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ABSTRACT
The explainable AI literature contains multiple notions of what an
explanation is and what desiderata explanations should satisfy. One
implicit source of disagreement is how far the explanations should
reflect real patterns in the data or the world. This disagreement
underlies debates about other desiderata, such as how robust expla-
nations are to slight perturbations in the input data. I argue that
robustness is desirable to the extent that we’re concerned about
finding real patterns in the world. The import of real patterns differs
according to the problem context. In some contexts, non-robust
explanations can constitute a moral hazard. By being clear about
the extent to which we care about capturing real patterns, we can
also determine whether the Rashomon Effect is a boon or a bane.
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1 INTRODUCTION
Explanations of how machine learning (ML) models work are part
of having accountable and transparent machine learning. But what
counts as a good explanation in machine learning? The machine
learning research community has come up with many methods
to produce explanations, but there is little explicit discussion of
desiderata for machine learning explanations, even as these desider-
ata are appealed to when evaluating particular explanation meth-
ods.

One difficulty is that ML explanations are used for diverse pur-
poses, audiences, and models. Different purposes will lead to dif-
ferent desiderata. Certain types of explanations are inappropriate
for non-technical audiences, for example. For this reason, trying to
argue for a single set of desiderata for all ML explanations is likely
to be a fool’s errand.

Nonetheless, I will argue for the merits of one particular desidera-
tum that has not been explicitly discussed, but which I think applies
across many purposes, application contexts, audiences and mod-
els. This is the desideratum of a particular kind of objectivity: the
degree to which an ML explanation sheds light on patterns in the
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world.1 Objectivity is threatened when there are multiple candidate
explanations that are equal or almost equal on other desiderata, but
only one of those candidate explanations is presented as the correct
explanation.

A related discussion about ML explanations concerns the im-
portance of robustness (or stability, as it’s sometimes called) [26].
Alvarez-Melis and Jaakkola make a brief remark towards the end
of [2] that robust explanations may be more important if the goal
is to understand not just the model, but the underlying phenome-
non being modeled. I flesh out this remark by drawing on a long
tradition of both scientists and philosophers who have argued that
robustness is an indicator of reality. The epistemic advantages of
robustness that they describe, I argue, extend to ML explanations:
robust ML explanations are desirable for the same reasons.

After showing that objectivity has been an implicit desideratum
for someAI researchers, I provide both epistemic and ethical reasons
for seeking objective explanations. The epistemic reasons apply not
just when we want to find out about real patterns in the world, but
also when we’re trying to improve a purely predictive model. The
ethical reasons I raise dovetail with worries about the arbitrariness
of post-hoc explanations that have been expressed in works like
[1] and [16].

2 OVERVIEW: DIFFERENT TYPES OF
EXPLANATIONS

ML explanations come in many shapes and forms, and a specialized
terminology to describe different explanations has sprung up. Here
I briefly describe the different types of explanations and state the
names I will be using for them.

ML researchers commonly distinguish between interpretable
models and black-box models. Interpretable models have a math-
ematical and logical structure that easily allow for explanations
to be generated directly from that structure. For example, linear
models are commonly considered interpretable because it’s easy
to explain to even non-technical audiences that x , y, or z are the
most important inputs contributing to the linear output, whether
the inputs contribute negatively or positively, and so on. It’s also
easy to use visualizations to illustrate the influences of inputs in
linear models.

Black-box models are, roughly speaking, those that are too com-
plex to provide for a simple explanation. They are typically taken
to include ensemble models like random forests, and any models
that use deep neural networks. Due to the difficulty of generating
an explanation directly from a black-box model, researchers often
resort to generating more interpretable surrogate models that mimic
a black-box model’s behavior, then extracting explanations from the
1For the purposes of this paper, I use “objectivity” in strictly this sense. I don’t intend
this usage to reflect on other uses of the term, the shifting meanings of which have
been documented in works like [9].
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surrogate models. Explanations generated from surrogate models
are often called post-hoc explanations.

Local explanations are a common type of explanation used to
interpret black box models. They focus on explaining, for a particu-
lar output, how it can be derived from the input data. They do this
without reference to the original model that produced the output,
by essentially constructing a surrogate model around the particular
input point that produces the expected output.

Global explanations, in contrast, explain how the whole range of
outputs is generated from the whole range of inputs. Interpretable
models typically provide global explanations. It is also possible to
construct surrogate models for black-box models that are global
explanations.

Counterfactual explanations have been proposed as a particularly
useful form of explanation for communicating ML-generated deci-
sions to impacted users, because of their resemblance to everyday
explanations in human conversation [30]. Counterfactual explana-
tions state what would have happened had the input variables been
changed in certain ways. These explanations are particularly useful
when you want to help the user understand how they can change
inputs under their control in order to achieve a different outcome.

3 WHATWERE EXPLAINING
Before discussing desiderata for explanations, it’s helpful to first
clarify what it is that ML explanations aim to explain. The lack
of consensus about desiderata stems partly from a lack of clar-
ity on what the appropriate explanandum is—what phenomena
we’re trying to explain. For example, a local explanation has a dif-
ferent explanandum from a global explanation, because the latter
includes the entire range of inputs and outputs for the model in its
explanandum, whereas a local explanation focuses on only a single
input-output mapping.

I focus on another difference in explananda that has not been
explicitly discussed: the extent to which model-world relations are
included in the explananda. To understand how the world enters
into explanations, consider Figure 1, which depicts relationships
between the world, the data input into the model, the model and
the model’s output.

I constructed this diagram to show that there are many poten-
tial explananda that we could pick out from among the diagram’s
components. The following are an incomplete list:

(1) For a given input, how outputs are generated in the local
neighborhood of that input. This is the kind of explanandum
targeted by a local explanation. In Figure 1, these explana-
tions have only the data input →model output relationship
as the explananda, and each local explanation covers only a
specific data input point.

(2) How the model transforms inputs to outputs, in a global
sense. Global explanations of interpretable models have this
type of explanandum. In Figure 1, these explanations cover
the data input →model →model output relationship.

(3) Given a particular input, why it leads to a particular out-
come, and how that input can be changed if you want other
outcomes. Counterfactual explanations have this type of ex-
planandum. Counterfactual explanations do not include the
model’s mechanism in their explananda.

(4) How the model captures real patterns in the data. Here, I’m
using the term “real patterns” in the abstract, general sense
captured in [10].2 Explanations containing this type of ex-
planandummay relate abstract representations in the data to
patterns in the world. For example, a robust interaction be-
tween two variables, if it occurs in multiple well-performing
models, may shed light on how the variables may be causally
related—even if the variables do not have a direct causal re-
lationship, they may share a common cause or act as proxies
for other properties that are directly causally connected. For
these kind of explanations, the explananda include the whole
of Figure 1, because we do want to explain how the flow of
data input → model → model output provides insight on
theworld →model relationship.

Explanandum 4 is implicit in some types of explanations, but
is rarely explicitly articulated in the explainable AI literature. ML
models are used in various sciences not just to predict outcomes, but
also to help reveal underlying relationships in the world (using data
collected from the world as a proxy). In some cases, explanations are
evaluated not just based on how they explain the inner workings of
the model, but also the extent to which the model provides insight
on real relationships in the world.

Using prior philosophical work on how robustness is an indicator
of reality, I argue that if we’re interested in explanandum 4, then we
need to ensure that our explanations are robust. Section 6 provides
further epistemic and ethical reasons to prefer explanations that
reflect real-world patterns.

4 ROBUSTNESS AS REALITY
Before I go on to survey the robustness of different types of expla-
nations, it’s worth taking a step back to ask why we care about
robustness and how it may be an indicator that our explanations
are latching on to real patterns.

Robustness as a general desideratum has long been advocated
by both natural and social scientists [6, 19]. The idea of robustness
is indicating reality is often first attributed to the biologist Richard
Levins [19], and has since been adopted and refined by philosophers
of science [31–33].

For the purposes of ML explanations, we can use a slightly mod-
ified version of derivational robustness [15]. As originally formu-
lated, derivational robustness was used to describe certain theorems.
The theorems were deemed derivationally robust if they could be
derived in multiple [at least partially] independent ways.3 We can
easily extend derivational robustness to apply to ML explanations,
by defining robust explanations as those that can be generated
in multiple [at least partially] independent ways, via any of the
explanation methods described in Section 2.4

2“Real patterns” in this sense includes large-scale, emergent regularities in the phe-
nomena. These, rather than microscopic regularities, would be the type of patterns
likely to be found by most ML applications.
3The question of what count as independent methods of derivation is complex. See [29]
for a discussion. For future work, it would be interesting to explore in what sense the
various almost-equally-well-performing models found as part of the Rashomon Effect,
as explained in 5.2, can be considered to be independent or partially independent.
4Some philosophers have raised doubts over the epistemic utility of derivational
robustness, on the grounds that the evidence for even derivationally robust theorems
still ultimately comes from theoretical assumptions, not empirical evidence [24]. This
is less of a worry for my adaptation of derivational robustness—even though ML
explanations are derived from models, those models are built on empirical data.
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Figure 1: Possible explananda for a model explanation. The dotted line represents the kind of proxy relationship that’s pro-
duced by post-hoc explanations.

Philosophers have offered the following reasons to take robust-
ness as at least an epistemic criterion for when to consider some-
thing to be real—that is, a criterion that tells us when we have good
evidence that something is real [32]:
• If each model uses different assumptions to derive the same
result, that means the result is independent of the differences
between those assumptions. This is important if we have
reasons to doubt the truth of those assumptions.
• Guarding against errors in the data: If you get the same result
by varying some input variable slightly, this means that the
result still holds if your the error associated with that input
point (whether it comes from data collection or from data
processing) is within that slight variation.
• When a result is arrived at by only one method, then the
chances of error in each step of that method contribute ad-
ditively to the overall chance of error for the method: the
method is only as reliable as its weakest link. When multi-
ple partially independent methods arrive at the same result,
the probability that the result is unreliable is calculated by
multiplying the probabilities of each of the methods being
unreliable. To put it intuitively, with multiple indepedent
methods, all the methods need to be incorrect in order for the
result to be unreliable. With only one method, all the steps
in the method have to be correct for the result to be reliable.
This means that even multiple slightly unreliable methods
can lead to a fairly reliable result, whereas one moderately
reliable method may not.

We can extend these reasons for robustness to ML explanations
by thinking of an explanation as a “result” derived from a modeling
process.

I’ll next provide some examples of non-robust explanations, as
defined by derivational robustness, and explain how, by the reason-
ing above, they fail to provide good evidence that their content is
grounded in real patterns.

5 NON-ROBUST EXPLANATIONS
This section describes some situations where ML explanations lack
robustness. In the previous section, I defined robustness in terms of

multiple methods arriving at the same “result”. Since I’m concerned
about explanations in this paper, it’s worth clarifying that the lack
of robustness I’m about to describe is due to multiple methods not
producing the same explanation—“result” in this context does not
refer tomodel predictions. Indeed, the examples I’m about to discuss
are cases where the predictions of the underlying ML models are
pretty robust, but the explanations associated with them are not.

5.1 Non-Robust Local Explanations
Locally Interpretable Model-Agnostic Explanations (LIME) [25] and
Shapley values [21] are popular local explanation methods that
take a complex black-box model and construct locally interpretable
models at specific input points. They fall in the class of local ex-
planations because the constructed interpretable model differs at
each input point, and a local explanation constructed for one input
point does not necessarily hold at another input point.

Alvarez-Melis and Jaakkola showed that LIME and Shapley val-
ues lack robustness for non-linear black-box models, in the fol-
lowing sense [2]. They conducted experiments where they slightly
perturbed input values that were entered into the black-box model.
They found that the surrogate models and the original black box
models produced stable output values in response to the perturbed
inputs, but that the perturbations often caused the explanations
provided by LIME and Shapley to change drastically. In short, ex-
planations generated by LIME and Shapley values are not robust
to small changes in input values, even when the outputs of the
surrogate models are.

This lack of robustness is troubling for the following reasons.

(1) Data is collected from the world with finite precision, and
we should allow for that by ensuring that the uncertainty in-
volved in those measurements does not drastically affect the
decisions we make. However, it appears that this uncertainty
could drastically affect the explanations we use to explain
our results, if we use LIME or Shapley values.

(2) A lack of robustness raises questions about the extent to
which the surrogate explanations really capture how the
black box works, because we normally expect the original
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black-box model to process neighboring input points in sim-
ilar ways, especially if those points lead to the same output.5
The fact that these so-called local explanations cannot in fact
reproduce the “localness” of black-box mechanisms is thus
troubling. This is particularly pressing because these local
explanations only imitate local input-output mappings—they
do not claim to simulate the inner workings of the original
black-box model. This means we cannot go back to the black
box model to verify which of the candidate local explana-
tions (the one generated by the original input point, or the
one generated by the slightly perturbed input point) is more
descriptive of the black box’s mechanics.

(3) We expect phenomena in the world that are similar to have
similar explanations—with the exception of a few systems
with “chaotic” dynamics, we normally do not expect that
perturbing an input into a scientific model slightly results
in qualitatively different behavior. The lack of robustness of
these local explanations therefore sows doubt about how far
they are reflective of real patterns in the world.

As pointed out in [2], in certain contexts, wemay not care how far
the explanations are informative about the world, if the only reason
we’re extracting explanations is for debugging the current model—
understanding what factors are important in the mathematics of
the current model. However, it’s easy to think of contexts where
it’s important to have an explanation that provides insight into the
underlying phenomena being modelled. Section 6 describes some
plausible contexts where this kind of insight is important.

5.2 The Rashomon Effect
The Rashomon Effect, also known as the multiplicity of good mod-
els, is a phenomenon identified by Leo Breiman where for a given
set of data, it’s possible to construct many equally well-performing
models that may differ greatly in their internal structure (and hence
in their attendant explanations) [5]. Some researchers argue that
this is a good thing [26], but here I will frame it as a lack of robust-
ness.

In the Rashomon Effect, there are multiple models that perform
similarly well—their accuracies are so close to one another that we
cannot be sure that the differences aren’t due to random factors.
Each of those models suggests a different explanation, even though
they all have similar input-output mappings. We lack convergence
ofmultiplemethods on the same explanation—sowe lack robustness
with respect to the explanations (even if the input-output mappings
are robust).

As a concrete example of this lack of robustness, Jiayun Dong
and Cynthia Rudin constructed a Rashomon set—the set of almost-
equally-accurate models—for the recidivism data set used in the
COMPAS algorithm [11]. They find that models in the Rashomon
set differed significantly in the importances assigned to certain
variables. In particular, they found that the importance of criminal
history is lower when the importance of race is higher, and vice
versa. In such a case, taking one model out of the Rashomon set
5Indeed, one feature of models using decision tree ensembles (which are generally
considered to be black-box models) is that they tend to have smoother input-output
relationships than their component decision trees do. In this sense, the smoothness of
the input-output relation is related to how black-box they are—ensembling makes the
model less interpretable and increases smoothness at the same time.

to provide “the explanation” would not be an accurate reflection
of the patterns in the data—just because race happens to be an
unimportant variable in that one explanation doesn’t mean that it
is objectively an unimportant variable.

This lack of robustness isn’t necessarily unexpected—if we expect
an explanation to explain only a specific model’s inner mechanisms,
then it is expected that models with different mechanisms will
have different explanations. But, referring back to the discussion
in Section 3, if we would like model-world relations to be part
of the explanation, then these model-specific explanations are not
enough. In the next section, I give some examples of contexts where
capturing model-world relations is an appropriate desideratum for
an ML explanation.

6 WHEN REAL PATTERNS MATTER
I argue that we sometimes see revealing objective patterns as part
of the function of ML models. Indeed, this may be why constraints
from the real world are commonly placed on models, independently
of whether these constraints improve accuracy. For example, one
may constrain a model to be monotonic on the basis of domain
knowledge [13]. One may also use domain knowledge to pick out
one model from several models that are similarly accurate, if one
of them better reflects real-world relationships in its internal mech-
anisms.

But why should we care if our models are picking out real pat-
terns? In certain contexts, it may be appropriate to not care at all. If
we care only about the model’s predictions, as given in the model’s
current form, then it may not matter to us that the model’s math-
ematics does not reflect real patterns in the data or the world. In
such cases, we may want interpretations solely for accountability
to end-users—we may want to be able to provide an explanation
of how the model processed data and obtained outputs to those
impacted by the model, without requiring that these explanations
reflect real-world patterns.6 However, in many cases we want inter-
pretations because we want to better understand the model-world
relationship. In other cases where we’re interested in improving
predictions in a future version of the model, we may want to better
understand the model-world relationship as a means to the end of
making a superior model—so having “purely predictive” intentions
does not necessarily absolve you from ensuring that your model is
grounded in reality. Indeed, real-world data science is a highly iter-
ative and experimental process where one improves a model based
on a flawed earlier version of the model, and compatibility with re-
ality is one heuristic that can narrow the space for experimentation
and guide one to a better model.7

6.1 Hypothesis Generation
Scientific applications are one area whereML explanations are often
used to gain insight into real patters in the world. For example,
interpretable models that act as surrogates to black-box models can
be used to identify patterns that can be combined with physicians’

6Note, however, that this depends on how you define “accountability”. In some contexts,
“accountability” might require that the model is based on our understanding of the real
world. In that case, ensuring that your explanation is grounded in real patterns may
be necessary for accountability.
7Models of the data science lifecycle acknowledge the iterative nature of the process.
See for example [22] and [28].
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causal models to suggest new hypotheses to investigate [4, 7]. This
can be the case even if the models themselves represent mostly
non-causal relationships—non-causal information can inform work
on causal models.

The process of hypothesis generation can also be important as
part of the iterative modeling process itself. If we have robust expla-
nations that we are more confident are not an artifact of arbitrarily
selecting one model out of hundreds that perform almost as well,
we’ll have more confidence going forward that the hypotheses sug-
gested by those explanations are worth paying attention to. In other
words, having a more robust explanation narrows the search space
of possible model improvements more, as compared to having a
less robust explanation.

6.2 Non-Misleading Explanations
Having explanations that pick up on real patterns may also be
important if we want to avoid giving users a one-sided picture of
what contributed to the decisions that impact them. Suppose we
follow Rudin’s preferred strategy of picking an interpretable model
from the multiplicity of good models, using that to make decisions
that affect stakeholders, and providing stakeholders with the ex-
planation associated with that model [26]. While the explanation
would certainly be accurate of the model that was used, this strat-
egy still leaves the stakeholder unaware of the fact that there were
many other equally good models that would likely have produced
the same result but that would produce significantly different ex-
planations for that result. This is not ideal, because it means the
stakeholder is unaware of alternative equally-good explanations
for the outcome. As I elaborate in Section 7, this can have more
severe consequences if “fairwashing” occurs as a result.

This line of argument may conflict with your intuitions some-
what: If we are indeed using an interpretable model, and if we
provide an explanation to the stakeholder that accurately describes
the model’s mechanisms, isn’t that enough from a transparency
perspective? Does the stakeholder really need to know about mod-
els that were rejected in the model development process, if those
models aren’t used at all?

My answer to this is somewhat nuanced: I don’t want to reject
the idea that sometimes, providing an explanation for only the
model that you used, even if there were many others you could
have used but didn’t, is appropriate given certain applications and
certain intended audiences for that explanation. For example, if
your intended audience was composed of seasoned data scientists,
they might understand that this is a normal part of the model
development process, and they might find a full disclosure of the
details of that process to be excessive. However, if the audience
consists of non-technical people who are looking for an explanation
for a decision that affects their lives (for example), providing a
unitary “explanation” based on the one model that happened to be
picked out of a hundred equally well-performing ones would be, I
argue, a form of miseducation.

Explanations ought to be provided with some awareness of how
they will be interpreted by their audience, given the social context
in which they occur. As Mittelstadt et al. point out, providing an
explanation of an ML-generated decision to the user affected by
the decision can act as a kind of argumentative support for or

justification of that decision [23]. This is particularly likely to be
the case when the explanation is for why the user’s request for
something desirable (e.g. a credit line increase) was denied. Once we
realize that explanations in certain contexts are likely to be received
as justifications, simply describing the mathematical mechanisms
of one particular model begins to seem less adequate. I do not have
room in this paper to give a complete analysis of what might form
an adequate explanation given its potential uptake as a justification,
but I can point to some aspects of non-robust explanations that
are unsatisfactory from the point of view of acting as possible
justifications:

• We generally expect justifications to be based on real pat-
terns in the world (e.g. the pattern that people with a history
of repaying loans on time in the past have social and eco-
nomic circumstances that make them more likely to repay
loans in the future), but as I’ve argued, the non-robustness
of certain explanations makes it unclear that their content
reflects real patterns.
• Discursively, if I ask for an explanation of a phenomenon,
and just one explanation is provided, with no indication that
there are perhaps 100 other explanations that would have
served just as well, I would feel that crucial information
was being withheld from me. Plausibly, the Rashomon Ef-
fect occurs when many features interact with one another
in complicated ways, so that some models are able to imi-
tate the contribution of a feature or a combination of fea-
tures by another seemingly distinct feature or combination
of features. The different “explanations” provided are thus
different views on the same interactional phenomenon. Pro-
viding a “summary” of these different views, for example
through something like variable importance curves [11] or
model class reliance [12], can provide a fuller picture of what
real-world phenomena underlie the prediction.

6.3 Model Debugging and Improvement
Having explanations that reflect real patterns is also better formodel
debugging and improvement. This may be somewhat contrary to
the remark in [2] that non-robust explanations suffice for model
debugging. The difference really lies in what we consider within
the scope of “debugging”.

If an explanation accurately describes the inner mechanisms of
a model but there is no evidence that those mechanisms reflect
real patterns, then the explanation would be useful for checking
that the model behaves as expected according to our understanding
of its math. In other words, we can use the explanation to debug
the model by ensuring that the outputs it produces are consistent
with our understanding of its mathematics. However, if we have no
evidence that the explanation actually captures real patterns, then
we wouldn’t expect the explanation to guide us in engineering the
model to take advantage of real patterns to improve its accuracy.

In contrast, if we have evidence that our explanation captures
objective patterns in the world, we can more confidently use those
patterns to debug or improve the model in the following ways:

• Improve feature engineering, using the previous iteration of
the model as a guide to which features are important, how
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to best process features before using them as model inputs,
how features interact, and so on.
• Form hypotheses about what other kinds of data would be
useful to collect.
• Change the way features are combined in the model.
• Confirm that the model’s outputs are consistent with the
real-world pattern.

This is an incomplete list. The key point is that learning real
patterns gives us insight into the model-world relationship, which
means we can learn how to manipulate the variables and relation-
ships in those patterns to use real-world patterns in an informative
manner.

7 MORAL HAZARD
Beside concerns about objectivity, the Rashomon Effect also pro-
vides a moral hazard in the following way: Knowing that some
explanations are more acceptable to end-users than others, orga-
nizations may decide to select the model that provides the most
acceptable explanation to end-users.8 For example, they may select
the model that appears to assign a very low importance to sensitive
factors like race and gender, even if there are many other candidate
models that perform similarly to the selected model and that have
accompanying explanations that make race and gender seem impor-
tant. As the original paper on the multiplicity of good models points
out, it is common that decision trees with very different structures
will have similar accuracies on the same dataset [5]. A significant
difference in structure corresponds to a significant difference in the
explanation.

A similar moral hazard was exposed in the case of post-hoc
explanations. In [1], researchers were able to generate multiple rule
lists that approximate an unfair black-box model, then select the
subset of rule lists that appear to be more fair. One rule list from
this subset would then serve as the post-hoc explanation presented
to users.

In [16], Lakkaraju and Bastani go one step further in demonstrat-
ing both that fairwashing is possible and that fairwashing succeeds
in improving perceptions. The authors use a black-box model that
predicts whether to release defendants on bail. They discover from
surveys that their experimental subjects considered race and gender
to be inappropriate factors to consider for such decisions. Based on
this, they use the MUSE post-hoc explanation generation method
[17] to selectively generate two categories of explanations:
• Explanations that cite factors perceived as inappropriate for
the prediction purpose, in addition to other factors that are
considered appropriate.
• Explanations that cite only factors that are perceived to be
appropriate factors to consider in the decision.
• Explanations that cite only factors that are perceived to be
neutral.

The authors find that fairwashing works: Study participants found
explanations in the second and third groups much more acceptable
than explanations in the first group, even though all explanations
had been generated for the same black-box model and had similar
levels of fidelity to the black-box model’s predictions.
8This danger has already been pointed out as a risk for post-hoc explanations, for
example in [20] and [23].

The communicative difficulties here are similar to those de-
scribed in 6.2. A seasoned data scientist might be able to appreciate
that a model that claims not to use race as an input variable (for
example) may nonetheless be indirectly making use of information
about race in some way, by way of a complicated combination of
seemingly non-race-related input variables that, together, act as
a proxy for race. Thus, communicating to this data scientist that
this is the (apparently race-neutral) explanation for a particular
decision may not be misleading, because the audience in this case
has enough context to understand the limitations of this explana-
tion. However, when the same apparently race-neutral explantion
is presented to an audience that is less data science-savvy as the
explanation for a set of decisions, they are less likely to realize the
epistemic limitations of the explanation.9

Rudin views the multiplicity of models, and hence of explana-
tions, as a boon because it allows a domain expert to add more
constraints to a model without losing accuracy [26]. This is indeed
an advantage if there is a domain expert available to do this, and if
we can trust the domain expert to add constraints that are based
on reality, rather than constraints that are based on the kinds of
explanations that are most convenient for the organization. How-
ever, this advantage can quickly turn into a disadvantage, from a
social point of view, if organizations are incentivized to choose only
explanations that “look good” to end-users or regulators, leaving
out other explanations that may be just as accurate from the point
of view of objective constraints, but that would cause reputational
damage. Often, if there are many input variables that are causally
intertwined, it’s unlikely that domain experts can impose enough
reality-based constraints to determine which among several mod-
els with significantly different feature importance rankings (for
example) is closest to reality. At some point, the organization has to
choose among the explanations that the domain expert has deemed
consistent with reality, and there is a moral hazard in allowing
such choice. As part of the push to consider ML systems as socio-
technical systems rather than as abstract entities in isolation [8, 27],
we should consider how social incentives are likely to work when
organizations are given the opportunity to make public commu-
nications that are “technically” true but that omit context which
would enable their audiences to make inferences that, perhaps,
work against the organization’s interests.

The points just made reflect a broader issue of how providing ML
explanations is not sufficient for accountability and transparency.
Explanations that accurately reflect a model’s mechanisms may be
arrived at through a design process (e.g. feature selection, feature
engineering, or eliminating other candidate interpretable models in
the “Rashomon set” of almost-equally-accurate models) that people
impacted by the model’s decisions do not understand. Without un-
derstanding the design process, it is unclear why they should trust
the explanation that comes out of such a design process. Account-
ability and transparency should apply just as much to the model
development process as it does to the abstract model and the data.

9Presenting multiple explanations to non-expert end-users may not help much with
trust, either. Lakkaraju and Bastani constructed a tool to allow study participants to
explore different post-hoc explanations, but found that users largely did not trust the
tool [16].
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8 DOES IT MATTER THAT ML MODELS ARE
(USUALLY) NOT CAUSAL?

I’ve drawn on arguments from the methodology of scientific model-
ing to argue for the importance of robustness, relying on arguments
that robustness is an indicator of reality. One possible objection is
that ML models are not like scientific models, because the latter
usually try to capture causal relationships, while many ML models
are “purely predictive and not causal” [26]. As argued in Section
6.3, though, even for a purely predictive model, understanding how
features are related in reality helps in improving the model.

In addition, I’d like to question the predictive-causal dichotomy
assumed in this type of objection. Many ML models may not ac-
curately describe the causal relationships in the underlying phe-
nomena in a straightforward sense. For example, decision trees
are used to model many types of phenomena that do not actually
come about through decision tree-like processes. Nevertheless, the
models may still provide insight into real relationships, for example
by suggesting to us which features interact heavily with respect
to their contribution to a certain outcome. The exact dynamics of
the interaction may not be provided by the ML model, but the ML
model may at least reveal the shape of the interaction and generate
hypotheses that can be tested through other methods.

This is analogous to how “phenomenological” models in science
may provide insight into effective macroscopic degrees of freedom,
or provide hints for fruitful directions in which to develop more
“fundamental” models that directly represent causal processes [14].

Another possibility is that ML explanations can shed light on
non-causal aspects of the world. Analogously, some philosophers
of science accept a role for non-causal explanations in science,
arguing that these types of explanations may, among other things,
take advantage of constraints that the systems face, without relying
on a causal chain of events [18]. These explanations are no less
grounded in facts about the world; they just don’t happen to be
capturing causal facts.

9 SUMMARY
The ML research literature teems with techniques for construct-
ing explanations, but rarely states the exact explananda we desire.
Without a consensus on the appropriate explanada, it’s natural that
disagreements will occur over the desiderata for an explanation.

I’ve argued that in certain application contexts, it is appropriate
to include model-world relations as part of the explanandum of
an ML explanation. This is helpful not just in scientific contexts
where the ultimate aim is to learn about the world, but also in
contexts where we want to improve a purely predictive model. If
model-world relations are part of the explanandum, then we should
also require that explanations are robust in the sense that multiple
models with similar predictive outcomes converge on the same
explanation. This is desirable for epistemic reasons, but also helps
prevent a kind of moral hazard where the most socially acceptable
explanation out of many equally plausible ones is cherry-picked.

If model-world relations form part of an ML explanation’s ex-
planandum, then the “multiplicity of good models” phenomenon, or
Rashomon Effect, becomes a problem. Luckily, there are emerging
techniques to find robust explanations in the sense I’ve defined
in this paper [3]. Going forward, it would be good to ground the

ever-expanding array of new AI techniques in clear definitions of
what counts as an explanation and what makes explanations good.
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