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Abstract. In this article, we consider non-negative solutions of the nonlinear cancer in-
vasion mathematical model involving proliferation and growth functions with homoge-
neous Neumann and Robin type boundary conditions. We first obtain lower bounds for
the finite time blow-up of solutions in IR® with assumed boundary conditions. Finally,
we extend the blow-up results of the given system in R? using first-order differential
inequality techniques and under appropriate assumptions on data.
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1 Introduction

Cancer is the most threatening disease to the society due its mortality rate among affected
patients. In the past few years, many works presented for the acid-mediated invasion hypoth-
esis and it is proposing that tumour acidification confers an advantage to the tumor cells by
producing a harsh environment. Further this process facilitates invasion of tumor cells into
the normal cells by producing matrix degrading enzymes. Partial differential equation (PDE)
is one of the best modelling tool to study acid mediated cancer dynamics. PDEs have been
used for many cancer invasion mathematical models, for example, see [2,4,5,7,10,15,24-28]
and the references therein. This paper investigate the properties of non-negative solutions of
the following nonlinear coupled cancer invasion mathematical model in a smooth bounded
domain Q c RN, N=2,3:

up—d1Au = pu(l —u —o) inQ x (0,1),

vy = —kvw + pv(1 —u — ) in Q) x (0,1),

wy — dyAw = u(l —w) —vw inQx(0,1), (1.1)
W h(u=0, ¥ =0 2 +mp(Hhw=0 ondQ x (0,1),

u=up(x), v="10vp(x), w=wy(x) in Q.
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The mathematical model consists of three unknown variables namely cancer cell density
u(x,t), extra cellular matrix (ECM) density v(x, t) and matrix degrading enzymes (MDE) con-
centration w(x, t). The proliferation rate of cancer cells are assumed to have a logistic growth
and is given by pu(1 —u —v). Here y > 0 is a growth rate constant. Further, MDEs produced
by the cancer cells degrade most of the components of ECM. Here the degradation processes
is modeled by kvw, k is a positive constant. We also assumed that the remodeling growth of
ECM follows a logistic growth, that is, pv(1 — u — v), where p is a positive constant. Moreover
the decay and growth rates of MDEs are respectively modeled by vw and Ju(1 — w), where
v, { are positive constants. Further, d; and d; are positive constant diffusion coefficients of
cancer cell density and MDE concentration respectively. Finally, ug(x), vo(x) and wo(x) are
non-negative functions and represent the initial conditions of u, v and w respectively. Here,
we have considered the natural boundary conditions for u,v and w where h;(t), i = 1,2 are
non-negative functions.

Due to the wide range of applications of nonlinear parabolic partial differential equations
in many branches of engineering, physics, biology and other sciences, the study of nonlinear
parabolic system has became an important field in mathematical analysis. In particular, the
study of blow-up for nonlinear parabolic systems received much attention in the last few
decades, for instance, see [1,3,6,8,17,21,29] and the references cited in these papers. In
the above mentioned papers, various methods were developed and used to study the global
existence of solutions, blow-up of solutions, asymptotic behaviours of solutions, upper bound
and lower bounds for finite time blow-up of solutions. We refer the interested readers to
[9,13,14,18-20,22,23] and and the references therein.

Existence of global solutions for a similar reaction-diffusion system with nonlinear bound-
ary condition is proved in [11,12]. Further existence and uniqueness of classical solutions of
a similar kind of cancer invasion model as (1.1) with taxis effect is studied in [16,30]. How-
ever, in biological applications, study on lower bound for the finite-time blow-up of solutions
is important due to the explosive and diffusive nature of solutions. Further there are some
important physical phenomena formulated for biological models with nonlinear boundary
conditions rather than the standard Dirichlet boundary conditions. Therefore, in line with
these motivations, in this work, we estimate the lower bounds for the finite time blow-up of
solutions in RN, N = 2,3 with Neumann and Robin type boundary conditions for cancer
invasion reaction-diffusion system (1.1) using first-order differential inequality techniques.

The paper is organized as follows. In Section 2, we estimate the lower bound for the finite-
time blow-up of solutions of (1.1) with suitable auxiliary function in R®> under Neumann and
Robin type boundary conditions. Further, in Section 3, we extend the same results in R? by
changing certain inequalities.

2 Lower bounds for finite time blow-up of solutions in R®

In this section, we consider a parabolic system (1.1) and seek a lower bound on blow-up
time for a non-negative solution if it is occur at some finite time t*. In order to obtain the
desire result, we first define the suitable auxiliary function for the problem (1.1). Under the
assumptions of the Neumann boundary conditions (%;(t) = 0) and Robin boundary conditions
(hi(t) > 0) in (1.1), we attain the lower bounds for finite-time blow-up of solutions with help
of certain inequalities and the considered auxiliary function.

We define the following auxiliary function to obtain the lower bounds of (u, v, w) for finite
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time t*:

o(t) :oc(t)/Quzdx%-ﬁ(t)/()vzdx%—'y(t)/szdx, (2.1)

where «(f), B(t) and 7(t) are suitable time dependent positive functions. Further, we define
@o as

@0 = ¢(0) = a(0) /Qu%dx + B(0) /Qv%dx +7(0) /Qw%dx. (2.2)

Definition 2.1. We say that the triple solution (u, v, w) of (1.1) blows-up in @-measure at time
t* if

lim @(t) = oo. (2.3)

t—>t*

Theorem 2.2 (with Neumann boundary condition). Suppose that (1, v, w) is a non-negative clas-
sical solution of (1.1) in a bounded convex domain Q0 C R® with origin inside. If the triple solution
(u,v,w) becomes unbounded in L>(Q)-norm at t = t*, then t* satisfies the lower bound

~ 1
> A (Z(PZ) . g0 =g(0), (2.4
0

where H™ is the inverse of H(t) := fot H(7)dT for positive function H := H(a(t), B(t),v(t),Q, ¢o)
and @(t), @o are defined as in (2.1)-(2.2).

Proof. Differentiating (2.1), we have

@' () :o/(t)/QudevLZx(t)/Quutdx+ﬁ/(t)/ﬂvzdx+2ﬁ(t)/vitdxﬁt'y/(t)/nwzdx
+2’y(t)/ﬂwwtdx

= a/(t) /Q u?dx + 2a(t) /Q u(diAu~+ pu(l —u —v))dx
+B(1) /Q odx + /(1) /Q wldx
+2B(t) /Q v(—kovw + pv(1 — u — v))dx 5
+29(t) /Q w(dyAw + Cu(l —w) —vw)dx

:(x’(t)/Quzdx%—Z(x(t)dl/()uAudx+2uc(t)y/Qu2dx—Zac(t)y/Qude
—ZDc(t)‘u/Quzvdx—k,B’(t)/szdx—2,[3(t)k/002wdx—1—2,[3(t)p/ﬂvzdx
—Zﬁ(t)p/QUZudx—Zﬁ(t)p/ﬂzﬁdx—k’y’(t)/szdx+2’y(t)d2/QwAwdx

+2'y(t)§/0uwdx—Z'y(t)é/guwzdx—27(t)1//0w2dx.

Using zero flux boundary condition and divergence theorem, we get

/ uludx = —/ |Vul*dx, (2.6)
0 0

/ wAwdx = —/ V| dx. (2.7)
Q 0
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Using Holder’s inequality and the standard inequality a"t* < ra+sb,a > 0,b > 0,s+r =1

we get
3 3
/uZdeS (/ ude> (/ v3dx>
3 " o 28)
< - / u3dx+€0(>/ v3dx.
3ep(t)2 /O 3 Ja
Similarly we get
2¢0(t) 1
2 < <€0 / 3 /
/Qv wdx_73 dex+3€0(t)2 Qw ,
1 u3dx,
0 (2.9)

260() 3

x <
/vud 3 /Q dx +3€0(t)2
/wudx< /w3dx+3/

1
uwdx<—/u2dx—|—f/w
/Q —2Jao 2 Ja

Substituting (2.6)—(2.9) in (2.5), we get
@' (t) goc’(t)/ﬂuzdx—m dl/ |Vu\2dx+2(x(t)y/0u2dx+ﬁ ( )/ dx
+2[3(t)p/002dx+’y’(t)/szdx—Z'y(t)dz/Q|Vw| dx—l—’y(t)g/ﬂuzdx 210

+ 7y C/ w?dx + 2 t)v/szdquAl(t)/Qu3dx+A2(t)/Qv3dx

—|—A3(t)/ w3dx,
0

where
_ da(t)p | 2B(t)p
Aq(t) = 360“)% + 3eo(1)? + 3
Ag(t) = [Z“g)” + 4’3?]{ + 4[35;)’) eo(t) —26(t)p,

Using the Sobolev-type inequality (see Lemma A2 in [18]) and standard inequality (a + b)
251 (a* 4+ b%),a,b > 0,s > 1, we can estimate the terms of (2.10) as follows
3

/Q 3dx < {pl/ 12dx + P, </Qu2dx> (/ Vil dx> }2

<25 ([ ear) 4 ( fyean) ([ wetan) |
B ([fas) 4200 (] o dx)}

% 2d % ;
(/n“ ) MPPIDE
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3 d
Pp=—, D=1+ o0 Po = mén(x n), and d=max|x| are positive constants.
0 0 o}

Similarly we get

3 3 3 %
31y < 03 ) p2 / 2.\ Py / 2 3Py ex(t) / 2
/Qw dx <22 {P1 ( Ow dx) —|—4€2(t)3 Qw dx | + 1 Q|Vw| dx , (2.12)

where the constants are defined as before. Substituting (2.11)—(2.12) in (2.10), we get

7)< {“‘“{l”f"’l(”za<t>d1}/0vﬁdx+{3“‘3“llw2v<t>d2}

></Q]Vw\zdx%—Az(t)/Qvg’dx%—a/(t)+2a(())y+7() (tx(t)/ouzdx>
+ﬁ’(t);—($ﬁ(t)p <ﬁ(t) /Q vzdx> 1553;)? 1% (oc(t)/gu%lx)g (2.13)

. Y () + ()T +29(t)v (7(1%) /szdx> N As(t 3

A1) P} 3 As(1)P} 3
* satee (0 L) + s (10 fyes)
Choosing «(t), B(t),v(t),€e0(t), €1(t) and ex(t) as follows
u(t) = &, B(H) = &, Ae) = &2,
3B(t)p 8u(t)dq 8y(t)d;
eo(t) = ,oalt) = 5, al)=——>,
T a@ur2p0kte) T s e sas)pl

we obtain the following first order differential inequality

¢'(t) < Bi(t)p(t) + Ba(t) g3 (1) + Bs(H) 9 (1), (2.14)
where
By(t) = max { () + zu;<(tt>)y (0 ﬁ/(t);(;ﬁ(t)g Y1)+ vﬁ;()f) +29(t)v }
Ba(t) — V2P (f(lf)f; s f(f)”) ,

B p: Aq(t) As(t)
Bs(t) = = ((a(t)lx(f))?’ i (62(1‘)7('5))3) '

If the solution blows up at t*, then there exists a time #; > 0 such that ¢(t) > ¢o, t > t; and

5 (2.15)
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Replacing (2.15) in (2.14), we get
¢'(t) <H()@ (),  te[h,th), (2.16)
where s
H(t) = Bi(t) @y > + Ba(t) @, 2 + Bs(t).
Integrating (2.16) over t; to t*, we get
1
2¢3

Theorem 2.3 (with Robin boundary condition). Suppose that (u,v,w) is a non-negative classical
solution of (1.1) in a bounded convex domain Q C R® with origin inside. Further assume that

0 <a/(t) <2a(t)dim(t) and 0 < o' (t) < 2y(t)dam (),
Af+7(f=0, f>0inQ,

% +h(E)f =0 ondQ, h(t) >0,

where 11(t) is the first eigenvalue of (2.17) and n is the unit normal vector. If the triple solution
(u,v,w) becomes unbounded in L2(Q)-norm at t = t*, then t* satisfies the lower bound

; < /: H(t)dt < /Ot* H(t)dt = H(#). O

(2.17)

~ 1
>R ), = ¢(0), 2.18
> (2 7). =00 @1
where R~ is the inverse function of R(t) := fo T)dt and R := R(a(t),B(t),v(t),Q, ¢o) is a

positive function.

Proof. In order to prove the theorem, we use similar arguments as in Theorem 2.2. However,
we consider the following inequality for # and w in place of (2.6) and (2.7).

/zAzdx——h / /yv,z| dx, =12 (2.19)
0
Substituting (2.19) and (2.8)—(2.9) in (2.5), we get
/t</t/2d—2td/vzd—2tdht/ 245 + 2a(t /2d
§0) < () [ wdx—2a(t)s [ [VuPdx—2(din(t) [_wlds+2a()p [ i
+,B’(t)/vzdx+2,8tp/ v*dx +9/(t) /dex—Z’ytdz/ V| dx
— 2y (t)doho (¢ / w?ds + () C/ wldx + (1) C/ w?dx + 2(t) /w

+A1(t)/ u3dx+A2(t)/ v3dx + A;(t) /w
QO (@) (@)

(2.20)

where A;(t), A2(t) and As(t) are defined as before. From the variational definition of #;(t)
and (2.17), we get

O [ Pax< [ [VFPaxn) [ fs, 221
) [ Pax< [ VP n) [ s @21
and therefore we have the following inequalities for u and w

uc’(t)/ () ()/ u?ds,

mt)
: 7'(t)
'y(t)/Q Ui(t)/ |Vw|* dx +171(t)h2( )/ wds.

(2.22)
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Substituting (2.11)—(2.12) and (2.22) in (2.20), we get

, 3A1(Pei(t) o (t)
() < { I T~ 2On }/ [Vuf*dx

N {3A3(t)Pfez<f> a0 2'y(t)d2}/nvw2dx

4 m(t)

+ﬁ/(t>;(t2)ﬁ(t)p (ﬁ(t) /Q vzdx> i
+Az(t)/Q o3dx + ({+2v) < /szdx>+A1 (t sz <“(t>/0u2dx>z

)P

14

Aa(t) 2P} <7(t)/Q 2dx>g + (A E

3
2

i)) < (t)/Qude>3

L(t
(t)

7(t)? (
As(t)P] om0
+ 4(62“)7&))3 ('y(t)/Qu)de) + 0y (' (t) — 2a(t)dqm1 (1)) /ao u2ds
#1200 /) - 2000 () [ o
Choosing «(t), B(t), y(t), €o(t), e1(t) and ex(t) as follows:
a(t) = o fot'h(r)drl B(t) = 2t y(t) = o2 Jim(rydr
3B(t)p Ba(t)dvip (t) — 4’ (t) 8 (t)dam (t) — 47/ (t)
t) = , t) = P t) = 3 ,
€o(t) a(yp+2p(t)(k+p) ! 391(£) A1 () P2 (! 311 (£) Aa(£) P}
we obtain the following first order differential inequality

—_~—

¢'(t) < Bi(H)g(t) + B2 ()9 (1) + Bs(1)9*(1), (2.24)

where

B/1\/(t) = max {2;1 + ,);X(%C, ﬁ/((t)) +20,0+ 21/} ,

t
B/zv<t>=\f2P2< 1! +A<t3>,

(B3 (t)
—~ Pi Aq(t) As(t)
Ba(t) = 3 ((61(f)0é(t))3 - (62(t)7(f))3> '

Then similar arguments as in Theorem 2.2 leads to
¢'(t) SR (t),  te[h,th), (2.25)

where
R(f) = B1(1) 9>+ Ba(1) )(Po + Bs(t).

Integrating (2.25) over t; to t*, we get

= = _
1 < [ R < [ R@dr =R 0
2¢; t 0
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3 Lower bounds for finite time blow-up of solutions in R?

In this section, we prove a lower bound for the finite-time blow-up of solutions of the cancer
invasion parabolic system (1.1) in a bounded domain () C R?. As in the previous section, we
consider the two cases, the Neumann boundary condition and the Robin type boundary for
the parabolic system (1.1) to prove the blow-up of solutions (u,v, w) for some time t*.

Theorem 3.1 (with Neumann boundary condition). Suppose that (1, v, w) is a non-negative clas-
sical solution of (1.1) in a bounded convex domain Q0 C R? with origin inside. Assume further that
hi(t) = 0, i = 1,2, in (1.1). If the triple solution (u,v,w) becomes unbounded in L?(Q)-norm at
t = t*, then t* satisfies the lower bound

t > N1 (;()) , @0 = ¢(0), (3.1)

where N~ is the inverse function of N(t) := fo T)dt and N := N(a(t), B(t),v(t),Q, ¢o) is a
positive function.

Proof. The proof of the theorem relies on evaluating the integrals [, u*dx, [, v*dx and [, w’dx
in (2.10). We use the following two inequalities (see [18]) in order to achieve our goal. For any
f € CH(Q)) where Q is a convex domain in R? and py, d are defined as before,

</nf4d> < [ f +f</ fi ) (/Qvfzdxl);f 62
(/anfzdx> po/f2d x4 = (/ frdx > </Q|Vf\2dx>2. (3.3)

Substituting (3.3) in (3.2), we get

() < b Lo (1o 2) (L) (Lrore) ] oo

Using (3.4) and Cauchy’s inequality, we get

de < ( 2dx) : </Q u4dx>%
< \1[ {2131 </ de)g + 46113?0 </Q uzdx>2+P2e1(t) (/Q \Vu]zdx> } :

Similarly we get

1 [2p : p 2 2
Qdex < 7 {3 (/Q w%lx) + Ter (D) </Q wzdx> + Prex(t) (/O |Vw] dx)}, (3.6)

(3.5)
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where P; and P; are defined as before. Substitute (3.5)—(3.6) in (2.10), we get

¢ () < {Al<)p2€1 }/ |Vu] dx
_‘_{A?’()\szez()_z dz}/Q|Vw| dx
()+20;(())V+’Y() (uc(t)/ﬂu2dx> +/3'(t);(;5(’w’ (5(0/0020&)
N2 3 (3.7)
()+v(7t()t€)+27() <7()/Q ) + 2 3<>() (st [ aax)
\f 2
(A ) * e (O )

&U
T 2e()(1 () (W) fywtan) a0 [ 0
Choosing «(t), B(t),v(t),€0(t),€1(t) and e(t) as follows:

a(t) = e, B(t) =&, 7(t) = 20,

B 36(t)p _ 2V2a(t)d _
eo(t) = O+ 280 (T p)/ €1(t) = Al(t)le’ e2(t) = Az(H)P, 7

we obtain the following first order differential inequality

¢'(t) < Bi(t)g(t) + Ba(£)g3 (t) + Ba(t) g2 (t), (3.8)

where

By(t) = max{“'(t) +2a(t)p+ (1) B(t) +2B(Hp (1) + ’Y(t)C—FZ’y(t)v}’

a(t) B O 7(t)
—— V2P [ A(t) | As(t)
By(t) = 3 (a(t)g + r),(t)g> ’
- P, Al(t) A3(t)
B0 = 355 (et * am )

If the solution blows up at t*, then there exists a time #; > 0 such that ¢(t) > ¢o, t > t; and

o(t) < 95 9*(1),
3 1 (3.9
92 () < 9 " 9*(1).
Replacing (3.9) in (3.8), we get
¢'(t) < N(H*(t),  te[h,t?), (3.10)

where

_1
N(t) = Bi(t)g, ' + Ba(t) @y * + Bs(t).
Integrating (3.10) over t; to t*, we get

1
Po
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Theorem 3.2 (with Robin boundary condition). Suppose that (u,v, w) is a non-negative classical
solution of (1.1) in a bounded convex domain QO C R? with origin inside. Further assume that
0 < a/(t) < 2a(t)dini(t) and 0 < o'(t) < 279(t)dan1(t), where ny(t) is the first eigenvalue of
(2.17). If the triple solution (u,v,w) becomes unbounded in L?(Q))-norm at t = t*, then t* satisfies
the lower bound

e < ! ) 90 = 9(0), (311)
Po

where M~ is a inverse function of M(t) := fo T)dT and M = M(a(t), B(t),v(t), ), ¢o) is a
positive function.
Proof. Substituting (2.22), (3.5)—(3.6) in (2.20), we get

/ Ai(t)Prer(t) | /() 2
go(t)g{ v +7]1()—2¢xtd1}/ﬂ|Vu| dx

(u+7 ( t)/o 2dx>

As(t )P2€2( ) 7’(f) 2
I R e LY AL
)

BULE2B0R (50 [ )

+A2(t)/ﬂv3dx+(§'+2v) <’Y(t)/0w2dx> +Al;;)(;)/g§l)l <06(t)/0u2dx>2 (3.12)

; 2
(>(\)[P1 (’Y(t)/owzdx> 4\[1:11(%)(1;( NE ((x(t)/ﬂuzdx)
As(t)Py 2o,
4\/@“)( 07 <7(t)/ﬂw2dx> +f71(f) (a (t)—Zoc(t)dlﬂl(t))/aQuzds

ha(t)
ﬂ?(t) (')’( (£)d2m1 (1) / wd

Choosing «a(t), B(t),v(t),€o(t), €1(t) and e (t) as follows:

a(t) = e Jo Vl(T)dT, B(t) = et

_|_

— o2 Jym(v)dr e (F) = 3p(t)p
7(t) = el o) = T 26k p)

V2 Q2a(t)dvp(t) —a'() () = V2 (2y(H)dam () — (1))
11 () A1 (t) P2 S n (1) Az (t) P, ’

leads to the following first order differential inequality

e1t) =

—

¢'(t) < Bi(Do(t) + Ba() 93 () + Ba(D g (t), (3.13)

where

— (a0, , B )
B0 = max { 5 42 g 200420

— 2P, [(Ai(t) | As(t)
By(t) = —3 (a(t)% i v(tﬁ)'

=—ral P, Al(t) A?’(t)
B0 = 1 (e tatr * stin )
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If the solution blows up at t*, then there exists a time #; > 0 such that ¢(t) > ¢o, t > t; and

o(t) < o5 '@ (1),

5 1, (3.14)
P(t) < ¢y ¢~ (t)-
Replacing (3.14) in (3.13), we get
¢'(t) < M(t)g*(t),  te[t,t?), (3.15)
M(t) = Bi(t)py " + Ba(t)y * + Bs(t).
Integrating (3.15) over t; to t*, we get
1 t* +* .
~ < / M(7)dt < / M(7)dT = M(F). O
4)0 t 0
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