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Abstract: 13 

To investigate the stress-strain behavior of frozen soils, a program of triaxial compression 14 

tests was designed and carried out on samples of unfrozen and frozen cohesive (CL) and 15 

granular (SP) soils and pure ice. The experiments involved study of the influence of 16 

freezing, temperature reduction and loading rate on the stress-strain characteristics of the 17 

frozen ground. The aim of this study is to assess the possibility of using the Artificial Ground 18 

Freezing (AGF) technique in the excavation and tunneling in Line 2 of the Tabriz Subway 19 

project. The results show that freezing of the CL soil has no significant effect on the type of 20 

soil behavior (strain-hardening), while, freezing of the SP soil changes its strain-hardening 21 

behavior to strain-softening. The effect of freezing on the increase in shear strength of the 22 

saturated SP soil is much greater than that of the saturated CL soil; however, the rate of 23 

increase in the shear strength due to freezing and temperature reduction is much larger for 24 

the CL soil. Freezing and reduction in temperature cause an increase in the elastic modulus 25 

of all the materials tested in the present study. Also, the shear strength and elastic modulus 26 

of these materials increase with loading rate.  27 
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 31 

Introduction  32 

The improvement of soil behavior by Artificial Ground Freezing (AGF) has been utilized 33 

by engineers in many construction projects. The technique involves excursion of a 34 

refrigerated coolant through subsurface freezing tubes in order to reduce the soil 35 

temperature below freezing point (Andersland and Ladanyi, 2004). The freezing process is 36 

conducted using two concentric pipes. A smaller diameter tube within each freezing tube 37 

permits the downward circulation of the coolant; the refrigerant fluid arrives into the double 38 

sleeve freeze tube and after reaching the lowest point of the inner tube, it returns through 39 

the annulus between the inner and outer tubes (Fig. 1) (Harris, 1995; Esmaeili-Falak et al., 40 

2018). The pore water within the soil is then frozen and the soil becomes stronger and 41 

watertight. The frozen soil can be used as a sealing and soil support system in underground 42 

construction (Chamberlain, 1981; Lackner et al., 2005; Yang et al., 2015; Zhou et al., 2015; 43 

Esmaeili-Falak, 2017; Fei and Yang, 2018). Compared with other soil treatment techniques, 44 

AGF is an effective and stable method for controlling groundwater and improving soil 45 

strength (Braun et al., 1979). It is an efficient and green technique which poses no short-46 

term or long-term threat to the environment (Frivik, 1981). AGF consists of two phases 47 

(Stoss and Valk, 1979). The first (active) phase involves cooling the ground until its 48 

temperature drops below the freezing point of the groundwater. The second (passive) phase 49 

involves maintaining the frozen body by circulating the coolant until the end of construction 50 

operations.  51 

Although AGF has been used for decades, however compared to unfrozen soils, there is 52 

much limited literature concerning the mechanical properties and behavior of frozen soils 53 



(Esmaeili-Falak, 2017). The first use of AGF was reported on a mineshaft construction in 54 

UK (Li et al., 2006). Studies have shown that, under loading, frozen soils can experience 55 

plastic volumetric and shear strains. The concept of elasto-plastic deformation has been used 56 

to describe the behavior of frozen ground as well as other geotechnical materials (Youssef, 57 

1988; Puswewala and Rajapakse, 1990; Wijeweera and Joshi, 1992; Nassr et al., 2018). 58 

AGF has been shown to be effective in loose and homogeneous soils that contain some pore 59 

water. AGF is particularly useful where the application of other conventional techniques is 60 

deemed unfeasible (Rupprecht, 1979). Changes in geological strata and layer permeability 61 

have some effect on freezing, while these factors can significantly influence the success of 62 

other soil improvement techniques (Jones and Brown, 1979).  63 

Unlike unfrozen soils, the mechanical and physical properties of frozen soils have not 64 

been studied in great extent. This is due to remarkable complexity of frozen soils (Ting, 65 

1983). Early investigations of AGF primarily focused on the creep behavior of frozen soils 66 

(Sayles, 1968; Sayles and Haines; 1974). However, in the recent years, with the 67 

developments in the laboratory equipment and techniques, the experimental investigation 68 

of various aspects of behavior of frozen ground has received greater attention. The influence 69 

of AGF on physical and mechanical characteristics of the frozen ground has been studied 70 

by many researchers (e.g., Andersen, 1991; Soo and Muvdi, 1992; Da Re, 2000; Zhao et al., 71 

2013; Li et al., 2018; Torok et al., 2019). It has been shown that AGF could significantly 72 

improve the physical and mechanical properties of soils due to the formation of a rigid ice-73 

soil matrix (Wang et al., 2006). 74 

Although AGF is known as a cost-effective, environmentally friendly and practical 75 

method for soil stabilization, the application of this method has been limited to a few 76 

countries and companies. In order to utilize of this technology more universally, more 77 

studies should be conducted to improve the understanding of the mechanical behavior of 78 



frozen ground. In this study, a program of triaxial compression tests has been designed and 79 

carried out to investigate the influence of freezing, temperature reduction and loading rate 80 

(strain rate) on the mechanical behavior of frozen soils. These are the most important 81 

parameters that affect the ground behavior in underground construction projects involving 82 

AGF. For the experiments, the soil samples were taken from the site of the second Line of 83 

the Tabriz Subway project. The present study also aims to verify the possibility of using the 84 

AGF technique in tunneling and underground construction of the subway station in the 85 

above case study.  86 

 87 

Materials and Methods  88 

Economic and safe use of AGF in geotechnical engineering and underground construction 89 

requires a comprehensive database obtained from accurate laboratory testing. Previous 90 

research has shown that unfrozen water can still be found in soil even at temperatures far 91 

below the freezing point of pure water (Ziegler et al., 2009). The amount of unfrozen water 92 

for various soils at different temperatures is shown in Fig. 2. One of the effective tools for 93 

analysis and design of AGF and its application in geotechnical engineering is numerical 94 

modeling. Experimental results are required for calibration and validation of numerical 95 

models for AGF. In this study, an extensive program of experimental research was designed 96 

and conducted to study the mechanical behavior of frozen soils subject to different 97 

conditions. The experimental program is described in the following sections. 98 

 99 

Testing equipment and instrumentation  100 

 The test equipment used in this investigation is a triaxial apparatus for frozen soil, which 101 

was designed and manufactured at the University of Tabriz. The designed apparatus was 102 

registered as a patent in the Iranian Research Organization for Science and Technology with 103 



ref. No. 9705036 (Fig. 3). This apparatus facilitated the study of constitutive modeling and 104 

determination of the stress-strain behavior of frozen ground and simulation of AGF 105 

techniques in real projects. All of the tests were conducted in a cold and insulated room in 106 

the Advanced Soil Mechanics laboratory of the University of Tabriz where the temperature 107 

was constantly monitored.  108 

    109 

Test specimens  110 

The required samples for the study were taken from the site of the site of the second line of 111 

the Tabriz Subway project (Fig. 4). The specimens tested included a cohesive soil (marl) 112 

obtained from L2T5 borehole and a non-cohesive soil obtained from L2T3 borehole (see 113 

Fig. 4). The physical properties of the above samples are shown in Tables 1 and 2, 114 

respectively. The cohesive and coarse grained soil specimens were classified as CL and SP 115 

according to the USCS (ASTM D2487, 2007). The soils gradation curves are shown in Fig. 116 

5. According to Fig. 4, both SP and CL soils are located principally under the water table.  117 

Pervious researchers have shown that, the length-to-diameter ratio of test specimens has a 118 

considerable effect on the stress distribution and mechanical behavior of triaxial test 119 

specimens. ASTM D2850 (2007) recommends length-to-diameter ratios between 2 and 2.5 120 

for triaxial testing specimens. In the present study, cylindrical specimens with length-to-121 

diameter ratio of 2 (height = 100 mm and diameter = 50 mm) were used. Since, obtaining 122 

undisturbed samples under the groundwater level was not possible, especially for the sandy 123 

soil, all of the soil samples were prepared by remolding in accordance with the unit weight, 124 

porosity and water content of the in-situ soils.   125 

The sleeve molds of the frozen soils were radially rigid and hence, prevented the radial 126 

expansion of the samples. So, freezing induced heaving only occurred in the vertical 127 

direction from the top and bottom of the specimens which were then flattened. It is worth 128 



mentioning that heat transfer could occur in the radial direction because of the insulation 129 

from the top and bottom. This process was adopted for accurate simulation of the frozen 130 

soil conditions around the freeze pipes in the AGF technique. Fig. 6 shows a sleeve curing 131 

mold for frozen soil which was used in this research.  132 

 133 

Testing program  134 

The mechanical tests were conducted under axisymmetric condition according to the ASTM 135 

D4083 (2016). The stress condition of the frozen soil in the triaxial compression apparatus 136 

is shown in Fig. 7.   137 

Various factors affect the mechanical behavior of frozen soils. Also, the type of unfrozen 138 

soil affects the mechanical behavior of the soil after freezing. One of the main goals of this 139 

study is to investigate the influence of freezing and reduction in temperature on the stress-140 

strain behavior of soils. The effects of loading (strain rate) on the frozen and unfrozen 141 

specimens are also investigated. After preparation, the specimens were placed in the triaxial 142 

chamber and a series of triaxial shear tests were performed. 143 

 144 

Results and discussion  145 

The variable parameters were temperature and loading (strain) rate of the soil. The 146 

experimental samples including the frozen SP soil, frozen CL soil and ice, before and after 147 

the test are shown in Figs. 8 to 10, respectively.  148 

As shown in Figs. 8 and 9, and based on the laboratory observations, all the frozen SP and 149 

CL specimens exhibited ductile behavior during shearing. This was not observed in the ice 150 

specimens which showed a brittle behavior (Fig. 10). In what follows, the effect of each 151 

variable on the behavior of the tested materials is presented and discussed.  152 

 153 



Effect of freezing on stress-strain behavior of saturated cohesive soils   154 

To study the effect of freezing on the stress-strain characteristics of the soils, triaxial 155 

experiments were carried out on identical samples of SP and CL soils under the same cell 156 

pressure and strain rate but at different temperatures. Fig. 11 shows the effect of freezing 157 

and reduction in temperature on the saturated CL soil under cell pressure of 200 kPa and 158 

loading with displacement rate of 1 mm/min. It is seen that the behavior of the unfrozen CL 159 

soil is almost linear elastic up to the yield point after which the soil experiences elastoplastic 160 

behavior. The yield stress increases with decreasing the temperature. The general trend of 161 

behavior is nearly the same as that of the frozen CL soil in freezing temperatures close to 162 

0°C. Decreasing the freezing temperature to -1°C, -4°C, -7°C and -11°C increases the shear 163 

strength of the CL soil by 591%, 1696%, 3027% and 4817%, respectively and the soil 164 

behavior gradually changes to strain hardening.  165 

Fig. 12 shows the influence of freezing and decrease in temperature on the unfrozen CL 166 

soil, frozen CL soil and pure ice at cell pressure of 200 kPa and loading with displacement 167 

rate of 1 mm/min. The results show that, under the same conditions (cell pressure of 200 168 

kPa and displacement rate of 1 mm/min), pure ice exhibits a strain-softening behavior and 169 

this softening increases with decrease in temperature. Following the softening after peak 170 

state, the pure ice reaches nearly the same residual state in all temperatures. The shear 171 

strength of frozen CL soil at temperatures -1°C, -3°C and -5°C is less than that of the pure 172 

ice at the same temperatures. However, at lower temperatures (-7°C and lower), the shear 173 

strength of the frozen CL soil is larger than the pure ice. The effect of freezing and 174 

temperature reduction on elastic modulus of the CL soil is presented in Table 3. The results 175 

show that freezing leads to a significant increase in the elastic modulus of the soils; by 176 

freezing, elastic modulus of the SP and CL soils shows increase of 1351% and 159%, 177 

respectively. This increase due to freezing is much greater for the SP soil.  Also, reduction 178 



of temperature from -1°C to -11°C causes to further increase in elastic modulus of 47% and 179 

38% for the frozen SP and CL soils, respectively. This increase is slightly larger for the SP 180 

soil. 181 

 182 

Effect of freezing on mechanical behavior of saturated granular soil 183 

The influence of freezing and reduction in temperature on the performance of the saturated 184 

SP soil under cell pressure of 200 kPa and displacement rate of 1 mm/min is shown in Fig. 185 

13. The results show that the behavior of the unfrozen SP soil is strain-hardening while the 186 

frozen SP soil reveals a strain-softening behavior. A peak state is realized in the behavior 187 

of the frozen SP soil which occurs at higher strains by decreasing temperature. Decreasing 188 

the freezing temperature to -1°C, -4°C, -7°C and -11°C increases the shear strength of the 189 

SP soil by 390%, 810%, 1174% and 1472%, respectively.  190 

Fig. 14 shows the influence of freezing and decrease in temperature on the behavior of the 191 

unfrozen and frozen SP soil and pure ice at same cell pressure and loading (displacement) 192 

rate (200 kPa and 1 mm/min, respectively). The results show that the pure ice and the frozen 193 

SP soil exhibit strain-softening behavior. In contrast to the frozen SP soil, decreasing 194 

temperature leads to a peak state in the stress-strain behavior of pure ice occurring at lower 195 

strains. Under the same conditions (of temperature, cell pressure and loading rate) the shear 196 

strength of the frozen SP soil is much greater than that of pure ice.  The effect of freezing 197 

and temperature reduction on modulus of elasticity of the SP soil is presented in Table 3. It 198 

is seen that freezing results in a significant increase in modulus of elasticity for both CL and 199 

SP specimens. Also, decrease in temperature leads to a significant increase in the elastic 200 

(Young’s) modulus of pure ice.  201 



The results show that the shear strength of the frozen SP soil is significantly greater than 202 

that of the frozen CL soil, especially at low temperatures. However, the influence of freezing 203 

on the increase in shear strength of the CL soil is much greater than the SP soil.  204 

 205 

Effect of strain rate  206 

To examine the effect of loading (strain rate) on the behavior of the frozen ground, a set of 207 

triaxial experiments were conducted on the specimens of the unfrozen and frozen CL and 208 

SP soils and pure ice at constant cell pressure, temperature and ice saturation (according to 209 

the site conditions). Fig. 15 shows the influence of loading rate on the unfrozen and frozen 210 

CL soil and pure ice under cell pressure of 200 kPa at -3°C. For the loading, displacement 211 

rates of 0.2, 0.5 and 1 mm/min were selected for this study. The results show that the shear 212 

strengths of the unfrozen CL soil, frozen CL soil and pure ice increase with increasing the 213 

strain rate. The increase in strain rate from 0.2 to 0.5 mm/min and from 0.5 to 1 mm/min 214 

leads to 37.1% and 280.3% increase in shear strength of the unfrozen CL, respectively. For 215 

the same increases in strain rate, the corresponding values of increase in shear strength are 216 

25.6% and 20% for the frozen CL and 11.5% and 11.4% for the pure ice, respectively. It is 217 

noted that the rate of increase in shear strength due to increase in loading (strain) rate, is 218 

larger for the unfrozen CL soil than the frozen CL soil and for the frozen CL soil than the 219 

pure ice. However, the magnitude of shear strength for pure ice is greater than the frozen 220 

CL soil and for the frozen CL soil is greater than the unfrozen CL soil. It is noted that the 221 

variation of strain rate has no effect on the type of behavior of the studied materials; so that, 222 

the frozen and unfrozen CL soils still show strain-hardening behavior and pure ice exhibits 223 

strain-softening behavior. Table 4 presents the effect of strain rate on the elastic modulus of 224 

the materials tested under cell pressure 200 kPa at -3°C. It is shown that the modulus of 225 

elasticity of these materials generally increases with increasing strain rate.  226 



Fig. 16 illustrates the effect of loading rate on the behavior of the unfrozen and frozen SP 227 

soil and the pure ice under cell pressure of 200 kPa at -3°C. The results show that increase 228 

in loading (displacement) rate from 0.2 to 0.5 mm/min and from 0.5 to 1 mm/min leads to 229 

27.4% and 15.8% rise in shear strength of the unfrozen SP soil, respectively. These values 230 

for the frozen SP soil are 21.7% and 36%, respectively. The increase in shear strength due 231 

to the increase in the strain rate is greater for the frozen SP soil at lower strain rates and for 232 

the unfrozen SP soil at higher strain rates. This increase in strength for pure ice is less than 233 

both the frozen and unfrozen SP soils. However, the shear strength of the frozen SP soil is 234 

greater than the pure ice and that of pure ice is greater than the unfrozen SP soil. The 235 

variation of strain rate has no effect on the type of behavior (strain-hardening or strain-236 

softening) of the unfrozen and frozen SP soil. The observed influence of strain rate on shear 237 

strength of the unfrozen SP and CL soils shows a good agreement with the results reported 238 

by Svoboda (2013).  239 

The results show that, overall, the AGF technique can be recommended for the CL and SP 240 

soils in Line 2 of Tabriz Subway, as freezing greatly improves the shear strength of both 241 

soils. 242 

 243 

Conclusion  244 

This paper presented the results from a comprehensive program of experimental 245 

investigation to study the effect of freezing on the stress-strain behavior of the ground in 246 

Line 2 of the Tabriz Subway. This was done for assessing the potential of using the AGF 247 

technique for excavation and tunneling projects in Tabriz Subway. Strain-controlled triaxial 248 

compression tests were carried out on unfrozen and frozen specimens of CL and SP soils, 249 

and pure ice. The influence of freezing, temperature reduction and strain rate on the 250 

mechanical behavior of these materials was investigated. All the soils exhibited ductile 251 



behavior but the pure ice showed brittle failure. The unfrozen CL and SP soils and the frozen 252 

CL soil showed strain-hardening behavior while the frozen SP soil and pure ice exhibited 253 

strain-softening behavior. Under the same test conditions, the shear strength of the frozen 254 

SP soil is greater than the frozen CL soil. However, the rate of increase in shear strength 255 

due to freezing and reduction in temperature is much greater for the frozen CL soil. In all 256 

cases, the shear strength of the frozen SP soil is greater than pure ice. At temperatures 257 

between -1°C to -5°C, the shear strength of pure ice is greater than the frozen CL soil; but, 258 

at lower temperatures, the strength of the frozen CL soil is greater. The modulus of elasticity 259 

of the materials tested increase due to freezing and temperature reduction. Generally, the 260 

Young’s modulus and strength of the frozen SP and CL soils increase with increasing the 261 

strain rate. The occurrence of such a significant increase is likely to be due to reinforcing of 262 

the soil with the ice matrix in frozen soil system. Finally, based on the obtained results, the 263 

utilization of the AGF technique is endorsed for the CL and SP soils in Line 2 of Tabriz 264 

Subway, as freezing greatly improves the shear strength and shear behavior of both soils. 265 
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Figures 349 

 350 

Fig. 1 Illustration of a double sleeve freezing pipe (Zhou, 2013)  351 

  352 



 353 

Fig. 2 Influence of temperature on the unfrozen water of various frozen soils (Ziegler et 354 

al., 2009) 355 

  356 



 357 

Fig. 3 Schematic layout of triaxial test apparatus for frozen soils: (1) confining pressure 358 
valve, (2) pedestal, (3) thermal isolators, (4) triaxial chamber, (5) rigid chassis, (6) 359 

drainage valve, (7) circulating brine, (8) ethanol, (9) heat transducer, (10) pump, (11) 360 
thermostat-thermometer, (12) refrigeration plant, (13) reverse fan, (14) cooling pump, (15) 361 

condenser, (16) compressor, (17) evaporator, (18) deviatoric stress, (19) frozen soil 362 
specimen, (20) LVDT, (21) Load cell.   363 



 364 

Fig. 4 Underground stratification in the sampling borholes area  365 

  366 



 367 

Fig. 5 Grain size distribution of the soils  368 
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 370 

Fig. 6 Aluminum sleeve mold for frozen soil 371 

  372 



 373 

Fig. 7 Stress condition of frozen soil specimen; "A" is confining pressure ( r ); "B" is 374 

deviatoric stress ( d ); "C" is major principle stress ( a )  375 

  376 



 377 

Fig. 8 Effect of freezing and temperature reduction on the CL specimens 378 

  379 



 380 

Fig. 9 Effect of freezing and temperature reduction on the behavior of the unfrozen and 381 
frozen CL soil and pure ice   382 



 383 

Fig. 10 Effect of freezing and temperature reduction on the behavior of the SP soil 384 

  385 



 386 

Fig. 11 Effect of freezing and temperature reduction on the behavior of the unfrozen and 387 
frozen SP soil and pure ice   388 



 389 

Fig. 12 Effect of strain rate on the shear behavior of the CL soil (UCL: unfrozen CL, I: 390 
pure ice and FCL: frozen CL)   391 



 392 

Fig. 13 Effect of strain rate on the shear behavior of the SP soil (USP: unfrozen SP, I: pure 393 
ice and FSP: frozen SP) 394 
  395 



Tables 396 

 397 

 398 

 399 

 400 

Table 1 Physical properties of the SP soil  401 

Soil 

classification 

sat  

(KN/m3) 

Φ(°) Gs G(%) S(%) 

S & M 

(%) 

Cu Cc 

SP 19.1 33 2.635 0 98.8 1.2 2.17 1.04 

 402 

  403 



 404 

 405 

 406 

 407 

 408 

 409 

 410 

Table 2 Physical properties of the CL soil 411 

Soil 

classification 

sat  

(KN/m3) 

Gs G(%) S(%) 

S & M 

(%) 

LL(%) PL(%) PI(%) 

CL 21.1 2.7 2 14 84 49 24 25 
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 416 

Table 3 Effect of freezing and temperature reduction on modulus of elasticity (kPa) of the 417 

SP and CL and pure ice at cell pressure 200 kPa and loading (displacement) rate 1 418 

mm/min. 419 

Temperature 

(°C) 

CL 

(kPa) 

SP 

(kPa) 

Ice 

(kPa) 

Unfrozen 7342 8882 - 

-1 19033 128831 55483 

-2 27686 135828 - 

-3 33855 144230 69441 

-4 41041 149834 - 

-5 52129 154122 1044565 

-6 67677 160191 - 

-7 77233 171457 153113 

-8 83165 180916 - 

-9 92064 189994 - 

-10 97352 194446 - 

-11 102928 201442 - 
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 426 

Table 4 Effect of freezing and temperature reduction on modulus of elasticity (kPa) of all 427 

specimens under cell pressure 200 kPa at -3°C. 428 

Strain rate  0.2mm/min 0.5mm/min 1mm/min 

Unfrozen CL 346 1297 7342 

Frozen CL 31084 32814 33855 

Unfrozen SP 5877 7196 8882 

Frozen SP 122759 135960 144230 

Pure ice 64706 72172 69440 
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