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Abstract  

 

Several studies applied numerical age determination methods to examine glacial phases of the 

central Balkan Peninsula. However, the resulting datasets are contradictory, meaning that further 

discussion is needed. This study provides 
10

Be cosmic ray exposure (CRE) ages of a succession of 

glacial landforms in the Jablanica Mt. (North Macedonia), aiming at a better understanding of Late 

Pleistocene glacier development in the area. On the basis of the mapped glacial landforms, six glacial 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 

stages were identified and their mean equilibrium line altitudes (ELAs) were estimated. The CRE ages 

of five glacial stages - from the second oldest to the youngest - were determined between 16.8
+0.8

/-0.5 

ka and 13.0
+0.4

/-0.9 ka. Accordingly, the most extensive glaciation in the Jablanica Mt. occurred before 

~17 ka. The average ELA of the glaciers was 179218 m a.s.l. during the largest ice extent, and 

209618 m during the last phase of the deglaciation.  

Independent reconstructions of key climatic drivers of glaciological mass balance suggest that 

glacial re-advances during the deglaciation were associated to cool summer temperatures before ~15 

ka. The last glacial stillstand apparently resulted from a modest drop in summer temperature coupled 

with increased winter snow accumulation. In the study area no geomorphological evidence for glacier 

advance after ~13
+0.4

/-0.9 ka could be found. On the basis of independent climate proxies we propose 

that the last glacier advance occurred no later than ~13 ka, and glaciers were withdrawing during the 

Younger Dryas when low temperatures were combined with dry winters. 

 

Keywords: cosmogenic nuclide, glacial geomorphology, paleoclimate, Mediterranean 

 

 

1. Introduction  

 

An impressive Alpine landscape characterizing the elevated terrains of the highest ranges on the 

Balkan Peninsula was already reported a century ago and interpreted as a result of Quaternary 

glaciations (Cvijiĉ, 1889, 1917). However, only some small glacierets or permanent firn patches are 

currently present in the highest ranges of the area (Gachev et al., 2016). 

Since the 19
th

 century, geomorphological studies in the currently unglaciated central Balkan 

Peninsula described extended glacial landforms and evidence for repeated glaciations (e.g., Menković 

et al., 2004; Milivojević et al., 2008; Djurović, 2009; Temovski et al., 2018). The most extended 

glaciers in the Balkan Peninsula formed in the Orjen, Durmitor and Prokletije Mountains (Hughes et 

al., 2010a, 2011, Hughes and Woodward, 2016) (Fig. 1A,B). The described ice caps in the coastal 
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ranges along the Adriatic Sea and the apparently limited extent of inland glaciations suggest that large 

ice-fields along the coastal ranges blocked the inland penetration of humid air masses from south to 

north, resulting in significantly drier conditions in the Balkan interior and in the Pannonian Basin 

compared to the coastal margin of the Balkan Peninsula (Hughes et al., 2010a). 

Existing geochronological studies provide limited insights in the chronology of the glaciations of 

the area. Determination of cosmic ray exposure (CRE) ages of glacial landforms was performed in the 

Šar Mts, (Kosovo-Macedonia; Kuhlemann et al., 2009), in the Rila Mts (Bulgaria; Kuhlemann et al., 

2013) and in the Pelister Mt. (Macedonia; Ribolini et al., 2017) using in situ-produced cosmogenic 

10
Be, in the Galiĉica Mt (Macedonia; Gromig et al., 2018), Veleţ and Crvanj Mts (Bosnia and 

Herzegovina; Ţebre et al., 2019) and in the Chelmos and Olympus Mountains (Greece, Pope et al., 

2017; Styllas et al., 2018) using in situ produced cosmogenic 
36

Cl. Minimum ages for moraine 

formation in limestone mountains of Montenegro and Greece are provided by U-series ages of the 

carbonate cement of the morainic material (Hughes et al., 2007, 2010, 2011).  

Considering the available numerical ages, repeated glaciations affected the region since the Middle 

Pleistocene (Hughes, 2010; Hughes et al., 2011) up to the Lateglacial (in this study the period between 

the Last Glacial Maximum (LGM) and the Holocene: ~18-11.7 ka) (Hughes, 2010; Ribolini et al., 

2017). The terminal moraines of the most extensive glaciations were considered as LGM in age (22.1 

± 4.3 ka in the Northern Hemisphere; Shakun and Carlson, 2010) in the central Balkan Peninsula 

(Kuhlemann et al., 2009, 2013), while they very likely were produced by pre-LGM glaciations along 

the Adriatic Coastal Ranges (Hughes et al., 2007, 2010, 2011).  As a further complication, a recent 

study on the Adriatic coast placed the largest glaciers to the Lateglacial (Ţebre et al., 2019). Such 

ambiguous data encourage further investigations. In this context, it is of key interest to constrain the 

chronology of the glacio-geomorphological evidence of Jablanica Mt. (Temovski et al., 2018) since 

this range is situated at the transition zone between these sub-regions of the Balkan Peninsula 

apparently characterized by distinct Late Pleistocene glacial history. Indeed, these quantified 

differences between the obtained glacial chronologies might be useful indicators of spatial and 

temporal paleoclimatic variability in SE Europe.  
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The present study aims at the age determination of the subsequent deglaciation phases of the 

Jablanica Mt. (North Macedonia; Fig. 1), including the locally largest and smallest glacier extents. 

Equilibrium line altitudes (ELAs) are estimated using the reconstructed glaciers for each phase. Based 

on the original data obtained, this study brings new information to the large puzzle of the Quaternary 

climate history of SE Europe. In addition, these new data will enable a better understanding of the 

climate pattern in the transition zone between the Mediterranean and Central European areas.  

 

2. The study area 

 

2.1. Geological and geomorphological setting 

 

Jablanica Mt. is a NNW-SSE oriented mountain range, located along the border between Albania 

and North Macedonia in the central part of the Balkan Peninsula (Fig. 1A,B). It belongs to the 

Dinaride-Hellenide mountain belt and is composed mostly of Mesozoic sediments overlying Paleozoic 

metamorphic rocks that are intruded by Jurassic mafic-ultramafic magmatic rocks, with foothills 

partly covered by Neogene sediments. Morphologically, Jablanica Mt is divided into three parts, of 

which the middle part is the highest (Crn Kamen, 2257 m), with a glacially sculptured plateau-like 

crest from which glacial valleys descend mostly eastward.  

Primary and secondary cirques were identified in the upper valley parts, which are usually wide 

and not well developed (Temovski et al., 2018). The glacial valleys are generally steep with several 

glacial steps and wide U-shaped cross-sections. This suggests that during the most extended glacial 

phases, the glacial erosion was most effective in the valleys closer to the former ELA (Barr and 

Spagnolo, 2015). Lateral moraines are the best preserved glacial accumulation landforms. Terminal 

moraines of the younger phases are well preserved, but those related to the older, more extended 

glaciations were mostly destroyed by subsequent fluvial erosion. 

The Jurassic conglomerate crops out only at the crest of the Jablanica Mt. (Fig. 1C). Further down-

valley, boulders of this lithology are erratic and prove the glacial origin of a sediment or landform 
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(Dumurdţanov and Ivanovski, 1978; Temovski et al., 2018). Glacial landforms are best preserved in 

the Vevĉani valley and are almost absent in the Pupuljak valley, the northern branch of the upper 

Labuništa valley, where the presence of Jurassic conglomerates in the cirque area is very limited (Fig. 

1C). Glacial sediments were mapped and classified into six chronostratigraphic members (Temovski 

et al., 2018). The deglaciation phases of this study were named after these chronostratigraphic units. 

The Vevĉani Member is best preserved in the Vevĉani valley at elevations of ~1100 m a.s.l. where 

large (meter-scale) boulders of Jurassic conglomerate are present on the valley side. In the other 

valleys, blockfields with large angular or subrounded conglomerate boulders are present at similar 

elevations, suggesting the former extent of the glaciers. The Vevĉani Phase is the most extensive 

glacial stage that could be mapped in the study area.  

Lateral moraines of the Kutel Member were mapped in the Vevĉani valley and the position of 

glacier terminations in all three valleys could be tentatively mapped using geomorphological indices 

like changes in valley slope, and shape. Remnants of the lateral moraines belonging to the Leništa 

member were mapped in all valleys, but locations of glacier terminations were estimated as for the 

previous phase. 

Moraines belonging to the subsequent Golina, Lokva and Lincura Phases are better preserved, with 

the highest moraines located at elevations of 2020-2070 m a.s.l. (Fig. 2). 
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Fig. 1. The study area. A. location of Macedonia; B location of the Jablanica Mt. (red rectangle). Mountain ranges 

mentioned in the text are shown by numbers: 1- Veleţ Mt., 2 – Crvanj Mt., 3 – Durmitor Mt., 4 – Orjen Mt., 5 – 

Prokletije Mt., 6 – Šar Mts, 7 – Rila Mts, 8 – Pelister Mt., 9 – Galiĉica Mt., 10 – Pindus Mt., 11 – Olympus Mt., 12 – 

Chelmos Mt. O – Ohrid Lake, P – Prespa Lake, M – Maliq Lake C. Main glacial-geomorphological features of the 

studied valleys with the distribution of glacial sediments (modified after Temovski et al., 2018). Green numbers 

indicate the locations of photos on Figure 2. 
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Fig.2. Typical landscapes in the upper part of the Pupuljak (A), Labuništa (B), Podgorci (C) and Vevĉani (D) valleys. 

Yellow dashed lines show moraine ridges, yellow triangles indicate the position of the sampled boulders. Bold text is 

the sample code and normal text is the exposure duration (ka). For position of the photos refer to Fig 1B. Plateau-like 

morphologies are visualized in above the Labuništa Lakes and to the northwest of the Podgorci Lake (B and C photos, 

respectively) 

 

2.2. Tectonic setting 
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The Jablanica Mt is located westward of the still actively developing Ohrid graben that initiated 

during the Late Miocene and hosts the 285 m deep Ohrid Lake (Lindhorst et al., 2015). It has uplifted, 

together with the Neogene deposits found along the footwall of the normal faults bounding it to the 

east, indicating faster uplift during the Pleistocene (Dumurdţanov et al., 2004). As there are no 

detailed studies on the uplift rates of Jablanica Mt, it is difficult to provide a reliable estimation of the 

uplift rate during the Quaternary. Earlier measurements of current uplift rates on Macedonian 

mountains report values of greater than 5 mm/a (Lilienberg, 1968), but those values appear to be 

overestimated. Valley incision rates obtained from dated cave deposits in terrains located at 

topographically much lower elevations and further to the east, in the Crna Reka drainage, range from 

0.96 mm/a over the last 83 ka to much lower values of 0.23 mm/a for base levels older than 350 ka 

(Temovski et al., 2016). At Menikio Mt. in NE Greece, an uplift rate of ~0.5 mm/a for the last 77 ka 

was estimated based on radiometrically dated cave levels (Pennos et al., 2019). Estimates on 

Quaternary uplift from Olympus Mt. provide uplift rates between 1.25 and 1.6 mm/a (Smith et al. 

1997, last 220-125 ka). Significantly higher uplift rates of more than 1.8 mm/a over the last ~300 ka 

were estimated for the Corinth Rift in Greece (Palyvos et al., 2007), albeit this area is located further 

to the south and in a tectonically more active area. Considering the available regional data, we 

consider an uplift rate of ~1 mm/a to be a reasonable estimation for Jablanica Mt. at least since the 

Last Pleistocene. 

 

3. Methodology 

 

3.1. Age determination using in-situ produced cosmogenic 
10

Be 

 

3.1.1. Sample collection 
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Fig. 3. Photos of sampled quartz veins on moraine boulders. Samples were taken from the inclined flat face of the boulders 

(gentle dip (A), steep (B)) Note that the exposure duration is not a function of the boulder size (large (C), small (D)) 

and neither of the appearance (massive (E); granular (F)) of the sampled quartz vein. The length of the red and white 

coloured sections on the tape is 20 cm.  

 

Samples were collected from quartz veins exposed on moraine boulders of Jurassic conglomerate 

using hammer and chisel and a battery-operated angle grinder. The sampled boulders were on or close 

to the crest of the moraine ridges. Their edges were angular or only slightly blunted. Due to the 

uncertainties inherent in CRE dating (Balco et al., 2011), we attempted to collect at least three 

samples per landform. However, the sampling possibilities were limited by the availability of proper 
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boulders with suitable quartz veins on their upper part. The quartz veins were mostly exposed by 

fracture surfaces parallel to the vein or by cut surfaces perpendicular to the vein. They were usually 

standing few cm above the conglomerate surface of the boulder and were frequently lichen covered 

(Fig. 3). The quartz veins were sampled on flat horizontal or inclined top surfaces of the boulders, 

with strike and dip data recorded (Table S1). Although some flaking of the quartz could not be 

excluded, the sampled quartz veins were considered to be representative of the exposure duration of 

the boulder. The sample position was measured by a hand-held GPS (Garmin eTrex 30). Strike and 

dip of the samples were measured using hand-held device (Suunto Tandem compass and clinometer). 

Sample positions and boulder size are presented in Table 1. 

Despite that Jurassic conglomerate boulders were observed down to 1100 m in all Vevĉani-, 

Podgorci and Labuništa valleys, sampling from all moraine generations was possible only in the 

Vevĉani valley due to the lack of suitable quartz veins on moraine boulders below ~1900 m a.s.l. in 

the Podgorci and Labuništa valleys. Moraines were better preserved in the northern part of the 

Podgorci cirque. However, the lack of suitable boulders hindered the sampling. The southern part of 

the cirque is covered by glacial sediments, but these have been entirely reworked by rock glaciers. The 

highest nested cirques of the Labuništa valley hosted small moraines and protalus ramparts with 

boulders suitable for 
10

Be exposure dating. However, no samples could be taken from between the 

Strižak and Pupuljak peaks due to the lack of Jurassic conglomerate and poorly preserved glacial 

landforms (Fig. 1B). 

 

 

Sample ID Latitude Longitude Elevation Thickness Boulder size (cm) 

   (°)  (°)  (m, a.s.l.)  (cm) length width height 

Ja-17-01 41.24642 20.52931 2040 2.5 170 105 45 

Ja-17-02 41.24637 20.52929 2047 2.0 510 290 170 

Ja-17-03 41.24623 20.52938 2043 1.0 120 95 100 

Ja-17-04 41.24515 20.53309 1985 1.7 540 500 180 
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Ja-17-05 41.24495 20.53343 1981 2.0 110 90 30 

Ja-17-06 41.23889 20.53345 2042 1.4 280 240 200 

Ja-17-07 41.24614 20.54216 1769 1.0 320 295 70 

Ja-17-08 41.2454 20.53955 1808 1.0 395 255 155 

Ja-17-09 41.24369 20.54015 1797 2.0 110 100 50 

Ja-17-10a 41.24455 20.54183 1781 0.5 255 180 150 

Ja-17-10b 41.24458 20.54189 1776 1.0 170 120 100 

Ja-17-11* 41.24648 20.54497 1737 0.6 270 (240) 210 (240) 110 (150) 

Ja-17-12 41.2466 20.54527 1729 1.3 220 140 105 

Ja-17-13 41.24544 20.55548 1543 0.9 900 480 280 

Ja-17-14a 41.24562 20.55622 1547 0.3 850 250 600 

Ja-17-14b 41.24575 20.55601 1548 0.2 500 500 320 

Ja-17-15 41.25518 20.51802 2027 0.6 230 180 130 

Ja-17-16 41.26883 20.52012 1904 2.2 190 160 110 

Ja-17-17 41.27422 20.51482 2040 1.3 260 170 120 

Ja-17-18 41.27422 20.51482 2040 3.0 140 130 100 

Ja-17-19 41.27396 20.51475 2045 0.7 160 165 100 

Ja-17-20 41.27348 20.51338 2069 1.1 170 170 80 

Ja-17-21 41.27308 20.51343 2080 0.7 240 160 110 

Ja-17-22 41.27121 20.51544 2037 1.5 250 110 50 

Ja-17-23 41.271 20.51554 2035 0.5 290 255 155 

Ja-17-24 41.27112 20.51553 2035 0.9 180 155 65 

Ja-17-25 41.24298 20.57626 1115 3.2 275 225 215 

 

Table 1. Sample data for cosmogenic 
10

Be exposure age determination. All samples were uncovered, except for Ja17-25. 

This boulder was covered by a 0.5 cm thick organic-rich soil, whose density was estimated at 0.9 g/cm
3
. In addition, 

we considered that it was present during half of the exposure duration of the block. * The sample represents the 

mixture of quartz from 2 adjacent boulders. For more sample data refer to Table S1. 

 

3.1.2. Laboratory procedures 

 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 

Sample processing was performed at the Cosmogenic Nuclide Sample Preparation Laboratory of 

the Institute for Geological and Geochemical Research (Budapest, Hungary). Samples were crushed 

and sieved, and grain size between 0.25-1.00 mm was used for age determination. Quartz was first 

separated using heavy liquids. Chemical sample processing followed the procedures of Merchel and 

Herpers (1999) and Merchel et al. (2019). The obtained 90-120 g quartz-enriched sample was 

chemically etched using HCl-H2SiF6. Pure quartz was dissolved in HF in the presence of 450 μg 
9
Be 

carrier (0.980 mg/g 
9
Be Scharlab Be standard solution BE0350100). After having substituted HF by 

HCl, ion exchange columns (Dowex 1x8 and 50Wx8) were used to extract 
10

Be (Merchel and 

Herpers, 1999). Purified BeO was mixed with Nb powder and targets were prepared for AMS 

(Accelerator Mass Spectrometry) measurement of their 
10

Be/
9
Be ratios at ASTER, the French national 

AMS facility located at CEREGE, Aix en Provence (Arnold et al., 2010). The beryllium 

measurements were calibrated against the ASTER in-house STD-11 standard (
10

Be/
9
Be = 

(1.191±0.013)×10
-11

), equivalent to NIST_27900 (Braucher et al., 2015). Analytical uncertainties 

(reported as 1) include uncertainties on AMS counting statistics, on the 
10

Be/
9
Be ratios of the 

standards and on the chemical blank measurements, an external AMS error of 0.5% (Arnold et al., 

2010) and the uncertainty of the half-life of 
10

Be. External uncertainties include the uncertainty of the 

production rate. 

 

3.1.3. Calculation of 
10

Be exposure durations 

 

10
Be exposure ages were calculated using the time-independent Lal (1991)/Stone (2000) scaling 

following the equation of Braucher et al., (2011) using a sea level high latitude 
10

Be production rate 

(PSLHL) of 4.01±0.33 at/gr/yr (Borchers et al., 2016) using the 1.387±0.012 Ma half-life of 
10

Be 

(Chmeleff et al., 2010; Korschinek et al., 2010). 

Site-specific production rates were corrected for topographic shielding and self-shielding. 

Topographic shielding was calculated using a 9 m resolution digital elevation model (DEM) in 

ArcGIS environment (Codilean, 2006; Li, 2013). The DEM was generated from the 5 m (2009) and 
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from the 20 m (2005) DEM model of the Agency for Real Estate and Cadastre of the Republic of 

Macedonia (Milevski et al., 2013).  

Production rates are also corrected for local denudation and uplift rate and snow cover throughout 

the calculations of CRE durations. Ignoring these factors introduces a bias of the ages (non-systematic 

in case of snow cover), and makes comparability of the exposure durations questionable. Accordingly, 

we consider that it is important to use best possible estimates of the snow cover, uplift and denudation 

in order to calculate the best estimate exposure age of the dated landforms. 

Snow-shielding was calculated based on snow thickness and duration of snow cover derived from a 

modelled values based on present day meteorological data (Milevski and Ristevski, 2018) (see details 

is Supplement 1.2 and Table S1). Production rates were not corrected for vegetation cover. 

The sampled surfaces exhibited no sign of considerable surface denudation. Rock surface 

denudation rate of 1 mm/ka was considered as an intermediate estimate between 3 mm/ka suggested 

for granitic boulders (Ivy-Ochs et al., 2004) and 0.2 mm/ka value suggested for homogeneous 

crystalline rocks (André, 2002) in mid-latitude Alpine environment. An uplift rate of 1 mm/a was 

considered as the best estimate of vertical deformation of the area (see section 2.2).  

More details on the theory and technical details of age determination and parameters used 

throughout this study are described in Supplement 1.1 and 1.2. Sample parameters and calculated 
10

Be 

production scaling factors appear in Table S1. 

For a comparison, all CRE durations were calculated using the time dependent Lal/Stone scaling 

(Lm; Balco et al., 2008) and the Lifton-Sato-Dunai scaling models (LSD) and its nuclide dependent 

version (LSDn; Lifton et al., 2014), using three online calculators: the Cosmic Ray Exposure Program 

(CREp; Martin et al., 2017), the Cronus-Earth online calculator version 3 (CronusV3; Balco et al., 

2008) and the Cronus-Earth Web Calculator version 2.0 (CronusWeb; Marrero et al., 2016). All 

calculators were set to use the most recent calibration dataset and the ERA-40 atmosphere model, and 

the Geomagnetic database of Lifton et al. (2014 or 2016; for more details refer to the Tables S3A-C). 

All calculators were accessed in July 2019. 
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Previously published 
10

Be exposure ages from Šar and Rila Mts (Kuhlemann et al., 2009, 2013) 

and Pelister Mt. (Ribolini et al., 2017) were re-calculated applying the same scaling scheme and 

reference production rate, as those applied for the calculation of CRE durations of samples from the 

Jablanica Mt., for maximum comparability. For details refer to Supplement 1.3 and Table S4. 

 

3.1.4. Calculation of the most probable age of deglaciation phases 

 

Individual CRE durations were grouped according to the mapped morphostratigraphical units 

(Temovski et al., 2018) (Fig. 1B, 4). Where several samples belong to a group the coherence of their 

estimated CRE age was tested using the reduced 
2
 test (Ward and Wilson, 1978). This method 

enables the identification of outliers until the examined group of data contains only CRE durations 

that are not significantly different considering associated 1 uncertainties (68% confidence interval). 

The CRE age groups that satisfied the reduced 
2
 test were analysed using cumulative probability 

distribution function (PDF) plots (or camelplots) of the sum of the individual Gaussian distributions 

(―Camelplot‖ MATLAB code; Balco, 2009). This method was applied to provide the most probable 

CRE age of the landform and to quantify the scatter of individual CRE durations of the boulders. The 

10
Be exposure ages of the moraine stabilization correspond to the most probable values of the studied 

distributions and the associated uncertainties to the 68% confidence interval (±1σ) of each PDF plot. 

 

 

3.2. Glacier reconstruction and calculation of the equilibrium-line altitudes (ELAs)  

 

Former glaciers were reconstructed based on the previously mapped glacial landforms and 

sediments (Temovski et al., 2018). Where glacial landforms were fragmentary or missing (especially 

terminal moraines), the estimated position of glacier terminations relied on the valley topography and 

extent of glacial sediments. The glacier thickness was estimated using a semi-automated GIS-based 

method (GlaRe, Pellitero et al., 2016), using the 9 m Digital Elevation Model (DEM) of the study area 
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(Milevski et al., 2013). The GlaRe toolbox generates the ice thickness from the modern bed 

topography applying physical laws of ice flow along a user defined flowline (Benn and Hulton, 2010). 

The glacier thickness can be adjusted to geomorphic markers by varying the basal shear stress value 

(τb). The most accepted values of the τb vary within the ~50-150 kPa range with possible increase to 

190 kPa (Nye, 1952; Weertman, 1971; Vieira, 2008). In this study, glacier thickness was tuned by τb 

values of 160 kPa for the most extended phase and down to 30 kPa for the smallest glaciers (Table 

S5). 

In order to best reproduce their surface morphology, the glaciers were reconstructed using a 

combination of the manual and semi-automated methods (Zasadni and Kłapyta, 2014). The glacier 

thickness along the flowline calculated by the GlaRe toolbox was extended manually to the valley 

sides taking into account their typical, slightly concave and slightly convex shape above and below 

the ELA, respectively (Sissons, 1974).  

The reconstructed glaciers were used for the calculation of the former ELAs by means of the ELA 

Calculation toolbox (Pellitero et al., 2015) and applying the accumulation-ablation balance ratio 

(AABR) method. This  method relies on the accumulation and ablation gradients of the reconstructed 

glacier. The balance ratio of 1.6, the best fitting value for the current conditions in the European Alps 

(Rea, 2009), was adopted for this study, assuming as potentially representative for the glaciated 

Jablanica Mt. The paleo-ELAs estimated by AABR method enable regional comparisons with other 

studies, where the same ELA calculation method was applied. 

 

4. Results 

 

4.1. Results of Cosmic Ray Exposure dating and outlier identification 

 

The measured 
10

Be concentrations ranged from (100.9±3.6)10
3
 at/grSiO2

 to (447.3±12.7) 

10
3
 at/grSiO2

 with one exceptionally high value at (1 271.2±30.8)10
3
 at/grSiO2

. The calculated CRE 
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durations with corrections for surface denudation, uplift and snow shielding are considered as the 

best estimates of the exposure age of the dated landforms. In the following these ages will be 

discussed, and those calculated with no corrections are shown in Tables 2 and S2. 

The calculated CRE ages varied between 8.2±0.2 ka and 95.4±2.4 ka (Table 2). Most of the 25 

CREdurations were between 17.4±0.4 ka and 12.0±0.4 ka, two samples leading to significantly 

younger and two others to significantly older exposure ages. The underestimated CRE durations are 

probably due to unnoticed chipping of the quartz veins, or boulder toppling after moraine 

stabilization (Ja17-18 and -25). Unfortunately, the single sample representing the most extended 

glacial stage (Vevĉani Phase) must be considered as a young outlier regarding its 

morphostratigraphic position (Table 2, Figs. 1C, 4). 

The significantly older CRE ages of Ja17-09 and Ja17-24 compared to the relevant set of CRE 

results suggest the presence of inherited cosmogenic 
10

Be nuclides (Table 2). These samples were 

omitted from the age determination of deglaciation phases.  

Three samples (Ja17-13, -14A, -14B) were taken from large boulders of the lateral moraine of the 

second largest glacial phase (Kutel Phase) in the Vevĉani valley providing 
10

Be exposure durations 

between 17.4±0.5 ka and 16.6±0.5 ka (Figs. 3, 4)  

Four boulders were sampled on the well-preserved lateral moraine interpreted as the subsequent 

deglaciation phase (Leništa Phase, Ja17-07, -08, -11, -12). Three CRE durations are clustered in the 

range from 16.5±0.6 ka to 15.8±0.5 ka while one boulder leads to a significantly younger exposure 

age (Ja17-07; 12.8±0.4 ka). It is subsequently considered as an outlier.  

In the Vevĉani valley, the next deglaciation phase (Golina Phase) is represented by a well-

expressed moraine ridge, interpreted as a medial moraine. The left lateral moraine of this phase has 

apparently been merged with the lateral moraine of the previous phase (Fig. 4). Two samples from 

two adjacent boulders at the lower end of the medial moraine (Ja17-10A,-10B) that could be used to 

constrain its stabilization age lead to CRE durations of 16.4±0.5 ka and 15.1±0.5 ka.  

Based on their morphostratigraphic position the terminal moraines of two small nested cirques 

(~2040 m a.s.l.) in the Labuništa valley (Pupuljak valley; Figs. 2A, 4) were assigned to the last 
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deglaciation stage (Temovski et al., 2018). The determined CRE durations argue against this 

preliminary geomorphological classification. Four out of six samples taken on these moraines (Ja17-

17, -19, -22, -23) provide 
10

Be CRE ages between 16.7±0.6 ka and 14.9±0.5 ka, corresponding to the 

age range of the Golina Phase and Lenista Phases in the Vevĉani valley.  

The type locality of the Lokva Member is the frontal moraine at the Vevĉani Lake at 1980 m a.s.l 

(Figs. 2D, 4) Two samples (Ja17-04, -05) taken from this landform lead to CRE durations of 

13.9±0.4 ka and 14.0±0.4 ka, respectively.  

At the Lower Labuništa Lake (~1930 m) a single boulder (Ja17-16) from the lower part of the 

frontal slope of the terminal moraine yield a CRE duration of 13.8±0.4 ka (Figs. 2B, 4). 

In the nested cirques of the Vevĉani and Podgorci valleys, the 
10

Be exposure data quantified the 

stabilization age of the moraines between 13.2±0.4 ka and 12.0±0.4 ka (~2030-2050 m a.s.l.; Ja17-01, 

-02, -03, -06, -15), that is during to the youngest Lincura Phase. In the Labuništa valley, two samples 

from a protalus rampart (Ja17-20, -21, ~2075 m a.s.l.) lead to similar ages (Figs. 2A, D, 4, Table 2). 

 

  

Exposure duration 

(ka) 

Exposure duration  

(ka) 

 

Sample ID 

10
Be concentration (at/grSiO

2
) 

(Blank corrected) 

No correction 

Corrected for surface 

denudation (1 mm/ka) 

and uplift (1 mm/ka) 

and snow shielding 

Morpho-

stratigraphy 

Ja-17-01 233476  ± 7150 12.8 ± 0.4 (1.1) 13.2 ± 0.4 (1.2) Lincura 

Ja-17-02 214622  ± 6173 11.7 ± 0.3 (1.3) 12.0 ± 0.4 (1) Lincura 

Ja-17-03 219295  ± 7252 12.4 ± 0.4 (1.4) 12.8 ± 0.4 (1.1) Lincura 

Ja-17-04 244929  ± 7446 13.6 ± 0.4 (1.5) 13.9 ± 0.4 (1.2) Lokva 

Ja-17-05 229200  ± 6943 13.5 ± 0.4 (1.5) 14.0 ± 0.4 (1.2) Lokva 

Ja-17-06 238800  ± 6992 12.9 ± 0.4 (1.4) 13.2 ± 0.4 (1.2) Lincura 

Ja-17-07 191568  ± 5896 12.4 ± 0.4 (1.4) 12.8 ± 0.4 (1.1) Leništa 

Ja-17-08 199817  ± 5870 15.4 ± 0.5 (1.7) 15.8 ± 0.5 (1.4) Leništa 
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Ja-17-09 1271173  ± 30762 83.4 ± 2.0 (9.2) 95.4 ± 2.4 (8.2) Golina 

Ja-17-10a 242114  ± 6779 15.8 ± 0.4 (1.7) 16.4 ± 0.5 (1.4) Golina 

Ja-17-10b 222602  ± 6689 14.7 ± 0.4 (1.6) 15.1 ± 0.5 (1.3) Golina 

Ja-17-11* 239779  ± 7966 16.0 ± 0.5 (1.8) 16.5 ± 0.6 (1.5) Leništa 

Ja-17-12 225509  ± 6279 15.9 ± 0.4 (1.8) 16.4 ± 0.5 (1.4) Leništa 

Ja-17-13 182311  ± 5611 16.3 ± 0.5 (1.8) 16.7 ± 0.5 (1.5) Kutel 

Ja-17-14a 202431  ± 5730 16.9 ± 0.5 (1.9) 17.4 ± 0.5 (1.5) Kutel 

Ja-17-14b 196330  ± 5776 16.0 ± 0.5 (1.8) 16.6 ± 0.5 (1.5) Kutel 

Ja-17-15 204462  ± 6096 12.1 ± 0.4 (1.3) 12.5 ± 0.4 (1.1) Lincura 

Ja-17-16 194776  ± 6072 13.2 ± 0.4 (1.5) 13.8 ± 0.4 (1.2) Lokva 

Ja-17-17 298875  ± 10957 16.0 ± 0.6 (1.8) 16.7 ± 0.6 (1.5) Golina 

Ja-17-18 147582  ± 4904 8.0 ± 0.3 (0.9) 8.3 ± 0.3 (0.7) Golina 

Ja-17-19 248427  ± 6606 14.8 ± 0.4 (1.6) 15.4 ± 0.4 (1.3) Golina 

Ja-17-20 235657  ± 7877 12.6 ± 0.4 (1.4) 13.1 ± 0.4 (1.2) Lincura 

Ja-17-21 238539  ± 7028 12.7 ± 0.4 (1.4) 13.2 ± 0.4 (1.2) Lincura 

Ja-17-22 267907  ± 8108 14.7 ± 0.4 (1.6) 15.3 ± 0.5 (1.3) Golina 

Ja-17-23 246606  ± 8656 14.4 ± 0.5 (1.6) 14.9 ± 0.5 (1.3) Golina 

Ja-17-24 447312  ± 12696 25.0 ± 0.7 (2.8) 26.5 ± 0.8 (2.3) Golina 

Ja-17-25 100927  ± 3578 11.2 ± 0.4 (1.2) 11.4 ± 0.4 (1) Vevĉani 

 

Table 2. Measured 
10

Be concentrations and calculated surface exposure durations. Outliers are shown 

in italic. The measured AMS ratios were corrected for full processed blank ratios: (2.03±0.15)10
-

14
 for samples Ja17-01 to -09; (3.86±0.49)10

-15
 for samples Ja17-10a to -16 and (3.41±0.39)10

-15
 

for samples Ja17-17 to -25. Age uncertainties: the 1
st
 number is the analytical and half-life 

uncertainty (1) and the 2
nd

 number (in parenthesis) includes the uncertainty of the reference 

production rate. For more cosmogenic nuclide data refer to Table S2. 
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Fig.4. Glacial landforms of the middle part of the Jablanica Mt. 
10

Be exposure durations and sample sites. CRE durations 

in white boxes were accepted, and those with grey shadow were omitted from further interpretation of the deglaciation 

of the study area as outliers.  

 

4.1.1. Cosmic Ray Exposure age estimates using online calculators and time dependent scaling 

models  

 

Using the time dependent Stone scaling (Lm) the online calculators provided 1% older (CREp, 

Table S3c) to 3% younger (CronusV3, Table S3a) exposure durations on average, compared to the 

values calculated using the time independent Lal/stone scaling and eq.(1) of Braucher et al. (2011) as 

described in Section 3.1.3 (Tables 2, S2). Estimations using the LSD scaling provided 2-4% older 

exposure age on average (CREp and CronusWeb, Table S3c,b). Exposure durations using the LSDn 
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scaling scheme were 1% younger (CronusV3, Table S3a) or 4% older (CronusWeb, Table S3b) on 

average, compared to our calculations. When exposure durations were calculated using the time-

invariant Lal/Stone scaling, the difference between our estimates and the calculators‘ remained under 

1% (CronusV3; CronusWeb; Tables S3a,b). As these results remain within uncertainties the exposure 

ages calculated following Braucher et al. (2011) and using the time independent Lal/Stone scaling are 

discussed in this study (Table 2) 

 

4.2. Recalculated 
10

Be exposure ages of glacial landforms in the central Balkan Peninsula 

 

The recalculated CRE ages of the Pelister Mt. resulted to be 2-4% older, those of the Šar Mts 6-

15% older compared to the ages in the original studies. For the Rila Mts (Bulgaria), the recalculated 

10
Be exposure ages resulted to be 2-14% older than the originally published values (Table S4). 

However, the applicability of the datasets from the Šar and Rila Mts (Kuhlemann et al., 2009; 

2013) for a regional comparison is limited due to the poorly described geomorphological settings and 

large age discrepancies within the datasets. Therefore from the Šar Mts only the recalculated CRE age 

of 22.1 1.6 ka (Table S4) corresponding to the sample S11 of the most extended glacial phase is used 

for further discussion in this study.  

The unusually high uncertainties (13-44%) of the measured 
10

Be concentrations of the dataset from 

the Rila Mts and poorly documented geomorphological setting of the dated landforms allows only 

tentative conclusions to be drawn. The recalculated dataset suggests that the most extended glacial 

phase occurred between 24.68.1 ka and 16.94.4 ka, thus it can be attributed most probably to the 

LGM. 

 

4.3. Glacier reconstruction and ELAs 

 

In the following, a brief summary of the most important parameters for the glacier reconstruction 

are provided. At some locations, the preliminary morphostratigraphic classification of the moraines 
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based on geomorphic position and stratigraphy (Temovski et al., 2018) had to be modified in the light 

of the obtained CRE exposure durations. Apparently, the glaciers in the Labuništa valley were 

shrinking more rapidly than those of the Podgorci and Vevĉani valleys. In the Pupuljak valley glaciers 

retreated to their cirques already during the Golina Phase (~15 ka) while in the other valleys such a 

retreat occurred with1-2 thousand yearsdelay. These diachronous ages of the moraines of the cirque 

glaciers could not have been revealed based on geomorphological and sedimentological observations. 

Glaciers in the studied valleys of the central Jablanica Mt. reached their maximum extent, down to 

~1100 m a.s.l. during the Vevĉani Phase. The reconstructed glacier systems occupied an area of 20.7 

km
2
, the longest glacier in the Labuništa system being of 8.7 km long. The estimated ELAs at this 

phase varied between 1786 m and 1812 m, averaging at 1792 m (all elevations are above sea level) 

(Fig. 5A, Table S5). 

The area covered by glaciers shrank to 12.4 km
2
 by the subsequent Kutel Phase, with a maximum 

glacier length being 4.2 km. The former large glacier systems were disintegrated into smaller glaciers. 

The calculated ELAs of the reconstructed glaciers varied between 1908 and 1931 m, with a mean 

ELA of 1918 m (Fig. 5B, Table S5). 
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Fig. 5. Reconstructed glaciers and probability density distributions of CRE ages relevant for each glacial phase. (A) 

Vevĉani Phase, (B) Kutel Phase, (C) Leništa Phase, (D) Golina Phase, (E) Lokva Phase, (F) Lincura Phase. The red 

lines on the reconstructed glaciers indicate the contour line corresponding to the estimated ELAs. Most probable 
10

Be 
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exposure ages are presented on the camelplots. The calculated mean ELAs (using AABR 1.6) are plotted under the 

camelplots. The red dots indicate the sample sites. The legend for the glacial landforms as in Fig. 4. Note that the light 

to dark blue colouring of the glaciers is just for better visualization, the colours do not indicate a specific elevation. 

 

The fast retreat of the glaciers continued and the glacier surface during the Leništa Phase was 

reduced to 5.6 km
2
. Seven glaciers were present in the studied valleys during this phase, among which 

the largest was 2.5 km long. The mean ELA was 1983 m, with ELAs of the individual valleys varying 

between 1948 m and 2035 m (Fig. 5C, Table S5). 

During the Golina and Lokva Phases, glaciers occupied an area of 3.2 and 1.3 km
2
, respectively. 

Some glaciers have disappeared and others were further divided during these stages. Seven glaciers 

were present in the Golina Phase with a maximum length of 1.64 km. The largest among the six 

glaciers of the Lokva Phase was 0.97 km long. The mean ELA of the Golina Phase was 2054 m, with 

ELAs between 2003 m and 2104 m. The ELAs varied between 2050 and 2078 during the Lokva 

Phase, averaging at 2065 m (Fig. 5D,E, Table S5).  

During the Lincura Phase, glaciers on the northern part of the study area have disappeared, or were 

tiny ice masses retreated to the nested cirques. Their area was only 0.5 km
2
, and their length did not 

exceed 0.54 km. The calculated ELAs vary between 2077 m and 2121 m, with a mean of 2096 m (Fig. 

5F, Table S5).  

 

 

5. Discussion 

 

5.1. Last deglaciation of the central Jablanica Mt. in the light of the regional data 

 

5.1.1. The most extensive glaciation 
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Glaciers of the central Jablanica Mt. reached their maximum extent during the Vevĉani Phase (Fig. 

5A). Unfortunately, the single boulder that could be sampled at its termination in the Vevĉani valley 

(~1100 m a.s.l.) led to an anomalously young age. However, the morphostratigraphic position under 

the moraines of the subsequent Kutel Phase allowed to assign a minimum age of ~17 ka for this stage. 

Based on a preliminary evaluation of the regional paleo-ELA pattern, a MIS 6 age was proposed for 

the Vevĉani Phase (Temovski et al., 2018) because its ELA estimate of 1792±18 m a.s.l. is close to 

the ELA values calculated for MIS 6 in the Durmitor (1784 m, Hughes et al., 2011) and Prokletije Mts 

(1750 m, Milivojević et al., 2008). 

However, the ~1792 m ELA of the Vevĉani Phase is between the values published for the coastal 

and inland areas for the LGM. The lowest LGM ELA of 1456 m was reported in the coastal Orjen Mt. 

(Hughes et al., 2010a), which like today probably received the largest amount of precipitation. For the 

inner ranges, the LGM ELA was estimated between 1942 m (Prokletije Mts, Milivojević et al., 2008) 

and ~2200 m a.s.l. (Rila Mt., Kuhlemann et al., 2013). These ranges are located at a distance from the 

coast comparable to that of Jablanica Mt. Accordingly; on the one hand, the lower ELA estimated for 

the Vevĉani Phase could be used to argue for its older, MIS 6 age. On the other hand, the validity of 

this link based solely on ELA estimates is questionable for at least two reasons: (1) the ELAs can be 

highly variable in space, even at a local scale (Boxleitner et al., 2019) and (2) in several cases the 

geochronological constraints of the glaciations are weakly defined (geomorphological considerations 

only (e.g., Prokletije Mt, Milivojević et al., 2008), CRE duration from a single boulder on a single 

landform extrapolated to the entire range (Šar Mts, Kuhlemann et al., 2009), poorly constrained 

chronostratigraphic framework (Šar, Rila Mts Kuhlemann et al., 2009, 2013). These shortcomings 

make glacier age estimation based merely on calculated ELAs problematic. Additionally, the diverse 

ELA calculation methods (mostly AAR and AABR) used by the cited studies, may increase the scatter 

of the reported ELAs. Nevertheless, while the chronology of the glacier advances is weakly 

constrained, the uncertainties introduced by the different ELA calculation methods remain of 

secondary importance, and thus are not accounted for in this study.  
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Based on previous studies, the timing of the maximum ice extent in and around the central Balkan 

Peninsula is widely variable. The oldest estimates place the largest glaciers to MIS 12 (Pindus, Orjen, 

Durmitor Mts; U-Th dating; Hughes et al., 2007, 2010, 2011) with the lowest ELA estimates at the 

Adriatic coast, in the Orjen (1256 m; a.s.l), and somewhat higher values were estimated in the 

Durmitor (1607 m) and Pindus (1741 m) mountains. The maximum ice extent was attributed to the 

MIS 8 in the Olympus Mt. (U-Th dating; Smith et al., 2006) and to MIS 4 in the Prokletije Mt. 

(geomorphological mapping; Milivojević et al., 2008). Other studies suggested that glaciers reached 

their maximum extent during the LGM (Šar, Rila; Mts; 
10

Be exposure dating; Kuhlemann et al., 2009, 

2013).  

The geochemical data from the Pleistocene sedimentary sequence of Ohrid Lake imply that more 

severe glacial conditions prevailed in the catchment of the lake during MIS 16, 12, 10 and 6 compared 

to MIS 2 (Francke et al., 2016). Therefore, it still remains an open question whether MIS 2 (LGM) 

was the most extensive glaciation in the central Balkan Peninsula (Kuhlemann et al., 2009, 2013), or 

MIS 6 or older glaciations, as reported along the western coast of the peninsula (Pindus, Orjen, 

Durmitor Mts). 

Two geomorphological arguments might support the LGM age of the most extensive glaciation 

(Vevĉani Phase) in the Jablanica Mt.: (1) An LGM glacier advance was reported in studies, which 

proposed to assign the largest phase to Middle Pleistocene glaciations (Hughes et al., 2007, 2010, 

2011). Therefore, an LGM glacier advance most probably occurred in the Jablanica Mt. as well. If the 

Vevĉani Member belonged to MIS 4 or an older glaciation, there would be no space left for an LGM 

glacier advance (Fig. 5A,B). (2) The limited number and extent of mapped glacial features of the 

second largest Kutel Phase suggest that postglacial denudation has efficiently destroyed the majority 

of the glacial landforms over the last ~17 ka. Accordingly, it is highly probable that remnants of 

glacial landforms at ~1100 m a.s.l. in the narrow lower valleys of the Jablanica Mt. would have been 

completely destroyed if exposed to erosion for several tens of thousands of years.  

Nevertheless, despite that apparently no geomorphological evidence of past glaciers overriding the 

moraines of the Vevĉani Phase was preserved in the Jablanica Mt., it is possible that glaciers of pre-
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LGM glaciations had a similar or larger maximum extent compared to the ice streams of the Vevĉani 

Phase. Conversely, it cannot be excluded that moraines of the Vevĉani Phase are older than LGM. In 

this case, LGM moraines must have been overridden by glaciers of the Kutel Phase and therefore are 

absent from the current geomorphological record.  

Finally, it is worth mentioning that the locally largest ice extent of the nearby Veleţ and Crvanj 

Mts in the southeastern part of the coastal Dinarides was dated at 14.9 ± 1.1 ka and 11.9 ± 0.9 ka, 

respectively (
36

Cl exposure dating; Ţebre et al., 2019). Their estimated ELAs were among the lowest 

reported values: 1388 m and 1541 m, respectively. The recalculation of these 
36

Cl ages using the 
36

Cl 

production rate by spallation of Ca from the calibration site at Mt Etna (Schimmelpfennig et al., 2011) 

would result in ~10% older ages. These relatively young ages (even if recalculated) for the maximum 

ice extent are unusual in the region and cannot be synchronized neither with the deglaciation stages of 

the Jablanica Mt., or with any other regional record. 

 

 

5.1.2. Glacier retreat during the first part of the Lateglacial 

 

The most probable CRE age of the second largest, Kutel Phase is 16.8
+0.8

/-0.5 ka and the moraines 

belonging to the subsequent Leništa Phase stabilized at 16.3
+0.6

/-0.6 ka (Fig. 5B, C). These glacial 

phases of the Jablanica Mt. may correspond to the colder glacial conditions during the late Greenland 

Stadial 2 (GS-2; Fig.6. A, B). A glacial stage corresponding to the Kutel Phase is currently not known 

from the surrounding mountains, however, extensive glaciation phases reported from the Iberian 

mountains show remarkable coincidence (Palacios et al., 2017).  

The PDF curve of the CRE ages of moraines assigned to the Golina Phase shows a bimodal pattern 

(Fig. 5D). Therefore, the samples belonging to the two peaks were treated separately. The older peak 

at 16.5
+0.6

/-0.5 ka is in agreement with the most probable age assigned to the preceding Leništa Phase 

suggesting that development of these landforms was initiated already during the previous glacier 

advance. The younger peak at 15.2
+0.5

/-0.5 ka is considered as the stabilization age related to the Golina 
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Phase. The landforms connected to these phases are situated in close proximity in the Vevĉani valley, 

supporting that they might have been active during both glacial phases. The most probable CRE age 

(from recalculated data of Ribolini et al., 2017; Table S4) of a single dated moraine, locally the 

youngest in the Pelister Mt. is 15.8
+0.5

/-0.6 ka. This age is between, overlapping within error with both 

the Leništa and Golina Phases identified in Jablanica Mt. (Fig. 6). The most probable age of the 

stabilization of theGolina Phase corresponds to the first Lateglacial moraine stabilization dated at 

~15.5 ka in Mt Olympus (Styllas et al., 2018). Some of the data from the Šar and Rila Mts (Kuhleman 

et al., 2009, 2013) also fall in this period. However, the poorly described geomorphological context 

hinders more advanced interpretation.  

During the first part of the Lateglacial the estimated ELA values increase from 191810 m to 

above 2000 m (Fig. 5B-D). The largest scatter of the ELA values was observed during the Leništa and 

Golina Phases, for which the glacier retreat in some valleys was apparently faster than in other valleys 

(Fig. 4, Table S5). Our CRE dating results suggest that the elevation of glacier termination, the size of 

the reconstructed glaciers and the calculated ELAs can be variable at a local scale. These scatter well 

within the range found for stratigraphically correlated moraines in the central Alps for the Lateglacial 

and Early Holocene stages (Boxleitner et al. 2019). Similar results were published for the Western 

Alps, where several hundred meters of difference in the calculated ELAs of glaciers occupying 

cirques of the same or neighbouring glacier systems was reported (Hofmann et al., 2019). 
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Fig. 6. CRE dated deglaciation stages in Macedonian mountains during the Lateglacial compared to regional paleoclimate 

indicators. (A): The 
18

O stratigraphy of the Greenland Ice Sheet (GICC05ext chronological framework; Andersen et 

al., 2006; Rasmussen et al., 2006). B: event stratigraphy (stadial-interstadial) in the North Atlantic region for the Last 

Glacial-Interglacial Transition (Lowe et al., 2008) (C): CRE ages of glacial landforms in North Macedonia; (D) and 

(E): mean winter precipitation and mean temperature of the warmest month inferred from pollen records from Maliq 

Lake (Bordon et al., 2009), respectively. For comparability, all ages were converted to BP timescale (meaning before 

1950 AD). 

 

 

5.1.3. The final deglaciation 

 

In the Jablanica Mt. the most probable CRE age of the last Lokva and Lincura Phases is 

~13.9
+0.4

/-0.4 ka and 13.0
+0.4

/-0.9 ka, respectively (Fig. 5E, F). The CRE durations of two boulders 
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(Ja17-21 and -21; 13.10.5 ka and 13.20.4 ka) sampled on a protalus rampart suggest that this 

landform most likely co-existed with the small cirque glaciers during the Lincura Phase. The 

estimated ELAs during these phases are 2065±15 m and 2096±18 m, respectively (Fig.5E, F, Table 

S5)). 

Determining the age of the last glacier advance was attempted at several locations in the region 

and resulted in contradictory results for the chronology of the last deglaciation. It was dated to the 

LGM in the Pindus Mt. (Hughes et al., 2007), to the Lateglacial in the Pelister Mt. (Ribolini et al., 

2017) and around the Younger Dryas in the Orjen Mts (Hughes et al., 2010a), Šar Mts (Kuhlemann et 

al., 2009), Galiĉica Mt; (Gromig et al., 2018). In the highest ranges of the Balkan Peninsula small 

glacier advances were recorded even during the Holocene (Olympus Mt: Styllas et al., 2016, 2018; 

Prokletije: Hughes et al., 2010b; Durmitor: Hughes, 2007; Pirin: Gachev et al., 2016). 

A moraine at 2230 m in the Pelister Mt., geomorphologically belonging to the locally last glacial 

phase, was dated to 15.8
+0.5

/-0.6 ka (Ribolini et al., 2017, recalculated by this study, Table S4). This re-

evaluated age is more comparable to the earlier stages of the deglaciation, while the ELA estimated 

for this glacier seems to be surprisingly high (2250 m a.s.l), more like the younger glacial stages in the 

area. Due to the lack of information about ages of the other glacial landforms in the Pelister Mt., 

deciphering a more detailed glacial history is impossible. 

The recalculated 
36

Cl exposure age of 14.0±1.8 ka (Styllas et al., 2018) associated to the second to 

outmost moraine ridge of the landform attributed to the last glacial stage of Galiĉica Mt. (Ribolini et 

al., 2011; Gromig et al., 2018) coincides with the Lokva Phase (Fig. 6C). This recalculation was done 

using the 
36

Cl production rate by spallation of Ca from the calibration site at Mt Etna 

(Schimmelpfennig et al., 2011), the closest 
36

Cl calibration site. This 
36

Cl production rate is ~20% 

lower than the one applied by the CronusWeb calculator used in the original study (Gromig et al., 

2018). As a result, the recalculated age is ~14% older than the previously published age (12.0±0.6 ka) 

from which a Younger Dryas glacial stabilization was suggested for the Galiĉica Mt. The critical 

evaluation of the 
36

Cl production rates is beyond the scope of this study. However, considering the 

geographical proximity and similar orientation of the dated moraines in Pelister and Galiĉica Mts, the 
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~12 ka age of the moraine in the Galiĉica Mt. appears to be less likely than the recalculated value of 

~14 ka. Similarly, the geomorphological position and ~14 ka age of the dated moraine in the Galiĉica 

Mt. seems to be in agreement with the penultimate, Lokva Phase recorded on the Jablanica Mt. (Fig. 

6).  

 

 

5.2. Implications for paleoclimate  

 

The reconstructed sequence of glaciological events in the Jablanica Mt. can be examined in relation 

to the paleoclimatic context in order to find a link between past temperature and precipitation 

conditions and phases of glacier stabilization during the deglaciation. The reconstruction of climatic 

events on millennial or sub-millennial timescale using 
10

Be exposure ages might be problematic due 

to the relatively large uncertainties of the method. Here the paleoclimate record is used to find the 

period favourable for ice accumulation within the time interval of CRE dated glacial phases. Using 

this information in some occasions it was possible to narrow of the CRE age range, and link certain 

glacial stages to a certain climate phase, which would not have been possible using merely the CRE 

data.  

Between 17.1 ka and 15.7 ka typical stadial conditions were reconstructed using sedimentological 

and geochemical proxies in the nearby Lake Prespa Lake (Aufgebauer et al., 2012). Over the same 

period, the pollen record in the MD90-917 core from the Adriatic Sea (Combourieu-Nebout et al., 

1998) evidenced an increased proportion of steppe vegetation with a decrease of temperate vegetation, 

also suggesting stadial conditions (Bazin et al., 2019). In the Jablanica Mt. the glacier stillstands or re-

advances of the Kutel and Leništa Phases were dated to this period. These glacial phases were most 

probably associated to periods of glaciologically stable mass balance regulated by cool summer 

temperatures (Fig. 6). This cold period corresponds to the GS-2(Fig. 6). 

Snow accumulation and thermal conditions during the ablation season are the key climatic drivers 

of the glaciological mass balance (Ohmura et al., 1992). Past fluctuations of winter precipitation and 
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mean temperature of the warmest month were derived from the pollen assemblages along sedimentary 

sequences from the Maliq Lake, located in close proximity to the Jablanica Mt. (<70 km, Fig. 1) 

(Bordon et al., 2009). They provide independent information about the local fluctuation of the key 

climatic drivers of the glaciological mass balance in the region after ~16 ka (Fig. 6. D, E). The trend 

of the changes of these parameters is considered as good estimates of the conditions also in the 

Jablanica Mt.  

Although the GS-2 stadial lasted until ~14.5 ka, the local, pollen-based record implies that 

warming in the region of the Jablanica Mt. already started at ~15 ka (Fig. 6B, E). Glacier stabilization 

during the Golina Phase (~15.2 ka) can be explained by a positive glaciological mass balance due to 

the relatively low summer temperatures and increasing winter accumulation as reconstructed for this 

time period (Fig. 6D, E). This is suggested to be the last glacier re-advance that corresponds to GS-2 

in the region. Although the pollen records of Maliq Lake do not show changes in the local climatic 

drivers that would lead to increased snow accumulation around the Lokva Phase (~14 ka), it might 

correspond to a slight cooling related to a colder stage within the Greenland Interstadial-1 (GI-1d; Fig. 

6A). 

According to the pollen records of Maliq Lake, there was a period between ~13.3-13.0 ka during 

which a small drop in temperature occurred with the winter precipitation remaining unchanged (Fig. 

6D,E). The moraines of the Lincura Phase are interpreted as resulting from the halt in the glacier 

recession caused by these cooler and wetter climate conditions. This period might be the regional 

paleoclimate response corresponding to the large-scale cooling during GI-1b. 

The climate deterioration during GS-1 (also known as Younger Dryas) initiated a well-known 

glacial advance across the Atlantic realm (Carlson et al., 2013). The pollen-based local paleoclimate 

reconstructions (Bordon et al., 2009) suggest that during this period the remarkable temperature drop 

was coupled with dry winters, which is unfavourable for glacier expansion. The 13.0
+0.4

/-0.9 ka most 

probable exposure age of moraines of the last glacier advance in the Jablanica Mt. does not enable to 

differentiate between GS-1 and GI-1b. However, the local paleoclimate conditions were more 

favourable for glacier expansion during the GI-1b, assigning this period more probable for the last 
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glacier advance in the study area. Despite the cold temperatures, the strong decrease of winter 

precipitation in the area during the GS-1 (Fig.6. D,E) rendered this phase climatically unfavourable 

for snow accumulation. This might explain the lack of a noticeable phase of glacier stabilization 

following 13ka in the Jablanica Mt.  However, in more coastal settings moraines attributed to the 

Younger Dryas were reported (Orjen, Durmitor: Hughes et al., 2010a, 2011; Prokletije Mts: 

Milivojevic et al., 2008).  

 

 

6. Conclusions  

 

Despite the suboptimal lithological conditions, the geochronological results validate the assumption 

that quartz veins represent pristine boulder surfaces relevant for determining the age of moraines 

stabilization in the Jablanica Mt.  

The age of the locally most extended glaciation is >~17 ka, as inferred from the age of the second 

largest glacial phase in the Jablanica Mt. The LGM age of this glacier advance is supported by 

geomorphological and geochronological considerations, although it is probable that glaciers of the 

same size or larger existed during previous glaciations (MIS 6, 12). The CRE ages of the dated 

landforms connected to five subsequent deglaciation phases suggest that the glacier recession took 

place between ~17 ka and ~ 13 ka. 

The chronology of the reconstructed deglaciation phases of the Jablanica Mt. compared to 

independent paleoclimate reconstructions suggest that thermal conditions during the ablation season 

were the key drivers of glacial dynamics before ~15 ka. The last glacier stabilization phase was 

apparently a response of locally increased winter precipitation and a slight summer cooling during the 

GI-1b. 

The morphostratigraphy of the landforms and estimated ELA of the relevant glaciers can be highly 

variable for co-existing glaciers, hence numerical age determinations are required for a creditable 

glacial chronology. The evaluation of the exposure dating results from Jablanica Mt. in the light of the 
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available glacial geochronological data in the central Balkan Peninsula suggests that more systematic 

work is necessary.  Analysis of multiple samples at several subsequent glacial stages in each mountain 

range is recommended to achieve a solid local glacier chronology, which can be used for regional 

comparisons.  Besides, a recalculation of the exposure durations on a common basis is necessary, 

including the best possible estimate of the snow cover and local denudation rates. Ignoring these 

factors introduces a non-systematic bias of the CRE ages from site to site, and makes comparability of 

the recalculated results questionable. 
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Highlights: 

 

Five deglaciation phases identified between ~17 ka and ~13 ka in Macedonia 

 

The maximum glacier extent is LGM or older 

 

Parallelization of moraines barely on morphological basis is problematic 

 

Summer temperature/winter accumulation drove glacier stabilization before/after ~15ka 

 

Dry conditions.probably hindered glacier advance during the Younger Dryas 
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