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1 Introduction
Organisms carrying different genotypes generally have different properties and
traits. If, as a result of that diversity, an organism happens to carry a genotype that
is better suited to environmental conditions, it is expected to have more offspring
and will thus pass on that advantage to future generations. This mechanism is
called natural selection, a concept proposed by Charles Darwin in 1859 [2].

In order to model the genetic configuration of a given organism, its configura-
tion will be represented as a binary sequenceσ = (σ1, . . . , σL) with total length L.
Each entry σi = 1 (0) in that sequence indicates the presence (absence) of a given
mutation. Whether a genotypewill adjust to external conditions ultimately depends
on its fitness, a quantity that merges the numerous factors that drive evolution (e.g.
fertility, resistance to heat). Mathematically, this can be represented by a map-
ping F (σ) that points from the genotypes configuration space H2

L = {0, 1}L – the
Hamming space1 with a binary alphabet of size two – into the real numbers.

Evolutionary accessibility can be quantified by studying mutational paths that
link a final state σF (the global fitness maximum) to its initial state σI. We
usually assess the accessibility of paths with length L, and thus assume the initial
state to be the antipodal sequence, differing from the optimal sequence in all
loci. Comparison of different model versions of fitness landscapes2 is allowed by
monitoring two fundamental probabilities: What is the likelihood of finding at
least one accessible path and, on average, what is the number of such paths? This

1The L-dimensional Hamming space is a set that contains all sequences of length L. Here,
we want to indicate whether a mutation is present or absent at a given genetic locus, therefore
sequence entries are of binary value; this can however easily be modified by expanding the size
of the alphabet. As for any metric space, the distance between two objects has to be well defined.
Ensuring this is theHamming distance, which directly corresponds to the number of entries inwhich
two sequences are different from each other. Mathematically, the resulting space of genotypes has
the structure of an L-dimensional hypercube.

2S. Wright introduced these conceptual landscapes in order to visualize the high-dimensional
genotype-fitness map [15]. In a fitness landscapes, the genotypes are organized in the x-y plane
whereas the fitness is plotted along the z axis. For a visualization, see Fig. 1-4.
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essentially addresses two questions: Is the global fitness maximum accessible, and
if so, how repeatable is this process [3]?

A both straightforward and well-known model to assign a fitness value to
each realization of the genotype is referred to as the House of Cards (HoC) model
[10, 9]. Only the global maximum F (σF) is fixed at 1, all other values are assigned
via the uniform distribution between 0 and 1. The probability that a mutational
pathway is selectively accessible (i.e. fitness values encountered along them are
monotonically increasing) is the same as the probability that all events in a series
of length L are ordered in size [5]. Multiplying this by the overall number of paths
yields the expectation value for the number of those along which the system may
evolve3:

E [X] = L!P [F (σ0) < F (σ1) < · · · < F (σL−1)] =
L!
L!
= 1 (1.1)

In a slight variation of the aforementioned model the antipodal sequence is also
fixed, i.e. F (σ0) ≡ α. Hence its title, α-constrained House of Cards (α-HoC). It
can be shown that [7]:

P [X > 0]
L→∞
−−−−→




1, α <
log L

L

0, α >
log L

L

(1.2)

E [X] = L(1 − α)L−1 (1.3)

3Here, σk refers to a genotype that is mutated at k loci or, in other words, contains a k number
of ones. X denotes the number of selectively accessible paths.
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In both the simple and the constrained HoC model, fitness values are completely
uncorrelated. In the Rough Mount Fuji (RMF) model however, a drift toward the
global fitness maximum is introduced [1]. For each genotype, one assigns the
fitness as such:

F (σ) = η · d (σk,σ0) + xσk
(1.4)

Where η represents the drift, d(·, ·) is the Hamming distance and xσk
are in-

dependent random variables generated by a fixed distribution. Clearly, by the
introduction of an arrow of evolution that favors successive mutations, the expec-
tation value of accessible paths should be much higher than in the HoC model.
Indeed, in the case of Gumbel distributed random variables, it can be shown
that [5]:

E [X] = L!
(
1 − e−η

)L

∏L
k=1

(
1 − e−ηk ) =

L!
[L]!e−η

(1.5)

Where [L]!e−η denotes the q-factorial. In the case of no drift whatsoever the
RMFmodel corresponds to the HoCmodel and (1.5) reduces to (1.1), as expected.
Another interesting result for the RMFmodel: The probability to find an accessible
path as a function of the genotype dimensionality approaches unity for any drift
larger than zero [4].

If a mutation would be beneficial or deleterious, independent of all the other
loci, studying fitness landscapes would become obsolete. Instead, the above mod-
els reflect the fact that the fitness of a mutation occuring at one locus depends on
the allelic state of the remaining ones (i.e. a single mutation might either reduce
fitness or increase it, depending on the state it originates from). As a consequence
of this phenomena, called epistatis [16], local peaks may manifest on a given
landscape, where all immediate mutational neighbors in the genotypic sequence
space have a lower fitness associated with them, but, at larger Hamming distance,
sequences with a higher fitness do exist.
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Figure 1-1: The figure shows how the expected number of accessible paths
varies under the RMF model with drift η. Fitness values are Gumbel dis-
tributed and the solid green line represents the analytical solution (1.5),
whereas the numerical solution is indicated by square symbols. The hy-
percube dimension was set to L = 5.

If a population happens to fix on such a local fitness peak, one way to escape
it is through a drift-dependent stochastic sequential fixation process, where the
whole population coincidentally moves toward lower fitness grounds (in order to
reinforce the synonymity with a landscape, these lower grounds may be referred
to as valleys). The rate of escape from a local peak under stochastic sequential
fixation has been shown to decrease with population size [17, 14], which intuitively
makes sense: The more individuals there are in a population, the less likely it is
that all of them will be subject to the same mutation at the same time.

In a different approach for a population to escape a local peak, the requirement
that intermediate valley genotypes fix is not enforced. Instead, if a valley genotype
is not selectively eliminated for a short period of time, it may be subject to mutation
at other loci. If a jointly beneficial mutation (i.e. with a higher fitness than the
originating local peak sequence) arises, the population will then be moved toward
that genotype by natural selection. This genetic process was first introduced by
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Gillespie [6], who noted that the expected time for a population to divert from
a local peak in such a process would decrease with the populations size. In the
literature this mechanism is usually termed as a (deterministic) simultaneous fix-
ation process or, since skipping genotypes of lower fitness resembles the quantum
mechanical phenomenon where a particle tunnels through a potential barrier it
could classically not surmount, ’stochastic tunneling’ [8].

In a first effort to formalize the above reasoning, we may formulate the com-
bined waiting time for either of the two escape event to occur:

Tesc =
1

1/Tseq + 1/Tsim
(1.6)

011 111

001 101

010 110

000 100

Figure 1-2: Shown is the Hamming space H2
3 that contains all sequences of

length three. Classically, a population can reach the global maximum (111)
by mutating on each locus separately. By introducing escape processes, pop-
ulations are provided with the possibility to leap over nodes in the hypercube
(red and blue illustration).
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Figure 1-3: Shown are both of the two processes through which a population
might escape a local fitness peak and, as a comparison, a classically accessible
path. The dotted vertical lines delimit areas of equal Hamming distance. To
enforce the absence of genetic mutation, once a genotype enters such an area,
it may only leave it toward the right. In the drift-dependent stochastic se-
quential fixation process (the path that is colored in red) the whole population
coincidentally moves toward lower fitness grounds, from where it will follow
any path leading it to a higher fitness. Under a stochastic tunneling process,
a fraction of the population mutates toward the valley genotype, only to be
followed by mutation at other loci. If the secondary mutation turns out to
lead to a higher fitness (compared to that of the escape genotype), a path is
deemed viable in the stochastic tunneling model – this has been colored in
blue. Classically, we demand all mutation steps to be beneficial, leading to
a sequence of successively increasing genotype fitnesses (black path). Note
that the three models may be seen as ordered by their restrictiveness, i.e.
the black one is allowed under all three models, blue is allowed only when
stochastic tunneling is permitted, and red is allowed if and only if one allows
a population to escape a genotype in a joint genetic drift event.
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In the absence of back mutation (i.e. once a sequence mutates, it may not revert),
it can be shown that both of the above processes are likely to occur in nature, and
that in fact, depending on the size of a population, the combined waiting time (1.6)
is dominated by either one. If a population happens to be smaller than a critical
population size Ncrit

4, it will primarily escape local peaks through sequential fix-
ation, whereas in populations larger than Ncrit escape events will predominantly
occur via stochastic tunneling [13].

Genotypic space Genotypic space

Fi
tn

es
s

Figure 1-4: The above is a visualization of the relation between genotypes
and their associated fitness, called a ’fitness landscape’. The genotypes are
arranged along the x-y plane, the fitness is plotted on the z-axis. Note
that S. Wright introduced this concept already noting that the above low-
dimensional picture is a “very inadequate representation” [15] of the vast
genotypic space. The landscape is somewhat rugged, several local peaks are
separated by valleys through which a population may escape in two ways:
Under stochastic tunneling it may only mutate along the blue path, reaching
a peak that has a higher fitness associated with it than the one it originated
from. If the population happens to take a simultaneous downhill step, it may
now move toward any of the peaks that are close by, even those that are lower
in fitness than the one it escaped from (illustrated in red).

4The critical population size beyond which stochastic tunneling occurs predominantly can be
approximated as a function of the mutation rate µ and the fitness differential between local peak
and escape genotype: Ncrit ≈ log(s2del(µsben)−1 + 1)/(4sdel). Note that in the model that is used by
Weinreich & Chao [13], sdel and sben are fixed.
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Even though the two above processes are of different relevance depending on a
given populations size, both will occur at a much lower rate than ordinary adaptive
steps. In the simulations this lower likelihood is recognized by introducing an
upper limit for the downhill steps available to a population.

If we, within the realms of the abovementionedmodels, proceed to allow direct
paths along which a fixed number of mutations can be lept over, how are evolution-
ary accessibility and repeatability affected? As we relax the restraint that a path
is only accessible in case the populations fitness along it increases monotonically,
one could imagine said population to be crossing a fitness valley—thus the notion
of ’downhill steps’ emerges. By speeding up the rate at which a population may
mutate and thus departing the strong-selection-weak-mutation regime5, how is the
constraint on the accessibility of the global maximum changed?

5In the SSWM regime, genotype mutations generally occur independently. Selection then is
strong enough for this particular mutation to either die out or fix before any additional mutations
arise.
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2 Algorithm
In order to retrieve the results that are evaluated in the next section, the algorithm
that is normally used to scan the hypercube for accessible paths had to be extended
in such a way that it included the ability to escape local peaks. The first step was to
initiate fitness landscapes, i.e. each of the 2L genotypes had to be assigned a fitness
value. The number of paths – bound to increase by allowing downhill steps – was
then found by a depth-first backtracking algorithm:

• Starting at the antipodal sequence (0000), lets say it moved forward toward
a genotype with a higher fitness, e.g. (1000). Depending on the fitness
associated with the next sequence, for instance (1100), it did either one of
two things:

• In case (1100) also had a higher fitness associated with it6, the method
moved forward to that sequence and recursively called upon itself to reini-
tiate the search for paths toward the global fitness peak. This was the
backbone of the algorithm, representing a single, fitness-increasing mu-
tational step. Since such steps are allowed under all three models, this
worked in the same manner, regardless of whether a population was al-
lowed to perform downhill steps or not.

• When (1100) didn’t have a higher fitness associated with it, the algorithm
reacted differently, depending on what type of escape mechanism was
allowed, if any:

(a) In the drift-dependent stochastic sequential fixation process, the whole
population moves towards a lower fitness value. If the population
can reach higher fitness grounds from (1100), it will do so. As an
implementation of this escape, the algorithm simply moved forward

6Computationally, this was realized by the use of a map that assigned each genotype a pseudo-
randomly generated fitness. The pseudorandom numbers themselves were generated by using the
Mersenne Twister [11].

9



to (1110), without comparing fitness values to the fitness associated
with (1000). Having arrived at (1110) it then called upon itself,
continuing its search for paths toward the global maximum. In order
to prevent the algorithm from executing downhill steps repeatedly, a
counter was raised. The algorithms behavior has been illustrated in
Fig. 2-1, where the above situation corresponds with the red path.

(b) Only a small fraction of the population moves toward a lower fitness
genotype in stochastic tunneling process, and it will be put under sig-
nificant pressure by the remaining population. If the valley genotype
cannot mutate toward a fitness value that exceeds that of the majority,
it will simply die out under natural selection. To mirror the properties
of a stochastic tunneling event, the fitness associated with (1000) was
stored and compared to the fitness associated with genotypes that two
additional mutations, for instance (1101). If by comparison the fitness
associated with (1101) turned out to be greater than that of the local
peak genotype (1000), the algorithm moved on to the escape sequence
and, from there, continued its search for paths in the direction of the
global maximum. In order to establish a limit on how many tunneling
events were allowed, a counter was raised, likewise as has been done
for (a).

(c) Classically, paths are only accessible if along it fitness values increase
monotonically. On encountering a genotype with a lower fitness value,
the algorithm did not have any means to overcome it.
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(0000)

(1111)

(1000)

(1100) (1110)

(1101)

Figure 2-1: The above is an illustration of how the algorithm worked, that was
used to count the number of accessible paths under either of the two escape
models. Sequences correspond to nodes, who were grouped by their distance
from the originating sequence and then aligned vertically in terms of their fit-
ness. To improve visibility, only connections to nodes which may be reached
from each genotype along the example path have been drawn7. Up to the
sequence (1000) the algorithmmoves along effortlessly, as the population un-
dergoes a beneficial mutation in that step. Nodes (1110) and (1101) however
cannot be reached without performing a downhill step, since the intermedi-
ate sequences fitness is smaller than that of the local peak genotype, (1000).
(1101) is in range in both a stochastic tunneling process (blue) and under
stochastic sequential fixation (red). This is not the case for the (1110) se-
quence, since its fitness is lower than that of the local peaks sequence (1000).
Thus the algorithm will only move toward it under sequential fixation. In
any case, a counter is raised on the event of the algorithm moving toward
the valley genotype (1100). This prevents downhill steps from being applied
continuously.

7After each mutation, a genotype can only mutate at all loci that so far remained unmutated.
Accordingly, the number of paths that lead out of a sequence grows smaller with increasing distance
from the antipodal sequence.
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Unfortunately, the maximum genotype dimension that the simulations could be
realized for was generally smaller than in the classical model. This is for two
reasons: On the one hand, comparing genotype fitnesses (under stochastic tun-
neling) was computationally expensive. Also, usually a lot more paths are found
to be accessible when allowing a population to escape local peaks, which further
increased the computational effort.

Since a discrete counter was raised to prevent the algorithm from executing
multiple escape processes, a minimum number of escape processes was permitted,
regardless of genotype dimension. As has been stated initially however, such
processes are very unlikely to occur in comparison to a simple beneficial mutation.
This leads to two things: It made it unnecessary to increase the downhill step
counter to values greater than one and, at least for very low genotype dimensions,
the populations granted ability to perform a downhill step presumably imparts a
positive bias on the overall evolutionary accessibility.

Unaffected by the above, in all simulations that calculate the probability not to
find an accessible path the search algorithm was ended upon finding the first such
path. This of course made this particular search a lot faster, allowing it to be run
for larger genotype dimensions.
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3 Results

3.1 Downhill steps on the HoC landscape

3.1.1 Probability not to find an accessible path

As has been underlined in the previous chapter, in all of the simulations just one
downhill step was permitted; this appropriately reflects the fact that both escape
processes will occur only with low probability. To analyse how evolutionary
accessibility is transformed under the appliance of the two escape models, one
may first take a look at the probability not to find at least one accessible path:

• Under the stochastic sequential fixation process, the probability not to find
a path fluctuates around some small number. In other words, for both large
and small hypercube dimension L finding a path remains likely.

• As a first indicator of how differently the observables behave within the
models, the probability to find an accessible path with only stochastic tun-
neling allowed seems to diminish with the genotype dimension L growing.
As simulations for genotype dimensions larger that thirteen were not com-
putationally feasible, it is however impossible to assess whether this trend
will hold. Besides that, its shape resembles that of the probability to not find
an accessible path under the classical HoC model, where no downhill steps
are allowed.
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Figure 3-1: The figure shows how the probability to not find an accessible
path behaves as a function of the genotype dimension. Both models that arise
when downhill steps are allowed are represented: The blue line denotes the
results for the stochastic tunneling model, the red line shows the (greater)
likelihood to find a path when a population is allowed to escape via sequential
fixation processes. As a benchmark, the black line was also included in the
figure. It indicates the probability to not find an accessible path under the
classical HoC model.

3.1.2 Expected number of accessible paths

The expected average number of accessible paths is bound to be larger than the
known result for the classical HoC model (1.1). Also, as every path that is ac-
cessible under a stochastic tunneling process is also allowed in a drift-dependent
stochastic sequential fixation process (see Fig. 1-3), we would expect the latter to
facilitate the most paths.
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Due to the fact that the expectation value for the number of paths assumes an ever
smaller fraction of the total paths available, instead of the actual number the ratio8

of accessible paths was plotted, see Fig. 3-2.
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Figure 3-2: The figure shows the amount of paths that are accessible as a
fraction of the total amount of paths in a hypercube of dimension L. Although
the expected number of accessible paths grows with larger dimensions, it
miniaturizes in comparison to the total number of paths. As can also be
seen from the figure, there will always be a greater number of paths when
allowing stochastic sequential fixation processes (colored in red), since any
path accessible under stochastic tunneling (blue) will also be accessible in a
drift dependent escape process. For the HoC model (black) the ratio, which
is simply 1/L!, approaches zero the quickest.

8The ratio is received by normalizing through the total number of paths in the hypercube of
which there are L!.

15



In addition to displaying the fraction of accessible paths as a function of the
genotype dimension, the de facto number of said paths may be expressed in terms
of approximations:

• As has been discussed with regards to Fig. 3-2, for all dimensions L the
share of accessible paths is highest when a population is allowed to escape
local peaks by stochastic sequential fixation processes. As is illustrated in
Fig. 3-3, the actual number of paths grows exponentially. The parameters
that guide the growth where approximated in a least square fit:

Eseq[X] ≈ γ̂seqe α̂seqL (3.1)

0.762 < α̂seq < 0.788 , 0.482 < γ̂seq < 0.519

• Although it does so slower for stochastic tunneling processes, the expected
number of accessible paths does grow with the genotype dimension. By
the same means as for (3.1), the average number of accessible paths may be
approximated as a monomial in a fit:

Esim[X] ≈ γ̂simLα̂sim (3.2)

1.955 < α̂sim < 2.019 , 0.419 < γ̂sim < 0.522
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Figure 3-3: The figure shows the logarithm to base e of the mean num-
ber of accessible paths. Under the stochastic sequential fixation process it
grows exponentially. The least square fit that allows for the approximation
under (3.1) is colored in magenta.
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Figure 3-4: As a function of the genotype dimensions, resized by its nat-
ural logarithm, the figure shows how the expected number of accessible
paths – equally resized by applying the natural logarithm to it – behaves in
the stochastic tunneling model. Growth is slower than under stochastic se-
quential fixation. However, as opposed to the classical HoC model where the
expected number of paths equals one for arbitrary dimensions, the average
number of paths does grow as a function of L. The magenta plot represents
the least square fit of the approximation under (3.2).
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3.1.3 Second moment of the number of paths

Similar to the expressions that were retrieved for the expectation value of the
number of accessible paths, see (3.1) and (3.2), plots of the second moment as a
function of genotype dimension can be approximated by least square fits:

• Under stochastic sequential fixation, the second moment will also grow
exponentially as a function of L, as did the first. The fit returned the
following parameters:

Eseq
[
X2] ≈ γ̂′seqe α̂

′
seqL (3.3)

1.694 < α̂′seq < 1.753 , 0.157 < γ̂′seq < 0.183

• Similarly, for the stochastic tunneling model the growth rates of the first and
second moment correspond. In fact, the second moment too will behave
like a monomial expression when the a population is granted the ability to
tunnel away from local peaks:

Esim
[
X2] ≈ γ̂′simL α̂′sim (3.4)

5.960 < α̂′sim < 6.107 , 0.018 < γ̂′sim < 0.035

The expressions for the first and the second moment of the number of paths can
sometimes be used to narrow down how the probability to find a path behaves in
the limit of large hypercube dimensions. The following lemma, called the first-
and second moment method, holds for random variables that only assume integer
values [12, 7]:

E[X] ≥ 1 − P[X = 0] ≥ E[X]2

E
[
X2] (3.5)

Unfortunately, the above yields the same non-result for both escape processes:
Neither does the left-hand side deliver any information (the probability simply
cannot assume values larger than one) nor does the right-hand side, as it quickly
converges toward zero.
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Figure 3-5: Shown is the exponential growth of the second moment of the
number of accessible paths in the stochastic sequential fixation model. The
fit is colored in magenta, the data is denoted by red squares.
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Figure 3-6: If stochastic tunneling is allowed, the second moment as a func-
tion of genotype dimension L evolves as shown in this figure. Both axes
were resized logarithmically. The data which was fitted with the parameters
under (3.4) is indicated by the blue squares.
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3.1.4 Combinatorial derivation for Eseq[X]

In addition to showing that the expected number of paths in the sequential fixation
model can be fitted by an exponential function, see (3.1), one can, by combinatorial
arguments, derive an analytical argument for the exact number of paths. In order
to calculate the number of paths by which the global maximum is accessible under
sequential fixation, it is helpful to look at each path individually, of which there
are a total of L! in the hypercube.

The main idea behind the derivation is the following: We condition on the
probability that the k’th sequence has the lowest fitness associated with it— since
the random variables are identically distributed and independent, this probability
is 1/L. If the k’th genotype is located anywhere at a distance of 1 to L − 1
from the originating sequence, we know exactly where the downhill step has to
be used, if the path is to be accessible (we only allow a single such step after all).
Therefore, all genotypes before the k’th entry have to be ordered, this is the case
with probability 1/k!, as well as all the entries from k + 1 to L − 1, which occurs
with a probability of 1/(L − k − 1)!. The final sequence is fixed, hence we do not
have to consider it.

An exception to the above deliberations is the following: In case the very
first genotype happens to be smallest, we have to consider the probability that the
remaining L − 2 genotypes are aligned in such a way that one downhill step will
suffice to move along toward the global fitness maximum. As we do know that the
first genotype is smallest, however, we also know that the first mutation will happen
for certain. With the first step being guaranteed, reaching the global maximum
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happenswith the exact same probabilitywithwhich the globalmaximum is reached
in a hypercube of dimension L − 1. This yields the following recurrence relation:

Pacc(L) =
1
L

[
Pacc(L − 1) +

L−1∑

k=1

1
k!

1
(L − 1 − k)!

]
=

1
L

[
Pacc(L − 1) +

1
(L − 1)!

L−1∑

k=1

(L − 1)!
k!(L − 1 − k)!

]
=

1
L

[
Pacc(L − 1) +

1
(L − 1)!

( L−1∑

k=0

(
L − 1

k

)
− 1

(L − 1)!

)]
=

1
L

[
Pacc(L − 1) +

2L−1 − 1
(L − 1)!

]
(3.6)

Where we simplified by the use of the binomial theorem. Multiplying (3.6) with
the overall number of paths in the hypercube then yields the expectation value for
the number of accessible paths:

(
Eseq[X]

)
L
= L!Pacc(L) = (L − 1)!Pacc(L − 1) + 2L−1 − 1 =

(
Eseq[X]

)
L−1 + 2

L−1 − 1 (3.7)

For a genotype dimension of two, the globalmaximum is accessible via all available
paths. We may solve (3.7) by applying that knowledge as our seed value:

(
Eseq[X]

)
L
=

(
Eseq[X]

)
2
+ (4 − 1) + (8 − 1) + · · · + (2L − 1) =

=
(
Eseq[X]

)
2
+

L−1∑

k=2
(2k − 1) = 2 +

(
2L − L − 2) = 2L − L (3.8)
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This result is compatible with the exponential growth by which the numerical
solution was shown to behave in (3.1), which takes a similar form and also shows
the ∝ 2L behavior9; the prefactor in the approximation is incorrect however. In
total, the result from the numerics was a good estimate of how the number of paths
would behave with small L, for large dimensions however the prediction turns out
to be mistaken.
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Figure 3-7: The above figure shows that the analytical result (3.8), colored
in green, and the numerical data retrieved by the algorithm (red squares)
correspond. The fit to the data (magenta, see (3.1)) showed a similar growth,
for large L the quality of the approximation lessens, however.

9As a matter of fact, at approximately 2.173L the approximation barely missed it. Nonetheless,
this results in an error between the two results that grows very quickly. At a dimension of L = 17,
the solution retrieved in the fit is already twice as large.
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3.1.5 Analytical solution of Esim[X]

By similar means we can argument for an analytical result when stochastic tunnel-
ing is allowed. Once more, we will split up the probability that an individual path
is accessible by conditioning on a specific entry to be the smallest.

In the stochastic tunneling model crossing a valley is only allowed in the case
of the escape genotype having a larger fitness associated with it. Therefore we
have to enforce an additional limitation: Say we choose the k’th genotype along
a path to be smallest. Then the genotype at k − 1 has to be smaller than that at
k + 1. Since both the sequences before and after the k’th entry have to be ordered,
the joint overall sequence (consisting of all but the k’th entry) has to be ordered
as well. In accordance with this line of argument, we simply have to choose the
single path that satisfies the above restrictions, of which there is just one in a total
of (L − 1)! permutations:

Pacc(L) =
1
L

[
Pacc(L − 1) +

L−1∑

k=1

1
(L − 1)!

]
=

=
1
L
Pacc(L − 1) +

L − 1
L!

(3.9)

Again, multiplication by the total number of paths L! yields a recurrence relation
for the expected value of accessible paths in the stochastic tunneling model:

(
Esim[X]

)
L
=

(
Esim[X]

)
L−1 + L − 1 (3.10)

23



2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

L

(
Esim[X]

)
L

Figure 3-8: By looking at how the numerical data (blue squares) and the
derived analytical result (3.11), denoted by green, compare, it can be seen that
the latter is a very good assessment of accessibility in the stochastic tunneling
model. The fit to the data (magenta, (3.2)) is shown as well, for dimensions
up to ten it also very appropriately predicts the number of accessible paths.

For a genotype dimension of L = 2, it is impossible to assign fitness values in
such a way that the global maximum will not be reached. Therefore, we may solve
(3.10) with the same seed value as in the sequential fixation model:

(
Esim[X]

)
L
=

(
Esim[X]

)
2
+ (3 − 1) + (4 − 1) + · · · + (L − 1) =

2 +
L−1∑

k=2
k = 1 +

1
2

(
L2 − L

)
(3.11)

This result agrees with the fit to the numerical data, see (3.2), in which the prefactor
and the exponent happen to turn out a bit smaller than the asymptotic behavior
of the above expression would suggest. Due to that, the margin by which the two
results are separated grows, albeit slower than in the sequential fixation model.
In that sense, the numerics gave a very good idea of what the analytical solution
would look like, even for larger genotype dimensions: When both expressions are
compared for L = 30, they are still only as little as ten percent apart.
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3.1.6 Ratio of paths that make use of a downhill step

As has been mentioned in the introductory parts, in a classical fitness landscape,
where no downhill steps are allowed, the expected number of accessible paths is
constant at one for arbitrary genotype dimensions. In order to calculate the share
of paths that were enabled only thanks to the availability of downhill steps rdhs,
one needs to simply subtract the expectation value to find a path in the HoC model
from the expected value of accessible paths in either of the two escape processes.
Since they have been shown to grow without bounds in (3.8) and (3.11), it is easy
to see that this expression approaches unity quickly for both models:

rdhs ≡ E[X] − 1
E[X]

−→ 1 (3.12)
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Figure 3-9: This plot demonstrates the fact that the ratio of paths that emerge
thanks to the allowance of downhill steps quickly approaches unity for both
models. It does so a bit quicker under stochastic sequential fixation (red), due
to the fact that the expected value of accessible paths grows quicker under this
process, see (3.8) and (3.11). The ratio for the stochastic tunneling model is
colored in blue.
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3.1.7 Distance at which downhill steps are performed

An additional question that arises is the following: Depending on the size of the
genotypic space, at what Hamming distance from the antipodal sequence will the
single downhill step usually be used up by the algorithm10? By making some
simple combinatoric arguments, an estimate for the expectation value of that very
distance can be calculated (for a derivation, see Appendix):

E[ddhs] =
(
L − 1) 2

L−2 − 1
2L−1 − 1 (3.13)
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Figure 3-10: Shown is the expectation value for the Hamming distance at
which the downhill step is used up as a function of the genotype dimen-
sion. In accordance with the analytical result (colored in green) for the upper
boundary (3.13), the numerical result (red and blue squares) is always smaller,
with the distance between the results (green squared boxes) increasing loga-
rithmically. The latter has been approximated by a least square fit (magenta),
which returned the parameters in (3.14).

10The calculated expression is conditioned on paths along which a downhill step has actually
been performed. Therefore, if a population reaches the global peak – without having escaped a
local one on its way there – this will not contribute to the estimate. This is a reasonable approach,
since the ratio of paths rdhs that were accessible without having used a downhill step quickly
approaches zero, see (3.12).
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There is however a caveat to the above results: The algorithm will regularly try
to use a downhill step, even though it has done so earlier on. As this is prevented
in the simulations, the number of downhill steps used at large distances from the
original sequence decreases. This was not considered in the derivation, turning the
above expression (3.13) into an upper limit for E[ddhs]. The margin by which the
expectation value is overestimated was fitted (see Fig. 3-10) and is of logarithmical
growth in L:

∆E[ddhs] ≈ log
(
Lα̂dhs + β̂dhs

)
(3.14)

0.238 < α̂dhs < 0.260 , − 0.193 < β̂dhs < −0.139
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Figure 3-11: Shown are the analytical (green) and the numerical (red and blue
squares) result, that the downhill step is used at a specific distance from the
antipodal sequence. Compared to the analytical probability, the numerical
result is shifted to the left, which is a consequence of introducing a counter
that limits the number of available downhill steps. The hypercube dimension
in the above simulations was set to ten.
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3.1.8 Probability distributions

For a genotype space of fixed size, one can look at how probable it is that the
algorithm will find a specific number of accessible paths. This has been done for
dimensions five and seven:

• For the drift-dependent stochastic sequential fixation model, the probability
distribution has a very long tail. This can be seen both from comparing it to
the other distributions in Fig. 3-12 and 3-13 or, more clearly, from the fact
that the cumulative distribution function approaches unity the slowest, see
Fig. 3-14 and Fig. 3-15.

• When stochastic tunneling is allowed, large amounts of accessible paths are
not encountered as frequently as under sequential fixation. Generally, the
probability to find a greater number of paths than half of those available
overall was very low. Within the 80000 fitness landscape realizations that
were used to generate the distribution, only few to none (80 for a dimension
of five, zero for seven) placed above that threshold.

• The probability distribution for the number of paths in the classical case has
been included as well, in order to provide a context for the two above results.
As is expected, the distribution is centered around much smaller numbers
and swiftly declines toward zero. Accordingly, its cumulative distribution
function approaches unity the quickest.

The cumulative distribution functions have been calculated by successively adding
up the probabilities of encountering a specific number of accessible paths. For a
given genotype dimension L, they are defined as such:

FL (Y ) ≡
∑

Xi≤Y

P(X = Xi) (3.15)
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Figure 3-12: The probability distribution to encounter a given amount of
accessible paths for a fixed genotype dimension of L = 5 under stochastic
sequential fixation (red), stochastic tunneling (blue). Also, in order to make
the two easier to compare, the classical model with no downhill steps (black)
was included. As finding an accessible path is the easiest under stochastic
sequential fixation (compare with Fig. 3-1), its distribution is broadest.
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Figure 3-13: Similar to 3-12 the probability distribution for the three different
processes is plotted; this time at a larger genotype dimension of L = 7.
Although the curvature with which the distribution approaches zero for large
X is different, the fact that under stochastic sequential fixation (red) this
happens slowest coincides with what would be expected. Note that the total
number of available paths 7! is a lot larger than the range in which the
above plot is situated. Also shown are the distributions in the stochastic
tunneling (blue) and the HoC model (black).
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Figure 3-14: The cumulative distribution function for a fixed genotype di-
mension of L = 5. It approaches unity quickest when no downhill steps are
permitted (black) and has a comparatively long tail under stochastic sequential
fixation (red). The blue curve indicates the result for the stochastic tunneling
model.
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Figure 3-15: For a fixed genotype dimension of seven, all three cumulative
distribution functions approach unity at a much smaller fraction of the total
number of theoretically available paths, L!. Shown are the results under the
sequential fixation (red), stochastic tunneling (blue) and HoC model (black).
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3.1.9 Likelihood of an even number of paths

Under close inspection of Fig. 3-12 and Fig. 3-13, it stands out that the algorithm
will more often than not find an even number of accessible paths for both of
the escape mechanisms. This behavior however normalizes with growing geno-
type dimension, see Fig. 3-16 and 3-17. For a shorthand notation we define the
following:

peven ≡ P ["X even and X > 0"] (3.16)

podd ≡ P ["X odd and X > 0"] (3.17)
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Figure 3-16: As a function of the genotype dimension, it can be seen how
often the number of paths turned out to be even instead of being odd. For
the drift-dependent stochastic sequential fixation, this ratio stabilizes around
a value of one half for dimensions larger that seven.
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Figure 3-17: Under stochastic tunneling, the probability that the algorithm
returns an even number of accessible paths remains larger than the probability
that said number is odd. Although the ratio steadily approaches one half, it
does not reach it even for the largest realized dimension, which was ten.

3.2 Downhill steps in the α-HoC model

3.2.1 Probability to reach the global maximum

As has been mentioned in the introductory part, the analytical probability to find
an accessible path in the α-HoC model is known, see (1.2). According to that
result, for large genotype dimensions and small α, there is always going to be an
accessible path, whereas for large α, there never is. In that sense, the probability to
find a path toward the global maximum undergoes a phase transition at the critical
value L−1 log L.

When we allow for either type of downhill steps to take place, this will natu-
rally shift the phase transition toward larger values. This happens for one major
reason: In the classical model the algorithm is faced with the task of immedi-
ately finding fitness values greater than the initial α. However, even for stochastic
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tunneling – the more restrictive11 of the two escape processes – the algorithm al-
ready gets some leeway, as the distance to the global peak is reduced by one step
(i.e. one less random variable is required to be larger than α).

• As has been a trend in previous figures, the probability to find a path is
largest for the stochastic sequential fixation process, given an arbitrary α.
Even in the extreme case of fixing α to one, the algorithm did – more often
than not – reach the global peak. This largely different behavior (compared
to the classical model) of the path-finding probability as a function of α
is explained by the following argument: Even though the initial sequence
is fixed at the maximum value, the population jointly drifts toward a lower
valley genotype, ’forgetting’ that it had just been commonly occupying a
genotype at a much higher fitness12. The fact that the probability to find a
path does start to decrease eventually is a result of choosingα so large that this
will often force the available downhill step to be used up on the algorithms
very first step; from here, all genotypes along an accessible path have to be
nicely aligned, with their fitness increasing monotonically. In the extreme
case of α = 1, the probability to find a path in the sequential fixation model
corresponds to that of the classical α-HoC with α = 0: In the classical
model the initial fitness is fixed to the lowest value, this guarantees that
the population will move toward any of one of the neighboring sequences,
who all have a higher fitness associated with them. In the sequential fixation
model, the initial sequence is a global peak and – relative to it – all neighbors
have a lower fitness. As a result, the downhill step will be used on the first
step. Therefore the initial mutation is ensured in both, and (as downhill steps
are no longer available in the escape model) the number of accessible paths
will be exactly the same.

11The α-HoC model corresponds to the method by which the random variables that shape a
fitness landscape are drawn. Different from that, the two escape processes are simply means to
navigate these landscapes. The argument that stochastic sequential fixation is the less restrictive
escape process therefore remains completely intact.

12Oppositely, escaping an extremely large peak is near impossible under stochastic tunneling. In
that sense, bacteria that form large populations have an advantage over small populations, as they
will not accidentally drift away from a favorable evolutionary stance.
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• Although finding an accessible path is more likely under stochastic tunneling
for most α than for the classical model, once the initial fitness approaches
one, the probability to find an accessible path will diminish completely.
When fixing the antipodal sequences fitness at such large values of α, the
algorithm will be unable to find an additional, valley-separated genotype
that tops the initial sequences fitness. Of course, for intermediate values, if
escaping the initial sequence is necessary, the algorithm will most likely find
a way to do so. Due to this a phase transition remains recognizable in the
stochastic tunneling model, albeit for larger α than in the classical model13.
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Figure 3-18: The above probability to find a path as a function of the ini-
tial genotypes fitness is the result of simulations for genotype dimensions
of seven (dotted), eight (dashed) and nine (dash dotted). Under stochastic
sequential fixation, this probability starts to decrease only for very large α.
When simulating for large populations (therefore allowing only stochastic
tunneling), the probability to find a path eventually approaches zero, albeit
this happens for larger α than in the classical model. Note that the probability
to reach the global maximum in the classical α-HoC model merges with that
under sequential fixation, given the special case of α being fixed to zero in
the former and α fixed to one in the latter.

13Interestingly, from looking at the numerical data, it can be proposed that the phase transition
occurs at (roughly) twice the value of the phase transition in the classical model.
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4 Outlook
One question that immediately arises in the context of downhill steps is how
evolutionary accessibility is affected ifmore than a single step is allowed. However,
once we do allow additional downhill steps, a problem arises in terms of the escape
processes classification, which had previously been of no concern: Do we allow
more than one downhill step in a single escape14, essentially broadening the fitness
valley that is traversed? Do we allow downhill steps that are initiated separately
from each other, starting at two different genotypes? Or both?

Regardless of whether we are interested in escapes via sequential fixation or
stochastic tunneling processes, the means by which we allow multiple downhill
steps to occur have to be clarified in advance.

Distance from the antipodal sequence

Fi
tn

es
s

Figure 4-1: The two possible ways to spend more than one downhill step in
order to reach the global maximum are illustrated for the stochastic tunneling
model. The bottom path leads across a broader valley whereas, along the top
path, smaller valleys are traversed. To improve visibility, in both paths the
intermediate genotypes have been highlighted.

14By this, the weak mutation condition is weakened even further. A single genotype will now
have enough time to mutate at two loci before being swept away by natural selection.
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As it proves more complicated to clearly denote the processes that we want to
allow, for some of the above combinations the computational realization will also
turn out to be more of an extensive undertaking. This is especially the case for the
stochastic tunneling model: Here, we save the fitness of the local peaks genotype
in order to compare it to such sequences that are located across the valley. When
increasing the number of allowed downhill steps, additional values have to be
stored, which will add to the runtime of the search.

Implementing a larger maximum number of downhill steps (denoted by mdhs)
is of course easiest, when we do not consider whether these steps occur right after
each other or not. From Fig. 4-2 it can be seen that the probability not to find an
accessible path in the sequential fixation model vanishes already when allowing
just two downhill steps15. It confirms ones intuition, that said probability becomes
even smaller when further increasing the maximum number of downhill steps. The
fact that it does so this quickly is however somewhat surprising.
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Figure 4-2: For a maximum number of downhill steps mdhs of one (red)
and two (orange) the probability not to find a path is plotted against the size
of the genotype space. Not finding a path proves very unlikely as soon as
multiple downhill steps are allowed. In generating the above results it was left
unspecified whether the two downhill steps had to be performed independent
of each other or if they were used in a combined effort to cross a larger valley.

15Surely, for some dimension larger than L = 13 not finding a path will eventually happen. The
fact that it did not do so here should however be able to emphasize that this is an extremely unlikely
event.
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Increasing the number of downhill steps in the stochastic tunneling model has a
similar effect: The number of accessible paths increases by a significant margin.
As initially assumed, the runtime for the search turned out to be higher, the
expected number of accessible paths was therefore only simulated for dimensions
up to nine. The data from the numerics was fitted in a least square fit, which
returned the following parameters:

EIIsim[X] ≈ γ̂′′simLα̂
′′
sim (4.1)

4.472 < α̂′′sim < 4.501 , 0.030 < γ̂′′sim < 0.031

From (4.1) it can be seen that, with an additional downhill step available, the
exponent is more than twice as large as in the single downhill step expression,
see (3.11). Naturally, if we had introduced one of the restrictions that were men-
tioned above (see Fig. 4-1) the fit would have returned a smaller exponent than
that.
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Figure 4-3: In the stochastic tunneling model the number of paths (blue
squares) grows significantly when the maximum number of downhill
steps mdhs is increased to two. The fit that led to the parameters in (4.1) is
colored in magenta.
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Finding an analytical argument by similar means as for the single downhill step
result proves a lot more complicated, as we are faced with an intricate web of
nested recursions. However, the following argument can be made: As one would
expect the multiple downhill steps to be performed in any out of a total of Lmdhs

combinations, each remainder of sequences would again have to be ordered, which
happens with probability 1/(L − mdhs)!. Multiplication by the total number of
paths yields a term that is proportional to L2mdhs , which looks convincingly similar
when compared to the above parameters.

As we do not explicitly consider paths along which neither (or any number
smaller than the allowed maximum) of the downhill steps is used, this is only to be
regarded as an estimate of how evolutionary accessibility behaves when increasing
the number of mdhs to larger values.
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5 Discussion
The models that were covered here represent the two ways by which a population
can, in theory, escape a local peak on a fitness landscape. It has been shown
that – in comparison to the classical HoC model – the probability to reach the
globalmaximum significantly increased under the two escapemodels, see Fig. 3-1.

The prevailing mechanism in small populations is the drift-dependent stochas-
tic sequential fixation process: The probability to find a path and the average
number of such paths existing was determined to be largest when allowing this
type of escape from local peaks. This was due to the fact that the algorithm did
not have to check the feasibility of performing a tunneling action each time it
encountered a lower fitness value; it simply moved along in all cases.

The fact that the expected number of paths was highest in the sequential fixation
model can also be seen from comparing the escape mechanisms probability distri-
butions (see Fig. 3-12 and Fig. 3-13) and their respective cumulative distribution
functions (see Fig. 3-14 and Fig. 3-15). Under sequential fixation the algorithm
had the best chances to find a large number of accessible paths, which resulted in
its probability distribution having the longest tail and its cumulative distribution
function converging to one slower than that for the stochastic tunneling model.

According to the fitted numerical data, see (3.1) and (3.3), the expected number
of accessible paths and its second moment both exponentially grow as a function
of the hypercube dimension for the stochastic sequential fixation process. Since
the two did so at different speeds (the slope parameter in the fit for the second
moment was roughly two and a half times larger), applying the first- and second
moment lemma did not lead to any results.

For large populations, the probability that all its members drift toward a valley
genotype becomes vanishingly small. Such populations may however still perform
an escape from a local peak via stochastic tunneling. This too increased the
probability to find a path and the mean number of such (again, relative to the
classical HoC model).
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The expectation value for the number of paths and its second moment in the
stochastic tunneling model were fitted to the data from the simulations, see (3.2)
and (3.4). It turned out that both of them grow in accordance with a power law;
only the second moment does so at an about three times quicker rate.

In addition to determining the growth of the number of accessible paths in both
models, combinatorial solutions were derived, see (3.8) and (3.11). From these it
can be seen that the number of paths asymptotically grows with 2L if escapes via
sequential fixation are allowed and it does so with L2/2 under stochastic tunneling.
Also, the analytical and the numerical results were shown to correspond very well,
at least for smaller dimensions (see Fig. 3-7 and Fig. 3-8).

Since the expected number of accessible paths is fixed at one for all genotype
dimensions in the classicalHoCmodel, the ratio of accessible direct paths that arose
only thanks to the possibility of performing a downhill step quickly approached
unity, see (3.12).

Another observable that was of interest in the context of downhill steps was
the distance from the originating sequence at which the algorithm would typically
use them. An upper boundary was derived (3.13) and compared to the numerical
data; in this manner the estimates error was shown to grow logarithmically as a
function of the hypercube dimension.

An open question remains why, under both escape processes, more often than
not the number of paths that were retrieved turned out to be even (see Fig. 3-16 and
Fig. 3-17). Although this behavior seemed to normalize with growing genotype
dimensions, it did take longer to even out in the stochastic tunneling model.

The behavior of the probability to find an accessible path as a function of α
in the α-HoC model was plotted for both escape processes, see Fig. 3-18. In the
stochastic tunneling model, a similar phase transition as in the classical model was
shown to occur, albeit at larger α. When allowing stochastic sequential fixation, the
probability that the globalmaximumwas reachedwas generally very high. Notably,
when the initial sequences fitness was fixed to one, the probability coincided with
that of the classical model with α fixed to zero. A specific value at which the
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phase transition takes place could however no longer be identified, which was due
to the fact that the algorithm would escape even the largest initial fitnesses. Once
given a head start, at least one suitable path along which the global peak could be
reached was then usually found.

When allowing multiple downhill steps to occur – without formulating any re-
strictions as to whether these may happen subsequently or in separate escapes – the
probability not to find a path was shown to equal zero in the sequential fixation
model, for all dimensions that were realized. For the stochastic tunneling model
an argument was presented which suggested that the growth of the number of ac-
cessible paths behaves like L2mdhs . This compared well to the fitted data, see (4.1).

In regards to the simulations, difficulties arose concerning the scaling of the
genotype space: As the algorithm required a higher effort in terms of memory
allocation, it was computationally unfeasible to generate data for dimensions larger
than ten16. Also, the results were affected by the introduction of a distinct counter,
which was necessary to reflect the fact that downhill steps are only performed with
a limited likelihood. In an alternative implementation the algorithm could, each
time it encounters a lower fitness value, draw a random number and compare this to
some decision probability. Intuitively, that decision probability should be formed
by comparing the likelihoods to perform an escape event and that to undergo a
single beneficial mutation. Depending on that ratio, this method might however
additionally increase the computational efforts required to scan the hypercube.

16In simulations where the exact number of accessible paths was of no concern, it was possible
to raise the genotype dimension up to a value of L = 13.
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6 Appendix
When deriving the expected value for the average distance at which the downhill
step is used, ddhs, we will be faced with two sums. The binomial theorem will be
of help in rewriting them:

(x + y)N =

N∑

k=0

(
N
k

)
xN−k yk (A1)

Another fundamental combinatorial technique that will be put to use is double
counting: (

N
k

) (
k
m

)
=

(
N
m

) (
N − m
k − m

)
(m=1)
=⇒ k

(
N
k

)
= N

(
N − 1
k − 1

)
(A2)

Each genotype that differs at k loci from the originating sequence – of which there
are

(
L
k

)
– may still mutate at L − k loci. Combining both of these expressions

yields the number of connections Nk,k+1 along which a genotype at distance k

from the originating sequence may mutate toward a genotype at distance k + 1.
By multiplying with the corresponding distance from the antipodal sequence at
which the downhill step is then used ddhs(k) (which is simply k), one receives the
expectation value at which the downhill step will be used on average (this still has
to be normalized by the overall number of connections, Ntot). These considerations
yield the first sum we are interested in:

Ntot · E[ddhs] =
L−2∑

k=0
Nk,k+1 · ddhs(k) =

L−2∑

d=0
k (L − k)

(
L
k

)
=

L
L−2∑

k=0

k (L − k)
L

L!
k!(L − k)!

= L
L−2∑

k=0
k
(
L − 1

k

)
=

L
L−1∑

k=0
k
(
L − 1

k

)

︸          ︷︷          ︸
(I)

−L2 + L (A3)
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Note that the above sum ends at a Hamming distance of L − 2 from the original
sequence, since a population will not perform a downhill step once it arrives at
distance L−1 (due to the fixing of the antipodal sequence). We nowfirst apply (A2)
to the above sum (I) and then rewrite by (A1), where x and y are equal to one:

L−1∑

k=0
k
(
L − 1

k

)
(A2)
= (L − 1)

L−1∑

k=0

(
L − 2
k − 1

)
= (L − 1)

L−1∑

k=1

(
L − 2
k − 1

)
=

(L − 1)
L−2∑

k=0

(
L − 2

k

)
(A1)
= (L − 1)2L−2 (A4)

By the combination of expressions (A3) and (A4) we receive the closed-form
expression of the unnormalized expectation value for ddhs

17:

Ntot · E[ddhs] =
(
L2 − L

) (
2L−2 − 1

)
(A5)

Said normalization factor – which is equal to the total number of connections
along which the downhill step could, in theory, be used – also has a closed-form
expression:

Ntot =
L−2∑

k=0
Nk,k+1 =

L−2∑

k=0
(L − k)

(
L
k

)
= L

L−2∑

k=0

L − k
L

L!
k!(L − k)!

=

L
L−2∑

k=0

(
L − 1

k

)
= L

L−1∑

k=0

(
L − 1

k

)
− L

(A1)
= L

(
2L−1 − 1

)
(A6)

Insert this into (A5) and we arrive at the expression for the upper limit of the
average Hamming distance at which the downhill step is used:

E[ddhs] =
(
L − 1) 2

L−2 − 1
2L−1 − 1 (3.13)

17Although it has not been explicitly mentioned yet, we want L to only assume values larger or
equal than two. Otherwise the above sums would not be well defined.
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