Existence of nontrivial solution for fourth-order semilinear Δ_{γ}-Laplace equation in \mathbb{R}^{N}

Duong Trong Luyen ${ }^{\boxtimes 1,2}$
${ }^{1}$ Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
${ }^{2}$ Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Received 1 July 2019, appeared 24 October 2019
Communicated by Dimitri Mugnai

Abstract

In this paper, we study existence of nontrivial solutions for a fourth-order semilinear Δ_{γ}-Laplace equation in \mathbb{R}^{N}

$$
\Delta_{\gamma}^{2} u-\Delta_{\gamma} u+\lambda b(x) u=f(x, u), \quad x \in \mathbb{R}^{N}, \quad u \in \mathbf{S}_{\gamma}^{2}\left(\mathbb{R}^{N}\right)
$$

where $\lambda>0$ is a parameter and Δ_{γ} is the subelliptic operator of the type

$$
\Delta_{\gamma}:=\sum_{j=1}^{N} \partial_{x_{j}}\left(\gamma_{j}^{2} \partial_{x_{j}}\right), \quad \partial_{x_{j}}:=\frac{\partial}{\partial x_{j}}, \quad \gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right), \quad \Delta_{\gamma}^{2}:=\Delta_{\gamma}\left(\Delta_{\gamma}\right)
$$

Under some suitable assumptions on $b(x)$ and $f(x, \xi)$, we obtain the existence of nontrivial solution for λ large enough.

Keywords: fourth-order semilinear degenerate elliptic equations, Δ_{γ}-Laplace operator, nontrivial solutions, Cerami sequences, mountain pass theorem.
2010 Mathematics Subject Classification: 35J50, 35J60.

1 Introduction

In the last decades, the biharmonic elliptic equations

$$
\begin{equation*}
\Delta^{2} u-\Delta u+\lambda b(x) u=f(x, u), \quad x \in \mathbb{R}^{N}, \quad u \in H^{2}\left(\mathbb{R}^{N}\right) \tag{1.1}
\end{equation*}
$$

has been studied by many authors see $[12,19,20,26-30]$ and the references therein. The biharmonic equations can be used to describe some phenomena appearing in physics and engineering. For example, the problem of nonlinear oscillation in a suspension bridge [10,14,15] and the problem of the static deflection of an elastic plate in a fluid [1]. In the last decades, the existence and multiplicity of nontrivial solutions for biharmonic equations have begun to receive much attention.

[^0]In this paper, we consider the biharmonic equation as follows:

$$
\begin{equation*}
\Delta_{\gamma}^{2} u-\Delta_{\gamma} u+\lambda b(x) u=f(x, u), \quad x \in \mathbb{R}^{N}, \quad u \in \mathbf{S}_{\gamma}^{2}\left(\mathbb{R}^{N}\right), \tag{1.2}
\end{equation*}
$$

where Δ_{γ} is a subelliptic operator of the form

$$
\Delta_{\gamma}:=\sum_{j=1}^{N} \partial_{x_{j}}\left(\gamma_{j}^{2} \partial_{x_{j}}\right), \quad \gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right): \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, \quad \Delta_{\gamma}^{2}:=\Delta_{\gamma}\left(\Delta_{\gamma}\right) .
$$

The Δ_{γ}-operator was considered by B. Franchi and E. Lanconelli in [6], and recently reconsidered in [9] under the additional assumption that the operator is homogeneous of degree two with respect to a group dilation in \mathbb{R}^{N}. The Δ_{γ}-operator contains many degenerate elliptic operators such as the Grushin-type operator

$$
G_{\alpha}:=\Delta_{x}+|x|^{2 \alpha} \Delta_{y}, \quad \alpha \geq 0,
$$

where (x, y) denotes the point of $\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}$ (see $[7,21,23]$), and the operator of the form

$$
P_{\alpha, \beta}:=\Delta_{x}+\Delta_{y}+|x|^{2 \alpha}|y|^{2 \beta} \Delta_{z}, \quad(x, y, z) \in \mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}} \times \mathbb{R}^{N_{3}},
$$

where α, β are nonnegative real numbers (see $[22,24]$).
We assume that the potential $b(x)$ satisfies the following conditions:
$\left(B_{1}\right) b: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a nonnegative continuous function on \mathbb{R}^{N}, there exists a constant $C_{0}>0$ such that the set $\left\{b<C_{0}\right\}:=\left\{x \in \mathbb{R}^{N}: b(x)<C_{0}\right\}$ has finite positive Lebesgue measure for $\widetilde{N}>4$;
$\left(B_{2}\right) \Omega=\operatorname{int}\left\{x \in \mathbb{R}^{N}: b(x)=0\right\}$ is nonempty and has smooth boundary with $\bar{\Omega}=\{x \in$ $\left.\mathbb{R}^{N}: b(x)=0\right\}$.

Under the hypotheses $\left(B_{1}\right),\left(B_{2}\right), \lambda b(x)$ is called the steep potential well whose depth is controlled by the parameter λ. Such potential is first suggested by Bartsch-Wang [3] in the scalar Schrödinger equations. Later, the steep potential well is introduced to the study of some other types of nonlinear differential equations by some researchers, such as Kirchhoff type equations [16], Schrödinger-Poisson systems [8,18,31] and also biharmonic equations [13, 17, 25].

Next, we can state the main theorem of the paper.
Theorem 1.1. Suppose that $\widetilde{N}>4$ and conditions $\left(B_{1}\right),\left(B_{2}\right)$ hold. In addition, we assume that a continuous function $f(x, \xi)=\alpha(x) g(\xi)$ satisfies:
$\left(g_{1}\right) g(\xi)=o(|\xi|)$ as $\xi \rightarrow 0 ;$
$\left(g_{2}\right) g(\xi)=o(|\xi|)$ as $\xi \rightarrow \infty ;$
$\left(\alpha_{1}\right) 0<\alpha(x) \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ and $C_{1}:=\|\alpha\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \max _{\xi \neq 0}\left|\frac{g(\tilde{\zeta})}{\xi}\right|<\frac{1}{1+C_{2}^{2}} ;$
($\left.B_{3}\right) \operatorname{Vol}\left\{b<C_{0}\right\}<\left(\frac{1-C_{1}\left(1+C_{2}^{2}\right)}{C_{3}^{2}}\right)^{\frac{\tilde{N}}{4}}$,
where $\operatorname{Vol}(\cdot)$ denotes the Lebesgue measure of a set in \mathbb{R}^{N} and where C_{2} is the best constant in (2.2) below.

Then there exists a constant $\Lambda_{0}>0$ such that the problem (1.2) has only the trivial solution for all $\lambda \geq \Lambda_{0}$.

Theorem 1.2. Suppose that $\widetilde{N}>4$ and conditions $\left(B_{1}\right),\left(B_{2}\right)$ hold. In addition, we assume that the function $f(x, \xi)$ satisfies:
(F_{1}) $f \in C\left(\mathbb{R}^{N} \times \mathbb{R}, \mathbb{R}\right)$, and there exist a constant $p \in\left(2,2_{*}^{\gamma}\right)$ and two functions $f_{1}(x), f_{2}(x) \in$ $L^{\infty}\left(\mathbb{R}^{N}\right)$ satisfying $\left\|f_{1}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}<\Theta_{2}^{-1}$ and $f_{2}(x)>0$ on $\bar{\Omega}$ such that

$$
\lim _{\xi \rightarrow 0^{+}} \frac{f(x, \xi)}{|\xi|^{p-1}}=f_{1}(x) \text { and } \quad \lim _{\xi \rightarrow \infty} \frac{f(x, \xi)}{|\xi|^{p-1}}=f_{2}(x) \text { uniformly in } x \in \mathbb{R}^{N}
$$

where $f_{1}^{+}:=\max \left\{f_{1}, 0\right\}, \Theta_{2}$ is given in (2.5) below;
$\left(F_{2}\right)$ there exists are constants $1<\ell<2, \mu>2$ and a nonnegative function $f_{3} \in L^{\frac{2}{2-\ell}}\left(\mathbb{R}^{N}\right)$ such that

$$
\mu F(x, \xi)-f(x, \xi) \leq f_{3}(x)|\xi|^{\ell} \quad \text { for all } x \in \mathbb{R}^{N} \text { and } \xi \in \mathbb{R}
$$

where $F(x, \xi)=\int_{0}^{\tau} f(x, \tau) \mathrm{d} \tau$.
Then there exists a constant $\Lambda_{1}>0$ such that the problem (1.2) admits at least a nontrivial solution for all $\lambda \geq \Lambda_{1}$.

The paper is organized as follows. In Section 2 for convenience of the readers, we recall some function spaces, embedding theorems and associated functional settings. We prove our main results by using Ekeland's variational principle and Gagliardo-Nirenberg's inequality in Section 3.

2 Preliminary results

2.1 Function spaces and embedding theorems

We recall the functional setting in [9]. We consider the operator of the form

$$
\Delta_{\gamma}:=\sum_{j=1}^{N} \partial_{x_{j}}\left(\gamma_{j}^{2} \partial_{x_{j}}\right), \quad \partial_{x_{j}}=\frac{\partial}{\partial x_{j}}, \quad j=1,2, \ldots, N .
$$

Here, the functions $\gamma_{j}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are assumed to be continuous, different from zero and of class C^{1} in $\mathbb{R}^{N} \backslash \Pi$, where

$$
\Pi:=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathbb{R}^{N}: \prod_{j=1}^{N} x_{j}=0\right\}
$$

Moreover, we assume the following properties:
i) There exists a group of dilations $\left\{\delta_{t}\right\}_{t>0}$ such that

$$
\begin{aligned}
\delta_{t}: \mathbb{R}^{N} & \longrightarrow \mathbb{R}^{N} \\
\left(x_{1}, \ldots, x_{N}\right) & \longmapsto \delta_{t}\left(x_{1}, \ldots, x_{N}\right)=\left(t^{\varepsilon_{1}} x_{1}, \ldots, t^{\varepsilon_{N}} x_{N}\right),
\end{aligned}
$$

where $1=\varepsilon_{1} \leq \varepsilon_{2} \leq \cdots \leq \varepsilon_{N}$, such that γ_{j} is δ_{t}-homogeneous of degree $\varepsilon_{j}-1$, i.e.,

$$
\gamma_{j}\left(\delta_{t}(x)\right)=t^{\varepsilon_{j}-1} \gamma_{j}(x), \quad \forall x \in \mathbb{R}^{N}, \quad \forall t>0, \quad j=1, \ldots, N .
$$

The number

$$
\begin{equation*}
\widetilde{N}:=\sum_{j=1}^{N} \varepsilon_{j} \tag{2.1}
\end{equation*}
$$

is called the homogeneous dimension of \mathbb{R}^{N} with respect to $\left\{\delta_{t}\right\}_{t>0}$.
ii)

$$
\gamma_{1}=1, \quad \gamma_{j}(x)=\gamma_{j}\left(x_{1}, x_{2}, \ldots, x_{j-1}\right), \quad j=2, \ldots, N .
$$

iii) There exists a constant $\rho \geq 0$ such that

$$
0 \leq x_{k} \partial_{x_{k}} \gamma_{j}(x) \leq \rho \gamma_{j}(x), \quad \forall k \in\{1,2, \ldots, j-1\}, \quad \forall j=2, \ldots, N,
$$

and for every $x \in \overline{\mathbb{R}}_{+}^{N}:=\left\{\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}: x_{j} \geq 0, \forall j=1,2, \ldots, N\right\}$.
iv) Equalities $\gamma_{j}(x)=\gamma_{j}\left(x^{*}\right)(j=1,2, \ldots, N)$ are satisfied for every $x \in \mathbb{R}^{N}$, where

$$
x^{*}=\left(\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right) \quad \text { if } x=\left(x_{1}, x_{2}, \ldots, x_{N}\right) .
$$

Definition 2.1. By $\mathbf{S}_{\gamma}^{2}\left(\mathbb{R}^{N}\right)$ we will denote the set of all functions $u \in L^{2}\left(\mathbb{R}^{N}\right)$ such that $\gamma_{j} \partial_{x_{j}} u \in L^{2}\left(\mathbb{R}^{N}\right)$ for all $j=1, \ldots, N$ and $\Delta_{\gamma} u \in L^{2}\left(\mathbb{R}^{N}\right)$. We define the norm in this space as follows

$$
\|u\|_{S_{\gamma}^{2}\left(\mathbb{R}^{N}\right)}=\left(\int_{\mathbb{R}^{N}}\left(\left|\Delta_{\gamma} u\right|^{2}+\left|\nabla_{\gamma} u\right|^{2}+|u|^{2}\right) \mathrm{d} x\right)^{\frac{1}{2}}
$$

where $\nabla_{\gamma} u=\left(\gamma_{1} \partial_{x_{1}} u, \gamma_{2} \partial_{x_{2}} u, \ldots, \gamma_{N} \partial_{x_{N}} u\right)$.
Let

$$
\mathbf{E}_{\lambda}=\left\{u \in \mathbf{S}_{\gamma}^{2}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}}\left(\left|\Delta_{\gamma} u\right|^{2}+\lambda b(x) u^{2}\right) \mathrm{d} x<\infty\right\} .
$$

For $\lambda>0$, the inner product and norm of \mathbf{E}_{λ} are given by

$$
(u, v)_{\mathbf{E}_{\lambda}}=\int_{\mathbb{R}^{N}}\left(\Delta_{\gamma} u \Delta_{\gamma} v+\lambda b(x) u v\right) \mathrm{d} x,\|u\|_{\mathbf{E}_{\lambda}}=(u, u)_{\mathbf{E}_{\lambda}}^{\frac{1}{2}} .
$$

Lemma 2.2. The following embeddings are continuous:
i) $\mathbf{S}_{\gamma}^{2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ for all $2 \leq p<2_{*}^{\gamma}:=\frac{2 \widetilde{N}}{\tilde{N}-4}$.
ii) Assume that $\left(B_{1}\right)$ and $\left(B_{2}\right)$ hold, for every $\lambda \geq \Lambda$, the embedding $\mathbf{E}_{\lambda} \hookrightarrow \mathbf{S}_{\gamma}^{2}\left(\mathbb{R}^{N}\right)$ and $\mathbf{E}_{\lambda} \hookrightarrow$ $L^{p}\left(\mathbb{R}^{N}\right), p \in\left[2,2_{*}^{\gamma}\right)$.

Proof. i) We follow the ideas in the case of bounded domains (see the proofs of Theorem 3.3, Proposition 3.2 in [9] and Lemma 2.2 in [2]). More precisely, we first embed $\mathbf{S}_{\gamma}^{2}\left(\mathbb{R}^{N}\right)$ into an anisotropic Sobolev-type space, and then use an embedding theorem for classical anisotropic Sobolev-type spaces of fractional orders. Because the proof is very similar to the case of bounded domains [2,9], so we omit it here.
ii) For all $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, with slight modification, the proof is similar to the one of Theorems 12.85 and 12.87 in [11], there exists $C_{2}, C_{3}>0$ such that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}\left|\nabla_{\gamma} u\right|^{2} \mathrm{~d} x\right) \leq C_{2}^{2}\left(\int_{\mathbb{R}^{N}}\left|\Delta_{\gamma} u\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x\right)^{\frac{1}{2}}, \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|u|^{\frac{2 \tilde{N}}{N-4}} \mathrm{~d} x\right)^{\frac{\tilde{N}-4}{\tilde{N}}} \leq C_{3} \int_{\mathbb{R}^{N}}\left|\Delta_{\gamma} u\right|^{2} \mathrm{~d} x . \tag{2.3}
\end{equation*}
$$

This shows that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\Delta_{\gamma} u\right|^{2}+u^{2}\right) \mathrm{d} x \leq\|u\|_{S_{\gamma}^{2}\left(\mathbb{R}^{N}\right)}^{2} \leq\left(1+\frac{C_{2}^{2}}{2}\right) \int_{\mathbb{R}^{N}}\left(\left|\Delta_{\gamma} u\right|^{2}+u^{2}\right) \mathrm{d} x . \tag{2.4}
\end{equation*}
$$

From $\left(B_{1}\right)$, using Hölder's inequality and (2.2), we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x & =\int_{\left\{b \geq C_{0}\right\}} u^{2} \mathrm{~d} x+\int_{\left\{b<C_{0}\right\}} u^{2} \mathrm{~d} x \\
& \leq \frac{1}{C_{0}} \int_{\left\{b \geq C_{0}\right\}} b(x) u^{2} \mathrm{~d} x+\left(\operatorname{Vol}\left(\left\{b<C_{0}\right\}\right)\right)^{\frac{4}{N}}\left(\int_{\mathbb{R}^{N}}|u|^{\frac{2 \tilde{N}}{N^{-4}}} \mathrm{~d} x\right)^{\frac{\tilde{N}-4}{\tilde{N}}} \\
& \leq \frac{1}{C_{0}} \int_{\mathbb{R}^{N}} b(x) u^{2} \mathrm{~d} x+C_{3}^{2}\left(\operatorname{Vol}\left(\left\{b<C_{0}\right\}\right)\right)^{\frac{4}{N}} \int_{\mathbb{R}^{N}}\left|\Delta_{\gamma} u\right|^{2} \mathrm{~d} x,
\end{aligned}
$$

where C_{3} is the best constant in (2.3). Combining the above inequality with (2.4) yields $\|u\|_{S_{\gamma}^{2}\left(\mathbb{R}^{N}\right)} \leq\left(1+\frac{C_{2}^{2}}{2}\right)\left(1+C_{3}^{2}\left(\operatorname{Vol}\left(\left\{b<C_{0}\right\}\right)\right)^{\frac{4}{N}}\right) \int_{\mathbb{R}^{N}}\left|\Delta_{\gamma} u\right|^{2} \mathrm{~d} x+\frac{1}{C_{0}}\left(1+\frac{C_{2}^{2}}{2}\right) \int_{\mathbb{R}^{N}} b(x) u^{2} \mathrm{~d} x$. Then for $\lambda \geq\left(1+C_{3}^{2} \operatorname{Vol}\left(\left\{b<C_{0}\right\}\right)\right) C_{0}$, we have

$$
\|u\|_{S_{\gamma}^{2}\left(\mathbb{R}^{N}\right)}^{2} \leq\left(1+\frac{C_{2}^{2}}{2}\right)\left(1+C_{3}^{2}\left(\operatorname{Vol}\left(\left\{b<C_{0}\right\}\right)\right)^{\frac{4}{N}}\right)\|u\|_{\mathbf{E}_{\lambda}}^{2} .
$$

This implies that the embedding $\mathbf{E}_{\lambda} \hookrightarrow \mathbf{S}_{\gamma}^{2}\left(\mathbb{R}^{N}\right)$ is continuous. By using Hölder's inequality, we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x \leq\left(\int_{\mathbb{R}^{N}}|u|^{2} \mathrm{~d} x\right)^{\frac{2 \tilde{N}-p(\tilde{N}-4)}{8}}\left(\int_{\mathbb{R}^{N}}|u|^{2^{\gamma}} \mathrm{d} x\right)^{\frac{\tilde{N}(p-2)}{4} \frac{\tilde{N}-4}{2 N}} \\
& \leq\|u\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{\frac{2 \tilde{N}-p(\tilde{N}-4)}{\delta}} C^{\frac{\tilde{N}(p-2)}{4}}\left\|\Delta_{\gamma} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{\frac{\tilde{N}(p-2)}{\frac{N}{4}}} \\
& \leq\|u\|_{S_{\gamma}^{2}\left(\mathbb{R}^{N}\right)}^{\frac{2 \tilde{N}-p(\tilde{N}-4)}{\mathcal{N}}} C_{3}^{\frac{\tilde{N}(p-2)}{4}}\|u\|_{S_{\gamma}^{(}\left(\mathbb{R}^{N}\right)}^{\frac{\tilde{N}(p-2)}{4}} \\
& \leq C_{3}^{\frac{\tilde{N}(p-2)}{4}}\|u\|_{S_{\gamma}^{2}\left(\mathbb{R}^{N}\right)}^{p} \\
& \leq C_{3}^{\frac{\tilde{N}(p-2)}{4}}\left(1+\frac{C_{2}^{2}}{2}\right)^{\frac{p}{2}}\left(1+C_{3}^{2}\left(\operatorname{Vol}\left(\left\{b<C_{0}\right\}\right)\right)^{\frac{4}{N}}\right)^{\frac{p}{2}}\|u\|_{\mathbf{E}_{\lambda}}^{p},
\end{aligned}
$$

where $p \in\left[2,2_{*}^{\gamma}\right)$. We get

$$
\begin{equation*}
\Theta_{p}=C_{3}^{\frac{\tilde{N}(p-2)}{4}}\left(1+\frac{C_{2}^{2}}{2}\right)^{\frac{p}{2}}\left(1+C_{3}^{2}\left(\operatorname{Vol}\left(\left\{b<C_{0}\right\}\right)\right)^{\frac{4}{N}}\right)^{\frac{p}{2}} \tag{2.5}
\end{equation*}
$$

and

$$
\Lambda=\left(1+C_{3}^{2} \operatorname{Vol}\left(\left\{b<C_{0}\right\}\right)\right) C_{0} .
$$

Thus, for any $p \in\left[2,2_{*}^{\gamma}\right)$ and $\lambda \geq \Lambda$, there holds

$$
\int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x \leq \Theta_{p}\|u\|_{\mathbb{E}_{\lambda}}^{p},
$$

which implies that the embedding $\mathbf{E}_{\lambda} \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ is continuous.

Definition 2.3. A function $u \in \mathbf{S}_{\gamma}^{2}\left(\mathbb{R}^{N}\right)$ is called a weak solution of the problem (1.2) if $u \in \mathbf{E}_{\lambda}$ and

$$
\int_{\mathbb{R}^{N}}\left(\Delta_{\gamma} u \Delta_{\gamma} \varphi+\nabla_{\gamma} u \cdot \nabla_{\gamma} \varphi+\lambda b(x) u \varphi\right) \mathrm{d} x-\int_{\mathbb{R}^{N}} f(x, u(x)) \varphi \mathrm{d} x=0, \quad \forall \varphi \in \mathbf{E}_{\lambda}
$$

2.2 Mountain Pass Theorem

Definition 2.4. Let \mathbb{X} be a real Banach space with its dual space \mathbb{X}^{*} and $\Phi \in C^{1}(\mathbb{X}, \mathbb{R})$. For $c \in \mathbb{R}$ we say that Φ satisfies the $(C)_{c}$ condition if for any sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{X}$ with

$$
\Phi\left(x_{n}\right) \rightarrow c \quad \text { and } \quad\left(1+\left\|x_{n}\right\|_{\mathbb{X}}\right)\left\|\Phi^{\prime}\left(x_{n}\right)\right\|_{\mathbb{X}^{*}} \rightarrow 0
$$

then there exists a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ that converges strongly in \mathbb{X}. If Φ satisfies the $(C)_{c}$ condition for all $c>0$ then we say that Φ satisfies the Cerami condition.

We will use the following version of the Mountain Pass Theorem.
Lemma 2.5 (see $[4,5]$). Let \mathbb{X} be an infinite dimensional Banach space and let $\Phi \in C^{1}(\mathbb{X}, \mathbb{R})$ satisfy the $(C)_{c}$ condition for all $c \in \mathbb{R}, \Phi(0)=0$, and
(i) There are constants $\rho, \alpha>0$ such that $\Phi(u) \geq \alpha$ for all $u \in \mathbb{X}$ such that $\|u\|_{\mathbb{X}}=\rho$;
(ii) There is an $e \in \mathbb{X},\|u\|_{\mathbb{X}}>\rho$ such that $\Phi(e) \leq 0$.

Then $\beta=\inf _{\theta \in \Gamma} \max _{0 \leq t \leq 1} \Phi(\theta(t)) \geq \alpha$ is a critical value of Φ, where

$$
\Gamma=\{\theta \in C([0,1], \mathbb{X}): \theta(0)=0, \theta(1)=e\}
$$

3 Proofs of the main results

Define the Euler-Lagrange functional associated with the problem (1.2) as follows

$$
\Phi(u)=\frac{1}{2} \int_{\Omega}\left(\left|\Delta_{\gamma} u\right|^{2}+\left|\nabla_{\gamma} u\right|^{2}+\lambda b(x) u^{2}\right) \mathrm{d} x-\int_{\Omega} F(x, u) \mathrm{d} x .
$$

By f satisfies $\left(f_{1}\right),\left(f_{2}\right),\left(\alpha_{1}\right)$ or $\left(F_{1}\right)$, hence its not difficult to prove that the functional Φ is of class C^{1} in \mathbf{E}_{λ}, and that

$$
\Phi^{\prime}(u)(v)=\int_{\Omega}\left(\Delta_{\gamma} u \Delta_{\gamma} v+\nabla_{\gamma} u \cdot \nabla_{\gamma} v+\lambda b(x) u v\right) \mathrm{d} x-\int_{\Omega} f(x, u) v \mathrm{~d} x
$$

for all $v \in \mathbf{E}_{\lambda}$. One can also check that the critical points of Φ are weak solutions of the problem (1.2).

3.1 Proof of Theorem 1.1

By condition $\left(g_{1}\right)$, for all $\varepsilon>0$, there exists $\delta(\varepsilon)>0$, we have

$$
|g(u)| \leq \varepsilon|u| \quad \text { for all }|u|<\delta(\varepsilon)
$$

By condition $\left(g_{2}\right)$, there exists $M>0$, we obtain

$$
|g(u)| \leq|u| \quad \text { for all }|u|>M
$$

Since is a continuous function, g achieves its maximum and minimum on $[\delta(\varepsilon), M]$, so there exists a positive number $C(\varepsilon)$, we have that

$$
|g(u)| \leq C(\varepsilon) \leq C(\varepsilon) \frac{|u|}{\delta(\varepsilon)} \quad \text { for all } \delta(\varepsilon) \leq|u| \leq M .
$$

Then we obtain that

$$
|g(u)| \leq\left(1+\varepsilon+\frac{C(\varepsilon)}{\delta(\varepsilon)}\right)|u| \quad \text { for all } u \in \mathbb{R} .
$$

Hence $\left.\max _{\tilde{\xi} \neq 0}\right|_{\frac{g(\xi)}{\xi}} \mid$ is well defined.
Let u is a nontrivial solution of the problem (1.2), we get

$$
\|u\|_{\mathbf{E}_{\lambda}}^{2}=\int_{\mathbb{R}^{N}} \alpha(x) g(u) u \mathrm{~d} x,
$$

hence

$$
\|u\|_{\mathbf{E}_{\lambda}}^{2} \leq\|\alpha\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \int_{\mathbb{R}^{N}}\left|\frac{g(u)}{u}\right| u^{2} \mathrm{~d} x \leq C_{1} \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x .
$$

By Lemma 2.2 and condition $\left(B_{3}\right)$, we have

$$
\|u\|_{\mathbf{E}_{\lambda}}^{2}<\|u\|_{\mathbf{E}_{\lambda}}^{2},
$$

which is a contradiction, thus $u \equiv 0$. The proof of Theorem 1.1 is therefore complete.

3.2 Proof of Theorem 1.2

Lemma 3.1. Assume that conditions $\left(B_{1}\right),\left(B_{2}\right)$ and $\left(F_{1}\right)$ hold. Then for each $\lambda \geq \Lambda$, there exists $\rho, \beta>0$ such that

$$
\inf \left\{\Phi(u): u \in \mathbf{E}_{\lambda},\|u\|_{\mathbf{E}_{\lambda}}=\rho\right\}>\alpha .
$$

Proof. For any $\varepsilon>0$, it follows from the condition $\left(F_{1}\right)$ that there exists $C_{\varepsilon}>0$ and $p \in\left(2,2_{*}^{\gamma}\right)$ such that

$$
\begin{equation*}
f(x, \xi) \leq\left(\left\|f_{1}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon\right) \xi+C_{\varepsilon} \xi^{p-1} \quad \text { for all } \xi \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

and

$$
F(x, \xi) \leq \frac{\left\|f_{1}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon}{2} \xi^{2}+\frac{C_{\varepsilon}}{p} \xi^{p} \quad \text { for all } \xi \in \mathbb{R} .
$$

From Lemma 2.2, we have for all $u \in \mathbf{E}_{\lambda}$,

$$
\begin{align*}
\int_{\mathbb{R}^{N}} F(x, u) \mathrm{d} x & \leq \frac{\left\|f_{1}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon}{2} \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x+\frac{C_{\varepsilon}}{p} \int_{\mathbb{R}^{N}} u^{p} \mathrm{~d} x \\
& \leq \frac{\left(\left\|f_{1}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon\right) \Theta_{2}}{2}\|u\|_{\mathbf{E}_{\lambda}}^{2}+\frac{C_{\varepsilon} \Theta_{p}}{p}\|u\|_{\mathbf{E}_{\lambda}}^{p} . \tag{3.2}
\end{align*}
$$

Hence

$$
\begin{aligned}
\Phi(u) & =\frac{1}{2}\|u\|_{\mathbf{E}_{\lambda}}^{2}+\frac{1}{2} \int_{\mathbb{R}^{N}}\left|\nabla_{\gamma} u\right|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{N}} F(x, u) \mathrm{d} x \\
& \geq \frac{1}{2}\|u\|_{\mathbf{E}_{\lambda}}^{2}-\int_{\mathbb{R}^{N}} F(x, u) \mathrm{d} x \\
& \geq \frac{1}{2}\|u\|_{\mathbf{E}_{\lambda}}^{2}-\frac{\left(\left\|f_{1}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon\right) \Theta_{2}}{2}\|u\|_{\mathbf{E}_{\lambda}}^{2}-\frac{C_{\varepsilon} \Theta_{p}}{p}\|u\|_{\mathbf{E}_{\lambda}}^{p} \\
& =\frac{1}{2}\left[1-\left(\left\|f_{1}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon\right) \Theta_{2}\right]\|u\|_{\mathbf{E}_{\lambda}}^{2}-\frac{C_{\varepsilon} \Theta_{p}}{p}\|u\|_{\mathbf{E}_{\lambda}}^{p} .
\end{aligned}
$$

So, fixing $\varepsilon \in\left(0, \Theta_{2}^{-1}-\left\|f_{1}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right)$ and letting $\|u\|_{\mathbf{E}_{\lambda}}=\rho>0$ small enough, it is easy to see that there exists $\alpha>0$ such that this lemma holds.

Lemma 3.2. Assume that conditions $\left(B_{1}\right),\left(B_{2}\right)$ and $\left(F_{1}\right)$ hold. Let $\rho>0$ be as in Lemma 3.1. Then there exists $e \in \mathbf{E}_{\lambda}$ with $\|e\|_{\mathbf{E}_{\lambda}}>\rho$ such that $\Phi(e)<0$ for $\lambda>0$.
Proof. Since $f_{2}>0$ on Ω, we can choose a nonnegative function $\phi \in \mathbf{E}_{\lambda}$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} f_{2}(x) \phi^{p}(x) \mathrm{d} x>0 \tag{3.3}
\end{equation*}
$$

From (3.3), the condition $\left(F_{1}\right)$ and Fatou's lemma, we get

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\Phi(t \phi)}{t^{p}} & =\lim _{t \rightarrow \infty}\left(\frac{1}{2 t^{p-2}}\|\phi\|_{\mathbf{E}_{\lambda}}^{2}+\frac{1}{2 t^{p-2}} \int_{\mathbb{R}^{N}}\left|\nabla_{\gamma} \phi\right|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{N}} \frac{F(x, t \phi)}{(t \phi)^{p}} \phi^{p} \mathrm{~d} x\right) \\
& =-\int_{\mathbb{R}^{N}} \frac{F(x, t \phi)}{(t \phi)^{p}} \phi^{p} \mathrm{~d} x \\
& \leq-\frac{1}{p} \int_{\mathbb{R}^{N}} f_{2}(x) \phi^{p}(x) \mathrm{d} x<0 .
\end{aligned}
$$

Let $t \rightarrow+\infty$ we have $\Phi(t \phi) \rightarrow-\infty$. The proof of Lemma 3.2 is therefore complete.
Lemma 3.3. Assume that the assumptions of Theorem 1.2 hold. Then there exists a constant $\Lambda_{1}>0$ such that Φ satisfies the $(C)_{c}$-condition in \mathbf{E}_{λ} for all $c \in \mathbb{R}, \lambda \geq \Lambda_{1}$.

Proof. Let $\left\{u_{n}\right\}$ be a sequence in \mathbf{E}_{λ} such that

$$
\Phi\left(u_{n}\right) \rightarrow c \quad \text { and } \quad\left(1+\left\|u_{n}\right\|_{\mathbf{E}_{\lambda}}\right)\left\|\Phi^{\prime}\left(u_{n}\right)\right\|_{\mathbf{E}_{\lambda}^{*}} \rightarrow 0 .
$$

We first show that $\left\{u_{n}\right\}$ is bounded in \mathbf{E}_{λ}. Indeed, for n large enough, by the condition $\left(F_{2}\right)$, we have

$$
\begin{aligned}
c+1 & \geq \Phi\left(u_{n}\right)-\frac{1}{\mu} \Phi^{\prime}\left(u_{n}\right)\left(u_{n}\right) \\
& =\frac{\mu-2}{2 \mu}\left\|u_{n}\right\|_{\mathbf{E}_{\lambda}}^{2}+\frac{\mu-2}{2 \mu} \int_{\mathbb{R}^{N}}\left|\nabla_{\gamma} u_{n}\right|^{2} \mathrm{~d} x+\int_{\mathbb{R}^{N}}\left(\frac{1}{\mu} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) \mathrm{d} x \\
& \geq \frac{\mu-2}{2 \mu}\left\|u_{n}\right\|_{\mathbf{E}_{\lambda}}^{2}-\frac{\left\|f_{3}\right\|_{L^{2}-\ell}^{2}\left(\mathbb{R}^{N}\right)}{\mu} \Theta_{2}^{\ell}
\end{aligned}\left\|u_{n}\right\|_{\mathbf{E}_{\lambda}}^{\ell} .
$$

Since $1<\ell<2$, hence $\left\{u_{n}\right\}$ is bounded in \mathbf{E}_{λ} for every $\lambda>\Lambda$.

Because of the above result, without loss of generality, we can suppose that

$$
\begin{array}{ll}
u_{n} \rightharpoonup u_{0} & \text { in } \mathbf{E}_{\lambda}, \\
u_{n} \rightarrow u_{0} & \text { strongly in } L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N}\right), \quad \text { for } 2 \leq p<2_{*}^{\gamma}, \\
u_{n} \rightarrow u_{0} & \text { a.e. in } \mathbb{R}^{N},
\end{array}
$$

and $\Phi^{\prime}\left(u_{0}\right)=0$. Now we prove that $u_{n} \rightarrow u_{0}$ strongly in \mathbf{E}_{λ}. Let $v_{n}=u_{n}-u_{0}$. Then $v_{n} \rightharpoonup 0$ in \mathbf{E}_{λ} hence $\left\{v_{n}\right\}$ is bounded in \mathbf{E}_{λ}. By the condition $\left(B_{2}\right)$, we get

$$
\begin{align*}
\int_{\mathbb{R}^{N}} v_{n}^{2} \mathrm{~d} x & =\int_{\left\{b \geq C_{0}\right\}} v_{n}^{2} \mathrm{~d} x+\int_{\left\{b<C_{0}\right\}} v_{n}^{2} \mathrm{~d} x \\
& \leq \frac{1}{\lambda C_{0}} \int_{\mathbb{R}^{N}} \lambda b(x) v_{n}^{2} \mathrm{~d} x+\int_{\left\{b<C_{0}\right\}} v_{n}^{2} \mathrm{~d} x \\
& \leq \frac{1}{\lambda C_{0}}\left\|v_{n}\right\|_{\mathbf{E}_{\lambda}}^{2}+o(1) . \tag{3.4}
\end{align*}
$$

Using (3.4), together with Hölder's inequality and Lemma 2.2, for any $\lambda>\Lambda$, we obtain

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x \leq\left(\int_{\mathbb{R}^{N}}|u|^{2} \mathrm{~d} x\right)^{\frac{2 \gamma-p}{2 \gamma-2}}\left(\int_{\mathbb{R}^{N}}|u|^{2_{*}^{\gamma}} \mathrm{d} x\right)^{\frac{p-2}{2 \gamma-2}} \\
& \leq\left(\frac{1}{\lambda C_{0}}\left\|v_{n}\right\|_{\mathbb{E}_{\lambda}}^{2}\right)^{\frac{2 \gamma-p}{2_{*}^{\gamma}-2}}\left(C_{3}^{2 \gamma}\left(\int_{\mathbb{R}^{N}}\left|\Delta_{\gamma} v(n)\right|^{2_{*}^{\gamma}} \mathrm{d} x\right)^{\frac{2 \gamma}{2}}\right)^{\frac{p-2}{2 \gamma-2}}+o(1) \\
& \leq C_{3}^{\frac{2^{\gamma}(p-2)}{2 \gamma}}\left(\frac{1}{\lambda C_{0}}\right)^{\frac{\frac{2 \gamma}{\gamma}-p}{2 \frac{2}{\psi}-2}}\left\|v_{n}\right\|_{\mathbf{E}_{\lambda}}^{p}+o(1) \text {. } \tag{3.5}
\end{align*}
$$

Set

$$
\Pi_{\lambda}=C_{3}^{\frac{2^{\gamma}(p-2)}{\frac{2}{\lambda}-2}}\left(\frac{1}{\lambda C_{0}}\right)^{\frac{2_{\chi}^{\gamma}-p}{2_{2}^{\gamma}-2}} .
$$

By the condition $\left(F_{1}\right)$ and (3.4) and (3.5), we get

$$
\begin{align*}
o(1) & =\Phi^{\prime}\left(v_{n}\right)\left(v_{n}\right)=\left\|v_{n}\right\|_{\mathbf{E}_{\lambda}}^{2}+\int_{\mathbb{R}^{N}}\left|\nabla_{\gamma} v_{n}\right|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{N}} f\left(x, v_{n}\right) v_{n} \mathrm{~d} x \\
& \geq\left\|v_{n}\right\|_{\mathbf{E}_{\lambda}}^{2}-\varepsilon \int_{\mathbb{R}^{N}} v_{n}^{2} \mathrm{~d} x-C_{\varepsilon} \int_{\mathbb{R}^{N}}\left|v_{n}\right|^{p} \mathrm{~d} x \\
& \leq\left\|v_{n}\right\|_{\mathbf{E}_{\lambda}}^{2}-\frac{\varepsilon}{\lambda C_{0}}\left\|v_{n}\right\|_{\mathbf{E}_{\lambda}}^{2}-C_{\varepsilon} \Pi_{\lambda}\left\|v_{n}\right\|_{\mathbf{E}_{\lambda}}^{p}+o(1) . \tag{3.6}
\end{align*}
$$

Since $\Pi_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \infty$, by (3.6), there exists $\Lambda_{1} \geq \Lambda$ such that for $\lambda>\Lambda_{1}$,

$$
v_{n} \rightarrow 0 \quad \text { strongly in } \mathbf{E}_{\lambda} .
$$

This completes the proof.
Proof of Theorem 1.2. Combining Lemmas 3.1-3.3, we deduce that the problem (1.2) has a nontrivial weak solution.

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2017.21.

References

[1] I. D. Abrahams, A. M. J. Davis, Deflection of a partially clamped elastic plate, In: IUTAM symposium on diffraction and scattering in fluid mechanics and elasticity. Proceedings of the IUTAM symposium, Manchester, United Kingdom, July 16-20, 2000, Fluid. Mech. Appl. 68(2002), pp. 303-312. https://doi.org/10.1007/978-94-017-0087-0_33; Zbl 1078.74023
[2] C. T. Anh, B. K. My, Existence and non-existence of solutions to a Hamiltonian strongly degenerate elliptic system, Adv. Nonlinear Anal. 8(2019), No. 1, 661-678. https://doi. org/10.1515/anona-2016-0165; MR3918397; Zbl 07064745
[3] T. Bartsh, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^{N}, Comm. Partial Differential Equations 20(1995), No. 9-10, 1725-1741. https://doi.org/10.1080/03605309508821149; MR1349229; Zbl 0837.35043
[4] G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A 112(1978), No. 2, 332-336. MR0581298
[5] G. Cerami, On the existence of eigenvalues for a nonlinear boundary value problem, Ann. Mat. Pura Appl. 4(1980), No. 124, 161-179. https://doi .org/10.1007/BF01795391; MR0591554 ; Zbl 0441.35054
[6] B. Franchi, E. Lanconelli, An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality, Comm. Partial Differential Equations 9(1984), No. 13, 1237-1264. https://doi.org/10.1080/03605308408820362; MR0764663; Zbl 0589.46023
[7] V. V. Grushin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83(1970), No. 125, 456-473. https://doi.org/10.1070/SM1970v012n03ABEH000931; MR0279436; Zbl 0252.35057
[8] Y. Jiang, H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations 251(2011), No. 13, 582-608. https://doi.org/10.1016/j.jde.2011.05.006; MR2802025; Zbl 1233.35086
[9] A. E. Kogoj, E. Lanconelli, On semilinear Δ_{λ}-Laplace equation, Nonlinear Anal. 75(2012), No. 12, 4637-4649. https://doi.org/10.1134/S0001434615010101; MR2927124; Zbl 1325.35051
[10] A. C. Lazer, P. J. Mckenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev. 32(1990), No. 4, 537-578 . https://doi.org/10.1137/1032120; MR1084570; Zbl 0725.73057
[11] G. Leoni, A first course in Sobolev spaces. Second edition. Graduate Studies in Mathematics, Vol. 181, American Mathematical Society, Providence, RI, 2017. MR3726909
[12] J. Liu, S. X. Chen, X. Wu, Existence and multiplicity of solutions for a class of fourthorder elliptic equations in \mathbb{R}^{N}, J. Math. Anal. Appl. 395(2012), No. 2, 608-615. https: //doi.org/10.1016/j.jmaa.2012.05.063; MR2948252; Zbl 1253.35050
[13] T. Li, J. Sun, T. F. Wu, Existence of homoclinic solutions for a fourth order differential equation with a parameter, Appl. Math. Comput. 251(2015), 499-506. https://doi.org/ 10.1016/j .amc.2014.11.056; MR3294736; Zbl 1328.34038
[14] P. J. Mckenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. Anal. 98(1987), No. 2, 167-177. https://doi.org/10.1007/BF00251232; MR0866720; Zbl 0676.35003
[15] P. J. Mckenna, W. Walter, Travelling waves in a suspension bridge, SIAM J. Appl. Math. 50(1990), No. 3, 703-715. https://doi.org/10.1137/0150041; MR1050908; Zbl 0699.73038
[16] J. Sun, T. F. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations 256(2014), No. 4, 1771-1792. https://doi. org/10.1016/j.jde.2013.12.006; MR3145774; Zbl 1288.35219
[17] J. Sun, T. F. Wu, F. Li, Concentration of homoclinic solutions for some fourth-order equations with sublinear indefinite nonlinearities, Appl. Math. Lett. 38(2014), 1-6. https: //doi.org/10.1016/j.aml.2014.06.009; MR3258192; Zbl 1314.34096
[18] J. Sun, T. F. Wu, On the nonlinear Schrödinger-Poisson systems with sign-changing potential, Z. Angew. Math. Phys. 66(2015), No. 4, 1649-1669. https://doi.org/10.1007/ s00033-015-0494-1; MR3377707; Zbl 1329.35292
[19] X. H. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud. 14(2014), No. 2, 361-373. https://doi.org/ 10.1515/ans-2014-0208; MR3194360; Zbl 1305.35036
[20] X. H. TANG, New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math. Anal. Appl. 413(2014), No. 1, 392-410. https://doi.org/10. 1016/j.jmaa.2013.11.062; MR3153592; Zbl 1312.35103
[21] N. T. C. Thuy, N. M. Tri, Some existence and nonexistence results for boundary value problems for semilinear elliptic degenerate operators, Russ. J. Math. Phys. 9(2002), No. 3, 365-370. MR1965388; Zbl 1104.35306
[22] P. T. Thuy, N. M. Tri, Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations, NoDEA Nonlinear Differential Equations Appl. 19(2012), No. 3, 279-298. https://doi .org/10.1007/s00030-011-0128-z; MR2926298; Zbl 1247.35028
[23] N. M. Tri, On the Grushin equation, Mat. Zametki 63(1998), No. 1, 95-105. https://doi. org/10.1007/BF02316146; MR1631852; Zbl 0913.35049
[24] N. M. Tri, Recent progress in the theory of semilinear equations involving degenerate elliptic differential operators, Publishing House for Science and Technology of the Vietnam Academy of Science and Technology, 2014.
[25] J. Wang, Y. Zhang, A biharmonic eigenvalue problem and its application, Acta Math. Sci. Ser. B (Engl. Ed.) 32(2012), No. 3, 1213-1225. https://doi.org/10.1016/S0252-9602(12) 60093-9; MR2921953; Zbl 1274.35084
[26] Y. W. Ye, C. L. TANG, Infinitely many solutions for fourth-order elliptic equations, J. Math. Anal. Appl. 394(2012), No. 2, 841-854. https://doi.org/10.1016/j.jmaa.2012.04.041; MR2927503; Zbl 1248.35069
[27] Y. W. Ye, C. L. Tang, Existence and multiplicity of solutions for fourth-order elliptic equations in \mathbb{R}^{N}, J. Math. Anal. Appl. 406(2013), No. 1, 335-351. https://doi.org/10. 1016/j.jmaa.2013.04.079; MR3062426; Zbl 1311.35094
[28] Y. L. Yin, X. Wu, High energy solutions and nontrivial solutions for fourth-order elliptic equations, J. Math. Anal. Appl. 375(2011), No. 2, 699-705. https://doi.org/10.1016/j. jmaa.2010.10.019; MR2735556; Zbl 1206.35120
[29] W. Zhang, X. H. Tang, J. Zhang, Infinitely many solutions for fourth-order elliptic equations with sign-changing potential, Taiwan. J. Math. 18(2014), No. 2, 645-659. https://doi.org/10.11650/tjm.18.2014.3584; MR3188523; Zbl 1357.35164
[30] W. Zhang, X. H. Tang, J. Zhang, Infinitely many solutions for fourth-order elliptic equations with general potentials, J. Math. Anal. Appl. 407(2013), No. 2, 359-368. https://doi.org/10.1016/j.jmaa.2013.05.044; MR3071107; Zbl 1311.35095
[31] L. Zhao, H. Liu, F. Zhao, Existence and concentration of solutions for the SchrödingerPoisson equations with steep well potential, J. Differential Equations 255(2013), No. 1, 1-23. https://doi.org/10.1016/j.jde.2013.03.005; MR3045632; Zbl 1286.35103

[^0]: ${ }^{\boxtimes}$ Email: duongtrongluyen@tdtu.edu.vn

