research in
education. USA, California: Sage Publications.

Dugosh, KL & Paulus, PB. 2005. Cognitive and social comparison processes in
brainstorming. Journal of Experimental Social psychology 41(3):313-320.

82

Eberlein, A & Leite, J. 2002. Agile requirements definition: a view from requirements
engineering. Paper presented at the International Workshop on Time-Constrained
Requirements Engineering (TCRE’02). Canada, Calgary.

Elshandidy, H & Mazen, S. 2013. Agile and traditional requirements engineering: a
survey. International Journal of Scientific & Engineering Research 4(9)

Enders, CK & Gottschall, AC. 2011. The impact of missing data on the ethical quality
of a research study. USA, New York: Routledge.

Ernst, NA, Borgida, A, Mylopoulos, J & Jureta, IJ. 2012, Agile requirements evolution
via paraconsistent reasoning. Advanced Information Systems Engineering.
Berlin:Springer:382-397.

Farid, WM. 2012. The NORMAP methodology: lightweight engineering of non-
functional requirements for agile processes. Paper presented at the 19th IEEE Asia-
Pacific Software Engineering Conference (APSEC), Hong Kong: December: 322-
325.

Ferreira, C & Cohen, J. 2008. Agile systems development and stakeholder
satisfaction: a South African empirical study. Paper presented at the 2008 annual
research conference of the South African Institute of Computer Scientists and
Information Technologists on IT research in developing. Practices to help solve
them. Journal of Object Technology 6(1):17-33.

Ferreira, S, Collofello, J, Shunk, D & Mackulak, G. 2009. Understanding the effects
of requirements volatility in software engineering by using analytical modeling and
software process simulation. Journal of Systems and Software 82(10):1568-1577.

Frary, RB. 2003. A brief guide to questionnaire development. Virginia Polytechnic
Institute & State University 9, October:168-180.

Friedrich, WR & Van Der Poll, JA. 2007. Towards a methodology to elicit tacit
domain knowledge from users. Interdisciplinary Journal of Information, Knowledge,
and Management 2(1):179-193.

Gillham, B. 2008. Developing a questionnaire. UK: A & C Black.

Gillwald, A, Moyo, M & Stork, C. 2012. Understanding What is Happening in ICT in
South Africa. South Africa, Cape Town.

Grand, S. 2016. Routines, strategies and management: engaging for recurrent
creation ‘at the edge’. Edward Elgar Publishing.

Greasley, P. 2007. Quantitative data analysis using SPSS: an introduction for health
& social science. UK: McGraw-Hill Education.

Helmy, W, Kamel, A & Hegazy, O. 2012. Requirements engineering methodology in
agile environments. International Journal of Computer Science Issues 9(5). Egypt,
Giza: 293-300.

83

Henderson, LG. 2000. Requirements elicitation in open-source programs. CrossTalk-
The Journal of Defense Software Engineering 13(7):28-30.

Highsmith, J. 2003. Agile project management: principles and tools. Cutter
Consortium 4:1-37.

Highsmith, J. 2013. Adaptive leadership: accelerating enterprise agility. USA,
Chicago: Addison-Wesley.

Hislop, J. 2011. Response: towards a competitive South African software industry.
South Africa, Cape Town.

Hull, E, Jackson, K & Dick, J. 2005. Requirements engineering. London: Springer-
Verlag.

Humphrey, WS. 2005. Acquiring quality software. CROSSTALK The Journal of
Defense Software Engineering, December:19-23.

Inayat, I, Salim, SS, Marczak, S, Daneva, M & Shamshirband, S. 2014. A systematic
literature review on agile requirements engineering practices and
challenges. Computers in Human Behavior 55:915-929.

ITU Internet Reports 2005. The internet of things. Geneva: International
Telecommunication Union (ITU).

Jackson, E. 2013. Choosing a methodology: philosophical underpinning. Practitioner
Research in Higher Education 7(1):49-62.

Janes, AA & Succi, G. 2012. The dark side of agile software development. Paper
presented at the ACM international symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, ACM. USA, New York, NY, October:215-
228.

Jerry, RT, Jack, K & Stephen, JS. 2015. Research methods in physical
activity. Human Kinetics 3:14-15.

Jones, C. 2009. Software engineering best practices. USA, New York: McGraw-Hill,
Inc.

Johnson, L, Becker, S, Estrada, V & Freeman, A. 2014. Horizon Report: 2014 Higher
Education. Austin, Texas: The New Media Consortium.

Kamalrudin, M, Grundy, J & Hosking, J. 2010. Tool support for essential use cases
to better capture software requirements. Paper presented at the IEEE/ACM
Iternational Conference on Automated Software Engineering ACM. USA, New York,
NY, September:255-264.

Kelley, K, Clark, B, Brown, V & Sitzia, J. 2003. Good practice in the conduct and
reporting of survey research. International Journal for Quality in Health Care: Journal
of the International Society for Quality in Health Care / ISQua 15(3):261-266.

84

Krosnick, JA & Presser, S. 2010. Question and questionnaire design in Handbook of
survey research 2nd edition. UK:Emerald Group Publishing Limited:263-314.

Ktata, O & Lévesque, G. 2009. Agile development: issues and avenues requiring a
substantial enhancement of the business perspective in large projects. Paper
presented at the 2nd Canadian Conference on Computer Science and Software
Engineering ACM, May:59-66.

Laanti, M, Salo, O & Abrahamsson, P. 2011. Agile methods rapidly replacing
traditional methods at Nokia: a survey of opinions on agile
transformation. Information and Software Technology 53(3):276-290.

Labuschagne, L, Jakovljevic, M & Marnewick, C. 2008. The Prosperus Report 2008.
South Africa: PMSA.

Labuschagne, L, Marnewick, C & Jakovljevic, M. 2008. IT project management
maturity: a South African perspective. South Africa, Midrand: PMSA.

Lucia, AD & Qusef, A. 2010. Requirements engineering in agile software
development. Journal of Emerging Technologies in Web Intelligence 2(3):212-220.

Machado, TCS, Pinheiro, PR & Tamanini, I. 2015. Project management aided by
verbal decision analysis approaches: a case study for the selection of the best
SCRUM practices. International Transactions in Operational Research 22(2):287-
312.

Mangal, S & Mangal, S. 2013. Research methodology in behavioural sciences. PHI
Learning Pvt. Ltd.

MarketLine 2012. Software in South Africa. Available at: www.marketline.com
(accessed on 25/04/2015).

Marnewick, C & Labuschagne, L. 2009. Factors that influence the outcome of
information technology projects in South Africa: an empirical investigation. Acta
Commercii 9:78-89.

Mnkandla, E & Dwolatzky, B. 2004. A survey of agile methodologies. The
Transactions of the SA Institute of Electrical Engineers, December:236-247.

Mnkandla, E. 2008. A selection framework for agile methodology practices: a family
of methodologies approach. PhD Thesis, University of Witwatersrand,
Johannesburg, South Africa.

Murphy, B, Bird, C, Zimmermann, T, Williams, L, Nagappan, N & Begel, A. 2013.
Have agile techniques been the silver bullet for software development at Microsoft?
Empirical software engineering and measurement. Paper presented at the
ACM/IEEE International Symposium on IEEE, October:75-84.

Murray, N. & Hughes, G. 2008. Writing up your university assignments and research
projects: a practical handbook. Maidenhead: Open University Press.

http://www.marketline.com/

85

Noruwana, N & Tanner, M. 2012. Understanding the structured processes followed
by organisations prior to engaging in agile processes: a South African perspective.
South African Computer Journal 48:41-58.

Oates, BJ. 2006. Researching information systems and computing. London: Sage
Publications Limited.

Olsson, HH, Bosch, J & Alahyari, H. 2013. Customer-specific teams for agile
evolution of large-Scale embedded systems. 2013 39th Euromicro Conference on
Software Engineering and Advanced Applications IEEE: 82.

Paetsch, F, Eberlein, A & Maurer, F. 2003. Requirements engineering and agile
software development. Paper presented at the IEEE’s 21st International Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises IEEE
Computer Society, June, 2012 :308-313.

Panayides, P. 2013. Coefficient alpha: interpret with caution, Europe’s Journal of
Psychology 9(4):687–696.

Pather, S & Remenyi, D. 2005. Some of the philosophical issues underpinning
research in information systems-from positivism to critical realism: reviewed
article. South African Computer Journal (35):76-83.

Pressman, R. 2009. Software engineering: a practitioner's approach. 7th edition.
USA, New York, NY: McGraw-Hill.

Pressman, RS & Lowe, DB. 2009. Web engineering: a practitioner's approach.
McGraw-Hill Higher Education.

Ramesh, B, Cao, L & Baskerville, R. 2010. Agile requirements engineering practices
and challenges: an empirical study. Information Systems Journal 20(5):449-480.

Reiss, J. & Sprenger, J. 2014. Scientific objectivity. Stanford Encyclopedia of
Philosophy.

Rico, D [sa]. What is agility? Available at: http://davidfrico.com/agile-definition.pdf
(accessed on 05/04/2015).

Rojas, AB & Sliesarieva, GB. 2010. Automated detection of language issues
affecting accuracy, ambiguity and verifiability in software requirements written in
natural language. Paper presented at the NAACL HLT 2010 Young Investigators
Workshop on Computational Approaches to Languages of the Americas Association
for Computational Linguistics, June:100.

Rudestam, KE & Newton, RR. 2014. Surviving your dissertation: a comprehensive
guide to content and process. USA, California: Sage Publications.

Scacchi, W. 2002. Understanding the requirements for developing open source
software systems. Paper presented at the conference on Software, IEE -IET,
February:24-39.

http://davidfrico.com/agile-definition.pdf

86

Schach, SR 2011. Object-Oriented & Classical Software Engineering. Global Edition.
8th edition. USA, New York, NY: McGraw-Hill.

Scrumhint. 2015. Snapshot of agile software development. Available at:
http://www.scrumhint.com/snapshot-of-agile-software-development/ (accessed
20/01/2016).

Shelly, G & Rosenblatt, HJ. 2009. Systems analysis and design. USA, Boston:
Cengage Learning.

Shen, HL & Zhang, Y. 2011. An exploratory study of organisational adaptation to
agile project management: an investigation of IT industry in China. Master thesis,
Umea School of business.

Sillitti, A & Succi, G. 2005. Requirements engineering for agile methods
in engineering and managing software requirements. Springer :309-326.

Simon, M. 2011. Assumptions, limitations and delimitations, Dissertation and
scholarly research: recipes for success. Seattle, WA: Dissertation Success, LLC.
Available at: www.dissertationrecipes.com (accessed December 2015) .

Sincero, SM. 2015.Advantages and disadvantages of surveys. Available
at: https://explorable.com/advantages-and-disadvantages-of-surveys (accessed on
30/06/2015).

Singh, M & Saxena, R. 2014. Agile approach to requirement engineering: how agile
processes can help in time-constrained requirements engineering. International
Conference on Multidisciplinary Research & Practice 1(8):544-547.

Siriram, R. 2011. Convergence of technologies. South African Journal of Industrial
Engineering 22(1):13-27.

Sonnekus, R & Labuschagne, L. 2003. The Prosperus Report 2003: ICT project
management maturity versus project success in South Africa. Johannesburg: Rand
Afrikaans University.

Spaull, N. 2013. South Africa’s education crisis: the quality of education in South
Africa 1994-2011. Centre for Development and Enterprise, October:1-65.

Stanford Encyclopedia of Philosophy. Winter 2014 Edition. “Scientific Objectivity”.
Available at: http://stanford.library.usyd.edu.au/archives/win2014/entries/scientific-
objectivity/ (accessed on 24/05/2015).

Stellman, A & Greene, J. 2005. Applied software project management. USA,
California, Sebastopol: O'Reilly Media.

Stober, T & Hansmann, U. 2010. Agile software development. Berlin Heidenberg:
Springer.

Sutherland, J. 2010. Agile principles and values. Available at:
http://msdn.microsoft.com/en-us/library/dd997578.aspx (accessed on 03/01/2016).

http://www.scrumhint.com/snapshot-of-agile-software-development/
http://www.dissertationrecipes.com/
https://explorable.com/advantages-and-disadvantages-of-surveys
http://stanford.library.usyd.edu.au/archives/win2014/entries/scientific-objectivity/
http://stanford.library.usyd.edu.au/archives/win2014/entries/scientific-objectivity/
http://msdn.microsoft.com/en-us/library/dd997578.aspx

87

Sutherland, J & Schwaber, K. 2011. The scrum guide. The definitive guide to scrum:
the rules of the game. Available at:
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf (accessed on
15/04/2015).

Thanasegaran, G. 2009. Reliability and validity issues in research. Integration &
Dissemination 4:35-40.

Thomas, JR, Nelson, JK, Silverman, SJ. 2011. Research methods in physical
activity. USA: Human Kinetics.

Tripathi, V & Goyal, AK. 2014. Agile requirement engineer: roles and responsibilities.
International Journal of Innovative Science, Engineering & Technology 1(3):213-219.

ur Rehman, T, Khan, MNA & Riaz, N. 2013. Analysis of requirement engineering
processes, tools/techniques and methodologies. International Journal of Information
Technology and Computer Science (IJITCS) 5(3):40.

Veerasamy, N & Labuschagne, WA. 2014. Determination of meme proliferation
factors. Paper presented at the 13th European Conference on Cyber Warfare and
Security ECCWS‐2014 The University of Piraeus Piraeus, Greece, July:188-197.

Walliman, N. 2010. Research methods: the basics. USA, New York: Routledge.

Weinreich, R, Neumann, N, Riedel, R & Müller, E. 2015. Scrum as method for agile

project management outside of the product development area, in Umeda, S,

Nakano, M, Mizuyama, H, Hibino, H, Kiritsis, D, von Cieminski, G (Eds.), Advances

in Production Management Systems: Innovative Production Management Towards

Sustainable Growth. Springer, September:565-572.

WhatIs.com. 2012. Available at: http://whatis.techtarget.com/definition/Agile-

glossary-Words-2-Go (accessed on 02/13/2016).

Williams, C. 2011. Research methods. Journal of Business & Economics Research
(JBER) 5(3).

Williams, L. 2012. What agile teams think of agile principles? Communications of the
ACM 55(4):71-76.

Whittaker, DJ. 2013. The Impact and Legacy of Educational Sloyd: Head and Hands
in Harness, Routledge.

Zhu, Y. 2009. Requirements engineering in an agile environment. Master Thesis,
Uppsala University, Sweden.

Zikmund, W, Babin, B, Carr, J. & Griffin, M. 2012. Business research methods. USA,
Mason: Cengage Learning.

http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://whatis.techtarget.com/definition/Agile-glossary-Words-2-Go
http://whatis.techtarget.com/definition/Agile-glossary-Words-2-Go

88

Appendices

Appendix 1: The Agile Manifesto

89

Appendix 2: The principles of the Agile Manifesto

90

Appendix 3: Agile Requirement Engineering - Survey Questionnaire

1 - GENERAL INFORMATION (Respondent Info)

Company Name: Click here to enter text. Phone: Click here to enter text.

Respondent Title: Click here to enter text. Email: Click here to enter text.

2 - AGILE PROCESSES
2.1 Please select agile method(s) your company uses:

☐ Rational Unified Process

☐ Feature-Driven Development

☐ Lean Software Development

☐ Open Unified Process

☐ Dynamic Systems Development Method

☐ Crystal

☐ Scrum

☐ Agile Unified Process

☐ Kanban

☐ Extreme Programming
Other(s) please list:Click here to enter text.

3 - AGILE REQUIREMENTS ENGINEERING (ARE)
3.1 To what extent do you value the following agile practices? (Rate from 1-5; 1=not important
to 5=very important)

 1 2 3 4 5

Face-to-face communication ☐ ☐ ☐ ☐ ☐

Iterative requirements engineering ☐ ☐ ☐ ☐ ☐

Requirements Prioritisation ☐ ☐ ☐ ☐ ☐

Prototyping ☐ ☐ ☐ ☐ ☐

Test-driven development ☐ ☐ ☐ ☐ ☐

Review meetings and acceptance test ☐ ☐ ☐ ☐ ☐

Continuous Validation ☐ ☐ ☐ ☐ ☐

3.2 What are the activities performed during iteration(s) in Agile Requirements Engineering?

☐Elicitation

☐Analysis

☐ Documentation

☐ Validation

☐ Management

☐ Modelling

☐ Negotiation

☐ Traceability

☐ Evolution
Other(s) please list:Click here to enter text.

4 - ISSUES RELATED TO AGILE REQUIREMENTS ENGINEERING
4.1 What are issues in requirements elicitation you usually experience during iteration(s)?

☐ Ambiguous requirements

☐ Requirements Volatility

☐ Scope problems

☐ Lack of clarity

☐ Wastages

☐ Lack of trust

☐ Incompleteness

☐ Misinterpretations

☐ Omissions

☐ Unrealistic expectations

☐ Vague customer needs

☐ Inconsistent Information
Other(s) please list:Click here to enter text.

4.2 What are issues in requirements analysis you usually experience during iteration(s)?

☐ Scalability Issues

☐ Issues of Prioritisation

☐ Issues of requirements negotiation
Other(s) please list:Click here to enter text.

4.3 What are issues in requirements documentation you usually experience during iteration(s)?

91

☐ Lack of proper documentation

☐ Staff turnover

☐Minimal documentation

☐Unavailability of customer representative
Other(s) please list:Click here to enter text.

4.4 What are the issues in requirements validation you usually experience during iteration(s)?

☐Evolutionary prototyping issues

☐Lack of proper validation tools & techniques
Other(s) please list:Click here to enter text.

4.5 What are the issues in requirements management you usually experience during
iteration(s)?

☐Lack of proper management tools

☐ Lack of Requirements Traceability

☐Requirements Changeability

☐Problem with version control
Other(s) please list:Click here to enter text.

4.6 Please select other issues in requirements you usually experience during iteration(s)?
(Others include issues related to requirements negotiation, modelling, validation, or evolution).

☐ Customer rigidity

☐ Limited access to project stakeholders

☐ Indecisive project stakeholders

☐ Views Inconsistencies

☐ Misleading cue

☐ Hidden Functionality

☐ Missing Functionality

☐ Vague Requirements

☐ Conflicting priorities

☐ Overwhelming participation

☐ Inadequate IT Solutions

☐ Problem domain complexity

☐ Ambiguous requirements

☐ Inappropriate Functionality

☐ Budget problems
Other(s) please list:Click here to enter text.

4.7 Overall, which activities put more constraints on your projects?

☐Elicitation

☐Analysis

☐ Documentation

☐ Validation

☐ Management

☐ Modelling

☐ Negotiation

☐ Traceability

☐ Evolution
Other(s) please list:Click here to enter text.

5 - TOOLS FOR AGILE REQUIREMENTS ENGINEERING
5.1 What are the agile tools & techniques your company habitually uses?

☐ JAD Sessions

☐ GORE

☐ Cognition Cockpit

☐ Craddle

☐ Quality Center

☐ QPack

☐ Rectify

☐ Requirements Splitting

☐ Requirements prioritisation

☐ Requirements Decoupling

☐ Scrumworks

☐ DMS (Documentation
Management System)
Other(s) please specify:
Click here to enter text.

6 - STAKEHOLDERS INTERACTION & COLLABORATION
6.1 Please select the type of software you usually develop.

☐ Artificial intelligence

☐ Embedded

☐ Engineering and scientific

☐ Web-based

☐ Personal computer

☐ Real-time applications

☐ System

☐ Business

Other(s) please list:Click here to

enter text.

6.2 Customer(s) Experience in Agile Software Development (ASD)& Quality of Requirements

92

Onsite customer(s): ☐ YES ☐ NO

Customer(s) Experience: ☐ Novice ☐ Intermediate ☐ Experienced ☐ Expert

Quality of requirements in general: ☐ Poor ☐ Fair ☐ Good ☐ Very good ☐ Excellent

Awareness to ASD: ☐ Not at all ☐ Slightly ☐ Somewhat ☐ Moderately ☐ Extremely

6.3 Do you consider requirements changes when the project is at _?

 Ignore Consider Somehow consider definitely Consider

¼ of completion ☐ ☐ ☐ ☐

½ of completion ☐ ☐ ☐ ☐

¾ of completion ☐ ☐ ☐ ☐

Final Stage ☐ ☐ ☐ ☐

Post-maintenance delivery ☐ ☐ ☐ ☐

6.4 Overall, what is the amount of requirements implemented (from customers)?

☐<25% ☐ 25-50 % ☐ 50-75% ☐ 75-100% ☐ NA

6.5 How do you value the following agile principles that relate to RE (rate from 1 being the less
important to 5 the very important)

 1 2 3 4 5

Customer satisfaction ☐ ☐ ☐ ☐ ☐

Welcome changing requirements ☐ ☐ ☐ ☐ ☐

Frequent working short releases ☐ ☐ ☐ ☐ ☐

Collaboration (Business people & developers) ☐ ☐ ☐ ☐ ☐

Face-to-Face Communication ☐ ☐ ☐ ☐ ☐

Working software is measure to progress ☐ ☐ ☐ ☐ ☐

Continuous attention to technical excellence ☐ ☐ ☐ ☐ ☐

Simplicity (is essential) ☐ ☐ ☐ ☐ ☐

Team self-organization ☐ ☐ ☐ ☐ ☐

Frequent Refactoring ☐ ☐ ☐ ☐ ☐

7 - NON-FUNCTIONAL REQUIREMENTS (NFR)
7.1 Please select the NFR that you consider when developing software.

☐ Availability

☐ Efficiency

☐ Flexibility

☐ Maintainability

☐ Integrity

☐ Performance

☐ Portability

☐ Reliability

☐ Reusability

☐ Robustness

☐ Safety

☐ Scalability

☐ Usability

7.2 NFR Issues
 No

constraint
Minor

constraint
Neutral Moderate

constraint
Major

constraint

How much of a constraint the
selected NFR are on software?

☐

☐

☐

☐

☐

7.3 Are NFR a priority to your projects?

☐ Not a priority☐ Low priority☐ Medium priority☐ High priority☐ Essential

93

Appendix 4: Ethics clearance certificate

94

Appendix 5: Dissertation editing

