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Abstract. This work deals with the null controllability of an initial boundary value
problem for a parabolic-elliptic coupled system with nonlinear terms of local and non-
local kinds. The control is distributed, locally in space and appears only in one PDE.
We first prove that, if the initial data is sufficiently small and the linearized system at
zero satisfies an appropriate condition, the equations can be driven to zero.
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1 Introduction and main results

Let Ω be a bounded domain of RN (N ≥ 1), with boundary Γ = ∂Ω of class C2. We fix T > 0
and we denote by Q the cylinder Q = Ω× (0, T), with lateral boundary Σ = Γ× (0, T). We
also consider a non-empty (small) open set O ⊂ Ω; as usual, 1O denotes the characteristic
function of O.

Throughout this paper, C (and sometimes C0, K, K0, . . . ) denotes various positive constants.
The inner product and norm in L2(Ω) will be denoted, respectively, by (· , ·) and ‖ · ‖. On

the other hand, ‖ · ‖∞ will stand for the norm in L∞(Q). We will also denote~0 = (0, . . . , 0) ∈
Rn.

We will be concerned with the null consider the following parabolic-elliptic coupled non-
linear systems

yt − β1

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆y + F(y, z) = v1O in Q,

−β2

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆z + f (y, z) = 0 in Q,

y(x, t) = 0, z(x, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω

(1.1)
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and 

yt − β1

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆y + F(y, z) = 0 in Q,

−β2

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆z + f (y, z) = w1O in Q,

y(x, t) = 0, z(x, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω

(1.2)

where v is the control for the parabolic equation in (1.1), w is the control for the elliptic
equation in (1.2) and (y, z) is the state for both systems.

Here 1O is the characteristic function of O and y0 = y0(x) is the initial state; the non-
linearities β1 = β1(r, s, l1, . . . , ln, u1, . . . , un), β2 = β2(r, s, l1, . . . , ln, u1, . . . , un), F = F(r, s) and
f = f (r, s) are C1 functions (defined in R × R × Rn × Rn and R × R, resp.) that possess
bounded derivatives and satisfy

0 < c0 ≤ β1(r, s, l, u), β2(r, s, l, u) ≤ c1, ∀(r, s, l, u) ∈ R×R×Rn ×Rn

and
F(0, 0) = f (0, 0) = 0,

∣∣∣D2 f (0, 0)
∣∣∣ < c0µ1,

where µ1 the first eigenvalue of the Dirichlet Laplacian in Ω.

If y0 ∈ L2(Ω), v ∈ L2(O× (0, T)) (resp. w ∈ L2(O× (0, T))) and the functions β1, β2, F and
f satisfy the previous conditions, then (1.1) (resp. (1.2)) possesses exactly one weak solution
(y, z) with

y ∈ L2(0, T; H1
0(Ω)), yt ∈ L2(0, T; H−1(Ω)), z ∈ L2(0, T; D(−∆)).

In this paper we will analyze some controllability properties of (1.1) and (1.2).

Definition 1.1. It will be said that (1.1) (resp. (1.2)) is locally null-controllable at time T if there
exists ε > 0 such that for any given y0 ∈ H1

0(Ω), with

‖y0‖H1
0 (Ω) < ε

there exist controls v ∈ L2(O × (0, T)) (resp. controls w ∈ L2(O × (0, T))) such that the
associated states (y, z) satisfy

y(x, T) = 0 in Ω, lim sup
t→T−

‖z(· , t)‖ = 0. (1.3)

The analysis of systems of the kind (1.1) and (1.2) can be justified by several applications.
Let us indicate two of them:

• Reaction-diffusion systems with origin in physics, chemistry, biology, etc. where two
scalar “populations” interact and the natural time scale of the growth rate is much
smaller for one of them than for the other one. Precise examples can be found in the
study of prey-predator interaction, chemical heating, tumor growth therapy, etc.

• Semiconductor modeling, where one of the state variables is (for example) the density
of holes and the other one is the electrical potential of the device; see for instance [17].
Other problems with this motivation will be analyzed with more detail by the authors
in the next future.
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The nonlocal terms in (1.1) and (1.2) have important physical motivations, for an example:
in the case of migration of populations, for instance the bacteria in a container, the diffusion
coefficients may depend on the total amount of individuals.

Let us recall other two examples of real-world models where the nonlocal terms appear
naturally:

• In the context of reaction-diffusion systems, it is also frequent to find terms of this kind;
the particular case

β(〈p, y(·, t)〉, 〈q, z(·, t)〉)
where β(s, r) is a positive continuous function and l and m are continuous linear forms
on L2(Ω), has been investigated for instance by Chang and Chipot [3]. We refer to this
paper for more details.

• Let us also mention that, in the context of hyperbolic systems, terms of the form

β

(∫
Ω
|∇y(x.t)|2Rn dx,

∫
Ω
|∇z(x.t)|2Rn dx

)
appear in the Kirchhoff equation, which arises in nonlinear vibration theory; see for
instance [22].

The control of PDEs equations and systems has been the subject of a lot of papers the
last years. In particular, important progress has been made recently in the controllability
analysis of semi-linear parabolic equations. We refer to the works [5, 6, 8, 9, 12–14, 24, 25] and
the references therein. Consequently, it is natural to try to extend the known results to systems
of the kind (1.1) and (1.2).

Note that if β1 and β2 are constants, we get, as a particular case, the results of [11]
and when β1 = β1

( ∫
Ω y dx,

∫
Ω z dx

)
and β2 = β2

(∫
Ω y dx,

∫
Ω z dx

)
, we have the parabolic-

parabolic system of [5].
Moreover, with the techniques of [5] based on Lemma 3.2 from the same article, it is not

possible to solve the parabolic-parabolic system with

β j = β j

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
, j = 1, 2.

Thus, we have a real improvement over the parabolic-elliptic works of [11] and the work [5]
(even though the latter is a parabolic-parabolic system).

The main results are the following.

Theorem 1.2. Under the previous assumptions on F, f , β j, j = 1, 2, if we assume that D1 f (0, 0) 6= 0,
then the nonlinear system (1.1) is locally null-controllable at any time T > 0. In other words, there
exists ε > 0 such that, whenever y0 ∈ H1

0(Ω) and

‖y0‖H1
0 (Ω) < ε,

there exists controls v ∈ L2(O × (0, T)) and associated states (y, z) satisfying (1.3).

Theorem 1.3. Under the previous assumptions on F, f , β j, j = 1, 2, if we assume that D2F(0, 0) 6= 0,
then the nonlinear system (1.2) is locally null-controllable at any time T > 0, i.e there exists ε > 0
such that, whenever y0 ∈ H1

0(Ω) and
‖y0‖H1

0 (Ω) < ε,

there exists controls w ∈ L2(O × (0, T)) and associated states (y, z) satisfying (1.3).
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The main difficulties found in the proof are that: (a) nonlinear terms appear in the main
part ofthe partial derivative operators: (b) only one scalar control is used in the system (or
in the parabolic equation or in the elliptic one). We will employ a technique relying on the
so called Liusternik’s Inverse Mapping Theorem in Hilbert spaces, see [1]. The arguments are
inspired by the works of Fursikov and Imanuvilov [13] and Imanuvilov and Yamamoto [16]
and rely on some estimates already used by these authors for other similar problems.

More precisely, in a first step, we will first consider similar linearized systems at zero


yt − β1(0, 0,~0,~0)∆y + ay + bz = v1O + h in Q,

−β2(0, 0,~0,~0)∆z + cy + dz = k in Q,

y = 0, z = 0 on Σ,

y(x, 0) = y0(x) in Ω

(1.4)

and 
yt − β1(0, 0,~0,~0)∆y + ay + bz = h in Q,

−β2(0, 0,~0,~0)∆z + cy + dz = w1O + k in Q,

y = 0, z = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(1.5)

where the coefficients a, b, c, d are obtained from the partial derivatives of F and f at (0, 0)
and, in particular, c 6= 0 in (1.4) and b 6= 0 in (1.5). The adjoint of (1.4) and (1.5) is given by


−ϕt − β1(0, 0,~0,~0)∆ϕ + aϕ + cψ = G1 in Q,

−β2(0, 0,~0,~0)∆ψ + bϕ + dψ = G2 in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ(x, T) = ϕT(x) in Ω.

(1.6)

Following well known ideas, the null controllability of (1.4) and (1.5) (for appropriate h
and k) will obtained below as a consequence of suitable Carleman estimates for the solutions
to (1.6). Then, in a second step, we will rewrite the null controllability property of (1.1) and
(1.2) as an equation for (y, z) in a well chosen space of “admissible” state-control triplets:

H(y, z, v) = (0, 0, y0), (y, z, v) ∈ Y; (resp. H(y, z, w) = (0, 0, y0))

see the precise definitions of Y and H at the beginning of Section 3. In fact, the choice of Y is
nontrivial, motivates some preliminary estimates of the null controls ans associated solutions
to (1.4) and (1.5) and deserves some additional work. We will apply Liusternik’s Theorem to
(1.6) and we deduce the (local) desired result from a similar (global) property for the linear
system (1.4) and (1.5).

This paper is organized as follows. In Section 2, we prove some technical results and we
establish the null controllability of (1.4) and (1.5). Section 3 deals with the proofs of Theorems
1.2 and 1.3. Finally, some additional comments and questions are presented in Section 4.
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2 Carleman estimates and the null controllability of (1.4) and (1.5)

We will first consider the general linear backwards in time system
−ϕt − β1(0, 0,~0,~0)∆ϕ + aϕ + cψ = 0 in Q,

−β2(0, 0,~0,~0)∆ψ + bϕ + dψ = 0 in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ(x, T) = ϕT(x) in Ω

(2.1)

where ϕT ∈ L2(Ω) and we assume that |d| < c0µ1.

We will need some (well known) results from Fursikov and Immanuvilov [13]; see also
[10]. Also, it will be convenient to introduce a new non-empty open set O0, with O0 b O. We
will need the following fundamental result, due to Fursikov and Imanuvilov [13]:

Lemma 2.1. There exists a function α0 ∈ C2(Ω) satisfying:{
α0(x) > 0 ∀x ∈ Ω, α0(x) = 0 ∀x ∈ ∂Ω,

|∇α0(x)| > 0 ∀x ∈ Ω \ O0.

Let us introduce the functions

β(t) := t(T − t), φ(x, t) :=
eλα0(x)

β(t)
, α(x, t) :=

eRλ − eλα0(x)

β(t)
,

where R > ‖α0‖L∞ + ln(4) and λ > 0.
Also, let us set

α̂(t) := min
x∈Ω

α(x, t), α∗(t) := max
x∈Ω

α(x, t),

φ̂(t) := min
x∈Ω

φ(x, t), φ∗(t) := max
x∈Ω

α(x, t).

Then the following Carleman estimates hold.

Proposition 2.2. Assume that |d| < c0µ1 holds. There exist positive constants λ0, s0 and C0 such
that, for any s ≥ s0 and λ ≥ λ0 and any ϕT ∈ L2(Ω), the associated solution to (2.1) satisfies∫∫

Q
e−2sα

[
(sφ)−1 (|ϕt|2 + |∆ϕ|2

)
+ λ2(sφ)|∇ϕ|2 + λ4(sφ)3|ϕ|2

]
dxdt

≤ C0

(∫∫
Q

e−2sα|ψ|2 +
∫∫
O0×(0,T)

e−2sαλ4(sφ)3|ϕ|2
)

dxdt
(2.2)

and ∫∫
Q

e−2sα
[
(sφ)−1|∆ψ|2 + λ2(sφ)|∇ψ|2 + λ4(sφ)3|ψ|2

]
dxdt

≤ C0

(∫∫
Q

e−2sα|ϕ|2 +
∫∫
O0×(0,T)

e−2sαλ4(sφ)3|ψ|2
)

dxdt.
(2.3)

Furthermore, C0 and λ0 only depend on Ω and O and s0 can be chosen of the form

s0 = σ0(T + T2), (2.4)

where σ0 only depends on Ω, O, |a|, |b|, |c| and |d|.
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This result is proved in [13]. In fact, similar Carleman inequalities are established there for
more general linear parabolic equations. The explicit dependence in time of the constants is
not given in [13]. We refer to [10], where the above formula for s0 is obtained.

For further purpose, we introduce the following notation:

I(s, λ; ϕ) =
∫∫

Q
e−2sα

[
(sφ)−1(|ϕt|2+|∆ϕ|2

)
+λ2(sφ)|∇ϕ|2+λ4(sφ)3|ϕ|2

]
dxdt

and
Ĩ(s, λ; ψ) =

∫∫
Q

e−2sα
[
(sφ)−1|∆ψ|2+λ2(sφ)|∇ψ|2+λ4(sφ)3|ψ|2

]
dxdt.

2.1 Some Carleman inequalities for the solutions to (1.6)

Now, from Proposition 2.2 it is deduced a Carleman estimate for the solutions to (1.6) under
particular hypotheses on the coefficients.

Proposition 2.3. Let us assume that G1, G2 ∈ L2(Q) and the coefficients in (1.6) satisfy

a, b, c, d ∈ R, c 6= 0, |d| < c0µ1.

There exist positive constants λ0, s0 and C1 such that, for any s ≥ s0 and λ ≥ λ0 and any ϕT ∈ L2(Ω),
the associated solution to (1.4) satisfies

I(s, λ; ϕ) + Ĩ(s, λ; ψ) ≤ C1

(∫∫
Q

e−2sα
[
λ4(sφ)3|G1|2 + |G2|2

]
dxdt

)
+ C1

(∫∫
O×(0,T)

e−4sα̂+2sα∗λ8(sφ∗)7|ϕ|2dxdt
)

.
(2.5)

Furthermore, C1 and λ0 only depend on Ω and O and s0 can be chosen of the form

s1 = σ1(T + T2), (2.6)

where σ1 only depends on Ω, O, βi(0, 0,~0,~0), |a|, |b|, |c| and |d|.

Proof. It will be sufficient to show that there exist λ0, s0 and C1 such that, for any small ε > 0,
any s ≥ s0 and λ ≥ λ0, one has:

I(s, λ; ϕ) + Ĩ(s, λ; ψ) ≤ CεI(s, λ; ϕ) + Cε Ĩ(s, λ; ψ) + cεS(s, λ; G1, G2, ϕ), (2.7)

where S(s, λ; G1, G2, ϕ) is the right-hand side in (2.5).
We start from (2.2) and (2.3) for ϕ and for ψ separately. After addition, by taking σ1

sufficiently large and s ≥ σ1(T + T2) and λ ≥ λ0, we easily obtain:

I(s, λ; ϕ) + Ĩ(s, λ; ψ) ≤ C
(∫∫

Q
e−2sα

[
λ4(sφ)3|G1|2 + |G2|2

]
dxdt

)
+ C

(∫∫
O0×(0,T)

e−2sαλ4(sφ)3 (|ϕ|2 + |ψ|2) dxdt
)

≤ C
(∫∫

Q
e−2sα

[
λ4(sφ)3|G1|2 + |G2|2

]
dxdt

)
+ C

(∫∫
O0×(0,T)

e−4sα̂+2sα∗λ8(sφ∗)7|ϕ|2 dxdt
)

+ C
(∫∫

O0×(0,T)
e−2sαλ4(sφ)3|ψ|2 dxdt

)
(2.8)
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Let us now introduce a function ξ ∈ D(O) satisfying 0 < ξ ≤ 1 and ξ ≡ 1 in O0. Then∫∫
O0×(0,T)

e−2sαλ4(sφ)3|ψ|2dxdt

≤
∫∫
O×(0,T)

e−2sαλ4(sφ)3ξ|ψ|2dxdt

=
∫∫
O×(0,T)

e−2sαλ4(sφ)3ξ(x)ψ
(
−1

c
(ϕt + ∆ϕ + a(x, t)ϕ− G1)

)
dxdt

= −
∫∫
O×(0,T)

e−2sαλ4(sφ)3 ξ(x)
c

ψ ϕt dxdt

−
∫∫
O×(0,T)

e−2sαλ4(sφ)3 ξ(x)
c

ψ ∆ϕ dxdt

−
∫∫
O×(0,T)

e−2sαλ4(sφ)3 ξ(x)
c

a(x, t)ψ ϕ dxdt

+
∫∫
O×(0,T)

e−2sαλ4(sφ)3 ξ(x)
c

ψ G1 dxdt

=: M1 + M2 + M3 + M4.

(2.9)

Let us compute and estimate the Mi. First,

M1 = −
∫∫
O×(0,T)

e−2sα 2ξ(x)
c

λ4s4φ3αtψϕ dxdt

+
∫∫
O×(0,T)

e−2sα 3ξ(x)
c

λ4s3φ2φtψϕ dxdt

+
∫∫
O×(0,T)

e−2sα ξ(x)
c

λ4(sφ)3ψt ϕ dxdt.

(2.10)

Using that |αt| ≤ Cφ2 and |φt| ≤ Cφ2 for some C > 0, we get:

M1 ≤ C
∫∫
O×(0,T)

e−2sαλ4s4φ5|ψ| |ϕ| dxdt +
∫∫
O×(0,T)

e−2sαλ4(sφ)3|ψt| |ϕ| dxdt

≤ ε Ĩ(s, λ; ψ) + Cε

∫∫
O×(0,T)

e−2sαλ4s5φ7|ϕ|2dxdt

+
∫∫
O×(0,T)

e−2sαλ4(sφ)3|ψt| |ϕ| dxdt.

(2.11)

The last integral in this inequality can be bounded as follows:∫∫
O×(0,T)

e−2sαλ4(sφ)3|ψt| |ϕ| dxdt

≤
∫∫
O×(0,T)

e−2sα̂λ4(sφ∗)3|ψt| |ϕ| dxdt

=
∫ T

0
e−2sα̂(t)λ4(sφ∗(t))3‖ψt(· , t)‖L2(O)‖ϕ(· , t)‖L2(O) dt

≤ C
∫ T

0
e−2sα̂(t)λ4(sφ∗(t))3‖ϕt(· , t)‖‖ϕ(· , t)‖L2(O) dt

= C
∫ T

0
e−sα∗(sφ∗(t))−1/2‖ϕt(· , t)‖ · e−2sα̂+sα∗λ4(sφ∗)7/2‖ϕ(· , t)‖L2(O) dt

≤ εI(s, λ; ϕ) + Cε

∫∫
O×(0,T)

e−4sα̂+2sα∗λ8(sφ∗)7|ϕ|2dxdt.

(2.12)
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Thus, the following is found:

M1 ≤ εI(s, λ; ϕ) + ε Ĩ(s, λ; ψ) + Cε

∫∫
O×(0,T)

e−4sα̂+2sα∗λ8(sφ∗)7|ϕ|2dxdt. (2.13)

Secondly, we see that

M2 = −
∫∫
O×(0,T)

∆
(

e−2sαλ4(sφ)3 ξ(x)
c

ψ

)
ϕ dxdt

≤ C
∫∫
O×(0,T)

e−2sα
[
λ6(sφ)5|ψ|+ λ5(sφ)4|∇ψ|+ λ4(sφ)3|∆ψ|

]
ϕ dxdt

≤ ε Ĩ(s, λ; ψ) + Cε

∫∫
O×(0,T)

e−2sαλ8(sφ)7|ϕ|2dxdt.

(2.14)

Here, we have used the identity

∆
(

e−2sαφ3 ξ(x)
c

ψ

)
= ∆

(
e−2sαφ3 ξ(x)

c

)
ψ + 2∇

(
e−2sαφ3 ξ(x)

c

)
· ∇ψ + e−2sαφ3 ξ(x)

c
∆ψ

and the estimates∣∣∣∆(e−2sαφ3 ξ(x)
c

) ∣∣∣ ≤ Ce−2sαλ2s2φ5 and
∣∣∣∇(e−2sαφ3 ξ(x)

c

) ∣∣∣ ≤ Ce−2sαλsφ4.

Finally, it is immediate that

M3 ≤ ε Ĩ(s, λ; ψ) + Cε

∫∫
O×(0,T)

e−2sαλ4(sφ)3|ϕ|2dxdt, (2.15)

and
M4 ≤ ε Ĩ(s, λ; ψ) + Cε

∫∫
Q

e−2sαλ4(sφ)3|G1|2dxdt. (2.16)

From (2.8), (2.9) and (2.13)–(2.16), we directly obtain (2.7) for all small ε > 0. This ends the
proof.

Now, we will assume that b is a non-zero constant:

b ∈ R, b 6= 0, |d| < c0µ1. (2.17)

Proposition 2.4. Assume that (2.17) holds. There exist positive constants λ2, s2 and C2 such that, for
any s ≥ s2 and λ ≥ λ2 and any ϕT ∈ L2(Ω), the associated solution to (1.6) satisfies

I(s, λ; ϕ) + Ĩ(s, λ; ψ) ≤ C2

(∫∫
Q

e−2sα
[
λ4(sφ)3|G1|2 + |G2|2

]
dxdt

)
+ C2

(∫∫
O×(0,T)

e−2sαλ8(sφ)7|ψ|2dxdt
)

.
(2.18)

Furthermore, C2 and λ2 only depend on Ω and O and s2 can be chosen of the form

s2 = σ2(T + T2),

where σ2 only depends on Ω, O, βi(0, 0,~0,~0), |a|, |b|, |c| and |d|.
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Proof. We start again from (2.8). Recalling that ξ ∈ D(O), 0 < ξ ≤ 1 and ξ ≡ 1 in O0, we see
that ∫∫

O0×(0,T)
e−2sαλ4(sφ)3|ϕ|2dxdt

≤
∫∫
O×(0,T)

e−2sαλ4(sφ)3ξ|ϕ|2dxdt

=
∫∫
O×(0,T)

e−2sαλ4(sφ)3ξ(x)ϕ

(
−1

b
(∆ψ + d(x, t)ψ− G2)

)
dxdt

= −
∫∫
O×(0,T)

e−2sαλ4(sφ)3 ξ(x)
b

ϕ∆ψ dxdt

−
∫∫
O×(0,T)

e−2sαλ4(sφ)3 ξ(x)
b

d(x, t)ϕψ dxdt

+
∫∫
O×(0,T)

e−2sαλ4(sφ)3 ξ(x)
b

ϕ G2 dxdt

=: M′1 + M′2 + M′3.

(2.19)

As in the proof of Proposition 2.3, it is not difficult to compute and estimate the M′i .
Indeed,

M′1 = −
∫∫
O×(0,T)

∆
(

e−2sαλ4(sφ)3 ξ(x)
b

ϕ

)
ψ dxdt

≤ C
∫∫
O×(0,T)

e−2sα
[
λ6(sφ)5|ϕ|+ λ5(sφ)4|∇ϕ|+ λ4(sφ)3|∆ϕ|

]
|ψ| dxdt

≤ εI(s, λ; ϕ) + Cε

∫∫
O×(0,T)

e−2sαλ8(sφ)7|ψ|2dxdt.

(2.20)

On the other hand,

M′2 ≤ εI(s, λ; ϕ) + Cε

∫∫
O×(0,T)

e−2sαλ4(sφ)3|ψ|2dxdt. (2.21)

and
M′3 ≤ ε Ĩ(s, λ; ϕ) + Cε

∫∫
Q

e−2sαλ4(sφ)3|G2|2dxdt. (2.22)

From (2.8), (2.19) and (2.20)–(2.22), we find that

I(s, λ; ϕ) + Ĩ(s, λ; ψ) ≤ CεI(s, λ; ϕ) + C
∫∫
O×(0,T)

e−2sαλ4(sφ)3|ψ|2dxdt,

for all small ε > 0.

We will also need some Carleman inequalities for the solutions to (1.4) and (1.5) with
weights not vanishing at zero. To this end, let m be a function satisfying

m ∈ C∞([0, T]), m(t) ≥ T2

8
in [0, T/2], m(t) = t(T − t) in [T/2, T],

let us set λ > 0, R > ‖α0‖L∞ + ln(4) and

θ(x, t) :=
eλα0(x)

m(t)
, A(x, t) :=

Ā(x)
m(t)

, with Ā(x) = eRλ − eλα0(x) and,
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Â := min
x∈Ω

Ā(x), A∗ := max
x∈Ω

Ā(x),

θ̂(t) := min
x∈Ω

θ(x, t), θ∗(t) := max
x∈Ω

θ(x, t),

and let us introduce the notation

Γ(s, λ; ϕ) =
∫∫

Q
e−2sA

[
(sθ)−1(|ϕt|2 + |∆ϕ|2

)
+ λ2(sθ)|∇ϕ|2 + λ4(sθ)3|ϕ|2

]
dxdt

and
Γ̃(s, λ; ψ) =

∫∫
Q

e−2sA
[
(sθ)−1|∆ψ|2 + λ2(sθ)|∇ψ|2+λ4(sθ)3|ψ|2

]
dxdt.

One has the following.

Proposition 2.5. Let the assumptions of Proposition 2.3 be satisfied. There exist positive constants λ3,
s3 such that, for any s ≥ s3 and λ ≥ λ3, there exists C3(s, λ) with the following property: for and any
ϕT ∈ L2(Ω) and any ψT ∈ L2(Ω), the associated solution to (1.4) satisfies

Γ(s, λ; ϕ) + Γ̃(s, λ; ψ) ≤ C3(s, λ)

(∫∫
Q

e−2sA [θ3|G1|2 + |G2|2
]

dxdt
)

+ C3(s, λ)

(∫∫
O×(0,T)

e(−4sÂ+2sA∗)/m(θ∗)7|ϕ|2dxdt
)

.
(2.23)

Furthermore, s3 and λ3 only depend on Ω, O, βi(0, 0,~0,~0), |a|, |b|, |c| and |d| and C3(s, λ) only
depend on these data, s and λ.

Proof. We can decompose all the integrals in Γ(s, λ; ϕ) and Γ̃(s, λ; ψ) in the form:∫∫
Q
=
∫∫

Ω×(0,T/2)
+
∫∫

Ω×(T/2,T)
.

Let us gather together all the integrals in Ω× (0, T/2) (resp., Ω× (T/2, T)) in Γ1(s, λ; ϕ) and
Γ̃1(s, λ; ψ) (resp., Γ2(s, λ; ϕ) and Γ̃2(s, λ; ψ)). Then,

Γ(s, λ; ϕ) = Γ1(s, λ; ϕ) + Γ2(s, λ; ϕ)

Γ̃(s, λ; ϕ) = Γ̃1(s, λ; ϕ) + Γ̃2(s, λ; ϕ).

Let us start again from the Carleman inequality in Proposition 2.3, with s ≥ s0 and λ ≥ λ0.
We obviously have

Γ2(s, λ; ϕ) + Γ̃2(s, λ; ϕ) ≤ C1

∫∫
Q

e−2sα
[
λ4(sφ)3|G1|2 + |G2|2

]
dxdt

+ C1

∫∫
O×(0,T)

e−4sα̂+2sα∗λ8(sφ∗)7|ϕ|2 dxdt
(2.24)

Now, let us come back to the energy estimate for ϕ and ψ. We have the following for all
t ∈ (0, T/2):

− 1
2

d
dt
‖ϕ‖2 + β1(0, 0,~0,~0)‖∇ϕ‖2 + β2(0, 0,~0,~0)‖∇ψ‖2

≤ C(‖ϕ‖2 + ‖ψ‖2 + ‖G1‖2 + ‖G2‖2).
(2.25)
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Knowing that ‖ψ(·, t)‖2
H1

0 (Ω)
≤ M(‖ϕ(·, t)‖2

L2(Ω)
+ ‖G2‖2

L2(Ω)
), we obtain from (2.25),

− 1
2

d
dt
‖ϕ‖2 −M‖ϕ‖2 + β1(0, 0,~0,~0)‖∇ϕ‖2 + β2(0, 0,~0,~0)‖∇ψ‖2

≤ C(‖ϕ‖2 + ‖G1‖2 + ‖G2‖2).
(2.26)

From (2.26), it is easy to deduce that∫∫
Ω×(0,T/2)

(|ϕ|2 + |∇ϕ|2) dxdt

≤ C
∫∫

Ω×(T/4,3T/4)
|ϕ|2 dxdt + C

∫∫
Ω×(0,3T/4)

(|G1|2 + |G2|2) dxdt.
(2.27)

Using only the first equation of the adjoint-state (1.6), a second-order energy estimate can
also be deduced for ϕ:

−1
2

d
dt
‖∇ϕ‖2 +

β1(0, 0,~0,~0)
2

‖∆ϕ‖2 ≤ C(‖ϕ‖2 + ‖G1‖2), (2.28)

for all t ∈ (0, T/2). This leads to the following:∫∫
Ω×(0,T/2)

|∆ϕ|2 dxdt ≤ C
∫∫

Ω×(T/4,3T/4)
|∇ϕ|2 dxdt + C

∫∫
Ω×(0,3T/4)

|G1|2 dxdt. (2.29)

Finally, from the PDEs in (1.6), the inequalities (2.27) and (2.29) yield:∫∫
Ω×(0,T/2)

|ϕt|2 dxdt

≤ C
∫∫

Ω×(T/4,3T/4)
(|ϕ|2 + |∇ϕ|2) dxdt + C

∫∫
Ω×(0,3T/4)

|G1|2 dxdt.
(2.30)

From (2.27)–(2.30) and knowing that ‖∆ψ(., t)‖2
L2(Ω)

≤ C(‖ϕ(., t)‖2
L2(Ω)

+ ‖G2‖2
L2(Ω)

), we
deduce that

Γ1(s, λ; ϕ) + Γ̃1(s, λ; ψ)

≤ C
∫∫

Ω×(0,T/2)
(|ϕt|2 + |∆ϕ|2 + |∇ϕ|2 + |ϕ|2) dxdt + C

∫∫
Ω×(0,T/2)

|G2|2 dxdt

≤ C
∫∫

Ω×(T/4,3T/4)
(|ϕ|2 + |∇ϕ|2) dxdt + C

∫∫
Ω×(0,3T/4)

(|G1|2 + |G2|2) dxdt,

(2.31)

whence

Γ1(s, λ; ϕ) + Γ̃1(s, λ; ψ)

≤ C(s, λ)

[
I(s, λ; ϕ) + Ĩ(s, λ; ψ) +

∫∫
Ω×(0,3T/4)

(|G1|2 + |G2|2) dxdt
]

≤ C(s, λ)

(∫∫
O×(0,T)

e−4sÂ+2sA∗(θ∗)7|ϕ|2 dxdt +
∫∫

Ω×(0,3T/4)
(|G1|2 + |G2|2) dxdt

) (2.32)

Combining (2.24) with these inequalities, we obtain at once (2.23).

We also have the following estimate for the solutions of (1.5).
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Proposition 2.6. Let the assumptions of Proposition 2.4 be satisfied. There exist positive constants λ4,
s4 such that, for any s ≥ s4 and λ ≥ λ4, there exists C4(s, λ) with the following property: for and any
ϕT ∈ L2(Ω) and any ψT ∈ L2(Ω), the associated solution to (1.5) satisfies

Γ(s, λ; ϕ) + Γ̃(s, λ; ψ) ≤ C4(s, λ)

(∫∫
Q

e−2sA [θ3|G1|2 + |G2|2
]

dxdt
)

+ C4(s, λ)

(∫∫
O×(0,T)

e−2sAθ7|ψ|2dxdt
)

.
(2.33)

Furthermore, s4 and λ4 only depend on Ω, O, βi(0, 0,~0,~0), |a|, |b|, |c| and |d| and C4(s, λ) only
depend on these data, s and λ.

Proof. As in the proof of Proposition 2.5, we decompose all the integrals in Γ(s, λ; ϕ) and
Γ̃(s, λ; ψ) in the form: ∫∫

Q
=
∫∫

Ω×(0,T/2)
+
∫∫

Ω×(T/2,T)
,

where

Γ(s, λ; ϕ) = Γ1(s, λ; ϕ) + Γ2(s, λ; ϕ)

Γ̃(s, λ; ϕ) = Γ̃1(s, λ; ϕ) + Γ̃2(s, λ; ϕ).

From the Carleman inequality in Proposition 2.4, with s ≥ s2 and λ ≥ λ2, we have

Γ2(s, λ; ϕ) + Γ̃2(s, λ; ϕ) ≤ C1

∫∫
Q

e−2sα
[
λ4(sφ)3|G1|2 + |G2|2

]
dxdt

+ C1

∫∫
O×(0,T)

e−4sα̂+2sα∗λ8(sφ∗)7|ϕ|2 dxdt.
(2.34)

Using the same ideas from Proposition 2.5, we easily deduce that∫∫
Ω×(0,T/2)

(|ϕ|2 + |∇ϕ|2) dxdt

≤ C
∫∫

Ω×(T/4,3T/4)
|ϕ|2 dxdt + C

∫∫
Ω×(0,3T/4)

(|G1|2 + |G2|2) dxdt
(2.35)

and ∫∫
Ω×(0,T/2)

|∆ϕ|2 dxdt

≤ C
∫∫

Ω×(T/4,3T/4)
|∇ϕ|2 dxdt + C

∫∫
Ω×(0,3T/4)

|G1|2 dxdt.
(2.36)

From the PDEs in (1.6), the inequalities (2.35) and (2.36) yield:∫∫
Ω×(0,T/2)

|ϕt|2 dxdt

≤ C
∫∫

Ω×(T/4,3T/4)
(|ϕ|2 + |∇ϕ|2) dxdt + C

∫∫
Ω×(0,3T/4)

|G1|2 dxdt.
(2.37)
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Then, from Proposition 2.4 and (2.35)–(2.37), we have

Γ1(s, λ; ϕ) + Γ̃1(s, λ; ψ)

≤ C
∫∫

Ω×(T/4,3T/4)
(|ϕ|2 + |∇ϕ|2) dxdt + C

∫∫
Ω×(0,3T/4)

(|G1|2 + |G2|2) dxdt

≤ C(s, λ)

[
I(s, λ; ϕ) + Ĩ(s, λ; ψ) +

∫∫
Ω×(0,3T/4)

(|G1|2 + |G2|2) dxdt
]

≤ C(s, λ)

(∫∫
O×(0,T)

e−2sAθ7|ψ|2 dxdt +
∫∫

Ω×(0,3T/4)
(|G1|2 + |G2|2) dxdt

)
.

(2.38)

Combining (2.34) with the inequality (2.38), we obtain (2.33).

In the sequel, when λ = λ3 and s = s3, we set

ρ := esA, ρ0 := θ−3/2esA,

ρ̂ := e(sA)/2e(2sÂ−sA∗)/2mθ−3/4(θ∗)−7/4, ρ∗ := e(2sÂ−sA∗)/m(θ∗)−7/2.

Then, we deduce from (2.23) that the solution to (1.4) satisfies:

Γ(s, λ; ϕ) + Γ̃(s, λ; ψ) ≤ K
(∫∫

Q
e−2sA [θ3|G1|2 + |G2|2

]
dxdt +

∫∫
O×(0,T)

ρ−2
∗ |ϕ|2dxdt

)
. (2.39)

For the case where λ = λ4 and s = s4, we set

ρ := esA, ρ0 := θ−3/2esA, ρ̂ := θ−5/2esA, ρ∗ := θ−7/2esA,

whence we obtain from (2.33) that the solution to (1.5) satisfies:

Γ(s, λ; ϕ) + Γ̃(s, λ; ψ) ≤ K
(∫∫

Q
e−2sA [θ3|G1|2 + |G2|2

]
dxdt +

∫∫
O×(0,T)

ρ−2
∗ |ψ|2dxdt

)
. (2.40)

2.2 The null controllability of the linearized systems (1.4) and (1.5)

As a consequence of Proposition 2.5, we obtain the null controllability of (1.4) for “small”
right-hand sides h and k:

Proposition 2.7. Assume that c 6= 0 and the functions h and k satisfy∫∫
Q

ρ2θ−3(|h|2 + |k|2) dxdt < +∞.

Then (1.4) is null-controllable at any time T > 0. More precisely, for any y0 ∈ L2(Ω) and any T > 0,
there exist controls v ∈ L2(O × (0, T)) and associated states (y, z) satisfying∫∫

O×(0,T)
ρ2
∗|v|2 dxdt < +∞,

∫∫
Q
(ρ2

0|y|2 + ρ2|z|2) dxdt < +∞, (2.41)

whence, in particular,
y(x, T) = 0 in Ω, lim sup

t→T−
‖z(· , t)‖ = 0. (2.42)
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Proof. Here we will use well known ideas from the work by Fursikov and Imanuvilov [13].
For each n ≥ 1, let us introduce the functions

An :=
A(T − t)

(T − t) + 1/n
, θn :=

θ(T − t)
(T − t) + 1/n

, ρn := esAn , ρ0,n := ρnθ−3/2

and

ρ∗,n = ρ∗ ·mn = e(2sÂ−sA∗)/m(θ∗)−7/2 ·mn, where mn =

{
1, in O
n, in Ω−O

and the functional Jn : L2(Q)× L2(Q)× L2(O × (0, T)) 7→ R, with

Jn(y, z, v) :=
1
2

∫∫
Q

[
ρ2

0,n|y|2 + ρ2
n|z|2 + ρ2

∗,n|v|2
]

dxdt.

Let us consider the following extremal problem:{
Minimize Jn(y, z, v),

Subject to v ∈ L2(O × (0, T)), (y, z, v) satisfies (1.4).

This problem has a unique solution (yn, zn, vn). Furthermore, in view of Lagrange’s Princi-
ple, there exists (pn, qn) such that (yn, zn), (pn, qn) and vn satisfy:

yn,t − β1(0, 0,~0,~0)∆yn + ayn + bzn = vn1O + h in Q,

−β2(0, 0,~0,~0)∆zn + cyn + dzn = k in Q,

yn = 0, zn = 0 on Σ,

yn(x, 0) = y0(x) in Ω,

(2.43)


−pn,t − β1(0, 0,~0,~0)∆pn + apn + cqn = −ρ2

0,nyn in Q,

−β2(0, 0,~0,~0)∆qn + bpn + dqn = −ρ2
nzn in Q,

pn = 0, qn = 0 on Σ,

pn(x, T) = 0 in Ω,

(2.44)

pn = −ρ2
∗,nvn in O × (0, T). (2.45)

Multiplying the PDEs in (2.45) by yn and zn and integrating in Q, we get:

0 =
∫∫

Q

[
−pn,t − β1(0, 0,~0,~0)∆pn + apn + cqn + ρ2

0,nyn

]
yn dxdt

+
∫∫

Q

[
−β2(0, 0,~0,~0)∆qn + bpn + dqn + ρ2

nzn

]
zn dxdt.

(2.46)

Integrating by parts, we see that∫∫
Q

(
ρ2

0,n|yn|2 + ρ2
n|zn|2

)
dxdt

=
∫∫

Q

[
yn,t − β1(0, 0,~0,~0)∆yn + ayn + bzn

]
pn dxdt

+
∫∫

Q

[
−β2(0, 0,~0,~0)∆zn + cyn + dzn

]
qn dxdt

+
∫

Ω
pn(x, 0)y0(x) dx.

(2.47)
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From (2.47), taking into account (2.45) and the two PDEs from (2.43), and recalling the
definition of Jn, we find that

Jn(yn, zn, vn) =
1
2

∫∫
Q
(pnh + qnk) dxdt +

1
2

∫
Ω

pn(x, 0)y0(x) dx.

Consequently,

Jn(yn, zn, vn) ≤ C
[
‖pn(·, 0)‖2 +

∫∫
Q

ρ−2θ3(|pn|2 + |qn|2) dxdt
]1/2

×
[
‖y0‖2 +

∫∫
Q

ρ2θ−3(|h|2 + |k|2) dxdt
]1/2

(2.48)

Let us now apply the Carleman inequality (2.23) to the solution (pn, qn) to (2.44). The
following holds:

∫∫
Q

ρ−2θ3(|pn|2 + |qn|2) dxdt

≤ C0(s, λ)

(∫∫
Q

[
ρ−2

0 ρ4
0,n|yn|2 + ρ−2ρ4

n|zn|2
]

dxdt +
∫∫
O×(0,T)

e−4sÂ+2sA∗(θ∗)7|pn|2 dxdt
)

≤ C0(s, λ)

(∫∫
Q

[
ρ2

0,n|yn|2 + ρ2
n|zn|2

]
dxdt +

∫∫
O×(0,T)

ρ−2
∗ ρ4

∗|vn|2 dxdt
)

≤ C0(s, λ)
∫∫

Q

[
ρ2

0,n|yn|2 + ρ2
n|zn|2 + ρ2

∗,n|vn|2
]

dxdt

≤ CJn(yn, zn, vn), (2.49)

where we have used that ρn ≤ ρ, ρ0,n ≤ Cρ0 and ρ∗,n = ρ∗ ·mn = θ−7/2ρ ·mn.

We also have
‖pn(·, 0)‖2 ≤ CJn(yn, zn, vn). (2.50)

Indeed, let us multiply only the first PDE in (2.44) by pn and the second one by qn and let
us integrate in Ω. Therefore, following holds:

−1
2

d
dt
‖pn‖2 ≤

∫
Ω
(ρ4

0,ny2
n + ρ4

nz2
n) dx +

1
2

∫
Ω
(p2

n + q2
n) dx + C(‖pn‖2 + ‖qn‖2)

As ‖qn(·, t)‖2
H1

0 (Ω)
≤ C(‖pn(·, t)‖2 + ‖ρ2

nzn(·, t)‖2), then

−1
2

d
dt
‖pn‖2 ≤ M‖pn‖2 + M

∫
Ω
(ρ4

0,ny2
n + ρ4

nz2
n) dx

and consequently,

− d
dt

(
e2Mt‖pn‖2

)
≤ 2Me2Mt

∫
Ω
(ρ4

0,ny2
n + ρ4

nz2
n) dx.

Integrating the last inequality from 0 to t, with t ∈ [0, 3T/4], we obtain

‖pn(·, 0)‖2 ≤ e2Mt‖pn(·, t)‖2 + 2Me3MT/2
∫ 3T/4

0

∫
Ω
(ρ4

0,ny2
n + ρ4

nz2
n) dxdt. (2.51)
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From (2.51), we get that

‖pn(·, 0)‖2 =
4

3T

∫ 3T/4

0
‖pn(·, 0)‖2 dx

≤ C
(∫ 3T/4

0
‖pn(·, t)‖2 dx +

∫ 3T/4

0

∫
Ω
(ρ4

0,ny2
n + ρ4

nz2
n) dxdt

)
≤ C

∫∫
Q

[
ρ−2

0 ρ4
0,n|yn|2 + ρ−2ρ4

n|zn|2
]

dxdt + C
∫∫
O×(0,T)

ρ2
∗|vn|2 dxdt

+ C
∫ 3T/4

0

∫
Ω
(ρ4

0,ny2
n + ρ4

nz2
n) dxdt

≤ C
∫∫

Q

[
ρ2

0,n|yn|2 + ρ2
n|zn|2 + ρ2

∗,n|vn|2
]

dxdt

≤ CJn(yn, zn, vn).

(2.52)

Then, from (2.49)–(2.50)

‖pn(·, 0)‖2 +
∫∫

Q
ρ−2θ3(|pn|2 + |qn|2) dxdt ≤ CJn(yn, zn, vn). (2.53)

From (2.48) and (2.53), we see that

Jn(yn, zn, vn) ≤ C
[
‖y0‖2 +

∫∫
Q

ρ2θ−3(|h|2 + |k|2) dxdt
]

.

Therefore, we get the estimates∫∫
Q

(
ρ2

0,n|yn|2 + ρ2
n|zn|2

)
dxdt +

∫∫
O×(0,T)

ρ2
∗,n|vn|2 dxdt ≤ C,

whence we can extract suitable subsequences (again indexed by n) satisfying

ρ0,nyn ⇀ ξ1 and ρnzn ⇀ ξ2 in L2(Q),

ρ∗,nvn ⇀ χ in L2(Q).
(2.54)

From the definitions of ρn, ρ0,n and ρ∗,n and (2.54), we have

ξ1 = ρ0y, ξ2 = ρz and χ = ρ∗v1O.

Taking limits in the linear system (2.43), we deduce that∫∫
Q

(
ρ2

0|y|2 + ρ2|z|2
)

dxdt ≤ lim inf
∫∫

Q

(
ρ2

0,n|yn|2 + ρ2
n|zn|2

)
dxdt ≤ C∫∫

O×(0,T)
ρ2
∗|v|2 dxdt ≤ lim inf

∫∫
O×(0,T)

ρ2
∗,n|vn|2 dxdt ≤ C.

(2.55)

Similarly, we obtain the null controllability of (1.5), as a consequence of Proposition 2.6.

Proposition 2.8. Assume that b 6= 0 and the functions h and k satisfy∫∫
Q

ρ2θ−3(|h|2 + |k|2) dxdt < +∞.
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Then (1.5) is null-controllable at any time T > 0. More precisely, for any y0 ∈ L2(Ω) and any T > 0,
there exist controls w ∈ L2(O × (0, T)) and associated states (y, z) satisfying∫∫

O×(0,T)
ρ2
∗|w|2 dxdt < +∞,

∫∫
Q
(ρ2

0|y|2 + ρ2|z|2) dxdt < +∞, (2.56)

whence, in particular,
y(x, T) = 0 in Ω, lim sup

t→T−
‖z(· , t)‖ = 0. (2.57)

Proof. Analogous to Proposition 2.7.

2.3 Some additional estimates

The state found in Proposition 2.7 satisfies some additional properties, that will be needed
below, in Section 4. They have been first deduced in [15] and [16] in similar contexts. For
clarity and completeness, their proofs will be recalled here.

Let us be more precise.

Proposition 2.9. Let the hypotheses in Proposition 2.7 be satisfied and let v and (y, z) satisfy (1.4)
and (2.41). Then one has∫∫

Q
ρ̂2(|∇y|2 + |∇z|2) dxdt

≤ C
∫∫

Q
(ρ2

0|y|2 + ρ2|z|2) dxdt + C
∫∫
O×(0,T)

ρ2
∗|v|2 dxdt

+ C‖y0||L2(Ω) + C
∫∫

Q
ρ2

0
(
|h|2 + |k|2

)
dxdt

(2.58)

Proof. Let us multiply the first PDE in (1.4) by ρ̂2y and the second one ρ̂2z and let us integrate
in Ω. We obtain:∫

Ω
ρ̂2(yt − β1(0, 0,~0,~0)∆y)y dx = −

∫
Ω

ρ̂2(ay + bz− v1O − h)y dx,∫
Ω

ρ̂2(−β2(0, 0,~0,~0)∆z)z dx = −
∫

Ω
ρ̂2(cy + dz− k)z dx.

Notice that ∣∣∣ ∫
Ω

ρ̂2 [(ay + bz)y + (cy + dz)z] dx
∣∣∣ ≤ C

∫
Ω

ρ̂2 (|y|2 + |z|2) ,

∫
Ω

ρ̂2yty dx =
1
2

d
dt

∫
Ω

ρ̂2|y|2 dx− C
∫

Ω
ρ̂ρ̂t|y|2 dx,

∫
Ω

ρ̂2v1Oy dx ≤ 1
2

∫
O

ρ2
0|y|2 dx +

1
2

∫
O

ρ2
∗|v|2 dx,

−
∫

Ω
ρ̂2
(

β1(0, 0,~0,~0)(∆y)y + β2(0, 0,~0,~0)(∆z)z
)

dx

=
∫

Ω
ρ̂2
(

β1(0, 0,~0,~0)|∇y|2 + β2(0, 0,~0,~0)|∇z|2
)

dx

− 1
2

∫
Ω

∆(ρ̂2)
(

β1(0, 0,~0,~0)|y|2 + β2(0, 0,~0,~0)|z|2
)

dx,

(2.59)
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and ∫
Ω

ρ̂2(hy + kz) dx ≤ 1
2

∫
Ω
(ρ̂4ρ−2

0 )(|y|2 + |z|2) dx +
1
2

∫
Ω

ρ2
0(|h|2 + |k|2) dx.

Therefore, from (2.47), the following is deduced:

1
2

d
dt

∫
Ω

ρ̂2|y|2 dx +
∫

Ω
ρ̂2
(

β1(0, 0,~0,~0)|∇y|2 + β2(0, 0,~0,~0)|∇z|2
)

dx

≤ C
∫

Ω

[
ρ̂2 + ρ̂|ρ̂t|+ |∆(ρ̂2)|+ ρ̂4ρ−2

0

]
(|y|2 + |z|2) dx

+
1
2

∫
O

ρ2
0|y|2 dx +

1
2

∫
O

ρ2
∗|v|2 dx +

1
2

∫
O

ρ2
0(|h|2 + |k|2) dx.

(2.60)

From the definition of the weights ρ, ρ0 and ρ̂, it is immediate that the function into
brackets in the first integral in the right-hand side is bounded by Cρ2

0. As a consequence, one
has

1
2

d
dt

∫
Ω

ρ̂2|y|2 dx +
∫

Ω
ρ̂2
(

β1(0, 0,~0,~0)|∇y|2 + β2(0, 0,~0,~0)|∇z|2
)

dx

≤ C
∫

Ω
(ρ2

0|y|2 + ρ2|z|2) dx +
1
2

∫
O

ρ2
∗|v|2 dx +

1
2

∫
O

ρ2
0(|h|2 + |k|2) dx.

(2.61)

Integrating the last estimate in time, we get the desired result.

Proposition 2.10. Let the hypotheses in Proposition 2.7 be satisfied and let v and (y, z) be the control
and the associated state furnished by this result and let us assume that

y0 ∈ H1
0(Ω). (2.62)

Then one has, ∫∫
Q

ρ2
∗(|yt|2 + |∆y|2 + |∆z|2) dxdt + sup

t∈[0,T]

∫
Ω

ρ2
∗|∇y|2 dx

≤ C
∫∫

Q
(ρ2

0|y|2 + ρ2|z|2) dxdt + C
∫∫
O×(0,T)

ρ2
∗|v|2 dxdt

+ C‖y0||H1
0 (Ω) + C

∫∫
Q

ρ2
0
(
|h|2 + |k|2

)
dxdt.

(2.63)

Proof. Let us multiply only the first PDE in (1.4) by ρ2
∗yt and let us integrate in Ω. The

following holds:

1
2

∫
Ω

ρ2
∗|yt|2 dx +

1
2

d
dt

∫
Ω

ρ2
∗β1(0, 0,~0,~0)|∇y|2 dx

≤ C
∫

Ω
|(ρ2
∗)t||∇y|2 dx + C

∫
Ω

ρ2
∗|y|2 dx

+ C
∫
O

ρ2
∗|v|2 dx + C

∫
Ω

ρ2
∗|h|2 dx.

(2.64)

From the definition of the weight ρ∗, it is clear that ρ∗ ≤ cρ̂ ≤ Cρ0 ≤ Cρ and it is easy to
check that the function into parentheses in the first integral in the right-hand side is bounded
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by Cρ̂2. Consequently, one has

1
2

∫
Ω

ρ2
∗|yt|2 dx +

1
2

d
dt

∫
Ω

ρ2
∗β1(0, 0,~0,~0)|∇y|2 dx

≤ C
∫

Ω
ρ̂2|∇y|2 dx + C

∫
Ω
(ρ2

0|y|2 + ρ2|z|2) dx

+ C
∫
O

ρ2
∗|v|2 dx + C

∫
O

ρ2
0(|h|2 + |k|2) dx.

(2.65)

Integrating in time and recalling (2.62) and (2.58), we get the desired estimate for |yt|2.

In order to prove the same estimate for |∆y|2 and |∆z|2, let us multiply the first PDE in
(1.4) by −ρ2

∗∆y and the second one by −ρ2
∗∆z. After integration in Ω, we have,

1
2

∫
Ω

ρ2
∗(β1(0, 0,~0,~0)|∆y|2 + β2(0, 0,~0,~0)|∆z|2) dx +

1
2

d
dt

∫
Ω

ρ2
∗|∇y|2 dx

≤ 1
2

∫
Ω
(ρ2
∗)t|∇y|2 dx + C

∫
Ω

ρ2
∗(|y|2 + |z|2) dx

+ C
∫
O

ρ2
∗|v|2 dx + C

∫
Ω

ρ2
∗(|h|2 + |k|2) dx.

(2.66)

From the definitions of ρ̂ and ρ∗, it is clear that the function between parentheses in the
first integral in the right-hand side is bounded by Cρ̂2. Consequently,

1
2

∫
Ω

ρ2
∗(β1(0, 0,~0,~0)|∆y|2 + β2(0, 0,~0,~0)|∆z|2) dx +

1
2

d
dt

∫
Ω

ρ2
∗|∇y|2 dx

≤ C
∫

Ω
ρ̂2(|∇y|2 + |∇z|2) dx + C

∫
Ω

ρ2
∗(|y|2 + |z|2) dx

+ C
∫
O

ρ2
∗|v|2 dx + C

∫
Ω

ρ2
∗(|h|2 + |k|2) dx.

(2.67)

Integrating in time and recalling again (2.62) and (2.58) , we get the desired estimates for
|∆y|2 and |∆z|2.

We also have additional estimates for the state found in Proposition 2.8. Their proofs are
similar to those of Propositions 2.9 and 2.10.

Proposition 2.11. Let the hypotheses in Proposition 2.8 be satisfied and let w and (y, z) satisfy (1.5)
and (2.56). Then one has∫∫

Q
ρ̂2(|∇y|2 + |∇z|2) dxdt

≤ C
∫∫

Q
(ρ2

0|y|2 + ρ2|z|2) dxdt + C
∫∫
O×(0,T)

ρ2
∗|w|2 dxdt

+ C‖y0||L2(Ω) + C
∫∫

Q
ρ2

0
(
|h|2 + |k|2

)
dxdt

(2.68)

Proposition 2.12. Let the hypotheses in Proposition 2.8 be satisfied and let w and (y, z) be the control
and the associated state furnished by this result and let us assume that

y0 ∈ H1
0(Ω). (2.69)
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Then one has, ∫∫
Q

ρ2
∗(|yt|2 + |∆y|2 + |∆z|2) dxdt + sup

t∈[0,T]

∫
Ω

ρ2
∗|∇y|2 dx

≤ C
∫∫

Q
(ρ2

0|y|2 + ρ2|z|2) dxdt + C
∫∫
O×(0,T)

ρ2
∗|w|2 dxdt

+ C‖y0||H1
0 (Ω) + C

∫∫
Q

ρ2
0
(
|h|2 + |k|2

)
dxdt.

(2.70)

3 The null controllability of the nonlinear systems (1.1) and (1.2)

In this Section, we present the proofs of the main results in this paper, namely Theorems 1.2
and 1.3.

3.1 Proof of Theorem 1.2

Let Y, G and Z be the functions spaces:

Y =

{
(y, z, v) : v ∈ L2(O × (0, T)),

∫∫
O×(0,T)

ρ2
∗|v|2 dxdt < +∞ ,

y, z, ∂iy, ∂iz, yt − β1(0, 0,~0,~0)∆y, β2(0, 0,~0,~0)∆z ∈ L2(Q),∫∫
Q
(ρ2

0|y|2 + ρ2|z|2) dxdt < +∞,∫∫
Q

ρ2
0

[
|yt − β1(0, 0,~0,~0)∆y− v1O |2 + |β2(0, 0,~0,~0)∆z|2

]
dxdt < +∞,

y(·, 0) ∈ H1
0(Ω)

}
,

G =

{
g ∈ L2(Q)

∣∣∣ ∫∫
Q

ρ2
0|g|2 dxdt < +∞

}
and

Z =G× G× H1
0(Ω)

We introduce the Hilbertian norms:

‖(y, z, v)‖2
Y :=

∫∫
Q
(ρ2

0|y|2 + ρ2|z|2) dxdt +
∫∫
O×(0,T)

ρ2
∗|v|2 dxdt

+
∫∫

Q
ρ2

0

[
|yt − β1(0, 0,~0,~0)∆y− v1O |2 + |β2(0, 0,~0,~0)∆z|2

]
dxdt

+ ‖y(·, 0)||H1
0 (Ω),

‖g‖2
G =

∫∫
Q

ρ2
0|g|2 dxdt

and

‖(g1, g2, z1)‖2
Z := ‖g1‖2

G + ‖g2‖2
G + ‖z1‖2

H1
0 (Ω)

.

Let us consider the mapping H : Y → Z with

H(y, z, v) = (H1, H2, H3)(y, z, v),
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H1(y, z, v) = yt − β1

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆y + F(y, z)− v1O, (3.1)

H2(y, z, v) = −β2

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆z + f (y, z), (3.2)

H3(y, z, v) = y(·, 0). (3.3)

We will prove that there exist ε > 0 such that, if (h, k, y0) ∈ Z and ‖(h, k, y0)‖Z < ε, then
the equation

H(y, z, v) = (h, k, y0), (y, z, v) ∈ Y

possesses at least one solution.
In particular, this shows that (1.1) is locally null controllable and, furthermore, the state-

control triplets can be chosen in Y.
We will apply the following version of Liusternik’s Inverse Mapping Theorem in infinite di-

mensional spaces, that can be found for instance in [1]. In the following statement, Br(0) and
Bε(ξ0) are the open balls respectively of radius r and ε.

Theorem 3.1. Let Y and Z be Banach spaces and let H : Br(0) ⊂ Y → Z be a C1 mapping. Let us
assume that the derivative H′(0) : Y → Z is onto and let us set ξ0 = H(0). Then there exist a ε > 0,
a mapping W : Bε(ξ0) ⊂ Z → Y and a constant K > 0 satisfying:{

W(z) ∈ Br(0) and H(W(z)) = z, ∀z ∈ Bε(ξ0),

‖W(z)‖Y ≤ K‖z− H(0)‖Z, ∀z ∈ Bε(ξ0).

Notice that in this theorem, W is the inverse-to-the-right of H.
To show that Theorem 3.1 can be applied in this setting, we will use several lemmas.
First, let us prove that the definition of H is correct.

Lemma 3.2. Let H : Y → Z be the mapping defined by (3.1)–(3.3). Then H is well defined and
continuous.

Proof. For (y, z, v) ∈ Y, let us see that Hi(y, z, v) makes sense and belongs to F, for i = 1, 2,
and, also, that H3(y, z, v) makes sense and belongs to H1

0(Ω).
Since F is Lipschitz, for any (y, z, v) ∈ Y, we have:∫∫

Q
ρ2

0|H1(y, z, v)|2 dxdt

=
∫∫

Q
ρ2

0

∣∣∣yt − β1

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆y + F(y, z)− v1O

∣∣∣2 dxdt

≤ C
∫∫

Q
ρ2

0|yt − β1(0, 0,~0,~0)∆y− v1O |2 dxdt

+ C
∫∫

Q
ρ2

0

∣∣∣β1

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
− β1(0, 0,~0,~0)

∣∣∣2|∆y|2 dxdt

+ C
∫∫

Q
ρ2

0(|y|2 + |z|2) dxdt

= A1 + A2 + A3.

(3.4)

From the definition of the space Y,

A1 = C
∫∫

Q
ρ2

0|yt − β1(0, 0,~0,~0)∆y− v1O |2 dxdt ≤ C‖(y, z, v)‖2
Y,
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and

A3 ≤ C
∫∫

Q
ρ2

0|y|2 + ρ2|z|2 dxdt ≤ C‖(y, z, v)‖2
Y.

Now, let us analyse A2. Since β1 is C1 and globally Lipschitz continuous, one has:

A2 ≤ C
∫∫

Q
ρ2

0

[(∫
Ω

y dx
)2

+

(∫
Ω

z dx
)2

+

(∣∣∣ ∫
Ω
∇y dx

∣∣∣
Rn

)2

+

(∣∣∣ ∫
Ω
∇z dx

∣∣∣
Rn

)2
]
|∆y|2

= J1 + J2 + J3 + J4. (3.5)

From Proposition 2.10, we know that∫∫
Q

ρ2
∗|∆y|2 dxdt < +∞ and sup

t∈[0,T]

∫
Ω

ρ2
∗|∇y|2 dx < +∞,

where ρ∗ = c̄0e(2sÂ−sA∗)/mm7/2, c̄0 = e−(7/2)λ‖α0‖∞ .
Then, in order to prove that H1 is well defined, we must have to obtain that A2 < +∞. In

this case, from (3.5), we just have to demonstrate that J3 < +∞ (the others Ji are similar).
In fact,

J3 =
∫ T

0

∫
Ω

e2sA/m
(

eλα0

m

)−3 (∣∣∣ ∫
Ω
∇y dx

∣∣∣
Rn

)2

|∆y|2 dxdt

≤
∫ T

0

[
e2sA∗/mm3

(∣∣∣ ∫
Ω
∇y dx

∣∣∣
Rn

)2 ∫
Ω
|∆y|2 dx

]
dt

≤ m(Ω)
∫ T

0

[
e2sA∗/mm3

(∫
Ω
|∇y|2 dx

) ∫
Ω
|∆y|2 dx

]
dt

≤ m(Ω)
∫ T

0

[
e2sA∗/mm3e(−8sÂ+4sA∗)/mm−14

(∫
Ω

ρ2
∗|∇y|2 dx

)(∫
Ω

ρ2
∗|∆y|2 dx

)]
dt,

where m(Ω) is the measure of the set Ω.
To achieve our goal, we have to prove that

I = e2sA∗/mm3e(−8sÂ+4sA∗)/mm−14
(∫

Ω
|∇y|2 dx

)
< +∞

and for this objective, we must have

e2sA∗/mm3e(−8sÂ+4sA∗)/mm−14 < +∞,

that is,
e(6sA∗−8sÂ)/mm−12 ≤ c,

which is true since 6sA∗ − 8sÂ < 0.
Then H1(y, z, v) is well defined.
That H2 is well defined can be proved in a very similar way. That H3 is also well defined

is obvious.
Furthermore, that the three mappings Hi are continuous is very easy to prove using similar

arguments.

Lemma 3.3. The mapping H : Y → Z is continuously differentiable.
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Proof. Let us first prove that H is G-differentiable at any (y, z, v) ∈ Y and let us compute the
G-derivative H′(y, z, v).

Thus, let us fix (y, z, v) ∈ Y and let us take (y′, z′, v′) ∈ Y and σ > 0. d For simplicity, we
will use the notation

β jσ := β j

(∫
Ω
(y + σy′) dx,

∫
Ω
(z + σz′) dx,

∫
Ω
(∇y + σ∇y′) dx,

∫
Ω
(∇z + σ∇z′) dx

)
, j = 1, 2

βj := β j

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
, j = 1, 2

β
η
j := β j

(∫
Ω

yη dx,
∫

Ω
zη dx,

∫
Ω
∇yη dx,

∫
Ω
∇zη dx

)
, j = 1, 2

βi,j := Diβ j

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
, j = 1, 2, and i = 1, 2, . . . , 2n + 2,

β
η
i,j := Diβ j

(∫
Ω

yη dx,
∫

Ω
zη dx,

∫
Ω
∇yη dx,

∫
Ω
∇zη dx

)
, j = 1, 2, and i = 1, 2, . . . , 2n + 2,

Fσ := F(y + σy′, z + σz′), F := F(y, z), Fη := F(yη , zη),

Fj := DjF(y, z), Fη
j := DjF(yη , zη), j = 1, 2

and similar abridged symbols for f .
We have

1
σ
[H1((y, z, v) + σ(y′, z′, v′))− H1(y, z, v)]

= y′t − β1σ∆y′ − 1
σ
[β1σ − β1]∆y +

1
σ
[Fσ − F]− v′1O.

Also

1
σ
[H2((y, z, v) + σ(y′, z′, v′))− H2(y, z, v)] == −β2σ∆z′ − 1

σ
[β2σ − β2]∆z +

1
σ
[ fσ − f ].

Let us introduce the linear mapping DH ∈ L(Y, Z), with

DH = (DH1, DH2, DH3), (3.6)

DH1(y′, z′, v′) = y′t − β1∆y′−∆y
(

β1,1

∫
Ω

y′ dx+β2,1

∫
Ω

z′ dx+γ1,1 ·
∫

Ω
∇y′ dx+γ2,1 ·

∫
Ω
∇z′ dx

)
+ F1y′ + F2z′ − v′1O, (3.7)

DH2(y′, z′, v′) =− β2∆z′ − ∆z
(

β1,2

∫
Ω

y′ dx+β2,2

∫
Ω

z′ dx+γ1,2 ·
∫

Ω
∇y′ dx+γ2,2 ·

∫
Ω
∇z′ dx

)
+ f 1y′ + f 2z′, (3.8)

DH3(y′, z′, v′) = y′(·, 0), (3.9)

where γ1,j = (β3,j, . . . , βn+2,j) ∈ Rn, j = 1, 2 and γ2,j = (βn+3,j, . . . , β2n+2,j) ∈ Rn, j = 1, 2 .
For all (y′, z′, v′) ∈ Y, one has

1
σ
[H1((y, v) + σ(y′, v′))− H1(y, v)]→ DH1(y′, v′) strongly in G (3.10)

as σ→ 0.
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Indeed, we have:∥∥∥∥ 1
σ
(H1((y, z, v) + σ(y′, z′, v′))− H1(y, z, v))− DH1(y′, z′, v′)

∥∥∥∥
G

≤
∥∥∥(β1σ − β1)∆y′

∥∥∥
G

+
∥∥∥ [ 1

σ
[β1σ − β1]−

(
β1,1

∫
Ω

y′ dx + β2,1

∫
Ω

z′ dx + γ1,1 ·
∫

Ω
∇y′ dx + γ2,1 ·

∫
Ω
∇z′ dx

)]
∆y
∥∥∥

G

+
∥∥∥ 1

σ
[Fσ − F]− (F1y′ + F2z′)

∥∥∥
G

= B1 + B2 + B3.

Arguing as in the proof of (3.5) and using Proposition 2.10, we obtain the following result,
as a consequence of Lebesgue’s Theorem:

B2
1 =

∫∫
Q

ρ2
0
(

β1σ − β1
)2 |∆y′|2 dxdt→ 0 as σ→ 0.

Once again, arguing as in the proof of (3.5) and using Proposition 2.10, one has from
Lebesgue’s Theorem that

B2
2 =

∫∫
Q

ρ2
0

[
1
σ
[β1σ − β1]

−
(

β1,1

∫
Ω

y′ dx + β2,1

∫
Ω

z′ dx + γ1,1 ·
∫

Ω
∇y′ dx + γ2,1 ·

∫
Ω
∇z′ dx

)]2

|∆y|2 dxdt

=
∫∫

Q
ρ2

0

[
(D1β∗1 − β1,1)

∫
Ω

y′ dx + (D2β∗1 − β2,1)
∫

Ω
z′ dx

]2

|∆y|2 dxdt

+
∫∫

Q
ρ2

0

[
(D3β∗1 − γ1,1) ·

∫
Ω
∇y′ dx + (D4β∗1 − γ2,1) ·

∫
Ω
∇z′ dx

]2

|∆y|2 dxdt,

→ 0,

as σ → 0, where the Diβ
∗
1 are the partial derivatives of β1 at some intermediate points, in

particular D1β∗1, D2β∗1 ∈ R and D3β∗1, D4β∗1 ∈ Rn.
For B3, the argument is very similar. Indeed, we have

B2
3 =

∫∫
Q

ρ2
0

[
1
σ
[Fσ − F]− (F1y′ + F2z′)

]2

dxdt

=
∫∫

Q
ρ2

0
[
(D1F∗ − F1)y′ + (D2F∗ − F2)z′

]2 dxdt

=
∫∫

Q
ρ2

0

[
|D1F∗ − F1|2|y′|2 + |D2F∗ − F2|2|z′|2

]
dxdt,

where the DiF∗ also stand for the partial derivatives of F at some intermediate points. As
F ∈ C1

b(R×R), then, arguing as the proof of (3.5) and using Proposition 2.10 and Lebesgue’s
Theorem, once more we also find that B3 → 0.

Taking into account the behaviour of B1, B2 and B3, we deduce that (3.10) is true.
In a similar way, it can be shown that

1
σ
[H2((y, z, v) + σ(y′, z′, v′))− H2(y, z, v)]→ DH2(y′, z′, v′) strongly in G.
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Consequently

lim
σ→0

1
σ
(H((y, z, v) + σ(y′, z′, v′))− H(y, z, v)) = DH(y′, z′, v′) strongly in G,

whence we have that H is Gâteaux differentiable at any (y, z, v) ∈ Y with a Gâteaux derivative
given by DH.

As usual, let us denote by H′(y, z, v) the linear mapping defined by (3.6)–(3.9). Now, we
shall prove that the mapping (y, z, v) → H′(y, z, v) is continuous from Y to L(Y, Z). In other
words, we will show that , whenever (yη , zη , vη)→ (y, z, v) in Y, one has

‖(DH(yη , zη , vη)− DH(y, z, v))(y′, z′, v′)‖Z ≤ εη‖(y′, z′, v′)‖Y for some εη → 0. (3.11)

Then, we have just to prove that

‖(DH1(yη , zη , vη)− DH1(y, z, v))(y′, z′, v′)‖G ≤ εη‖(y′, z′, v′)‖Y for some εη → 0. (3.12)

In effect,

‖(DH1(yη , zη , vη)− DH1(y, z, v))(y′, z′, v′)‖G

≤ C
∫∫

Q
ρ2

0

[(
β

η
1,1

∫
Ω

y′ dx
)

∆yη −
(

β1,1

∫
Ω

y′ dx
)

∆y
]2

dxdt

+ C
∫∫

Q
ρ2

0

[(
β

η
2,1

∫
Ω

z′ dx
)

∆yη −
(

β2,1

∫
Ω

z′ dx
)

∆y
]2

dxdt

+ C
∫∫

Q
ρ2

0

[(
γ

η
1,1 ·

∫
Ω
∇y′ dx

)
∆yη −

(
γ1,1 ·

∫
Ω
∇y′ dx

)
∆y
]2

dxdt

+ C
∫∫

Q
ρ2

0

[(
γ

η
2,1 ·

∫
Ω
∇z′ dx

)
∆yη −

(
γ2,1 ·

∫
Ω
∇z′ dx

)
∆y
]2

dxdt

+ C
∫∫

Q
ρ2

0|β
η
1 − β1|

2|∆y′|2 dxdt

+ C
∫∫

Q
ρ2

0|F
η
1 − F1|2|y′|2 dxdt + C

∫∫
Q

ρ2
0|F

η
2 − F2|2|z′|2 dxdt

= E1 + E2 + E3 + E4 + E5 + E6 + E7,

where γ
η
1,j = (β

η
3,j, . . . , β

η
n+2,j) ∈ Rn, j = 1, 2 and γ

η
2,j = (β

η
n+3,j, . . . , β

η
2n+2,j) ∈ Rn, j = 1, 2 .

Now, we will check that each Ei can be bounded as in (3.11). For instance, we have

E1 = C
∫∫

Q
ρ2

0|β
η
11 − β11|

2
(∫

Ω
y′ dx

)2

|∆y|2 dxdt

+ C
∫∫

Q
ρ2

0|β
η
11|

2
(∫

Ω
y′ dx

)2

|∆yl − ∆y|2 dxdt.

The first and second integrals in the right-hand side can be bounded as follows:

∫∫
Q

ρ2
0|β

η
11 − β11|

2
(∫

Ω
y′ dx

)2

|∆y|2 dxdt

≤ C
(∫∫

Q
ρ2
∗|∆y|2|βη

11 − β11|
2 dxdt

)
‖(y′, z′, v′)‖2

Y,
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∫∫
Q

ρ2
0|β

η
11|

2
(∫

Ω
y′ dx

)2

|∆yη − ∆y|2 dxdt

≤ C
(∫∫

Q
ρ2
∗|∆yη − ∆y|2 dxdt

)
‖(y′, z′, v′)‖2

Y.

Taking into account the adopted procedure in (3.5) and using Proposition 2.10, conse-
quently, using Lebesgue’s Theorem together with the fact that β1 ∈ C1

b(R×R×Rn ×Rn)

give us the desired estimate for E1.
Similarly, we obtain the same conclusion for the other Ei. This shows that (3.11) is satisfied

and ends the proof.

Lemma 3.4. Let H be the mapping defined by (3.1)–(3.3). Then H′(0, 0, 0) ∈ L(Y, Z) is onto.

Proof. First notice that

H′(0, 0, 0)(y′, z′, v′) = (K1, K2, K3),

where

K1(y′, z′, v′) = y′t − β1(0, 0,~0,~0)∆y′ + A1y′ + A2z′ − v′1ω,

K2(y′, z′, v′) = −β2(0, 0,~0,~0)∆z′ + B1y′ + B2z′,

K3(y′, z′, v′) = y′(·, 0)

for all (y′, z′, v′) ∈ Y. Here the coefficients Ai and Bi are given by

Ai = DiF(0, 0) and Bi = Di f (0, 0) for i = 1, 2.

Consequently H′(0, 0, 0) is onto if and only if for each (h, k, y0) ∈ Z, there exists (y, z, v) ∈
Y satisfying 

yt − β1(0, 0,~0,~0)∆y + A1y + A2z = v1O + h, in Q,

−β2(0, 0,~0,~0)∆z′ + B1y′ + B2z′ = k, in Q,

y = z = 0, on Σ,

y(x, 0) = y0(x), in Ω

By hypothesis, B1 6= 0. Hence the existence of (y, z, v) with these properties is ensured by
Proposition 2.7. This shows that H′(0, 0, 0) is surjective and this ends the proof.

Thus, the proof of Theorem 1.2 is a consequence of Lemmas 3.2, 3.3 and 3.4.

3.2 Proof of Theorem 1.3

Here, we have similar results and proofs to Subsection 3.1 to establish the local null controlla-
bility of (1.3) .
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In this case, let Ỹ, G and Z be the following functions spaces:

Ỹ =

{
(y, z, w) : w ∈ L2(O × (0, T)),

∫∫
O×(0,T)

ρ2
∗|w|2 dxdt < +∞,

y, z, ∂iy, ∂iz, yt − β1(0, 0,~0,~0)∆y, β2(0, 0,~0,~0)∆z ∈ L2(Q),∫∫
Q
(ρ2

0|y|2 + ρ2|z|2) dxdt < +∞,∫∫
Q

ρ2
0

[
|yt − β1(0, 0,~0,~0)∆y|2 + | − β2(0, 0,~0,~0)∆z− w1O |2

]
dxdt < +∞,

y(·, 0) ∈ H1
0(Ω)

}
,

G =
{

g ∈ L2(Q)
∣∣∣ ∫∫

Q
ρ2

0|g|2 dxdt < +∞
}

and

Z = G× G× H1
0(Ω).

We introduce the Hilbertian norms:

‖(y, z, w)‖2
Ỹ :=

∫∫
Q
(ρ2

0|y|2 + ρ2|z|2) dxdt +
∫∫
O×(0,T)

ρ2
∗|w|2 dxdt

+
∫∫

Q
ρ2

0

[
|yt − β1(0, 0,~0,~0)∆y|2 + | − β2(0, 0,~0,~0)∆z− w1O |2

]
dxdt

+ ‖y(·, 0)‖H1
0 (Ω),

‖g‖2
G =

∫∫
Q

ρ2
0|g|2 dxdt

and

‖(g1, g2, z1)‖2
Z := ‖g1‖2

G + ‖g2‖2
G + ‖z1‖2

H1
0 (Ω)

.

Let us consider the mapping H̃ : Ỹ → Z with

H̃(y, z, w) = (H̃1, H̃2, H̃3)(y, z, w),

H̃1(y, z, w) = yt − β1

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆y + F(y, z), (3.13)

H̃2(y, z, w) = −β2

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆z + f (y, z)− w1O, (3.14)

H̃3(y, z, w) = y(·, 0). (3.15)

Once again, we will apply Liusternik’s Inverse Mapping Theorem in infinite dimensional
spaces to the mapping H̃, given by (3.13)–(3.15), to show that (1.2) is locally null controllable,
where the state-control triplets can be chosen in Ỹ.

For this end, we will use the following lemmas, which their proofs are similar than Sub-
section 3.1.

Lemma 3.5. Let H̃ : Ỹ → Z be the mapping defined by (3.13)–(3.15). Then H̃ is well defined and
continuous.

Lemma 3.6. The mapping H̃ : Ỹ → Z is continuously differentiable.

Lemma 3.7. Let H̃ be the mapping defined by (3.13)–(3.15). Then H̃′(0, 0, 0) ∈ L(Ỹ, Z) is onto.

In view of Lemmas 3.5, 3.6 and 3.7, we can apply Liusternik’s Theorem to the mapping
H̃ : Ỹ → Z and (1.2) is locally null controllable, with (y, z, w) ∈ Ỹ.
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4 Additional comments and open questions

As a first comment, an interesting question is concerned with global null controllability to
(1.1) and (1.2), which does not seem to be simple. Perhaps, this kind of result relies on a
global inverse mapping theorem, see [7], but much more refined estimates are necessary.

Other important topics arise from our current research:

• In the system (1.1) and (1.2), we can replace the local nonlinearities F(y, z) and f (y, z)
by F(y, z,∇y,∇z) and f (y, z,∇y,∇z), in order to analyze whether it is possible to prove
results about null controllability.

• When F(y, z) and f (y, z) are weakly superlinear nonlinearities, that is,

lim‖(s,p)‖→+∞

∣∣∣∫ 1

0

∂F
∂s

(λs, λp) dλ
∣∣∣+ ∣∣∣ ∫ 1

0

∂F
∂p

(λs, λp) dλ
∣∣∣

ln3/2(1+|s|+|p|)
= 0,

lim‖(s,p)‖→+∞

∣∣∣∫ 1

0

∂ f
∂s

(λs, λp) dλ
∣∣∣+ ∣∣∣ ∫ 1

0

∂ f
∂p

(λs, λp) dλ
∣∣∣

ln3/2(1+|s|+|p|)
= 0,

F(0, 0) = f (0, 0) = 0,

then we deduce that DiF(0, 0) = Di f (0, 0) = 0, for i = 1, 2. Then, the linearized system
given by H′(0, 0, 0) studied in Propositions 2.7 and 2.8 has no coupling, that is, c = 0 and
b = 0, respectively. Thus, it is not possible to solve (1.4) and (1.5) with only one control.
What would be possible when F(y, z) and f (y, z) are weakly superlinear nonlinearities,
and it is an open problem, is to obtain the local exact controllability to the trajectories at
time T for the problems (1.1) and (1.2).

• Open questions concerning the exact controllability to the trajectories:

It is said that (1.1) (resp. (1.2)) is locally exactly controllable to the trajectories at time T
if, for any solution (ŷ, ẑ) corresponding to the control v̂ (resp. ŵ), there exists ε > 0 such
that, if

‖y0 − ŷ(·, 0)‖H1
0 (Ω) ≤ ε,

there exists controls v ∈ L2(O × (0, T)) (resp. w ∈ L2(O × (0, T))) such that the associ-
ated states (y, z) satisfy

y(x, T) = ŷ(x, T), lim sup
t→T−

‖z(· , t)‖ = lim sup
t→T−

‖ẑ(· , t)‖ in Ω. (4.1)

The analysis of this property for (1.1) and (1.2) and other similar systems will be the
objective of a forthcoming paper.

• It would be very nice to obtain some local null boundary controllability results for the
systems (1.1) and (1.2), that is, instead of applying a distributed control in the interior of
the domain Ω, one could consider the question of solving the controllability problems
with the control acting on a portion γ of the boundary Γ := ∂Ω of the domain. However,
these facts can not be directly deduced for systems with a reduced number of controls,
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see [2]. In other words, the boundary controllability of

yt − β1

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆y + F(y, z) = 0 in Q,

−β2

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆z + f (y, z) = 0 in Q,

y(x, t) = v1γ, z(x, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω

(4.2)

and 

yt − β1

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆y + F(y, z) = 0 in Q,

−β2

(∫
Ω

y dx,
∫

Ω
z dx,

∫
Ω
∇y dx,

∫
Ω
∇z dx

)
∆z + f (y, z) = 0 in Q,

y(x, t) = 0, z(x, t) = w1γ on Σ,

y(x, 0) = y0(x) in Ω

(4.3)

are very interesting unknown issues.

• The controllability of hyperbolic-elliptic systems of (1.1) and (1.2) is also an open prob-
lem. Notice that the linearized systems (1.4) and (1.5), for the hyperbolic-elliptic case,
can be solved with boundary controls following the works of Lasiecka–Miara [20] and
Miara–Münch [23]. The greatest difficulty is to extend the works [20] and [23] to the
nonlinear case, because they are not solved in spaces with weights, which prevents us
from using Liusternik’s Theorem. The application of fixed point theorems would be an
interesting problem to study.
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