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Hopf bifurcation analysis in a
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Abstract. We show a detailed study on the dynamics of a neutral delay differential pop-
ulation model with age structure in the prey species. By selecting the mature delay as a
bifurcation parameter, we obtain the stability and Hopf bifurcations of the coexistence
equilibrium. Moreover, by computing the normal form on the center manifold, we give
the formulas determining the stability of periodic solutions and the direction of Hopf
bifurcation. Finally, we give some numerical simulations to support and strengthen the
theoretical results.
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1 Introduction

In recent years, neutral-type differential equations have been applied extensively in mathe-
matical biologies and population dynamics [1,3,5], and their dynamical behaviors are usually
very complex. In this paper we will consider the neutral delay differential equation with age
structure as follows:

V̇(t)− b2e−µ0τV̇(t− τ) =
(
b1e−βV(t−τ) + b2µ1

)
e−µ0τV(t− τ)− µ1V(t), (1.1)

where V(t) denotes the number of mature individuals in the population at time t, b1 and b2 are
the birth rate and the maximum possible per capita egg production rate, respectively. µ0 and
µ1 are the per capita mortality rate of the immature population and the adults, respectively.
τ is the generation time and 1/β is the population size at which the whole population repro-
duces at its maximum rate. One can derive this model (see [3]), from a structured population
model for u(t, a) (the population density at time t and age a) as follows,

∂tu(t, a) + ∂au(t, a) = −µ(a)u(t, a),

with the death rate

µ(a) =

{
µ1, a > τ,

µ0, a < τ.
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Then the total population of the mature individuals is V(t) =
∫ ∞

τ u(t, a)da which fulfills
Eq. (1.1). For more details on the derivation of (1.1), we refer the readers to [3].

By regarding V(t) as the prey population size, we incorporate a predation term
g(V(t))U(t) into (1.1) to obtain the following general neutral prey-predator model:{

U̇(t) = −d1U(t) + αg(V(t))U(t),

V̇(t)− b2e−µ0τV̇(t− τ) = (b1e−βV(t−τ) + b2µ1)e−µ0τV(t− τ)−µ1V(t)−cg(V(t))U(t).
(1.2)

Here the predator population U(t) consume mature population V(t) as food source, g : R+ →
R+ is the functional response of predators, α represents the conversion rate from prey to
predator, c is the per capita capturing rate of prey by a predator per unit time. For the case of
linear functional response g(V(t)) = V(t), reducing the model (1.2) to{

U̇(t) = −d1U(t) + αU(t)V(t),

V̇(t)− b2e−µ0τV̇(t− τ) = (b1e−βV(t−τ) + b2µ1)e−µ0τV(t− τ)− µ1V(t)− cU(t)V(t).
(1.3)

There are many research findings of predator-prey model similar to Eq. (1.3) with b2 = 0, i.e.,
in the absence of neutral delay effect, see [6, 12, 17, 18]. For those models with neutral delay,
Pielou [16] studied the effect of time delay in the population systems. Kuang [13] investi-
gated a logistic model with the neutral term by introducing a time delay and obtained some
sufficient conditions to ensure the local asymptotic stability of the positive equilibrium. In
addition, there are few results about the delay neutral equation with age structure. Under as-
sumption 0 < b2 < 1, system (1.3) can be written as an abstract ordinary differential equation
in suitable phase space by the theory on the decomposition of the phase space [8, 9]. Com-
pared with a predator-prey model without neutral delay [11, 15, 21, 22], we find neutral delay
may easily induce bifurcations. We obtain the above results by analyzing the characteristic
equation and the normal forms near Hopf bifurcations.

This paper is organized as follows. In Section 2, we give the stability analysis and bi-
furcation results about system (1.3). We find Hopf bifurcation occurs when the delay passes
through some critical values. In Section 3, we offer algorithms for determining the direction
of Hopf bifurcation and the stability of bifurcating periodic solutions by using the normal
form method and the center manifold theory. In Section 4, we carry out some numerical
simulations to support our results.

2 Stability of the equilibria and local Hopf bifurcation

In this section, we mainly analyze the stability of positive equilibrium in the cases of τ = 0 and
τ > 0. Regarding the stability and bifurcation of delay equation (1.3), the distribution analysis
of roots of the characteristic equation plays an important role. Throughout this paper, we
assume 0 < b2 < 1 such that the neutral part of (1.1) defines a stable D-operator (see [8]). The
equilibria of system (1.3) are the roots of the following equations:(−d1 + αV)U = 0,[

(b1e−βV + b2µ1)e−µ0τ − µ1 − cU
]
V = 0.

Then system (1.3) has three nonnegative equilibrium points:

(i) E0 = (0, 0), which corresponds to the total extinction of the predator and prey;
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(ii) E1 =
(
0, 1

β ln b1
µ1(eµ0τ−b2)

)
, which corresponds to the extinction of predator. The boundary

equilibrium point E1 exists if and only if τ < 1
µ0

ln b1+b2µ1
µ1

;

(iii) The interior equilibrium point E∗ = (u∗, v∗), which corresponds to the coexistence state
of prey and predator, and

u∗ =
1
c

(
b1e

−βd1
α + b2µ1

)
e−µ0τ − µ1

c
, v∗ =

d1

α
.

E∗ exists when τ < τmax := 1
µ0

ln b1e−βd1/α+b2µ1
µ1

. The dynamics of the predator-free equilibrium
E1 has been investigated in a previous study in [5]. Biologically speaking, for model (1.3)
we are interested to study the stability behavior of the interior equilibrium point E∗. We
first transform E∗ = (u∗, v∗) of (1.3) to the origin via the translation u(t) = U(t) − u∗ and
v(t) = V(t)− v∗, then the linearization of system (1.3) around the origin takes the form{

u̇(t) = αu∗v(t),

v̇(t)− b2e−µ0τ v̇(t− τ) = −cv∗u(t)− (µ1 + cu∗)v(t) + a1e−µ0τv(t− τ),
(2.1)

where a1 = (1− βv∗)b1e−βv∗ + b2µ1. The characteristic equation of (2.1) is

λ2 + (µ1 + cu∗)λ + cαu∗v∗ − (b2λ2 + a1λ)e−µ0τe−λτ = 0. (2.2)

This is a characteristic equation with coefficients depending on time delay, so we employ the
method in [2], rewrite (2.2) in the general form

P(λ, τ) + Q(λ, τ)e−λτ = 0, (2.3)

where P(λ, τ) := λ2 + (µ1 + cu∗)λ + cαu∗v∗, Q(λ, τ) := −(b2λ2 + a1λ)e−µ0τ. For τ = 0, (2.3)
becomes

(1− b2)λ
2 + b1βv∗e−βv∗λ + cαu∗v∗ = 0.

Obviously, we have the following lemma.

Lemma 2.1. When τ = 0, the positive equilibrium E∗ of Eq. (1.3) is asymptotically stable.

When τ > 0, the distribution of the roots of the exponential polynomial equation with
delay dependent parameters could not be analyzed in the usual way. Therefore, we introduce
the geometric criterion established by Beretta and Kuang [2] (see also [14]). Firstly, we need to
prove the following statements in order to discuss the distribution of the roots of (2.3) whose
coefficients contain the delay τ.

Theorem 2.2. For system (2.3), the following geometric stability switch criterions (i)–(v) are estab-
lished.

(i) P(0, τ) + Q(0, τ) 6= 0, ∀τ ∈ R+;

(ii) P(iω, τ) + Q(iω, τ) 6= 0, ∀ω ∈ R, ∀τ ∈ R+;

(iii) lim sup
{ ∣∣∣Q(λ,τ)

P(λ,τ)

∣∣∣ : |λ| → ∞, Re λ ≥ 0
}
< 1, ∀τ ∈ R+;

(iv) F(ω, τ) := |P(iω, τ)|2 − |Q(iω, τ)|2 for each τ has at most a finite number of real zeros;

(v) Each positive root ω(τ) of F(ω, τ) = 0 is continuous and differentiable in τ whenever it exists.
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Proof. Obviously, by Eq. (2.3) we obtain

P(0, τ) + Q(0, τ) = cαu∗v∗ > 0,

P(iω, τ) + Q(iω, τ) = iωb1βv∗e−µ0τe−βv∗ + (b2e−µ0τ − 1)ω2 + cαu∗v∗ 6= 0,

thus the statements (i) and (ii) are established. In fact,

lim
|λ|→∞

∣∣∣∣Q(λ, τ)

P(λ, τ)

∣∣∣∣ = b2e−µ0τ < 1,

therefore (iii) holds true. Notice that F(ω, τ) takes the following expression

F(ω, τ) =
(
1− b2

2e−2µ0τ
)
ω4 +

[
(µ1 + cu∗)2 − 2cαu∗v∗ − a2

1e−2µ0τ
]
ω2 + (cαu∗v∗)2.

For each τ, F(ω, τ) = 0 has at most a finite number of real zeros. The statement (v) is also
satisfied by the implicit function theorem.

Lemma 2.3 (see [14]). Based on Theorem 2.2, the following conclusions are valid.

(a) When F(ω, τ) = 0 has no positive roots, there is no stability switch.

(b) When F(ω, τ) = 0 has at least one positive root and each of them is simple, a finite number of
stability switches may occur with the increase of τ.

Remark 2.4. Claim (i) implies that λ = 0 is not a characteristic root of (2.3) and (ii) implies that
P(λ, τ) and Q(λ, τ) have no identical imaginary roots. Claim (iii) guarantees that the roots of
the equation (2.3) with non-negative real parts are uniformly bounded. Claim (iv) guarantees
that the equation (2.3) has at most a finite number of imaginary roots for the given τ, that is,
there are only finite times for roots to cross the imaginary axis with the change of τ. Claim
(v) is used to compute the derivative of the imaginary roots with respect to τ.

Combined with the conclusion of Lemma 2.3, we will study the existence of Hopf bifur-
cation for system (1.3). Assume that λ = iω (ω > 0) is the pure imaginary root of (2.2),
then

−ω2 + iω(µ1 + cu∗) + cαu∗v∗ + (b2ω2 − iωa1)e−µ0τ(cosωτ − isinωτ) = 0.

Separating the real and imaginary parts, we getsin ωτ = cαu∗v∗a1−a1ω2+b2ω2(µ1+cu∗)
(a2

1ω+b2
2ω3)e−µ0τ = S(τ),

cos ωτ = − cαu∗v∗b2ω−b2ω3−a1ω(µ1+cu∗)
(a2

1ω+b2
2ω3)e−µ0τ = C(τ),

which leads to
F(ω, τ) = 0. (2.4)

Let z = ω2, then (2.4) becomes(
1− b2

2e−2µ0τ
)
z2 + Az + (cαu∗v∗)2 = 0, (2.5)

where A = (µ1 + cu∗)2 − 2cαu∗v∗ − a2
1e−2µ0τ. Notice that 1− b2

2e−2µ0τ > 0, (cαu∗v∗)2 > 0.
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Thus, we further make the following assumptions:

(H1) A < 0,

(H2) A + 2cαu∗v∗(1− b2
2e−2µ0τ)1/2 < 0,

then there exist two positive real roots ω±(τ) of (2.5),

ω±(τ) =

−A±
√

A2 − 4(1− b2
2e−2µ0τ)(cαu∗v∗)2

2(1− b2
2e−2µ0τ)

1/2

.

Set
I = {τ | A < 0, A2 − 4(1− b2

2e−2µ0τ)(cαu∗v∗)2 > 0, τ ∈ (0, τ̂]}.

When I is nonempty, for τ ∈ I, there exist ω+(τ) > 0, ω−(τ) > 0 such that F(ω, τ) = 0. For
τ ∈ I, θ(τ) ∈ (0, 2π] is defined bysin θ(τ) = cαu∗v∗a1−a1ω2+b2ω2(µ1+cu∗)

(a2
1ω+b2

2ω3)e−µ0τ ,

cos θ(τ) = − cαu∗v∗b2ω−b2ω3−a1ω(µ1+cu∗)
(a2

1ω+b2
2ω3)e−µ0τ ,

then we have ω(τ)τ = θ(τ) + 2nπ. Hence, iω is a purely imaginary root of Eq. (2.2) if and
only if τ is a zero of the function Sn(τ), defined by

Sn(τ) = τ − θ(τ) + 2nπ

ω(τ)
, τ ∈ I, n ∈N0. (2.6)

We list the basic results to show the occurrence of Hopf bifurcation in [2] as follows.

Lemma 2.5. Assume that ω(τ) is a positive real root of Eq. (2.4) and at some τk ∈ I,

Sn(τk) = 0, for some n ∈N0.

When τ = τk, λ = ±iω(τk) is a pair of conjugate purely imaginary roots of Eq. (2.3), and if δ(τk) >

0(< 0), the roots corresponding to the conjugate purely imaginary roots cross the imaginary axis from
left (right) to right (left), where

δ(τk) = sign
{

d Re λ

dτ

∣∣∣∣
λ=iω(τk)

}
= sign

{
F′ω(ω(τk), τk)

}
sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τk

}
.

The next theorem is concerned with the stability for system (1.3) and the Hopf bifurcation.

Theorem 2.6. For some m = 1, 2, . . . , assume that every Sk(τ) (k = 0, 1, . . . , m − 1) defined by
Eq. (2.6) has exactly two roots τ = τk and τ2m−1−k with τ0 < τ1 < · · · < τ2m−1, and that S′k(τk) > 0
and S′k(τ2m−1−k) < 0. Further assume Sk(τ) has no roots on {τ : τ ≥ 0} for any k ≥ m, then we
have

(i) when τ ∈ [0, τ0) ∪ (τ2m−1, τ̂), the roots of the characteristic equation (2.2) have strictly negative
real part and the positive equilibrium of Eq. (1.3) is asymptotically stable;

(ii) when τ ∈ (τk, τk+1) ∪ (τ2m−2−k, τ2m−1−k), k = 0, 1, . . . , m− 1, the characteristic equation (2.2)
has exactly k + 1 pairs of roots with the positive real part, and the positive equilibrium of Eq. (1.3)
is unstable.
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(iii) when τ = τk, k = 0, 1, . . . , 2m− 1, the characteristic equation (2.2) has a pair of imaginary roots
±iωk with ωk = ω2m−1−k, and Eq. (1.3) undergoes a Hopf bifurcation at the positive equilibrium
E∗.

Remark 2.7. The stability of the positive equilibrium and the existence of Hopf bifurcation for
system (1.3) have been investigated by analyzing the distribution of eigenvalues. It is notewor-
thy that (2.3) is an exponential polynomial equation with time delay in coefficients. In order
to discuss the distribution of the roots of such equations, it is necessary to use the geometric
criterion in [2] for the existence of purely imaginary roots, which is shown in Theorem 2.2
above.

3 Stability and direction of Hopf bifurcation

In this section, we will study the direction of Hopf bifurcation and the stability of bifurcating
periodic solutions of model (1.3). The method to compute normal forms restricted on center
manifolds is due to [4, 7, 19, 20]. For simplicity, let u(t) = U(τt)− u∗, v(t) = V(τt)− v∗, and
τ = τ + µ (τ ∈ {τ0, τ1, . . . , τ2m−1}). System (1.3) is written as

u̇(t) = τ
[
− d1(u∗ + u(t)) + α(u∗ + u(t))(v∗ + v(t))

]
,

v̇(t)− b2e−µ0τ v̇(t− 1) = τ
[
(b1e−β(v∗+v(t−1)) + b2µ1)

]
e−µ0τ(v∗ + v(t− 1))

− τµ1(v∗ + v(t))− τc(u∗ + u(t))(v∗ + v(t)).

(3.1)

Denote C = C([−1, 0], R2), then rewrite Eq. (3.1) as

d
dt
[DXt] = L0Xt + (Lµ − L0)Xt + F(Xt, µ),

where

Dφ =

(
ϕ1(0)

ϕ2(0)− b2e−µ0τ ϕ2(−1)

)
, Lµφ = (τ + µ)(B1φ(0) + B2φ(−1)),

and

F(φ, µ) = (τ + µ)

(
αϕ1(0)ϕ2(0)

−cϕ1(0)ϕ2(0) + b1βe−(βv∗+µ0τ)
[

βv∗
2 − 1 + ( β

2 −
β2v∗

6 )ϕ2(−1)
]

ϕ2
2(−1)

)

for φ = (ϕ1, ϕ2) ∈ C, and

B1 =

(
0 αu∗

−cv∗ −µ1 − cu∗

)
, B2 =

(
0 0
0 a1e−µ0τ

)
.

Choosing

µ(θ) =

{
D1, θ = −1,

D2, θ ∈ (−1, 0],
and η(µ, θ) =


−(τ + µ)B2, θ = −1,

0, θ ∈ (−1, 0),

(τ + µ)B1, θ = 0,

where

D1 =

(
0 0
0 −b2e−µ0τ

)
, D2 =

(
0 0
0 0

)
,
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then we have

Dφ = φ(0)−
∫ 0

−1
dµ(θ)φ(θ), L0φ =

∫ 0

−1
dη(0, θ)φ(θ).

Define

A(µ)φ =

{
dφ(θ)/dθ, θ ∈ [−1, 0),

φ′(0)− Dφ′(θ) + Lµφ, θ = 0

and

R(µ)φ =

{
0, θ ∈ [−1, 0),

F(φ, µ), θ = 0.

Then (3.1) can be written as
Ẋt = A(µ)Xt + R(µ)Xt, (3.2)

where X(t) = (u(t), v(t))T, Xt = X(t + θ), θ ∈ [−1, 0]. Clearly, (3.2) is an abstract ODE on the
phase space BC (see [19]), where

BC =
{

φ : [−1, 0]→ R2, φ is continuous on [−1, 0), and limθ→0 φ(θ) exists
}

.

The adjoint operator A∗ is defined by A∗ψ = − dψ
ds with domain

D(A∗) =
{

ψ ∈ C∗ = C([0, 1], R2) :
dψ

ds
∈ C∗; D

dψ

ds
= −Lψ

}
.

Applying the formal adjoint theory in [8], we decompose C by Λ as C = P ⊕ Q, where
P = span{Φ(θ)} and choose a basis Ψ for the adjoint space P∗, such that 〈Ψ, Φ〉 = 1, where
〈·, ·〉 is the bilinear form on C∗ × C defined by

(ψ, φ) = ψ̄(0)φ(0)−
∫ 0

−1
d
[∫ θ

0
ψ̄(θ − α)d[µ(α)]

]
φ(θ)−

∫ 0

−1

∫ θ

0
ψ̄(ξ − θ)d[η(0, θ)]φ(ξ)dξ.

Let q ∈ C and q∗ ∈ C∗ be the eigenvectors of A(0) and A∗ corresponding to eigenvalues iωτ̄

and −iωτ̄, respectively. Then we have

q(θ) = (1, q2)
Teiωτ̄θ , θ ∈ [−1, 0],

q∗(s) = D(1, q∗2)e
iωτ̄s, s ∈ [0, 1],

where

q2 =
iω
αu∗

, q∗2 =
iω
cv∗

, D =
1

1 + q̄∗2q2 + τ̄q̄∗2q2a1e−µ0τe−iωτ̄ + q̄∗2q2b2e−µ0τe−iωτ̄
.

Using a computation process similar to [10], we compute the center manifold C0 at µ = 0.
Define

z(t) = 〈q∗, ut〉, w(t, θ) = ut(θ)− 2 Re{z(t)q(θ)}.

On the center manifold C0 we have w(t, θ) = w(z(t), z̄(t), θ), where

w(z(t), z̄(t), θ) = w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2
+ · · · ,

z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Notice that
w is real if ut is real.
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For solution ut in C0 of Eq. (3.1), since µ = 0,

ż(t) = iωτ̄z + 〈q∗(θ), f (w + 2Re{z(t)q(θ)})〉
= iωτ̄z + q̄∗ f (w(z, z̄, 0) + 2Re{z(t)q(0)})
= iωτ̄z + q̄∗ f0(z, z̄),

(3.3)

with f0(z, z̄) = fz2
z2

2 + fzz̄zz̄+ fz̄2
z̄2

2 + fz2 z̄
z2 z̄
2 + · · · . Eq. (3.3) can be rewritten in the abbreviated

form as
ż(t) = iωτ̄z(t) + g(z, z̄), (3.4)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · . (3.5)

By (3.2) and (3.4), we have

ẇ = Ẋt − żq− ˙̄zq̄

=

{
Aw− 2 Re{q̄∗(0) f0q(θ)}, θ ∈ [−1, 0),

Aw− 2 Re{q̄∗(0) f0q(0)}+ f0, θ = 0,
def
= Aw + H(z, z̄, θ),

(3.6)

where H(z, z̄, θ) = H20(θ)
z2

2 + H11(θ)zz̄ + H02(θ)
z̄2

2 + · · · . Comparing the coefficients, we
obtain

(A− 2iωτ̄ I)w20(θ) = −H20(θ), Aw11(θ) = −H11(θ), . . .

Note that

q∗(0) = D(1, q∗2), u(t) = z + z̄ + w(1)(z, z̄, 0),

v(t) = q2z + q̄2z̄ + w(2)(z, z̄, 0),

v(t− 1) = q2e−iωτ̄z + q̄2eiωτ̄ z̄ + w(2)(z, z̄,−1)

where

w(1)(z, z̄, 0) = w(1)
20 (0)

z2

2
+ w(1)

11 (0)zz̄ + w(1)
02 (0)

z̄2

2
+ · · · ,

w(2)(z, z̄, 0) = w(2)
20 (0)

z2

2
+ w(2)

11 (0)zz̄ + w(2)
02 (0)

z̄2

2
+ · · · ,

w(2)(z, z̄,−1) = w(2)
20 (−1)

z2

2
+ w(2)

11 (−1)zz̄ + w(2)
02 (−1)

z̄2

2
+ · · · .

Comparing the coefficients with Eq. (3.5), we have

g20 = 2Dτ̄
[
(α− q̄∗2c)q2 + q̄∗2q2

2b1βe−βv∗e−µ0τ(βv∗/2− 1)e−2iωτ̄
]
,

g11 = Dτ̄
[
(α− q̄∗2c)(q2 + q̄2) + 2q̄∗2q2q̄2b1βe−βv∗e−µ0τ(βv∗/2− 1)

]
,

g02 = 2Dτ̄
[
(α− q̄∗2c)q̄2 + q̄∗2 q̄2

2b1βe−βv∗e−µ0τ(βv∗/2− 1)e2iωτ̄
]
,

g21 = 2Dτ̄

[
(α− q̄∗2c)(w(1)

20 (0)
q̄2

2
+

w(2)
20 (0)

2
+ w(2)

11 (0) + w(1)
11 (0)q2)

+ q̄∗2b1βe−βv∗e−µ0τ
[
(βv∗/2− 1)(2q2w(2)

11 (−1)e−iωτ̄ + q̄2w(2)
20 (−1)eiωτ̄)

+ (β/2− β2v∗/6)3q2
2q̄2e−iωτ̄

]]
.
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We need to calculate w20(θ) and w11(θ). By (3.6), we have

w20(θ) =
−g20

iωτ̄
q(0)eiωτ̄θ − ḡ02

3iωτ̄
q̄(0)e−iωτ̄θ + E1e2iωτ̄θ ,

w11(θ) =
g11

iωτ̄
q(0)eiωτ̄θ − ḡ11

iωτ̄
q̄(0)e−iωτ̄θ + E2,

where

E1 = (2iωτ̄ Id2×2 + 2iωτ̄D1 − τ̄B1 − τ̄B2e−2iωτ̄)−1 fz2 ,

E2 = −τ̄−1(B1 + B2)
−1 fzz̄,

and

fz2 = 2τ̄(αq2,−cq2 + q2
2b1βe−βv∗e−µ0τ(βv∗/2− 1)e−2iωτ̄)T,

fzz̄ = τ̄(α(q2 + q̄2),−c(q2 + q̄2) + 2q2q̄2b1βe−βv∗e−µ0τ(βv∗/2− 1))T.

Consequently, g21 could be expressed explicitly. Denote

c1(0) =
i

2wτ̄

(
g11g20 − 2|g11|2 −

|g02|2
3

)
+

g21

2
,

µ2 = − Re(c1(0))
Re(λ′(τ̄))

,

β2 = 2 Re(c1(0)).

According to the general results from [20], we have the following conclusion.

Theorem 3.1. µ2 determines the direction of Hopf bifurcation: if µ2 > 0 (< 0), then the bifurcat-
ing periodic solutions are forward (backward); β2 determines the stability of the bifurcation periodic
solutions: the bifurcation periodic solutions are orbitally stable (unstable) on the center manifold if
β2 < 0 (> 0).

4 Numerical simulation

In this section, we shall carry out the numerical simulation on system (1.3). We choose

µ0 = 0.035, µ1 = 0.03, d1 = 0.2, b1 = 5, b2 = 0.5, α = 0.015, β = 0.3, c = 0.2.

For this set of parameter values, we observe that (H1) and (H2) hold, and τmax = 36.2195.
The condition 0 ≤ τ < τmax is used to guarantee the existence of positive equilibrium E∗. In
particular, τmax > 0 means the birth rate of the prey population is far greater than the death
rate of the adults based on the biological mechanism. The conditions (H1) and (H2) hold in
the case of τ ∈ [0, τmax), which provides a possibility for periodic oscillation of system (1.3).
According to Theorem 2.6, we know m = 1, the graph of S0 versus τ shown in Figure 4.1.
One can find that S0 has two zeros, the first at the value τ0 = 5.4792, the second at the value
τ1 = 39.1335 (τ1 > τmax), with S′0(τ0) > 0 and S′0(τ1) < 0. The rest functions S1, S2, . . . , have
no roots. Notice that τ̄ = τ0, λ′(τ̄) can be easily calculated by Lemma 2.5. According to the
expressions of c1(0), µ2 and β2 in Section 3, we get

c1(0) = −0.0787− 1.8163i, µ2 = 136.5534, β2 = −0.1574.
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By the results to Theorem 3.1, the bifurcating periodic solutions of system (1.3) are for-
ward since µ2 > 0. Besides, the bifurcation periodic solutions are orbitally stable since β2 < 0.
Therefore, when τ ∈ [0, τ0), the positive equilibrium (u∗, v∗) of Eq. (1.3) is asymptotically
stable; when τ ∈ (τ0, τmax), the positive equilibrium of Eq. (1.3) is unstable; when τ = τ0

or τ = τ1, Eq. (1.3) undergoes a Hopf bifurcation at the positive equilibrium. Furthermore,
according to Theorem 3.1, the Hopf bifurcation of Eq. (1.3) is supercritical, and the bifurcating
periodic solution is asymptotically stable (see Figure 4.2). When τ ∈ [0, 36.2195), the cor-
responding amplitude diagrams of the predator U and the prey V (see Figure 4.3) are also
given. We can find that when τ ∈ [0, τ0), the amplitudes of U and V are both zero. When
τ ∈ (τ0, τmax), it will increase gradually, then decrease secondly.
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Figure 4.1: The graph of functions S0, S1 and S2 for τ ∈ [0, τ̂).
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Figure 4.2: (a) The positive equilibrium of Eq. (1.3) is asymptotically stable
when τ = 3 < τ0. (b) A stable periodic solution bifurcating from the positive
equilibrium when τ = 7 > τ0.

Remark 4.1. The positive equilibrium E∗ exists when τ ∈ [0, 36.2195). With the increase of



Hopf bifurcation analysis in a neutral predator-prey model 11

0 5 10 15 20 25 30 36.2
0

0.5

1

1.5

τ

A
m

p
li
tu

d
e

 

 

U

0 5 10 15 20 25 30 36.2
0

10

20

30

40

τ

 

 

V

Figure 4.3: The amplitude of U and V when τ ∈ [0, 36.2195).

τ, the periodic orbit oscillates near the positive equilibrium in (U, V) plane. The boundary
equilibrium E1 exists when τ ∈ [0, 146.2569). When τ > 36.2195, the positive equilibrium
disappears and the amplitude periodic solution oscillates near E1. The numerical simulation
shows that the periodic solution will eventually oscillate periodically on the V-axis.

5 Conclusions

In this paper, we study a neutral predator-prey system with age structure in prey. Stability
and Hopf bifurcation results about the inner equilibrium are obtained. From the theoretical
analysis, one can find that neutral delay terms can alter the dynamics of the Lotka–Volterra
system significantly.
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