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1 Introduction

It is well known that the trivial solution of the linear fractional differential equation
CD%x(t) = Ax(t), x(t) e RN, a € (0,1), (1.1)

where A is a constant matrix and *D%x(t) is the Caputo fractional derivative can be asymp-
totically, but not exponentially stable. It is asymptotically stable if and only if |arg(A)| > %%
for any eigenvalue of the matrix A (see e.g. [4,11,16]). However, for special types of fractional
differential equations their solutions can be exponentially stable. In the paper [15], a suffi-
cient condition for the exponential stability of the trivial solution of the nonlinear multi-delay
fractional differential equation

CD(h(t) ((t) — Ax(t) = Bix(t — 1) — -+ — Bux(t — ) ) = f(x(t), x(t —71), ..., x(t — Tw))
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was proved. In the paper [3], the equation

£(t) = Ax(t) + f (x(8), R ),...,RLI“’"x(t)>, (1.2)

where RE[%1x(t), ..., RE[%nx(t) are the Riemann-Liouville integrals, was studied. An existence
result and a sufficient condition for the exponential stability of the trivial solution of this
equation was proved. In the paper [2], an analogous problem was solved for an equation
of the form (1.2) with Caputo-Fabrizio fractional integrals instead of the Riemann-Liouville
integrals.

In this paper, we study systems of differential equations with multiple constant delays,
time-dependent coefficients and the right-hand side depending on fractional substantial inte-
grals, defined below. Originally, the formula for a solution of the initial-function problem

2(F) = Ax(t) + Bix(t =) + - + Bux(t — ) + f(£), t>0, (1.3)
x(t) = ¢(t), t € [—1,0] (1.4)

where T = max;—;,_, T;, was stated in [14, Theorem 10] using so-called multi-delayed matrix
exponential, which is an inductively built matrix polynomial of a degree depending on time.
This result was later simplified in [18] using the unilateral Laplace transform to obtain a
closed-form formula (see Theorem 2.1 below). We remark that the delayed matrix exponential
for the equation with one constant delay was introduced in the paper [7].

In the present paper, we make use of this formula to prove existence and exponential
stability results for delayed differential equation (DDE) with multiple constant delays and
nonlinearity depending on fractional substantial integrals of order p > 0 with a positive
parameter 7y (see e.g. [4,6]),

1

1B x(t) = 0] /Ot(t —5)P e %) x(s) ds.

In particular, we consider the Cauchy problem

x(t) = A()x(t) + Bi(t)x(t — 1) + -+ - + Bu(t)x(t — T)
+ F(t,x(t),x(t—11),...,x(t — 1),
1(Bors 701)x(t) 1(Bomg. '}’Omo)x(t), (1.5)
[Bromn)y (¢ — Tl) o, T B Yoo )y (f — T.)), t>0.
x(t) = ¢(t), te]-1,0],

where A, By, ..., B, are continuous matrix functions,

f(t/ uO/ crry un/ Z)00/ e /UOmozvllz e /Unmﬂ)

is a continuous function of all its variables and ¢ € C([—,0], RY). This work is a continuation
of [12,13], where an analogous problem was investigated without the presence of delays.

We note that in [14] and [17] the matrices A, By,..., B, were supposed to be pairwise
permutable, i.e.,, AB; = B;A, B;B; = B;B; for each i,j = 1,...,n. But our existence result,
Theorem 3.1, holds without any permutability assumption. For the stability results, Theorems
4.1 and 5.1, we only assume that the matrix functions A(t), B1(t), ..., Bx(t) are permutable at
some points ty, t1, ..., t,, respectively.
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In the whole paper, we shall denote || - || the norm of a vector and the corresponding
induced matrix norm. Further, N and Ny denote the set of all positive and nonnegative
integers, respectively. We also assume the property of an empty sum, ) ;.4 z(i) = 0 for any
function z.

To make our stability results more applicable, we use the logarithmic matrix norm in
assumptions. Analogous results can be obtained using the largest real value of all the eigen-
values of A(ty), max;, aco(Alty)) ReAa, or a weighted logarithmic matrix norm [8]. However,
then one has to work with the estimation

[et]] < cqe! (1.6)

with some positive constants cj, ¢, where c; is not immediately known. So, the area of
exponential stability can not be predetermined. By the logarithmic norm, (1.6) holds with
C1 = 1.

The paper is organized as follows. In the following section, we collect some known results
and definitions. Section 3 is devoted to the existence result of a unique solution of the initial-
function problem (1.5). Sections 4 and 5 contain results on the exponential stability of a trivial
solution of a class of nonlinear DDEs with the linearly bounded nonlinearity and nonlinearity
bounded by some powers of its arguments, respectively. In final Section 6, we present an
example illustrating the theoretical results.

2 Preliminary results

Let us recall a result from [18, Theorem 3.3] (see also [17, Theorem 2.15] for the case with
variable delays) on the representation of a solution of a DDE with multiple delays.

Theorem 2.1. Let n € N,0< 1y,..., T, € R, T:= max{7T, T,..., T}, A, B1,..., By be pairwise
permutable constant N x N matrices, ¢ € C([—7,0],RN), and f : [0,00) — RN be a given function.
Then the solution of the Cauchy problem (1.3), (1.4) has the form

x(t) = {4’“)' —T< <0,
B(t)¢(0) + Lisq B fo/ Bt —s)g(s — Tj)ds + fot B(t—s)f(s)ds, 0<t

B(t) = eAt Z (t - Z?n:l kam)anzl ki ﬁ Ekm

Z:L]:l kT <t
kln--/kn >0

forany t € R, and By = Bye At foreachm=1,...,n.
Combining an estimation of the multi-delayed matrix exponential, [14, Lemma 13], with

the representations of solutions of (1.3), (1.4) from [14] and Theorem 2.1, we obtain the fol-
lowing statement.

Lemma 2.2. Let n € N,0 < 71,...,T € R, By, ..., By, be pairwise permutable constant N x N
matrices. If a1, ..., 0, € R are such that ||B;|| < a;e"™ foreachi =1,...,n, then

(t = Y1 kam)Zf”zl kn 1
Kl k!

Z BZ:;VI S e(“1+"'+l¥n)t
le:l kT <t
k1,~.,kn20

m=1

forany t € R.



4 M. Medved’ and M. Pospisil

We will investigate the exponential stability with respect to a ball in the sense of the next
definition.

Definition 2.3. The zero solution of equation (1.3) is exponentially stable with respect to
the ball Q(r) := {h € RN | ||h|| < r} if there are positive constants c1, c; such that any
solution x of (1.3) satisfying initial condition (1.4) with ¢(t) € Q(r) for all t € [—7,0] fulfills
lx(#)]] < cre! forall t > 0.

Exponential stability of a trivial solution of other delay equations is understood analo-
gously.
The logarithmic norm of a square matrix A is defined by

.| I+eAl -1
A) = lim ———.
A=
The properties we need are concluded in the following lemma (see e.g. [5]).
Lemma 2.4. The logarithmic norm of a matrix A satisfies:
L —[|Al} < —u(~A4) < Rec(A) < pu(A) < [|Al|,
2. ||e|| < et forall t > 0.

We shall also need the following integral inequality, which was proved in [10] for integer
powers. The authors did not realize/mention that their proof works even in the more general
setting with real exponents.

Lemma 2.5. Let 2 < n € IN, ¢ > 0, fi(t) for i = 1,...,n be nonnegative continuous functions
defined on [a,b] and 1 = q1 < g2 < q3 < --- < g, be real numbers. If a positive differentiable
real-valued function z(t) satisfies

2(t) < c+/tifl-(s)z‘7f(s)ds, t € [a,b]
a i=1

and
b n s
1= =1) [ Lo s exp (0= 1) [ oo ) ds >0,
T i=2 a
then
t
cexp (fﬂ fl(s)ds)
2() < -
(1= (o= 1) [ Ea L is) exp (g2 — 1) [ fl0)do) ds) ™
Proof. The proof is exactly the same as the proof of [10, Theorem 2.6]. O

3 Existence result

Here we prove an existence and uniqueness result for a solution of the initial-function problem
(1.5).

Theorem 3.1. Let I = [0, A] C R for some A > 0, G C RN bea region, H C R™ x - -- x R™ be a
region containing 0 € R™ x - - x R"™, F € C(I x G""! x H,RN) is a continuous locally Lipschitz
function. Then for any ¢ € C([—1,0],G) there exists & > 0 such that the initial function problem
(1.5) has a unique solution x(t) on the interval Iy = [—T,J].
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Proof. Let b;, bj; >0,i=0,...,n,j=1,...,m; be such that
Gy, ={xeRY | lx—9(-1)|| <b}CG, i=0,...,n
for 19 = 0, and
V= {(vo1,. .., Onm,) € R™ x - x R™ | [Jvy]| < b

Let 0 < a < A be such that

ijs iIO,...,Tl,jzl,...,Mj}CH.

max |lo(c—7)—¢(—7)| <b;, i=1,...,n (3.1)

o€[0,min{a,7;}]

From now on, we shall assume without any loss of generality that 2 < min;—; _, 7;. Note that
(3.1) then implies
max [[p(c—1)|| <bi+ lo(—7)|, i=1,...,n. (3.2)
€(0,a]

So, we have Gy := [0,a] x Gy, X ==+ X Gy, X V C I x G"™1 x H. Let us denote

Mp:= max A()x]|, M —maxA
0 t€[0,a], x€Gy, H <> H A te[0,a] H (>H

M; := max B;(t)x||, i=1,...,n,
! te[O,a},xeGbl. H Z() H

Mz = max F(t,ug, .., Uy, 001, -, Onm, )-
(t/uo/nvuanOl:-~~/Unmn)EGO

Let L; L >0,i=0,...,n,j=1,...,m; be such that
H]-"(t,uo,...,un,vm,...,vnmn) —f(t,ﬁo,...,ﬁn,ﬁol,...,ﬁnmn)u
n n o m;
< Y Lillu — ]| + ) Y Lij|loi; — i
i=0 i=0j=1

for all (¢, ug, ..., Un, 001, -, Onm,), (t, 0, ..., Tn, o1, ., Oum,) € Go. Finally, let

. bO _1}
0<d<min<a,c, ,K
{ Mo+ ---+M,+Mr

with .
biiT(1+ Bj) )ﬂ] L
¢c< min | ——r—%— , K=Ma+Lo+) ———.
200 (b Fllgtm] L1+ o)

Consider the Banach space Cs := C(Is5,RN) endowed with the maximum norm, ie., ||x| =
max;cj, |x(t)|| for x € Cy, and define the successive approximations {x;}¢>, C Cs by

o (P(t)/ te [—T,O),
%o(t) = {(p(O), te0,d],

q’(f)r te[-7,0),
+f0 (s)ds + Y2i. 1f0 s)xx(s — 1)ds
+fo~7:(5ka( ), X (s —Tl),--.,xk(s—Tn),...,
Xer1(t) = % Jo (s = o)fo—lem106=Ox (0)do, .. .,

e Jo (s — o) lem ) (o) o,
% Jo (s —o)fnlem =y (0 — 7y)do, ...,

e Jals — 0P Tlem )y (0~ 5)do), £ € [0,4]
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fork=0,1,...
First, we show that x;(t) is well defined. For any s € [0,t] C [0, ] we have s € [0,a],

[x0(s) — 9(0)[| < max [x0(c) = @(0)]| = ll9(0) — @(0)[| = 0 < by,
ie., xo(s) S Gb()/ and
[x0(s =) — @(—=) | < max [xo(0 — 7)) — ¢(=7)|

oef0,6

< max [[¢(c —7) — (1) < b;
oel0,a]

(3.3)

foreachi=1,...,nby (3.1),i.e, xo(s — 7;) € Gp,. Next, using the estimation

S 1 S
_ A\Bi—1a=7ij(s—0) 3, _ / Bij—1,—7ijo
§ — o )Pii j do = oPii i do
/0 ( ) ¢ L(Bij) Jo ¢

I'(Bi)
IR R i _ P
I'(Bij) /0 e = BiT(Biy) — T(1+By)
_ SBij _ cPij
I+ ~ T(1+Bi)

foralls € [0,t] C [0,0] and eachi=0,...,n,j=1,...,m;, we derive

1 S
- s — o) Poi—le=10(5=9) y (\do
Hr(ﬁoj) f e ol)
choi l(0)[|cPy_ [9(0)]lby;
< max ||x = < < by;
ey IS5y = T+ fo) = bo+ o) =
foreachj=1,...,mp, and

cPij cPii

< [ — -
max [0 (0 — Tz)Hr(l e (o — ) T+ By)
. T Bij
< (bi + lp(=T)I]) " < by
T(1+Bij)
foreachi=1,...,n,j=1,...,m; where we applied (3.2). Note that estimations (3.3), (3.4) are

valid for x; instead of xy without any respect to k, since it holds x;(c — 7;) = ¢(c — 7;) for any
0 €[0,6]as 0 < <a <min;__, 7. Therefore, the inclusion

(3.4)

(s, Xk (s), xk(s — 1), ..., xk(s — Tn), 1(501'701)xk(s), .., I(ﬁ"mo%mo)xk(s),

(3.5)k
1By (s — ), ..., TBwm )y (5 — Tn)> € Gy, Vsel0,]

holds for k = 0, i.e., (3.5)9 holds. That means that the argument of F in the definition of x;(t)
is in Go. So, x1(t) is well defined.

Now, assume (3.5);_1 for some k € IN. We will show that (3.5); follows, i.e., x;y1(f) is well
defined on Is. By the above arguments, to show (3.5); it is enough to prove x(s) € Gy, and
(| 1o 101) x (5)|| < boj for all s € [0,6] and j = 1,...,mo. Firstly,

() = @(O)]l = maxx [lxi(e) = @(O)l| < 6(Mo+ -+ My + M) < bo.
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Secondly, using the latter estimation,

< C.BO]'
gﬁx] | xx (o )HT(T,BO])

Boj
< ((max () = 001 + 190N ) iy < P EIEOLE <y,

So, we have inductively proved that all x(t), k € IN are well-defined functions from C;.

In the next step, we show that xi(f) converges uniformly on Is to a solution of (1.5) as
k — co. Using the identity xx(s — 7;) — xx_1(s — ;) = 0 for all s € [0,6] and k € N, we can
estimate

iy [ - P

| X1 — xk|| = m[a;( k41 (t) — i (2) ]

< max [MA/ ()~ w26+ [ (Rollats) ~ 251

te[0,6]

mgo LO]

+ Z r(,BOj) /OS(S — a)ﬁojfle*’mj(sfa) ka(O') _ xk_l((T) Hda) ds]

j=1

CﬁO'

< Olxg — x| (MA+LO+E(1+‘B)

) = O || xx — x|

for each k € IN. Therefore,
k1 — x| < (6%)¥[|lx1 — xoll,  k € No.

Consequently,

1
Z [xi(t) = xioa (D) < [lx1 — xol| Y (6x)', Vte0,8], ke N.
i=0

Hence, Y° ,(6x)’ < oo implies the uniform convergence of the series Y%°; (x;(t) — x;_1(t)) on
I5. So, using x; = xo + Y&, (x; — x;_1) for each k € IN, we see that the sequence {2 () 1
converges uniformly on Is to the continuous function x = xo + Y72 (x; — xj—1) € Cs, which is
a unique solution of (1.5). O

4 Exponential stability for linearly bounded right-hand side

In this section, we prove a sufficient condition for the exponential stability of a trivial solu-
tion of the DDE with variable coefficients, multiple delays and nonlinearity depending on
fractional substantial integrals,

x(t) = A(t)x(t) + Bi(H)x(t — 1) + - - - + Bu(t)x(t — Tp)
+ F(t,x(t),x(t—11),...,x(t — 1))
+f(t, 1(Bo1,701) x(t),..., I(ﬁOmO,mno)x(t)’ (4.1)

1By (p— ), ..., I Yon) o (f — Tn)), t > 0.

For better clarity, we conclude the main assumptions here:
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(H1) there are positive numbers r; and g;,0;,t; > 0,71 =0,...,n such that

IA(t) — A(to) || < goe "0l ~"ol [t — 1],
|Bi(t) — Bi(t;)|| < gie ")t — 1|9, i=1,...,n

forallt > 0;
(H2) there are constants a1, ..., &, such that
IBi(t)e A0 < aiers
foreachi=1,...,n;

(H3) it holds 7;; > p = —u(A(to)) —a > 0 foreachi = 0,...,n, j = 1,...,m, where
& =wa1+---+a, and p(A(ty)) is the logarithmic norm of the constant matrix A(ty);

(H4) for a constant 0 < r < oo there are positive constants ¥; and é; > 0 for i =0, ...,n such
that

n
1t ua) | < Y Gl
i=0

forallt >0and u; € Q(r),i=0,...,n;

(H5) there are m; € IN positive constants Hij and Nij = 0fori=0,...,n,j=1,...,m such
that

n
I £(t, 001, -+ ) Qomgs 0115+ -+ » Oy || Z z]e_”ijt||0ij||

lF’JS

forallt > 0and v;; € Q(r),i=0,...,n,j=1,...,m;.

Without conditions (H4), (H5), equation (4.1) could not have an exponentially stable trivial
solution (see e.g. [3,9]).

Theorem 4.1. Let n € N,0 < 7y,..., Ty € R, T :== max{7T, T,..., T}, A,B1,...,B, be N x N-
matrix valued functions, and suppose that the assumptions (H1)—(H5) are satisfied. If A(ty), B1(t1),

, Bu(ty) are pairwise permutable, then the trivial solution of equation (4.1) is exponentially stable
with respect to the ball Q(A) with

rmin{1,
A= : (4, — (4.2)
e (1+ 1 I1Bi(1)1557)
here 7y = min oy
where y = min j—o,_x vy,
j:1,...,ﬂ’l,'
Ko 2000(©0+1) o " Moj
B Qo+l O (0 — )ﬁo]'
0 j=1 Hoj\r0j — P (43)

2qT(©;+1) 6 & 1ij
pyen (ST Gy )
Z ( ot v ]Z; wij(vij — p)Pi
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Proof. For simplicity in notation, we shall write F(¢) and f(t) omitting most of their argu-
ments. Let x be a solution of equation (4.1) on the interval [0,T), 0 < T < co with the initial
function ¢ € C([—7,0],RN) satisfying

loll = max llo(t)] <.

Let us rewrite equation (4.1) as follows:

x(t) = A(to)x(t) + Bi(t1)x(t — 1) + -+ + Bu(ta)x(t — ) + (A(t) — A(to))x(t)
+ (Bi(t) = Bi(t1))x(t = 71) + - + (Bu(t) — Bu(tn))x(t — 7) + F(£) + f(£), t=0.

By Theorem 2.1, x has the form
(1) = B(1)p(0) + ilBjuj) [ Bt =)t — )i
+ / (£ =5)((A(s) = Alto))x(s) + (B1(s) = Ba(11))x(s =)
o (Ba(s) — Bulta))x(s — m)ds + [ Bl = 5)(F() + (5))ds
for t € [0, T], where

n "k, N
B(t) = eAlto)t Z (t— Y0 kT ) 2t H B,kmm

| |
51 o<t ki!... k!
k1erkn >0

m=1

and B,, = Bm(tm)e*A(tO)T"’ foreachm=1,...,n.
For now, let us assume that r = co. The case r < oo is postponed to the end of the proof.
Using the assumptions and Lemmas 2.2, 2.4, we obtain

IB(t)]| < [leAt)||ett < eliAlt)+a)t — opr

for any t > 0. Hence
elx()]l < (0 ||+Z||B II/ e[lp(s —7)llds

+/ e ([|A(s) — A(to)[[[[x(s)[l + [IB1(s) — Bi(t:) [l |x(s — =)
+ -+ [[Ba(s) —Bn(tn)HHX(S—Tn)ll)d8+/0teps(|\F(S)ll + [[f(s)[)ds
Note that

IS | (=P e I n(s) s (4.4)

n -
= g (1 Y 1Bt 1) (4.5)
j=1
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and using assumptions (H1), (H4), (H5), we obtain

t
u(t) <C ~|—/ (qoe_r0|5_t°|s — to|®ou(s)
0

n
+ Y gre il tl|s — 1|t (s — T,-)) ds
i=1

t
0

n
+ (50e‘9°su(s) + Zéie’ﬂisepﬂu(s — Ti)> ds
i=1

t Mo 1’]0] _ . s __l _ (q— —
_|_/ efs }: e .“0]5/ (5_0—)/30/ e 701(5 g)e pgu(O’)dO’
0 4 0
j=1

I'(Boj)
n m;
~ M - ﬁt/s Bij—1g—ij(s—0) g=p(0—T:)
+ e Hij (S — g’) i~ e ij e P ! M(U’— Tl')d(T ds.
Lt

Let us denote ¥ (t) the right-hand side of the latter inequality. Clearly, it is a nondecreasing
function satisfying ¥(0) = C. To estimate the delayed terms, we use the inequality

u(s — %) < max u(c — ;) < max u(o)
oel0,] cE[—T,5]

= max {ng[laéo] u(a),lfrg[%,);] u(a)}

< max{ max eP‘THq)((T)H,Umax ‘I’(U)} <max{C,¥(s)} = ¥(s)

oe[-1,0] €[0,s]

forany s € [0,t] and each i = 1,...,n. So we obtain
e /s (s — o)Pole ™10/~ (o) dor
0

< ¥(s) /s P~ le= (=P dy < ¥ (s) /Oo oPoi—le=(10j=0)0 4+ (4.6)
0 0
F(s)T'(Boj)

a (70j — p)Po

foralls € [0,t] and each j = 1,...,m(. Analogously,

OTi ..
efs /s (s — U)ﬁijfle*“nj(sftr)e*P(Uffi)u<g —7)do < Fls)e r(ﬁ‘Bl]) 4.7)
0 (vij — p)P
foralls € [0,¢] and eachi=1,...,n,j=1,..., m;. Therefore, we arrive at
t
Y(t) < C+ / b(s)¥(s)ds, te[0,T] 4.8)
0
where
Mo .o Hojs
—rpls— — Hoje ™V
b(S) = qo€ rols tol‘s — t0’®0 + 506 dos + T A
j_zl (705 — p)Po
(4.9)

i ot ( rlstil)s — ¢]© s %ﬁz‘je*"”s )
+ el [ gie P s — 7 + ;e V" + - |.
i=1 j=1 (7ij — 0)Pi
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Note that
t )
/ e Milstil|s — 1]9ds < / e"ilstil|s — 1;9ds
0 0

0 )
:/ e”i|s|\s]®"ds—|—/ e "55%ids
—t; 0

2T (O; +1)

o0
< 2/ e 71559 ds =
0 ri®i+l

foreachi=0,...,n. So, it holds

/Otb(s)ds < /Ooo b(s)ds < K.

Applying the Gronwall’s inequality to (4.8) then gives

t
Y(t) < Cexp {/ b(s)ds} < Cef < 0
0
for any t > 0. That means
|x(t)]| = e Plu(t) < e P¥(t) < Cefe ™ Vte|0,T). (4.10)

Since the right-hand side is independent of T, the estimation holds for any t > 0.

The condition (4.2) on A enables to apply estimations of ||F(¢)| and || f(t)| during the
proof. If condition (4.2) holds, from (4.10), one can see that ||x(¢)|| < r for all t € [0, T).
Clearly, it is true also for t € [—7,0]. Next, from (4.4) and (4.10), we get

t K
/O (t—s)Ple 7=9)ds < C;ﬁ (4.11)

CeK

r'(p)

The same holds with x(t — 7;) for any i = 1,...,n instead of x(t). So again, we can apply the
estimation of || f(¢)|| due to (4.2).

Finally, if r < oo, the statement follows from the previous case using the Urysohn’s lemma
[1, Lemma 10.2]. O

IEDx(t)] <

We would like to emphasize that in the above theorem, the commutativity of matrix func-
tions A, By, ..., B, at general ¢ is not required.

5 Exponential stability for power nonlinearities on right-hand side

Here we investigate the case of more general functions F and f on the right-hand side of
equation (4.1). In particular, we consider the modified assumptions:

(H4’) for a constant 0 < r < oo there are ¢; > 0, 6;,6;,0; > 0and w; > 1fori =0,...,n such
that

n ~
1Bt a0, )| < ) (S sl 4+ e i)
i=0

forallt >0and u; € Q(r),i=0,...,n;
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(H5’) there are m; € IN, Mij >0, Wijzﬁij/.aij > 0 and Wij >1fori=0,...,n, ] =1,...,m; such
that

n m; 5
1f (£, 001, -« Oomgs 0115 -+ - O )| <Y Y (mige ™ |0y ]| + 7ize P || vg;]|“)
i=0j=1

foralltZOandUi]-eQ(r),i:(),...,n,j:1,...,m1

We will assume that at least one of 51-, 7ijs i=0,...,n,j=1,...,m; is nonzero, so that this is
not the case of Theorem 4.1.

Theorem 5.1. Let n € N,0< 7,..., T, € R, T := max{ty,,..., T}, A, B1,...,B, be N x N-
matrix valued functions, and suppose that the assumptions (H1), (H2), (H3), (H4') and (H5’) are
satisfied. If A(to), B1(t1), ..., Bu(tn) are pairwise permutable, then the trivial solution of equation
(4.1) is exponentially stable with respect to the ball Q(A) with

A < min {/\1,/\2,rmin{1, 1}} (5.1)

where c
T 1B ()1

Cy is the root of the equation

1 wx—l Wij— . 1
; ( K; + Z C ) = (o DK (5.2)

j=1

and C is the smallest positive root of the equation

CzeK

— = rmin{1,7}, (5.3)

[1 — (w —1)elw-DK ( " <C§"r K; "‘Zml C“’U 1Kij)>} w1

where K is defined by (4.3), w = max ;g __n {wl,wq} > 1,y =minj—o..n 7 y
j=1, j=1,...m;
5 5 ePwWiT;
K0:~#, Ki:~‘51e—, i=1,...,n,
190—|-p(w0—1) 191'-1-()(601'—1)
floj
Koj = —— , J=1,...,my,
" (05 — )P (fig; + p(woj — 1))
7..efWiT
Kij = 1y i=1,..m =1,...,m

(7ij — )P (i + p(wy; — 1))
Proof. First, we assume that » = co. Following the proof of Theorem 4.1, we arrive at
u(t) = e lx(1)]]

t n
<C+ / <q0er0|5t0 |5 — to|%u(s) + Y gie sl |s — ;] ®ierTin(s — Ti))ds
i=1

+/ (509 1905 +5Oe Jos —p(wo 1)suwg(s)

n
+) ((5e OisePTiy(s — 1;) + bre~ Use P(wi—l)stpwitiywi (g Ti)> >ds
i=1
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t o . s
s Moj —Hojs i—1 ,—70i(s—0) ,—po
—|—/ep < e”of/s—aﬁof e e Pu(o)do
0 (Z&rww (s~ ) (@)

M0j  —figs /S — )P~ la—mj(s—0) g—p0 o
+F(ﬁ0j)“’0fe J(O(s )P0 e 0] e "u(o)do

n m;
S M s /S Bi—1 . —7ii(s—0) o —p(c—T)
+ e i s —o)Pim e NSV e Py (0 — 1;)do
;;wa (o) ()

i r(g'ii)Wi/e flijs </0 (s — a)ﬁijfle*%/(sfa)efp(afﬂ)u(a — Ti)d‘7> ’ >>d5
g

where C is given by (4.5) and ¢ € C([—7,0],RN) is such that ||¢|| < A. Let us denote ¥(t)
the right-hand side of the above inequality. Then ¥(¢) is a nondecreasing function satisfying
¥(0) = C. Analogously to (4.6) and (4.7), we derive

s wWoj woj o(1—wy;)s \Woj
e </ (S — O.)ﬂoj‘le'yg]-(sa)epvu(o-)d0—> ’ < * OJ(S)e O]ﬁ l;(ﬁ()]) -
0 (70j — p)Poeo

foralls € [0,t] and each j =1,...,mp, and

w; Twi]-(S)eP(l—‘Uz’j)S"‘PwiiTir(ﬁij)Wij

(7ij — p)Pii

ePS </S (S — O—)ﬁij_le_%'j(s_a)e_p(O—_Ti)u(o— — E)da’)
0
foralls € [0,t] and eachi=1,...,n,j=1,...,m;. Therefore, we have

Y() < C+ /Otb(s)‘lf(s)ds + ;}/Ot b(s) ¥ (s)ds + 3 Y /Ot bi(s)¥“i(s)ds  (5.4)

i=1j=1
where b(s) is given by (4.9),

bo(s) = g~ Potplwo—1)s,
bl(s) = 5iepwi’ri_(l§i+p(wi_l))sl [ = 1’ ..,n,
ﬁOAe*(ﬂoﬁrP(wo}'*l))s
bOj == Bojwo;
(05 — p)PoI
ﬁijepwzjfi—(ﬂij+P(wij—1))5

(i — )P

Note that K; = [ bj(s)ds and K;j = [~ bjj(s)ds for each i =0,...,n,j=1,...,m;. Now, from
assumption (5.1) on A, we have C < C;j. Since the left-hand side of (5.2) is increasing in Cy, it
follows

(w o 1)e(w71)K Z

i=0

1
(C“’flKl- +Y C“’iilKi]) <1,

j=1
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and Lemma 2.5 can be applied on inequality (5.4) to obtain

¥(t) < Cexp (/Otb(s)ds)

(1— w-—1) / Z (C“’, bi(s —l—ZC“”/ i ( )exp ((w—l)/osb(a)da) ds)

K ~
< Ce _.7

1 (0 elwVK (K2 (Cor1K, + 7, €1k ) )]

1
1-w

forallt € [0,T). Since the K is independent of T, ¥(t) < K for all t > 0. Hence ||x(t)|| < Ke ",
Again, by (5.1), one can see that A < A, i.e.,, C < Cp. Let us denote g(Cy) the left-hand

side of (5.3). Clearly, it is a continuous function satisfying ¢(0) = 0 and g(Cz) = rmin{1, y}.

Moreover, we know that ¢(¢) € [0, min{1,v}) for { € [0,C;). Thus B

K=g(C) <rmin{l,9} <.

From (5.1), also ||¢|| < r. So, the estimation of ||F(t)|| could be applied. Similarly to (4.11), we

have N

7
Iéo < ;; r, t>0
Yoi  Yoi

12 Porvo)(8) ] <

foreachj=1,...,mp, and

loll < rminlod e o, 4]

P T gl
Hl(ﬁij/%j)x(t —T) H < i ij
K o< >
Bij < Bij — T, !
ij Vij

foreachi=1,...,n,j=1,...,m;. So, also the estimation of || f(t)|| was allowed.
Finally, the case r < co can be proved using Urysohn’s lemma as in Theorem 4.1. O

If equation (5.3) does not have a positive root, we set C; = .

6 Illustrative example

Consider the following system of DDEs with one delay

6.1)

for t > 0. In this case
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n =17 =1 Clearly, A(0)B = BA(0) = (~/%7). Considering the norms [|o|| = ||o|l; =

|01] + |0s| for 0 = (01,v;) € R? and ||D|| = ||D|; = maxj_1(|ds;| + |da]) for D = (g; g;;),
we get the logarithmic norm

2
u(D) = (D) = max djj+ ) 1dij]

=%
Moreover, ||A(t) — A(0)|| = 3te™!, ||B(t) — B(0)|| = 0 for any ¢ > 0. In the notation of Section
5 wehavet;j =0,q0 =3, 70 =100 =1, f11 = 111 :%andsetql =0,rn=10, =0,
Boi = Yo = 1. Since F(t,up,u1) = 0, we can take §; = §; = 0, % = 9; = 1 and w; = 2 for
i =1,2. Next, f(t,v0,v11) = (0, (011)%) where (v11)1 is the first coordinate of v1;. Hence,
£ (t, 001, 011) || = (v11)3 < ||v11]|? and we take 51 = 0, wjp = 1, fin =0, wy = 2 fori =1,2 and
fjol = 0, fj11 = 1, r = co. Furthermore, |[Be 40| = e||B|| = £ < aje™ if &y > 0.68508. Taking
a = a1 = 0.686, condition (H3) has the form 73 = 5 > p = —pu(A(0)) —a = 1 —0.686 =
0.314 > 0.

We want to apply Theorem 5.1. So, we calculate the constants, Ko = K; = Ko = 0, Ky1 =
32.084 and K = 6. Consequently, C; given by (5.2) is C; = 7.726 - 107° and A; = 4.867 - 10~°.
Since the left-hand side of (5.3) is bounded and the right-hand side is co, we set C; = co. From
Theorem 5.1 we obtain the following result.

_

Proposition 6.1. The trivial solution of (6.1) is exponentially stable with respect to the ball ()(4.867 -
107°), i.e., any solution of (6.1) satisfying (x(t),y(t)) = (@1(t), @2(t)) for t € [—1,0] tends expo-
nentially to zero provided that ||@| = max;e(_-o (|91 (£)] + |@2(t)]) < 4.867-107°.
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