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BROUWER’S FAN THEOREM AND CONVEXITY

JOSEF BERGER AND GREGOR SVINDLAND

Abstract. In the framework of Bishop’s constructive mathematics we introduce co-convexity as a
property of subsets B of {0.1}*. the set of finite binary sequences. and prove that co-convex bars are
uniform. Moreover, we establish a canonical correspondence between detachable subsets B of {0.1}"
and uniformly continuous functions f* defined on the unit interval such that B is a bar if and only if the
corresponding function f is positive-valued, B is a uniform bar if and only if /" has positive infimum. and
B is co-convex if and only if f satisfies a weak convexity condition.

§1. Introduction. In their seminal article [7], Julian and Richman established the
following correspondence between detachable subsets B of {0, 1}* and uniformly
continuous functions on the unit interval.

PROPOSITION 1.1.  For every detachable subset B of {0, 1}* there exists a uniformly
continuous function f : [0, 1] — [0, oo[ such that

(i) Bisabar < f is positive-valued,

(i) B is a uniform bar <>, [ has positive infimum.

Conversely, for every uniformly continuous function f : [0, 1] — [0, oo there exists a
detachable subset B of {0, 1}* such that (i) and (i) hold.

Consequently, Brouwer’s fan theorem for detachable bars, D-FAN, is equivalent
to the statement that every uniformly continuous, positive-valued function on [0, 1]
has positive infimum. On the other hand, in [3, Theorem 1] we have shown that if
the function is convex, the fan theorem is no longer required.

THEOREM 1.2. Suppose that f : [0.1] — 10,00[ is uniformly continuous and
convex. Then f has positive infimum.

Therefore, the question arises whether there is a constructively valid ‘convex’
version of the fan theorem. To this end, we define ‘co-convexity’ as a property of
subsets B of {0,1}* and show in Theorem 2.1 that there indeed is such a result.
Moreover, in Theorem 3.4, we include the following correspondence

(iii) B is co-convex < f is weakly convex
into the list of Proposition 1.1, where weak convexity of functions generalises con-

vexity. The way we achieve our aim shows some similarities with the proofs presented
in[2] and [7], butin the crucial parts we need to proceed differently in order to include
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1364 JOSEF BERGER AND GREGOR SVINDLAND

(iii), in particular when deriving the function f with properties (i)—(iii) for some
given detachable set B.

The framework of our presentation is Bishop’s constructive mathematics [4-6].
This includes the use of choice axioms which are compatible with intuitionistic logic
like the axiom of countable choice:

Let 4 be a set and let S be a subset of N x A. If for each n there exists ¢ in 4 such
that (n.a) € S. then there exists a function f/ : N — A4 such that (n, f(n)) € S for
eachn € N.

§2. A constructive fan theorem. We write {0, 1}* for the set of all finite binary
sequences u, v, w. Let @ be the empty sequence and let {0, 1} be the set of all infinite
binary sequences «, f3, y. For every u let |u| be the length of u, that is |¢| = 0 and for
u = (ug,....u,—1) we have [u| = n. For v = (vg....,v,_1). the concatenation u x v
of u and v is defined by

uxv = (uo,...,un_l,vo,...,vm_l).
The restriction an of a to n bits is given by
an = (ag,....05_1).

Thus |@n| = n and @0 = o. For u with n < |u|, the restriction un is defined
analogously. A subset B of {0, 1}* is closed under extensionif uxv € B forallu € B
and for all v. A sequence « hits B if there exists n such that an € B. B is a bar if
every « hits B. B is a uniform bar if there exists N such that for every « there exists
n < N such that @n € B. Often one requires B to be detachable, that is for every
u the statement u € B is decidable. Now we are ready to introduce Brouwer’s fan
theorem for detachable bars.

D-FAN : Every detachable bar is a uniform bar.
In Bishop’s constructive mathematics, D-FAN is neither provable nor falsifiable, see
[5. Section 3 of Chapter 5]. Define
u<v:& ul = A3k <|ul(uk =0k Nup =0Av =1)
and
u<v:su=vVvu<o.

Note that u < v means that u and v are on the same level and u is to the left of v. A
subset B of {0, 1}* is co-convex if for every @ which hits B there exists n such that
either

{vlv<an}CB or {v|an<wv}CB.
Note that, for detachable B, co-convexity follows from the convexity of the
complement of B, where C C {0, 1}* is convex if for all u, v, w we have

u<v<wAuweC=vecdC.
Define the upper closure B’ of B by
B' = {u| 3k < |u| (uk € B)}.

Note that B is a (uniform) bar if and only if B’ is a (uniform) bar. Moreover, if
B is detachable then B’ is also detachable. Therefore, we may assume that bars are
closed under extension.
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BROUWER’S FAN THEOREM AND CONVEXITY 1365

THEOREM 2.1. Every co-convex bar is a uniform bar.

Proor. Fix a co-convex bar B. Since the upper closure of B is also co-convex, we
can assume that B is closed under extension. Define

C={u|3InVw e {0,1}" (u*xw € B)}.

Note that C consists of the set of nodes beyond which B is uniform. Note that
B C C and that C is closed under extension as well. Moreover, B is a uniform bar
if and only if there exists n such that {0, 1}" C C.
First, we show that
Vu3di € {0.1} (uxieC). (1)
Fix u. For
P=ux1x0x0%x0x---

there exist an / such that either
{v |v < ﬁl} CB
or _
{v | pI < v} C B.
Since B is closed under extension, we can assume that/ > |u|+1. Letm = [ —|u|—1.
If {v v < Fl} C B, we can conclude that

ux0*xw € B
for every w of length m, which implies that u x 0 € C. If {v | pI < v} C B, we
obtain
uxlxwéeB
for every w of length m, which implies that u « 1 € C. This concludes the proof of
(1).
By countable choice, there exists a function F : {0, 1}* — {0, 1} such that
Vu (uxF(u)e C).
Define a by
o, =1 — F(an).
Next, we show by induction on 7 that
VnVu € {01} (u #an=uec C). (2)

If n = 0, the statement clearly holds, since in this case the statement u # @n is
false. Now fix some 7 such that (2) holds. Moreover, fix w € {0, 1}"+1 such that
w #aln+1).

CasE 1. wn # an. Then wn € C and therefore w € C.

CasE 2. w = @n * (1 — o) = @n * F(an). This implies w € C. So we have
established (2).

There exists n such that @n € B. Applying (2) to this n. we can conclude that
every u of length n is an element of C, thus B is a uniform bar. -
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1366 JOSEF BERGER AND GREGOR SVINDLAND

REMARK 2.2.

(a) Note that we do not need to require that the co-convex bar B in Theorem 2.1
be detachable.

(b) If B is detachable, the function F in the proof Theorem 2.1 can be defined
directly—without using countable choice—by F(u) = 0 if

Im (Vw € {0.1}" (ux0xw e B)yAJw € {0,.1}" (ux1xw ¢ B)).

and F(u) = 1, otherwise.

§3. A correspondence between subsets of {0, 1}* and functions on [0, 1]. We recall
a few basic notions of constructive analysis. Fix an inhabited subset S of R. A real
number x is a lower bound of S if
Vs e S (x <ys)
and the infimum of S if it is a lower bound of .S and
Ve>03s e S(s<x+e).

In this case we write x = inf S. We cannot assume that every inhabited set with a
lower bound has an infimum. However, under some additional conditions, this is
the case. See [6, Corollary 2.1.19] for a proof of the following criterion.

Lemma 3.1. Let S be an inhabited set of real numbers which has a lower bound.
Assume further that for all p,q € Q with p < q either p is a lower bound of S or else
there exists s € S with s < q. Then S has an infimum.

For X C R, a function f : X — R is weakly increasing if
Vs.te X (s<t = f(s)< f(1).

strictly increasing if
Vs.teX (s<t = [f(s)< f(1)).

and monotone if either f or — f is weakly increasing.
A subset S of a metric space (X, d) is totally bounded if for every e > 0 there exist
Slavnns s, € S such that

VseSTief{l.....n} (d(s.5;) <e)

and compact if it is totally bounded and complete (i.e.. every Cauchy sequence in
S has a limit in S). Proofs of the following basic statements can be found in [6
Section 2.2].

LeEMMA 3.2. (1) If S is totally bounded, then for all x € X the distance
d(x.S)=inf{d(x.s)|s € S}

exists and the function x v+ d(x. S) is uniformly continuous.
(ii) Uniformly continuous images of totally bounded sets are totally bounded.
(iii) If S is totally bounded and f : S — R is uniformly continuous. then

inf f =inf {f(s) | s € S}

exists.

Downloaded from https://www.cambridge.org/core. UB der LMU Miinchen, on 05 Sep 2019 at 13:30:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2018.49


https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.49
https://www.cambridge.org/core

BROUWER’S FAN THEOREM AND CONVEXITY 1367

We want to include convexity in the list of Proposition 1.1. To this end, we
introduce a suitable convexity condition for functions. Let S be a subset of R. A
function f : S — R is weakly convex if forall t € S with f(#) > 0 there exists e > 0
such that either

VseS(s<t = f(s)>e)
or
VseS(t<s = fl(s)>e).

We want to relate this condition to the usual notions of convexity for functions.
Recall that a function f : [0, 1] — R is convex if we have

fOUs+ (0 =2)t) <if(s)+ 1 =2)71()

and quasiconvex if we have

S (s + (1= 2)1) <max (f(s). £ (1))
forall s,z € [0,1] and all A € [0, 1]. Note that convexity implies quasiconvexity.
Lemma 3.3. Fix a function f :[0,1] — R.

(a) If f is weakly convex, then the set {t | f(t) <0} is convex. With classical
logic, the reverse implication holds as well, if fis continuous. This illustrates
that weak convexity is indeed a convexity property.

(b) Monotone functions are weakly convex.

Now assume that [ is uniformly continuous.

(¢c) If f is quasiconvex, then it is weakly convex.
(d) Let D be a dense subset of [0.1]. Then f is weakly convex if and only its
restriction to D is weakly convex.

ProOF. We only show (c). Fix ¢ € [0, 1] and suppose that f(¢) > 0. By part (iii)
of Lemma 3.2, the real numbers

t=1inf {f(s) | s €[0,¢]}
and
n=inf{f(s)[se[1]}
exist. We either have 0 < 7 or 1 < f(¢). If 0 < 1. we are done. So assume that

1 < f(1). We either have 0 < 7 or < f(¢). Again, in the first case, we are done.
The second case can be ruled out in view of 1 < f () and the quasiconvexity of 1. -

Now we can state the main theorem.

THEOREM 3.4. For every detachable subset B of {0, 1}* which is closed under
extension there exists a uniformly continuous function f : [0, 1] — R such that

(a) Bisabar < f is positive-valued,

(b) B is auniform bar < inf f >0,

(c) B is co-convex < f is weakly convex.
Conversely, for every uniformly continuous function f : [0,1] — R there exists a
detachable subset B of {0, 1}* which is closed under extension such that (a), (b), and
(¢) hold.

We split the proof of Theorem 3.4 into two parts.
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1368 JOSEF BERGER AND GREGOR SVINDLAND

PART I: CONSTRUCTION OF A FUNCTION f FOR GIVEN B.

Fix a detachable subset B of {0, 1}* which is closed under extension. We can
assume that @ ¢ B. (Otherwise, let f be the constant function ¢ +— 1.) First, we
define a function g : [0, 1] — R which satisfies the properties (1) and (2) of Theorem
3.4. Then, we introduce a refined version f of g which satisfies all properties of
Theorem 3.4. Define metrics

di(s.1) =
on R and R?, respectively. The mapping
(o, ) s inf {2—’< | @k = Ek}

is a compact metric on {0, 1}, See [5. Section 1 of Chapter 5] for an introduction
to basic properties of this metric space. Let & : {0, 1} — [0,1] be the standard
embedding of Cantor space into the reals as the Cantor set. Then

o)
a)=2- Zak L3,
k=0

so k is uniformly continuous. The next lemma immediately follows from the
definition of k.

dr((x1.x2). (y1.32)) = [x1 — y1| + [x2 — 12|

Lemwma 3.5. For all a, f and n, we have

an=fn = |kla)—r(p)] <37"

an=pn A a,<pu = kla)+3"0 <k(p)
an # fn = |k(a) — k()] >37"

an < fn = kla) <k(p).

Now define

s {011 5 [0.1]. al—>1nf{3 k|ak¢B}

LemmA 3.6. The function ng is well-defined—the infimum in the definition of np
always exists—and uniformly continuous. If ng(c) > 0, there exists k such that

(1) @k ¢ B
(2) ak+1)eB

(3) ng(a) =375

Moreover,
ane B < npla) >3 o ppla) >37"

forall a and n.
We consider the following, more abstract version of Lemma 3.6.
LEMMA 3.7. For every weakly increasing function h : N — {0, 1} with h(0) = 0

the set
s = {371 (k) = 0}

has an infimum. If inf S > 0, there exists k such that

(1) h(k)=0
(2) hk+1)=1
(3) infS =37k,
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BROUWER’S FAN THEOREM AND CONVEXITY 1369

Moreover,
hin)=1 < infS>3""! o infS>37"
foralln.

ProoF. Note that 1 € S and that 0 is a lower bound of S. Fix p.q € Q with
p<q.If p <0, pisalower bound of S. Now assume that 0 < p. Then there exists
k with 37% < p. If h(k) = 0, there exist s € S (choose s = 37X) with s < ¢. If
h(k) = 1, we can compute the minimum sy of S. If p < s¢. p is a lower bound of S
if 5o < ¢, there exists s € S (choose s = s59) with s < ¢.

If inf S > 0, there exists / such that 3~/ < inf S. Therefore, 4(I) = 1. Let k be
the largest number such that (k) = 0.

Assume that #(n) = 1. Let / be the largest natural number with /(/) = 0. Then
/| <n—1andthusinfS =3~/ >3-+l

Assume that inf S > 37", Then there exists k with (1), (2). and (3). We obtain
k < n and therefore i(n) = 1.
_|

Set
C = {k(a)|ae{0.1}"}
and
K = {(k(a).np(a)) | a € {0.1}"}.
Lemma 3.8. The sets C and K are compact.

PrROOF. Both sets are uniformly continuous images of the compact set {0, 1} and
therefore totally bounded. Suppose that «(a”) converges to ¢ and 77z(a”) converges
to s. By Lemma 3.5. the sequence () is Cauchy, therefore it converges to a limit c.
Then x(a") converges to k() and 3 (a”) converges to 575 (a). Therefore t = k()
and s = 5p(a). Thus we have shown that both C and K are complete. -

In the following, we will use Bishop’s lemma, see [4. Chapter 4, Lemma 3.8].

LemMmA 3.9. Let A be a compact subset of a metric space X, and x a point of X .
Then there exists a point a in A such that d(x.a) > 0 entails d(x, A) > 0.

Define
g :[0,1] = [0.00[. t = d>((2.0).K).

ProrosiTION 3.10. (1) Bisabar < g is positive-valued
(2) B is auniformbar < infg > 0.

PrOOF. Assume that B is a bar. Fix ¢ € [0, 1]. In view of Bishop’s lemma and the
compactness of K, it is sufficient to show that

d((2.0). (k(a).np(a))) >0
for each «. This follows from #z(a) > 0.
Now assume that g is positive-valued. Fix «. Since

dr((k(a).0). K) = g(k(a)) > 0.
we can conclude that

dy((k().0). (k(a). n5(a))) > 0.
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1370 JOSEF BERGER AND GREGOR SVINDLAND

Thus 5(a) is positive which implies that o hits B.

The second equivalence follows from Lemma 3.6 and the fact that
inf g = infzp. -

Set
—C ={te[0,1]]d(¢,C) >0}
and introduce a new function f by

f:[0.1] =R, t v+ g(t) —di(t.C).

The next lemma lists up a few properties of f and g.
LemmAa 3.11. For all o, n, and t we have

o g(k(a)) = f(k(a)) <npla)
o f(k(a)) >3 = ancB
eancB = f(k(a))>3""
o di(t.C) < gl(1).

Next, we clarify how f behaves on —C.

LEMMA 3.12. The set —C is dense in [0, 1]. For every t € —C there exist unique
elements a.a’ of C such that

(a) t €la.a'[C -C.
(b) di(t.C) =min (di(t.a).d\(t.a")).

Moreover, settingy = k=" (a) and y' = k=" (a’). we obtain

(c) Vvn(jne B A yne B = f(1)>3"")
(d) ifdi(t.a) < di(t.a"). then

yhits B & f(1)>0 < inf{f(s)]a<s<t}>0
(e) ifdi(t.a’) < d\(t.a), then
y hits B < f(t)>0 < inf{f(s)]t<s<a'}>0.

Proor. Fix ¢t € [0.1]and 6 > 0. If d;(¢. C) > 0. then t € —C. Now assume that
there exists a such that d, (¢, k() < /2. There exists u such that d (k(a). 1,) < /2
where

tu:%-K(Z/I*O*1*1*1*---)—'—%.K/(u*l*O*O*O*...)‘
Note that 7, € —C and that d,(z.1,) < J.So —C is dense in [0. 1].

Fix t € —C. Since for any « it is decidable whether k(o) > ¢ or k() < ¢, the
sets Ce, = {s € C | s<t}and Cs;, = {5 € C | s > t} are compact. Let a be the
maximum of C, and let a’ be the minimum of Cs,. Clearly. @ and a’ fulfil (a) and

(0).
In order to show (c), assume that yn € B and y’n € B. Fix a. We show that
dr((2.0). (k(e).np(a))) — di(2.C) = 37" (3)

First, assume that x(a) < ¢. Then we have

dr((2.0). (k(a).np(a))) — di(t.C) = k(y) — £(e) + np(a).
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BROUWER’S FAN THEOREM AND CONVEXITY 1371

If @n = yn. then @n € B and we can conclude that #3(a) > 37!, by Lemma 3.6.
On the other hand. Lemma 3.5 implies that x(y) — x(a) < 37", This proves (3). If
an # yn. then k(y) — k(a) > 37", by Lemma 3.5. This also proves (3). The case
t < k() can be treated similarly.

In order to show (d). set 1 = d\(t.a’) — di(t,a) and suppose that yn € B.
Set ¢ = min (z,37"). Fix s with a < s < t. We show that f(s) > e. Note that
di(s,C) = s — a. Fix a.. We show that

d>((5.0), (k(a). np(@))) — (s —a) > e.

If a’ < k(a), we obtain

d>((5.0), (k(a), np(a))) = (s —a) >
kla)—s—(s—a)>1>¢.
If k(a) < a. we obtain
d>((5.0). (k). np(a))) = (s —a) =5 — kla) +npla) — (s —a) =
nela) +a — k() >37" >,
where #p(a) + a — k(o) > 37" is derived by looking at the cases an = yn and
an # yn separately.
Now assume that /() > 0. We show that y hits B. If f(¢) > 0, theng(¢t) >t —a.
On the other hand. we have

g(t) < a((¢.0).(a.np(y))) =t —a+np(y).
son7p(y) > 0. By Lemma 3.6, this implies that y hits B.
The statement (e) is proved analogously to (d). -

The next lemma is very easy to prove, we just formulate it to be able to refer to it.

LemMA 3.13. For real numbers x < y < z and d > 0 there exists a real number y’
such that

e x<y <z

o di(y.y') <o

o di(x.y") <d\(y'.z) ordi(x.y") > di(y'. 2).
For a function F defined on {0, 1}V, set

Fu)=Fu*0x0%0x%---). 4)
Now we can show that /" has all the desired properties.

PrOPOSITION 3.14.  (a) Bisabar < f is positive-valued

(b) B is auniform bar < inf f >0

(c) B is co-convex < [ is weakly convex.

PrOOF. (a) “=". Suppose that B is a bar and fix 7. By Proposition 3.10, we obtain
g(t) > 0.Ifdi (¢, C) < g(¢), then f(¢) > 0, by the definition of /. If 0 < d,(z. C).
we can apply Lemma 3.12 to conclude that f () > 0.

(a) “<=".If f is positive-valued, then g is positive-valued as well and Proposition
3.10 implies that B is a bar.
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1372 JOSEF BERGER AND GREGOR SVINDLAND

(b) “=".1f B is a uniform bar, Proposition 3.10 yields
e:=1infg > 0.
Moreover, there exists # such that {0, 1}” C B. Fix ¢ > 0 such that
ls—t<o = |f(s) = f()]<e/2
for all s and ¢. Fix ¢. If d,(z, C) < J. we can conclude that
f(t) >e/2
by the choice of € and §. If d, (¢, C) > 0, Lemma 3.12 and {0. 1}" C B imply that
[ =37
So we have shown that inf / > min (¢/2.37").

(b) “«<=”. If inf f > 0, then inf g > 0, and Proposition 3.10 implies that B is a
uniform bar.

(c) “=”. By part (d) of Lemma 3.3 and Lemma 3.12, it is sufficient to show that
the restriction of f to —C is weakly convex. Fix ¢ € —C and assume that f (z) > 0.
Choose a. a’. y and y’ according to Lemma 3.12. In view of Lemma 3.13 and the
uniform continuity of /", we may assume without loss of generality that either

di (a,t) < d](l,a/) or d (Cl,l) > d](l‘,a/).

Consider the first case. The second case can be treated analogously. By Lemma 3.12,

we obtain
r=inf {f(s)|a<s<t}>0.

In particular, f (k(y)) > 0., so y hits B. There exists n such that either
{viv<yn}CB (5)
or
{v|7n<v}CB. (6)
Set e = min (1.37") . In case (5), we show that
Vse—-C(s<t = f(s)>e).

as follows. Assume that there exists s € —C with s < ¢ such that f(s) < ¢. Then,
by the definition of 7, we obtain that s < a. Applying Lemma 3.12 again, we can
choose a and o’ such that

s € }fc(oz),/c(o/)[ C —C.
Then an < a’n < yn. Thus both an and a’n are in B. This implies f(s) > 37",
which is a contradiction. In case (6). a similar argument yields

Vse—-C(1<s = f(s)>e).

(c) “<=”. Assume that f is weakly convex. Fix o and suppose that o hits B. Then
Lemma 3.11 implies that f(k(a)) > 0. By the weak convexity of /. there exists
1 > 0 such that either

Vs (s <wla) = f(s)>1) (7)
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or else
Vs (k(a) <s = f(s)>1). (8)

Fix n large enough such that @n € B and 37" < 1. Assume that (7) holds. Fix v
with v < @n. Then (v) < k(). If v ¢ B, then, by Lemmas 3.6 and 3.11,

f (k) = g(k(v) <nplv) < 37"
This contradiction shows that
{v|v<an}CB.

Now, consider the case (8). Fix v with @n < v. Then k(o) < k(v). If v ¢ B. then
f(k(v)) < 37" This contradiction shows that

{v|an <wv}CB. 4

PART II: CONSTRUCTION OF A SET B FOR GIVEN f.
Set

& {01 = [0.1]. a — Zak o= lkt1).
k=0

One cannot prove that ' is surjective, since this would imply LLPO. Note, however,
that every rational ¢ € [0, 1] is in the range of x’. Moreover, we make use of the
following lemma, see [1, Lemma 1].

Lemma 3.15. Let S be a subset of [0, 1] such that
VaZe >0V €[0.1] (|t —&'(a)| <e=1€S).
Then S = [0, 1].
The next lemma is a typical application of Lemma 3.15.
LemmA 3.16.  Fix a uniformly continuous function f : [0, 1] — R and define
F:{0.1}N =R a— f(k(a)).

Then

(1) f is positive-valued < F is positive-valued,
(2) inf f >0 < inf F>0.

ProOF. In (1), the direction “="is clear. For “<”, apply Lemma 3.15 to the set
S={te[0.1]] f(z) > 0}.

The equivalence (2) follows from the density of the image of «’ in [0. 1] and the
uniform continuity of f. -
In the following proposition, we use a similar construction as in [2].

ProposITION 3.17.  For every uniformly continuous function
[0 1]=-R

there exists a detachable subset B of {0, 1}* which is closed under extension such that
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(a) Bisabar < f is positive-valued,
(b) B is a uniform bar < inf f > 0,
(c) B is co-convex < [ is weakly convex.
ProoOF. Since the function
F:{0.1)N SR a— f(k(a))

is uniformly continuous, there exists a strictly increasing function M : N — N such
that
|F(a) = F(@(M(n)))] <27"

for all & and n, recalling the convention given in (4). Since M is strictly increasing,
for every k the statement
In (k = M(n))

is decidable. Therefore, for every u we can choose 4, € {0, 1} such that
du=0 = Vn(lul#M@n) v 3In(jul=Mn) A Flu)<27"?),
=1 = 3n(ul=Mn) N F(u)>2""").
The set

~
Il

B={uec{0,1}" |3 <|ul(Am=1)}
is detachable and closed under extension. Note that
Fla)>27"" = a(M(n) € B ©)
and
a(M(n)eB = F(a)>27" (10)
for all & and n. In view of Lemma 3.16. (9) and (10) yield () and (b).

In order to show (c), assume that B be co-convex. Moreover, fix ¢ € [0, 1] and
assume that f(¢) > 0. By part (d) of Lemma 3.3, we may assume that 7 is a rational
number, which implies that there exists o such that «’(a) = ¢. Now F(a) > 0
implies that « hits B. Therefore, there exists n such that either

{v|v<an}CB
or
{v|an<v} CB.
In the first case, we show that
inf {f(s) | s €[0.7]} > min (27", F(a)) . (11)

Assume that there exists s < ¢ such that f(s) < 27" and f(s) < F(«). The latter
implies that s < 7. Choose a 8 with the property that x’(f) is close enough to s
such that
&'(f) <w'(a) (12)
and
F(B) = f(s'(p)) <27 (13)
Now (10) and (13) imply that fn ¢ B. On the other hand. (12) implies that fn < @n

and therefore fn € B. This is a contradiction, so we have shown (11).
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In the case
{v|an<v}CB

we can similarly show that

inf {/(s) | s € [t.1]} > min (27", F(a)) .

Now assume that f is weakly convex. Fix an o which hits B. Then there exists n
with@(M (n)) € B and (10) implies that f (k’(a)) > 0. We choose n large enough
such that either

inf { £ (1) | 1 € [0.6'(a)] } > 27"
. inf {f(¢) | t € [k (). 1]} > 27"
By (9), we obtain
{v|v<alMn))} B

in the first case and
{v|aM(n)) <v} C B

in the second. Therefore, B is co-convex. -
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