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Abstract 

 

Hydrogen gas generation with dynamic response to changing application demands was 

achieved with use of a hydrogen battery based on aqueous cesium bicarbonate hydrogenation/ 

formate dehydrogenation, homogeneously catalyzed by an Ir(I)-N-heterocyclic carbene 

complex. In this device the storage solution was circulated through a small volume tubular 

reactor heated to the required high temperature to allow fast hydrogen evolution while the 

high volume reservoir was kept at ambient temperature at which no H2 was generated. By 

simple control of the reactor temperature it was possible to regulate the rate of hydrogen 

evolution as required. The results also demonstrate the applicability of homogeneous catalysis 

for hydrogen generation in flow systems.  
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1. Introduction  

Harnessing the Sun by photovoltaic devices, wind turbines or by other means leads to 

fluctuating energy production which in turn highlights the need for temporary storage of 

energy.[1] Hydrogen is considered a suitable energy carrier for use in industry, transportation 

and in everyday life („hydrogen economy”), and its production using renewable energy could 

mitigate the fluctuations in available energy. In this case, the original problem of energy 

storage translates to the question of reversible hydrogen storage.[2] Among other possibilities, 

this can be achieved by reversible hydrogenation/dehydrogenation of suitable chemicals; 

processes which usually need catalysts.[3,4] Devices, in which the hydrogenation and 

dehydrogenation cycles (H2 loading or delivery) are achieved simply by changing the 

hydrogen pressure can be termed hydrogen batteries.[5-7] 

 A widely studied way of hydrogen storage is the reversible formation and 

decomposition of formic acid (FA) and several highly active catalysts [8], both homogeneous 

[5-7, 9-18] and heterogeneous [19-21], have been discovered for decomposition of FA. In 

contrast, the catalytic hydrogenation of gaseous CO2 to yield liquid FA is thermodynamically 

disfavoured.[22] Reaction of dissolved H2 and CO2 leads to high conversions to FA only in 

the presence of basic additives, [23-27] such as various amines, although a few processes are 

known leading to low concentrations of dissolved FA.[28-30] For this reason hydrogen 

storage devices based on reversible CO2 hydrogenation/FA dehydrogenation can be 

constructed only with use of bases, of which the various ethanolamines, widely applied for 

CO2-scrubbing from gases have received special attention.[31]  

 Although our early attempts [32] to achieve catalytic hydrogenation of CO2 in aqueous 

media remained inconclusive, in later studies [33] bicarbonate was succesfully hydrogenated 

to formate in aqueous solutions. We also demonstrated that the processes of catalytic 

hydrogenation of bicarbonate and dehydrogenation of formate (as alkali metal salts) can be 

coupled, Eq. (1), to give working hydrogen batteries. The water-soluble complexes 

[{RuCl2(mtppms-Na)2}2] [5] and [Ir(cod)(emim)(mtppms)] [6,34] in the presence of mtppms-

Na and mtppts-Na3, respectively (mtppms-Na = sodium-diphenylphosphinobenzene-3-

sulfonate, mtppts-Na3 = tris(meta-sulfonatophenyl)phosphine trisodium salt, cod = 1,5-

cyclooctadiene,  emim = 1-ethyl-3-methylimidazol-2-ylidene) were identified as active 

catalysts for both hydrogenation and dehydrogenation. Consequently, loading and delivery of 

H2 (the charge-discharge process of the battery) could be simply regulated by the hydrogen 

pressure. An important feature is that in addition to the catalyst the aqueous reaction mixture 
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contains only inorganic salts with no other components, so the long-term operation of the 

battery depends only on the chemical stability of the catalyst.  

 In homogeneous catalysis the substrates and the catalysts reside in the same phase. In 

chemical hydrogen storage this can lead to unwanted H2-generation when the battery is not in 

use. Furthermore, in case the reactions (either hydrogenation or dehydrogenation, or both) 

require elevated temperatures it is impractical to heat the entire storage solution (possibly of 

large volume). In the following we present a flow reaction system for reversible hydrogen 

storage/delivery based on the aqueous bicarbonate/formate equilibrium, Eq. (1) in which all 

the difficulties mentioned above are circumvented. 

 

2. Materials and methods 

[Ir(cod)(emim)(mtppms)]  [35], monosulfonated and trisulfonated triphenylphosphine, 

mtppms-Na [36], and mtppts-Na3 [37], respectively, were synthetized by published 

procedures. CsHCO3 and CsHCO2 were purchased from Alfa Aesar GmbH. Ion-exchanged 

water (S ≤ 1 S) was used throughout. All other reagents were high purity commercial 

products.   

 Both bicarbonate hydrogenations and formate dehydrogenations were carried out by 

using a H-Cube microfluidic hydrogenation flow reactor [38] (ThalesNano Nanotechnology 

Inc, Budapest, Hungary). Aqueous reaction mixtures containing the dissolved catalyst were 

pumped through the empty reactor heated to the appropriate reaction temperature. Volumes of 

the generated H2 were measured with the use of a thermostated gas-burette kept at the 

appropriate T ± 0.1 °C temperature by using a Haake K10 circulator. 

 Formate concentrations in the reaction mixtures were determined by HPLC 

(AGILENT 1220 INFINITY, Supelcogel 610H column, sample volume 20 μl, eluent 0.1% 

H3PO4 in water, flow rate 1 mL/min). Formate was detected at λ =210 nm and its 

concentration was determined by integration of peak areas using a calibration curve.  

 General procedure for homogeneous catalytic dehydrogenation of aqueous Cs-

formate. Aqueous reaction mixtures containing the catalyst ([Ir(cod)(emim)(mtppms)]) 

together with excess phosphine (mtppts-Na3) and CsHCO2 were prepared under argon in a 

Schlenk-tube (the reservoir) and pumped through the heated empty tubular reactor (CatCart, 

dimensions 30 (l) × 4 mm (i.d.)) of the H-Cube device. No H2 was mixed into the flow. Flow 

rate was varied between 0.2-2.0 mL×min-1.  The reaction was studied in two ways. According 

to Method A (single pass) the reaction mixture was sampled and analyzed directly after 

leaving the reactor. According to Method B (cumulative), the reaction mixture leaving the 



5 

 

 

CatCart was continuously fed back to the stirred reservoir and the formate concentration of 

the resulting solution in the reservoir was then determined over time by HPLC. Volumes of 

the evolved hydrogen were measured with use of a thermostated gas-burette connected to the 

reservoir (see Figure 2). 

 General procedure for homogeneous catalytic hydrogenation of Cs-bicarbonate. 

Aqueous reaction mixtures containing the catalyst ([Ir(cod)(emim)(mtppms)]) together with 

excess phosphine (mtppts-Na3) and Cs-bicarbonate were prepared in a Schlenk-tube (the 

reservoir) and pumped through the heated empty tubular reactor (CatCart, dimensions 

30 (l) × 4 mm (i.d.)). Hydrogen, generated by the device electrolytically, was mixed into the 

liquid flow before entering the tubular reactor, where the hydrogen pressure was regulated in 

the range of 1-90 bar, and the temperature within 25-100 °C. Flow rate was varied between 

0.5-2.0 mL×min-1. Hydrogenation of CsHCO3 was investigated using both Method A (single 

pass) and Method B (cumulative) – see previous paragraph. Composition of the reaction 

mixtures (formate concentration) were followed by HPLC. 

 

3. Results and discussion 

Hydrogenation of cesium bicarbonate and dehydrogenation of cesium formate (Equation 1) 

were studied in a microfluidic hydrogenation reactor (H-Cube [38]). [Ir(cod)(emim)(mtppms)] 

+ mtppts-Na3 was applied as catalyst.[6,34] Cesium salts were chosen due to their high 

aqueous solubilities [39]: CsHCO3 – 209 g/100 g H2O (15°C), CsHCO2 – 450 g/100 g H2O 

(20°C) and outstanding reactivities.[40-41] The catalyst was dissolved in the aqueous 

solutions of CsHCO3 or CsHCO2 and the reaction  mixture was pumped through a tubular 

reactor held at a controlled temperature. The reactions could be conveniently followed in the 

60-100°C temperature range.   

 

HCO3
- + H2  ⇌  HCO2

- + H2O  (1) 

 

Hydrogenation of cesium bicarbonate and dehydrogenation of cesium formate were 

investigated at various temperatures, pressures, and flow rates, using solutions of various 

substrate concentrations (Figures A.1-A.7). In both reactions the conversions increased with 

increasing temperature (Figures A.1, A.3); remarkably, no formate dehydrogenation was 

observed at 25°C. The conversion showed inverse dependence on flow rate (Figures A.4, 

A.5). At low substrate concentrations conversions as high as approximately 20% could be 

observed in a single pass of the reaction mixture through the heated tubular reactor for both 
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hydrogenation of bicarbonate and dehydrogenation of formate (see e.g. Figure A.3). Note that 

the catalyst was able to handle even high substrate concentrations, yielding very high TO 

values (e.g. TOF = 57800 h-1 for formate dehydrogenation at [CsHCO2]:[Ir]=5000:1, Figure 

A.2). These observations are in agreement with our earlier findings obtained in batch 

reactions.[6]  Furthermore, it was also found earlier [6] that the catalyst was stable under 100 

bar H2 pressure at room temperature for more than 71 days. Together with the results of the 

present measurements using a flow reactor, all the data show that aqueous CsHCO3
-/CsHCO2

- 

solutions and the [Ir(cod)(emim)(mtppms)] catalyst have sufficiently chemical stability and 

may serve as basis for reversible hydrogen storage. 

 Figure 1 shows the results of an experiment when the reaction mixture was 

continuously circulated through the heated hydrogenation reactor. The solution in the 

reservoir was sampled over time and analyzed by HPLC (Method B). Under the conditions of 

Figure 1, bicarbonate was gradually hydrogenated to formate and the conversion reached 

85 % in 200 min. At this point the H2 pressure was decreased from 90 to 1 bar and the 

solution was further circulated at the same temperature (100 °C) with unchanged flow rate. 

The pressure drop resulted in formate dehydrogenation according to Eq. (1) with 

approximately 50% conversion in 100 min.  

 

 

Figure 1.  Hydrogenation of HCO3
- to formate ( ; 0-200 min) and dehydrogenation of HCO2

- 

to bicarbonate ( ; 200-300 min) under flow conditions. 

[CsHCO3]/[Ir] = 75 ( , ); [mtppts-Na3]/[Ir] = 2; V(H2O) = 25 mL; P(H2) = 90 bar (0-200 

min) or 1 bar (200-300 min), T = 100 °C; v = 1.0 mL×min-1. 
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In other experiments the volume of the evolved H2 was measured by using a gas-burette. The 

experimental setup is shown schematically on Figure 2 (in this case the burette and reservoir 

were kept at the same constant temperature). Note that the volume of the reservoir (at 

T = 25 °C) is about 66 times the volume of the heated flow reactor. 

 

 

Figure 2. Schematic figure of the coupled flow reactor - gas-burette system 

 

 

 

Figure 3. Hydrogen evolution in subsequent high temperature (100 °C; H) and low 

temperature (25 °C; L) intervals during temperature controlled dehydrogenation of aqueous  

Cs-formate.  

[CsHCO2] = 0.081 M; [Ir-NHC] = 0.1 mM; [mtppts-Na3]/[Ir] = 2; V(H2O) = 25 mL;  

v = 2.0 mL×min-1, T = 100 °C (H) or 25 °C (L).  
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Figure 3 shows the effect of temperature on the dehydrogenation of aqueous cesium formate. 

It can be seen that the reaction proceeds with high rate in the reactor set at 100 °C. However, 

hydrogen evolution stops immediately when the reactor temperature is switched to 25 °C. 

Apparently, the heat capacity of the entering cold reaction mixture is sufficient to cool the 

reactor in a few seconds. By switching the reactor temperature back and forth between 100 °C 

and 25 °C, generation of gaseous H2 can be initiated and stopped at will. Such a possibility 

provided by flow systems may have high importance in the case of mobile devices (e.g. 

vehicles) where hydrogen supply must be dynamically adjusted to the feed requirements. It 

was also observed, that the temperature of the reaction mixture in the reservoir did not 

increase significantly even in the absence of temperature control; air cooling of the solution 

travelling through the capillary tube connection between the reactor and reservoir was 

efficient enough to keep the reservoir at room temperature.  

 

Conclusions 

A reversible hydrogen storage reaction system, based on hydrogenation of aqueous cesium 

bicarbonate and dehydrogenation of cesium formate both homogeneously catalyzed with the 

water-soluble [Ir(cod)(emim)(mtppms)] was analyzed in a flow reactor (H-Cube). Fast 

switches of the reactor temperature between high (e.g. 100 °C) and low (e.g. 25 °C) values 

allow precise and dynamic adjustment of the H2 generation rate to application demand. 

Furthermore, depending on the relative volumes of storage solution and the flow reactor, only 

a fraction of the reaction mixture has to be heated avoiding undesired H2 evolution. Until 

now, soluble complex catalysts were used only in heterogenized form on solid supports but 

mostly failed in the long run due to leaching of the anchored complexes. This work also 

demonstrates the practical feasibility of using homogeneous catalysis for hydrogen generation 

in flow systems provided it meets the following requirements: a) the catalytic H2-storage 

reaction has sufficiently high activation energy to allow fast H2-evolution at high 

temperatures with no or negligible H2-formation at ambient temperature; b) all reaction 

partners of the storage reaction as well as the dissolved catalyst have high chemical stability, 

and c) the catalyst is able to catalyze the storage reaction (such as e.g. Eq. 1) in both 

directions. 
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