
OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/23654

To cite this version:
Casanova, Guillaume and Pralet, Cédric and Lesire, Charles and
Vidal, Thierry Solving dynamic controllability problem of multi-
agent plans with uncertainty using mixed integer linear
programming. (2016) In: ECAI 2016, 29 August 2016 - 2
September 2016 (The Hague, Europe).

Official URL:https://www.onera.fr/sites/default/files/u518/ECAI-2016-
final.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/275588721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://www.idref.fr/137279574

Solving Dynamic Controllability Problem
of Multi-Agent Plans with Uncertainty

Guillaume Casanova 1 and Cédric Pralet 1 and Charles Lesire 1 and Thierry Vidal 2

Abstract.

Executing multi-agent missions requires managing the uncertainty

about uncontrollable events. When communications are intermittent,

it additionally requires for each agent to act only based on its lo-

cal view of the problem, that is independently of events which are

controlled or observed by the other agents. In this paper, we pro-

pose a new framework for dealing with such contexts, with a fo-

cus on mission plans involving temporal constraints. This frame-

work, called Multi-agent Simple Temporal Network with Uncer-

tainty (MaSTNU), is a combination between Multi-agent Simple

Temporal Network (MaSTN) and Simple Temporal Network with

Uncertainty (STNU). We define the dynamic controllability property

for MaSTNU, and a method for computing offline valid execution

strategies which are then dispatched between agents. This method is

based on a mixed-integer linear programming formulation and can

also be used to optimize criteria such as the temporal flexibility of

multi-agent plans.

1 Introduction

In robotic applications such as the autonomous exploration of large

and hazardous areas, better performances can be obtained by using

multiple robots. This can indeed lead to a faster achievement of the

mission due to parallel realizations of tasks, and bring redundancy

for continuing the mission in case of robot failures. One difficulty

to overcome in this context is that the tasks allocated to robots must

be coordinated, since there may exist precedence or synchronization

constraints between tasks, or more generally constraints on the min-

imum/maximum temporal distances between tasks. To handle these

multi-agent temporal constraints, Multi-agent Simple Temporal Net-

works (MaSTNs [1]) were recently introduced, with techniques for

computing, in a distributed way, allowed distances between time-

points involved in plans [1], or earliest/latest occurrence times of

time-points [2].

However, one issue when using MaSTN for robotic missions is

that MaSTN are not designed for obtaining decision strategies which

are robust to the uncertainty about the occurrence time of uncon-

trollable time-points. For instance, they are not adapted to obtain

plans which are feasible whatever the exact duration of tasks turn

out to be. Along this line, they are not as expressive as the frame-

work of Simple Temporal Network with Uncertainty (STNU [9]),

1 Onera – The French Aerospace Lab, F-31055, Toulouse, France, email:
name.surname@onera.fr

2 Ecole Nationale dIngenieurs de Tarbes, Tarbes, France, email:
name.surname@enit.fr

which makes an explicit distinction between executable time-points,

which can be directly controlled, and contingent time-points, which

cannot. In STNU, robust execution strategies describe a way to set

the occurrence time of executable time-points depending on time-

point occurences observed so far, and these strategies are built under

the strong assumption that the realization of every time-point in the

temporal network is instantaneously observed. Such an assumption

is often violated for multi-robot systems, since each event might be

observable only from a restricted set of geographical positions.

This is why we propose a new framework for managing temporal

constraints over multi-agent systems. This framework, called Multi-

agent Simple Temporal Network with Uncertainty (MaSTNU), can

be seen as an attempt to combine MaSTN and STNU. It is equipped

with algorithms to compute robust execution strategies which re-

spect every temporal constraint of the multi-agent plan despite the

uncertainty about the occurrence time of contingent time-points, and

which are applicable even in constrained environments featuring in-

termittent communications between agents. Such distributed exe-

cution strategies are obtained using a centralized offline procedure

based on a Mixed Integer Programming (MIP) formulation of what

we call the multi-agent dynamic controllability problem. This pro-

cedure is run at the mission center before triggering the coordinated

deployment of the agents on the field.

The paper is organized as follows. Sect. 2 introduces some back-

ground on STN, MaSTN, STNU, and dynamic controllability check-

ing. Sect. 3 presents the MaSTNU framework. Sect. 4 details our

MIP approach for dealing with multi-agent dynamic controllability.

Sect. 5 provides experimental results and discusses several ways to

optimize execution strategies.

2 Background

2.1 Simple Temporal Network

A standard framework for reasoning about temporal constraints is

the framework of Simple Temporal Problems (STPs [4]). Basically,

an STP is a pair S = (V,E) defined by a set V = {v1, . . . , vn} of

time-points representing event occurrence times, and a set E of tem-

poral constraints between these time-points. Each constraint e ∈ E
takes the form vj − vi ∈ [Lij , Uij], where Lij ∈ R ∪ {−∞} and

Uij ∈ R ∪ {+∞} respectively specify a minimum and a maxi-

mum temporal distance between vi and vj . A specific time-point v0
called the reference-point is usually added to V for representing a

reference temporal position, and unary temporal constraints such as

vi ∈ [L0i, U0i] can then be easily expressed as distance constraints

with regards to this reference-point (constraints vi−v0 ∈ [L0i, U0i]).

Using Mixed Integer Linear Programming

STPs have a natural graphical representation called Simple Tempo-

ral Networks (STNs), which contain one vertex per time-point in V
and one edge vi → vj labeled by [Lij , Uij] per temporal constraint

in E. STNs are appealing in practice to deal with temporal aspects

because several problems that can be formulated on STNs are solv-

able in polytime [4], such as determining whether there exists an

assignment of time-points satisfying all temporal constraints.

STNs were extended to deal with multi-agent problems on one

hand and with uncertain temporal durations on the other hand. There-

after, we give some background on these two distinct extensions.

2.2 Multi-agent Simple Temporal Network

STNs were extended to a multi-agent context, where time-points are

not controlled by a single agent but are instead partitioned among

a set of agents A. This extension is called MaSTN for Multiagent

Simple Temporal Network [1]. Formally, an MaSTN is defined by:

• a set of local STNs (one per agent a ∈ A); the local STN as-

sociated with agent a, denoted by Sa
L, is defined by V a, the set

of local time-points owned by a, and Ea
L, the set of local edges

which connect only time-points in V a;

• a set of external edges EX , each of which constrains the tempo-

ral distance between two time-points belonging to distinct agents;

apart from its local edges in Ea
L, each agent a is aware of the sub-

set of external constraints which hold on one of its local vertices.

Fig. 1 gives an example of an MaSTN involving three agents A,

B, C. Agent A (resp. B and C) owns variables vA1 to vA6 (resp. vB1
to vB8 and vC1 to vC8). Edge (vA1 , v

A
2) is an example of a local edge

for agent A. Edge (vA3 , v
B
3) is an example of an external edge in EX .

It enforces some synchronization between agents A and B.

MaSTN algorithms were defined to compute, in a distributed way,

possible temporal distance between pairs of time-points (distributed

partial path-consistency algorithms [1]), as well as earliest/latest

dates associated with time-points (distributed arc-consistency algo-

rithms [2]).

v0
vB
3

acq2 charge receiveswOn swOff

[3, 5] vB
6

vB
7

vB
8

vB
5

[2, 10]

[4, 10]

vB
1

vB
2

[1, 2] [6, 20] vB
4

[8,∞] [0,∞] [0,∞] [0,∞]

[0, 10]
[0, 0][0, 0]

vA
1

[5, 8]
acq3 acq4 sendAcq3

[3,∞] [1, 3]

[0, 16] [0, 16]

vC
4

vC
1

[1, 2] vC
2

vC
3

[3, 4] [4, 4]

sendAcq4

vC
6

vC
7

[0,∞] vC
8

[4, 7]vC
5

[0, 30]

[0, 0] [0, 0]

acq1 recharge

[2, 4] [2, 5] [0,∞]vA
4

vA
2

vA
3

[5,∞] vA
5

vA
6

[1, 1]

maintenance

Figure 1. Example of a Multi-agent STN involving 3 agents A, B, C (one
line per agent)

2.3 Simple Temporal Network with Uncertainty

In another direction, STNs were extended to Simple Temporal Net-

works with Uncertainty (STNUs [9]) in order to represent uncertain

durations, that is durations whose value is fixed by an external pro-

cess rather than by the planning agent itself.

Formally, an STNU is a triple (V,E,C), where V is a set of time-

points, E is a set of requirement links, and C is a set of contingent

links. Each requirement link is defined as in standard STN. Each

contingent link is defined by a pair of time-points (vi, vj) and by a

temporal interval [Lij , Uij] with 0 < Lij < Uij <∞. The duration

of such a contingent link, that is distance vj − vi, is known to be

between Lij and Uij , but its precise value is not controlled. In this

case, vi and vj are respectively called the activation time-point and

the contingent time-point. Last, a time-point cannot be the contingent

time-point of two distinct contingent links. Any time-point which

is not a contingent time-point for some contingent link is called an

executable time-point. In the following, we denote by VE the set of

executable time-points and by VC the set of contingent time-points.

Fig. 2 gives an example of an STNU involving six time-points plus

the reference time-point v0. Requirement links such as vB2 − vB1 ∈
[4, 6] are depicted using continuous lines, while contingent links such

as vB1 − vA1 ∈ [1, 4] are depicted using dashed lines. In this STNU,

the set of executable time-points is VE = {vA1 , v
A
2 , v

B
2 , vB3 } and the

set of contingent time-points is VC = {vB1 , vA3 }.

The fundamental problem associated with an STNU is to deter-

mine whether it is dynamically controllable, which informally means

that there exists a way to dynamically assign values to executable

time-points depending on observations collected, so that all require-

ment links are satisfied whatever the precise values of contingent

links turn out to be at execution time.

More formally, dynamic controllability over STNU can be defined

as follows. First, a projection of an STNU is an STN obtained by re-

placing each contingent link vj − vi ∈ [Lij , Uij] by a deterministic

link vj − vi ∈ [d, d] with d ∈ [Lij , Uij]. A schedule is an assign-

ment of values to all time-points. An execution strategy R can then

be defined as a mapping from projections to schedules. An execution

strategy R is said to be valid when for every projection p, sched-

ule R(p) satisfies all requirement links. An execution strategy R is

said to be dynamic iff for every executable time-point v and every

projections p1, p2 of the STNU, if the assignment of all time-points

scheduled before v are the same in R(p1) and R(p2), then the values

assigned to v in R(p1) and R(p2) are the same. In other words, the

execution time of v can only depend on the information gathered be-

fore executing v. Last, an STNU is Dynamically Controllable (DC)

iff there exists an execution strategy with is both valid and dynamic.

The STNU provided in Fig. 2 is dynamically controllable, and a

valid dynamic execution strategy can be: (a) execute vA1 at time 0,

(b) wait for vB1 to happen, (c) execute vB2 at time vB1 +4, (d) execute

vA2 at time vB2 + 6, (e) execute vB3 at time vB2 + 6, (f) wait for vA3 to

happen.

v0

vA
1

[0, 5]

vA
2 vA

3

[1, 10]

vB
1 vB

2

[4, 6]
vB
3

[6, 12]

[1, 4]
[1, 5][6, 8]

Figure 2. Example of dynamically controllable STNU

2.4 Checking Dynamic Controllability using MIP

Several algorithms do exist for checking dynamic controllability [9,

7, 5]. One of them consists in using graph-based algorithms for com-

puting mandatory wait constraints on requirement links. A wait con-

straint (vk, wijk) on a requirement link (vi, vj) ∈ E means that vj
can only be executed either after vk is executed, or after wijk time

units since the execution of vi.
In a completely different direction, DC checking on STNUs can

also be formulated as a Mixed-Integer linear Program (MIP) [3]. One

advantage of such a MIP formulation is that it can be adapted for

answering more general queries, such as minimally updating time

bounds on contingent links such that a non-DC STNU becomes DC.

Fig.3 gives the disjunctive linear model introduced in [3], from

which a MIP model can be obtained using some linearization steps.

Roughly speaking, the model contains two continuous decision vari-

ables lij and uij for each pair of time-points (vi, vj). Variables lij
and uij respectively represent the lower and upper bounds imposed

on the distance vj−vi between time-points vi and vj . The model also

contains a set of continuous wait variables wijk (one variable per

triple of time-points (vi, vj , vk) such that vk is a contingent time-

point). These variables have the same meaning as seen previously.

Discrete decision variables are present in the MIP model after the

linearization process. If a solution is found to the problem, then the

STNU is DC. See [3] for details concerning the correctness of the

modeling and the linearization process.

An optimization function fopt can easily be added to the model,

for instance to maximize the flexibility of solutions by using fopt =
∑

i<j

(uij − lij).

∀(vi, vj) ∈ E, Lij ≤ lij ≤ uij ≤ Uij (1)

∀(vi, vj) ∈ C, (lij = Lij) ∧ (uij = Uij) (2)

∀vi, vj , vk ∈ V,















lik ≤ uij + ljk ≤ uik

lik ≤ lij + ujk ≤ uik

uik ≤ uij + ujk

lij + ljk ≤ lik

(3)

∀(vi, vk) ∈ C, ∀vj ∈ VE , (ljk < 0) ∨

(

uij ≤ lik − ljk
lij ≥ uik − ujk

)

(4)

∀(vi, vk) ∈ C, ∀vj ∈ VE , uik − ujk ≤ wijk (5)

∀(vi, vj) ∈ E, ∀vk ∈ VC , min(lik, wijk) ≤ lij (6)

∀(vi, vk), (vm, vj) ∈ C2,

(wijk < 0) ∨ (wijk − lmj ≤ wimk) (7)

∀(vi, vk) ∈ C, ∀vm, vj ∈ V, wijk − umj ≤ wimk (8)

Figure 3. Disjunctive linear model for encoding DC on STNU [3]

3 Multi-agent Simple Temporal Network with
Uncertainty (MaSTNU)

3.1 Framework Definition

As explained in the introduction, STNU cannot be directly reused in

a multi-agent setting, where each agent only controls a subset of the

executable time-points and only observes the occurrence of a subset

of the contingent time-points. This is why we introduce Multi-agent

STNU (MaSTNU).

Formally, an MaSTNU is a quadruplet (A, V, E,C), with A a set

of agents and (V,E,C) an STNU (V denotes the set of executable

and contingent time-points, E the set of requirement links, and C the

set of contingent links). Additionally, as in MaSTN, time-points in

V are partitioned among A, that is for every time-point v ∈ V there

exists a unique agent a ∈ A which owns v, denoted by owner(v) =
a. Semantically speaking, if v is an executable time-point, then the

owner of v is the agent which controls the execution of the event

associated with v. If v is a contingent time-point, the owner of v
is the unique agent which is assumed to instantaneously observe the

realization of v. Time-points owned by other agents are not supposed

to be directly observed, however information about their realization

can be obtained thanks to external contingent links. Reference-point

v0 represents a clock synchronized between agent and is considered

to be simultaneously owned by all agents.

In the following, for each agent a ∈ A, V a denotes the set of

time-points owned by a, called the local time-points of a. We denote

by Ea
L (resp. Ca

L) the set of local requirement links (resp. contingent

links), which hold only on time-points owned by a. Analogously to

MaSTN, we also define EX (resp. CX) as the set of external require-

ment links (resp. contingent links), which connect two time-points

owned by different agents.

Fig. 4 gives an example of an MaSTNU involving two agents A
and B, which respectively own time-points V A = {vA1 , v

A
2 , v

A
3 }

and V B = {vB1 , vB2 , vB3 }. The link from vA1 to vB1 is an external

contingent link, the link from vB2 to vA2 is an external requirement

link, the link from vB1 to vB2 is a local requirement link, and there is

no local contingent link. Semantically speaking, external contingent

links model observations received by an agent, the source of these

observations being owned by other agents. For instance, the source

of a contingent link might be the start of a data transmission process

triggered by one agent, and the target of this link might be the end of

this data transmission process, observed by the receiving agent. As

in MaSTN, external requirement links correspond to synchronization

constraints between agents. For instance, they can serve to express

that there must not be more than 10 time units between successive

surveillances of a given area by two distinct agents.

v0

v0

vA
1

[0, 5]

vA
2 vA

3

[1, 10]

vB
1 vB

2

[4, 6]
vB
3

[6, 12]

[1, 4]
[1, 5][6, 8]

Agent A’s STNU

Agent B’s STNU

Figure 4. Example of an MaSTNU

3.2 Dynamic Controllability Revisited

The multi-agent nature of MaSTNU requires an adaptation of

the dynamic controllability property. Indeed, given an MaSTNU

(A, V, E,C), computing a valid dynamic execution strategy for

STNU (V,E,C) does not necessarily give an applicable multi-agent

strategy. As an illustration, consider the MaSTNU provided in Fig. 4.

The STNU associated with it is the STNU previously shown in Fig. 2.

By considering the execution strategy seen for this STNU and by par-

titioning it between agents, we obtain the following strategy:

• for agent A: (a) execute vA1 at time 0, (b) execute vA2 at time vB2 +
6, (c) wait for vA3 to happen;

• for agent B: (a) wait for vB1 to happen, (b) execute vB2 at time

vB1 + 4, (c) execute vB3 at time vB2 + 6.

The issue with such a strategy is that agent A has no guarantee to

be able to execute it, because it might not observe external time-point

vB2 owned by agent B.

This is why we introduce a new definition of dynamic con-

trollability which is adapted to MaSTNU. Let (A, V, E,C) be an

MaSTNU and let R be an execution strategy for the associated STNU

(V,E,C). Execution strategy R is said to be distributed iff for every

projections p, p′ (that is for every two possible assignments of the

duration of contingent links) and for every agent a ∈ A, if sched-

ule R(p) and schedule R(p′) assign the same value to all contingent

time-points owned by a, then they also assign the same value to all

executable time-points owned by a. In other words, each agent only

acts based on its own immediate observations, which means that the

execution strategy is robust to the missing observations of external

time-points.

An MaSTNU (A, V, E,C) is then said to be dynamically control-

lable iff STNU (V,E,C) admits an execution strategy which is valid

(it induces schedules which satisfy all requirement links), dynamic

(decisions are made only based on past information), and distributed

(previous definition).

For the MaSTNU given in Fig. 4, an example of a valid, dynamic

and distributed execution strategy is:

• for agent A: (a) execute vA1 at time 4, (b) execute vA2 at time 19,

(c) wait for vA3 to happen;

• for agent B: (a) wait for vB1 to happen, (b) execute vB2 at time

vB1 + 6 if vB1 ≤ 7 and at time vB1 + 4 otherwise, (c) execute vB3
at time vB2 + 8.

In the following, we introduce techniques for checking DC for

MaSTNU and for automatically computing distributed strategies.

4 Dynamic Controllability Check and
Computation of Execution Strategies

To check DC for an MaSTNU (A, V, E,C), we first check DC for

STNU (V,E,C). If this STNU is not DC, then the MaSTNU is not

DC either, because acceptable execution strategies for MaSTNU are

more restricted than acceptable execution strategies for STNU. Oth-

erwise, if STNU (V,E,C) is DC, we perform additional operations

to determine whether the original MaSTNU is DC.

4.1 From one MaSTNU to a set of local STNUs

The key idea in our method is to transform the original MaSTNU

S into a distributed MaSTNU, which contains no external link be-

tween agents, and then to partition this distributed MaSTNU into a

set of local STNUs {Sa | a ∈ A}. Fig. 5 shows an example of such

a process. The reason why we consider distributed MaSTNUs as the

transformation target is that if each agent a ∈ A uses a valid dynamic

execution strategy Ra for its own local STNU Sa, then the global

strategy obtained by joining strategies Ra is valid and dynamic, and

it is also distributed because we are sure that in Ra, each agent acts

only based on the observations it is supposed to get at execution (no

possible occurrence of external time-points in the execution strategy

thanks to the partitioning). In other words, the set of local execution

strategies {Ra | a ∈ A} allows to dynamically control the MaSTNU.

Globally, to transform the original MaSTNU into a set of local

STNUs, we need to perform two kinds of operations:

1. to replace external requirement links of the original MaSTNU by

requirement links which are local to agents, as done in Fig. 5 for

external constraint vA2 −vB2 ∈ [6, 8] which will necessarily be sat-

isfied thanks to the two internal requirements vA2 − v0 ∈ [19, 19]
and vB2 − v0 ∈ [11, 13] which are present in the partitioned

MaSTNU; the introduced local requirement links can be stronger

than in the initial MaSTNU, and they are implicitly used to coor-

dinate agent actions;

2. to remove external contingent links and to replace them by local

contingent links, as done in Fig. 5 for (vA1 , v
B
1) which is replaced

by (v0, v
B
1); more generally, the external source v of a contingent

link (v, w) must be replaced by a local source u contained in the

agent which owns w.

The way these two operations are realized is presented in the two

following sections. Compared to DC reasoning on STNU, it is worth

mentioning that the transformation of the original MaSTNU into sev-

eral local STNUs is a combinatorial decision problem, because for

instance there is not necessarily a unique way of distributing/sharing

the satisfaction of external requirement links among agents, or a

unique way of reassigning the contingency source of a contingent

time-point. The associated decision problem is formalized using a

MIP model, which allows us to reuse elements from the existing MIP

model given in Sect. 2.4 for standard STNUs. In the MIP model built,

we capture several constraints guaranteeing the satisfaction of the ex-

ternal requirement links of the original MaSTNU, and several con-

straints guaranteeing that the local contingency assumptions made in

the distributed MaSTNU are not restrictive with regards to the set

of possible scenarios covered by the external contingent links of the

original MaSTNU. By adding a linear optimization function, MIP

solvers can then be used to find an optimal distribution of temporal

constraints such that all local STNUs are DC.

In the following, as in the MIP model of DC for STNU, we use, for

every i < j, variables lij and uij to represent the lower and upper

bounds imposed on the distance vj−vi between vi and vj . Moreover,

for i < j, we also use uji as a substitute for −lij .

4.2 Internalization of external requirement links

Let us consider an external requirement link e = (vi, vj), with

owner(vi) = a, owner(vj) = b, a += b. Initially, e is labeled by

[Lij , Uij]. The main issue is that a and b might not have enough

information during execution to ensure that e is respected. For exam-

ple, if b waits to observes vi before executing vj then it might fail at

respecting e if the delay for observing vi is greater than Uij . Simi-

larly, a has no information about when it should be executing vi in a

way such that b can execute vj and respect e.

To make sure that the upper bound of e is respected during execu-

tion without using any communication between a and b, it suffices to

v0

vA
1

[0, 5]

vA
2 vA

3

[1, 10]

vB
1 vB

2

[4, 6]
vB
3

[6, 12]

[1, 4]
[1, 5][6, 8]

Original MaSTNU

v0

vA
1

[4, 5]

vA
2

[19, 19]

vA
3

[1, 10]
A’s local STNU

v0

vB
1

[5, 9]

vB
2

[4, 6]

[11, 13]

vB
3

[6, 12]

[19, 24]

B’s local STNU

Partitioning

Figure 5. Original MaSTNU and its partitioning

find a path p = [p1, ..., pk] composed of time-points, such that:

1. each link (pi, pi+1) involved in p is either an internal link

(owner(pi) = owner(pi+1)), or an external contingent link

((pi, pi+1) ∈ CX or (pi+1, pi) ∈ CX);

2. path p defines a path from vi to vj which is shorter than Uij , so

that if all constraints between time-points in p are satisfied, then e
is also satisfied.

Such paths are called distributed paths. A contingent link in a dis-

tributed path is necessarily satisfied at execution by definition. An in-

ternal requirement link in a distributed path is satisfiable by the agent

holding it at execution as long as its local STNU is DC. Therefore, if

all local STNUs are DC, then all constraints in path p are satisfiable

at execution, and therefore the original external requirement link is

satisfiable as well. Similar distributed paths must be found to justify

that the lower bound of e is satisfied.

In order to find such paths, it actually suffices to decide on the

sequence of contingent links to use for justifying the satisfaction of

bound uij , because successive links which are internal to a single

agent can be harmlessly collapsed into a single internal link thanks

to the path consistency property over STNU. See Figure 6 for an il-

lustration of a path p = [vi, vk1 , vl1 , vk2 , vl2 , . . . , vkn , vln , vj] cov-

ering the satisfaction of requirement link (vi, vj). On this example,

the satisfaction of requirement link (vi, vj) is covered by the satis-

faction of some requirement over (vi, vk1) and (vl1 , vj); the satis-

faction of (vl1 , vj) is itself covered by the satisfaction of some re-

quirement over (vl1 , vk2) and (vl2 , vj)... and so on until there is no

more external link to satisfy. Informally speaking, the path built use

a sequence of quadrilaterals, and it introduces some new temporal

distance constraints with regards to time-points which are correlated

through contingent links. Exploiting these correlations is the only

way to be robust to the absence of communication. Also, thanks to

the path consistency property again, by imposing that local STNUs

must be DC, it suffices to search for distributed paths which cross

each agent at most once.

In order to formalize such a process, we define two sets:

• set EX which contains all possible external links which are not

contingent links, and therefore might require justification; this set

is given by EX = {(vi, vj) ∈ V 2 | (owner(vi) += owner(vj))∧
((vi, vj) /∈ CX)) ∧ ((vi, vj) /∈ CX))};

vk1

vl1vk2

vl2vk3

vln

vkn vln−1

c1

cn

vi

c2

vj

Figure 6. Justification path for an external requirement link between vi

and vj

• set Q which contains all quadruplets (vi, vj , vk, vl) such that

– (vi, vj) ∈ EX is an external requirement link whose satisfac-

tion which might have to be justified when building justification

paths;

– (vk, vl) is associated with a contingent link which can be

used in the justification for (vi, vj), which means that (1) ei-

ther (vk, vl) = (v0, v0) (case in which the upper bound uij

over vj − vi is justified by a path through the reference time-

point), (2) or (owner(vk) = owner(vi)) ∧ ((vk, vl) ∈ CX ∨
(vl, vk) ∈ CX).

Note that the size of Q is at most cubic in the number of time-

points, since vk and vl are related by a contingent link and because a

contingent time-point can only have a unique contingent link point-

ing to it.

To model the requirement to cover external requirement links by

distributed paths, we introduce a MIP modeling which uses the fol-

lowing variables:

• ∀(vi, vj) ∈ EX , bij ∈ {0, 1} is a boolean decision variable en-

coding that we need to justify external requirement link vj −vi ≤
uij ;

• ∀(vi, vj , vk, vl) ∈ Q, zijkl ∈ {0, 1} is a boolean decision

variable encoding that contingent link between vk and vl (either

link (vk, vl) or link (vl, vk)) is used to justify the satisfaction of

vj − vi ≤ uij ;

• ∀(vi, vj) ∈ EX , hij ∈ [0, H] are decision variables encoding the

height of the justification of the satisfaction of vj−vi ≤ uij , with

H a constant equal to max(|A|− 2, |CX |); these height variables

are used to avoid cycles, that is to avoid cases in which the satis-

faction of the upper bound on an external link e is justified by the

upper bound associated with an external link e′, and in which the

upper bound of e′ is justified by the upper bound of e; see Fig. 7

for an illustration of what could happen without preventing cycles

in justifications; it also helps bounding the search process since

it suffices to consider distributed paths which cross each agent at

most once and each contingent link at most once, which explains

the value chosen for the upper bound of hij .

vA
1 vA

2

[2, 2]

vB
1

vC
1

[2, 2]

[0, 1]

[0, 1]

Figure 7. Cycles in justifications without the use of heights variables: the
satisfaction of external requirement vC1 − v

A
2 ≤ 1 can be justified by the

satisfaction of external requirement vC1 − v
B
1 ≤ 1, and reciprocally

We impose several linear constraints for representing the satisfac-

tion of the external requirements by distributed paths. First, the lower

and upper bounds associated with contingent links of the original

MaSTNU cannot be shrinked:

∀(vi, vj) ∈ CX , (lij ≤ Lij) ∧ (uij ≥ Uij) (9)

Next, every external requirement link in the initial MaSTNU must

be justified:

∀(vi, vj) ∈ EX s.t. Uij += +∞, bij = 1 (10)

∀(vi, vj) ∈ EX s.t. Lij += −∞, bji = 1 (11)

If an external requirement link (original or intermediate) must be

justified, then there exists a unique contingent link justifying it:

∀(i, j) ∈ EX , bij =
∑

(vi,vj ,vk,vl)∈Q

zijkl (12)

An external requirement link is justified if there exists a shorter

distributed path:

∀(i, j, k, l) ∈ Q, uij ≥ uik + ukl + ulj + (zijkl − 1)M (13)

In the previous equation, M is a large constant equal to Lij −Uik −
Ukl − Ulj , so that the constraint is always satisfied when zijkl = 0.

Then, every external requirement link used in a justification must

also be justified (again, see Fig. 6 for an illustration):

∀(vi, vj , vk, vl) ∈ Q s.t. (vl, vj) ∈ EX , zijkl ≤ blj (14)

Finally, we are preventing cycles in justifications thanks to the fol-

lowing set of constraints (in the following equation, H is the maxi-

mum value of hij variables):

∀(vi, vj , vk, vl) ∈ Q s.t. (vl, vj) ∈ EX

hij + (1− zijkl)(H + 1) ≥ hlj + 1 (15)

Fig. 8 shows a representation of the MaSTNU obtained after the

internalization process of external requirement links. In this example,

A and B tighten internal constraints (v0, v
A
1), (v0, v

A
2), (v0, v

B
2) and

(v0, v
B
3) so that external requirement link (vB2 , vA2) is satisfied at ex-

ecution. Contrarily to the mono-agent STNU solution seen in Fig. 2,

vA2 has no temporal flexibility anymore.

v0

vA
1

[4, 5]

vA
2

[19, 19]

vA
3

[1, 10]

vB
1 vB

2

[4, 6]

[11, 13]

vB
3

[6, 12]

[1, 4] [1, 5]

Figure 8. MaSTNU after internalization of external requirement links

4.3 Internalization of external contingent links

External contingent links also have to be internalized, otherwise ex-

ternal time-points might appear in execution strategies, which would

invalidate the distributivity of these strategies. Globally, the idea in

the internalization of links in CX is that every potential situation

which may be encountered owing to the original MaSTNU must be

covered by scenarios considered at the level of local STNUs.

To illustrate the transformation proposed, let us consider an

external contingent link c = (vi, vj), with owner(vi) =
a, owner(vj) = b, a += b. c is labeled by [Lij , Uij], with Lij > 0.

Any execution strategy directly using the fact that “vj occurs neces-

sary between Lij and Uij units of time after vi” cannot be sound as b
does not directly observe vi. This is why we need to explicitly erase c
from the MaSTNU representation while keeping the uncontrollable

status of vj . The only solution to do this is to replace link (vi, vj)
by an internal contingent link (vk, vj) in the set of local contingent

constraints of agent b. In this case, we say that we use substitution

triangle (vi, vj , vk). In the following, we define the set of candidate

substitution triangles by T = {(vi, vj , vk) | (vi, vj) ∈ CX , vk ∈
V owner(vj) \ {vj}}. For every external contingent link (vi, vj), as

there is a freedom in the local time-point vk chosen for activating vj ,

we add in the MIP model the following set of decision variables:

• ∀(vi, vj , vk) ∈ T, ckj ∈ {0, 1} is a boolean decision variable

encoding that we substitute external contingent link (vi, vj) by a

new internal contingent link (vk, vj).

Several constraints are imposed over these variables. First, every

external contingent link must be substituted by exactly one internal

contingent link:

∀(vi, vj) ∈ CX ,
∑

vk | (vi,vj ,vk)∈Q

ckj = 1 (16)

If an external contingent link (vi, vj) is substituted by an internal

contingent link (vk, vj), then the bounds specified by (vi, vj) must

not be less restrictive than the bounds given by path vi → vk → vj :

∀(vi, vj , vk) ∈ T,

{

ukj ≥ uki + uij + (ckj − 1)M ′

0 < lkj ≤ lki + lij + (1− ckj)M
′

(17)

with M ′ a large constant.

If external contingent link (vi, vj) is substituted by internal contin-

gent link (vk, vj), then the associated requirement link over (vi, vk)
must be justified:

∀(vi, vj , vk) ∈ T,

{

(vi, vk) ∈ EX : ckj ≤ bik

(vk, vi) ∈ EX : ckj ≤ bki
(18)

Fig. 9 shows the distributed MaSTN obtained after internalizing

both external requirement links and external contingent links. Com-

pared to the previous example, (v0, v
B
3) had to be constrained further.

Moreover, (v0, v
B
1) and (vA2 , v

A
3) are now contingent links.

v0

vA
1

[4, 5]

vA
2

[19, 19]

vA
3

[1, 10]

vB
1

[5, 9]
vB
2

[4, 6]

[11, 13]

vB
3

[6, 12]

[19, 24]

Figure 9. MaSTNU after internalization of external requirement and
contingent links

4.4 Dynamic Controllability of Local STNUs

Finally, we have to express that the local STNU associated which

each agent must be dynamically controllable. This is expresses by

adapting the model provided in Section 2.4. An adaptation is required

because due to the choice in the internalization of external contingent

links, the set of local contingent link is not fixed. This implies for

instance that the constraint given in Eq. 8 must be replaced by:

∀vk ∈ CX , ∀vi ∈ V owner(vk) \ {vk}, ∀vm, vj ∈ V,

wijk − umj ≤ wimk + (1− cik)M
′′

(19)

with M ′′ a large constant. Similar transformations must be applied

for Eq. 4, 5, and 7.

4.5 Distributing local STNUs

If a solution to the global MIP problem exists, this solution describes

a distributed MaSTNU. The latter can be partitioned into a set of N
local STNUs, one for each agent, while ignoring external constraints.

Local STNUs can be dispatched between agents, and the mission can

start.

4.6 Discussion

Completeness The techniques defined for checking DC are sound

but not complete, essentially because of the internationalization of

external contingent links, which can make lose some information on

the correlation between time-points. More precisely, by transforming

an MaSTNU into a set of local STNUs, we do not represent some cor-

relations between contingent time-points. For instance, consider an

MaSTNU involving one contingent time-point x belonging to agent

A, two contingent time-points y, z belonging to agent B, and two

contingent links y − x ∈ [2, 3] and z − x ∈ [2, 3]. In this case, the

temporal constraint z − y ∈ [−1, 1] necessarily holds (y and x are

correlated). With our approach, we cannot represent it by a contin-

gent link between y and z (negative lower bound), and we cannot

add a new time-point t in B pointing to both y and z since t would

have to be observable by B. We believe that all these points are more

STNU related issues (representing non-causal uncertainty).

MIP versus propagation techniques for STNU As mentioned

previously, searching for robust execution strategies is a combinato-

rial task and we cannot directly reuse polynomial DC checking tech-

niques available in the literature [9, 7, 5]. Such a combinatorial as-

pect is also present in [3] for building an STNU which is DC from an

initial STNU which is not.

Case without contingent links The techniques defined can also be

used in the particular case where there is no contingent link, that is

where the MaSTNU is actually an MaSTN. With regards to existing

work on MaSTN, one contribution is that the model introduced al-

lows to compute robust executiong strategies which can be executed

independently by the agents. We are not aware of previous works on

this point for MaSTN. Also, when there is no contingent link, it can

be shown that there is actually no boolean decision variable in the

model and the MIP becomes a linear program solvable in polytime.

Objective functions Our method can optimize the set of local

STNUs by maximizing objective function fopt =
∑

i<j(uij − lij).
Many other metrics can be used. For example, Fig 10 shows the lo-

cal STNUs obtained when minimizing the latest execution time of

the last time-point, to finish the mission as soon as possible (mini-

mization of fopt = maxi u0i). With this new objective function, the

maximum mission completion time is reduced from 29 time units to

24 time units.

v0

v0

vA
1

[0, 1]

vA
2

[15, 15]

vA
3

[1, 9]

vB
1

[1, 5]
vB
2

[4, 6]

[7, 9]

vB
3

[6, 12]

[15, 19]

Agent A’s STNU

Agent B’s STNU

Figure 10. Mission duration optimization

Objective functions can also be used to balance the flexibility

of solutions between agents, in order to avoid overly constrained

agents. In this case, we define the normalized flexibility metrics f :

∀a ∈ A, f(a) = 1
|V A|

∑

vi,vj∈V A(uij − lij). The corresponding

objective function to maximize is then fopt = mina∈A f(a). This is

particularly useful when the number of agents is high, since in this

case the maximum global flexibility can often be reached by con-

straining as much as possible an unique agent. Another option can

be to keep the initial objective function and constrain the problem

such that each agent achieves a minimal threshold t of normalized

flexibility: ∀a ∈ A, f(a) ≥ t.

5 Experiments

Running Times We tested our MIP approach using the CPLEX

solver on 500 instances of randomly-generated MaSTNUs, ranging

homogeneously from 10 to 40 nodes. All experiments were run on

3.0GHz Intel cores and 4GB memory. Finding the optimal solution

to the MIP problem typically takes between 0.2 seconds for the 6-

nodes example used in this paper, and 1200 seconds for a 4-agents

and 40-nodes example containing 4 external contingent links and 10
external requirement links. However, in this last case a first solution,

that strictly improves the solution found by removing external con-

tingent links, is found in 80 seconds, at the expense of a drop in the

flexibility of 75% compared to the optimal solution.

It must be noted that our current implementation of DC for lo-

cal STNU (section2.4) is based on the O(N5)-time DC-checking

techniques from [9], and is the primary cause of the scalability per-

formances. A more efficient algorithm in O(N4)-time can be found

in [6], however this algorithm is more complex to translate into a

MIP formalism and is beyond the scope of this paper.

Impact of Observations on Temporal Flexibility For the sake of

consistency with real life applications vocabulary, in the remainder of

this paper we will refer to external contingent links as observations.

We want to measure the improvements made by our method on

the ”quality” of resulting execution strategies. To this end, we define

the Relative temporal flexibility of a solution as being the ratio of the

value of the objective function of solution to the value of the objective

function of the corresponding STNU:

Relative Temporal Flexibility =
fopt(MaSTNU)

fopt(STNU)
.

This metric gives us a strong indicator of the ”quality” of a solution

compared to best and worst cases. At 100% it means the solution is

as much flexible as the corresponding STNU, at 0% it means that the

solution found is totally rigid with no tolerance for execution error.

We also assume that external contingent links take values in [0, x],
i.e observations of events by other agents are made within x unit of

times. We compare x to the temporal flexibility of external require-

ment links in order to obtain the relative delay of observations:

Relative delay of observations = |EX |

|CX |
·

∑
(vi,vj)∈CX (uij)

∑
(vi,vj)∈EX (uij−lij)

.

This ratio measure the ”quality” of observations (lower ratio

means better quality), which may be translated as cost in real ap-

plications.

Fig 11 shows the impact of the number of observations (i.e number

of external contingent links) and their quality (i.e their immediacy)

on the relative flexibility of the solution found by our method. The

parameters of the generated MaSTNUs are as follow: 4 agents of 5
nodes each, 4 external requirement links (connecting two randomly-

chosen nodes from distinct agents). The number of internal require-

ment (resp. contigent) links for each agent were randomly drawn

from 4 to 6 (resp. from 0 to 2). Additional nodes and external con-

tingent links, representing observations, were then added depending

on the experiments.

Each point on a curve represents the mean of the relative flexibility

of the solution found over 10 MaSTNUs randomly-generated with

the corresponding set of parameters. We display the results for two

limit cases, the ”Full observations” and the ”No observations” cases,

and an intermediary one, the ”Half observations” case.

The ”No observation” curve corresponds to MaSTNUs without

any external contingent links: CX = ∅. In this case, agents cannot

receive any informations during execution, so the flexibility of the

solution is minimal: agents must agree on a rigid schedule before

 0

 20

 40

 60

 80

 100

 0 25 50 75 100

R
e
la

ti
v
e
 t
e
m

p
o
ra

l
fl
e
x
ib

ili
ty

 o
f
s
o
lu

ti
o
n
s
 (

%
)

Relative delays of observations (%)

No observations
Half observations
Full observations

Figure 11. Influence of numbers of observations and delays

execution start. This threshold depends on the MaSTNUs considered,

other MaSTNUs may have lower or higher relative flexibility than the

20% reported in our experiments in case of absence of observations.

The ”Full observations” curve corresponds to MaSTNUs wherein

each event is observed by each other agent: ∀v ∈ V, ∀a ∈ A, a +=
owner(v), ∃w ∈ V a s.t. (v, w) ∈ CX . In the extreme case with no

delays of observation, the resulting solution has the same quality than

if the MaSTNU were considered as a STNU. In the opposite extreme

case with high delays of observation, no useful informations can be

received from the observations, and the agents must act on their own

as in the no observation case.

The ”Half observations” curve corresponds to MaSTNUs identi-

cal to the ”Full observations” set, except half of vertices in V are

not observed by any other agent. The quality of the solution actually

depends on which vertices are observed: for instance observations

of external vertices are more likely to be useful than observations of

internal vertices.

Higher numbers of observations lead to higher flexibility of solu-

tions, at the expense of increased computational costs and potentially

increased workload during the mission if the observations were not

initially scheduled.

6 Conclusion

Dynamic controllability is an important property for temporal plans

with uncertainty as it improves the odds of success of a mission. In

this paper we showed how to handle uncertain temporal constraints

in multi-agent temporal plans thanks to Multi-agent Simple Tempo-

ral Network with Uncertainty, and how to use a MIP model to get

executable plans which are dispatched between the agents. There

are several future work directions for improving the management of

MaSTNU, such as solving the MIP incrementally to repair infeasi-

ble MaSTNUs by adding observations one by one while optimizing

computation times, or distributing the MIP solving process in order

to reoptimize temporal plans during the mission, or taking into ac-

count the existence of communication rendez-vous [8].

REFERENCES

[1] James C. Boerkoel, Léon Planken, Ronald Wilcox, and Julie A. Shah,
‘Distributed Algorithms for Incrementally Maintaining Multiagent Sim-
ple Temporal Networks’, in Int. Conf. on Automated Planning and

Scheduling (ICAPS), Rome, Italy, (2013).
[2] Guillaume Casanova, Cédric Pralet, and Charles Lesire, ‘Managing dy-

namic multi-agent simple temporal network’, in Proceedings of the 2015

International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS), pp. 1171–1179, Istanbul, Turkey, (2015).
[3] Jing Cui, Peng Yu, Cheng Fang, Patrik Haslum, and Brian C. Williams,

‘Optimising bounds in simple temporal networks with uncertainty un-
der dynamic controllability constraints’, in Proceedings of the Twenty-

Fifth International Conference on Automated Planning and Scheduling

(ICAPS), pp. 52–60, Jerusalem, Israel, (2015).
[4] Rina Dechter, Itay Meiri, and Judea Pearl, ‘Temporal Constraint Net-

works’, Artificial Intelligence, 49(1-3), 61–95, (1991).
[5] Luke Hunsberger, ‘Efficient execution of dynamically controllable sim-

ple temporal networks with uncertainty’, Acta Informatica, 52(8), 1–59,
(2015).

[6] Paul Morris, ‘A structural characterization of temporal dynamic control-
lability’, in Principles and Practice of Constraint Programming (CP),
pp. 375–389, Nantes, France, (2006).

[7] Paul Morris, ‘Dynamic controllability and dispatchability relationships’,
in Integration of AI and OR Techniques in Constraint Programming -

11th International Conference (CPAIOR), pp. 464–479, Cork, Ireland,
(2014).

[8] Paul H. Morris and Nicola Muscettola, ‘Managing temporal uncertainty
through waypoint controllability’, in Proceedings of the Sixteenth Inter-

national Joint Conference on Artificial Intelligence (IJCAI), pp. 1253–
1258, Stockholm, Sweden, (1999).

[9] Paul H. Morris, Nicola Muscettola, and Thierry Vidal, ‘Dynamic Con-
trol Of Plans With Temporal Uncertainty’, in Int. Joint Conference on

Artificial Intelligence (IJCAI), Seattle, WA, USA, (2001).

