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Abstract

Background: Homologous recombination (HR) repair deficiency arising from defects in BRCA1 or BRCA2 is
associated with characteristic patterns of somatic mutations. In this genetic study, we ask whether inactivating
mutations in further genes of the HR pathway or the DNA damage checkpoint also give rise to somatic mutation
patterns that can be used for treatment prediction.

Results: Using whole genome sequencing of an isogenic knockout cell line panel, we find a universal HR
deficiency-specific base substitution signature that is similar to COSMIC signature 3. In contrast, we detect different
deletion phenotypes corresponding to specific HR mutants. The inactivation of BRCA2 or PALB2 leads to larger
deletions, typically with microhomology, when compared to the disruption of BRCA1, RAD51 paralogs, or RAD54.
Comparison with the deletion spectrum of Cas9 cut sites suggests that most spontaneously arising genomic
deletions are not the consequence of double-strand breaks. Surprisingly, the inactivation of checkpoint kinases ATM
and CHK2 has no mutagenic consequences. Analysis of tumor exomes with biallelic inactivating mutations in the
investigated genes confirms the validity of the cell line models. We present a comprehensive analysis of sensitivity
of the investigated mutants to 13 therapeutic agents for the purpose of correlating genomic mutagenic
phenotypes with drug sensitivity.

Conclusion: Our results suggest that no single genomic mutational class shows perfect correlation with sensitivity
to common treatments, but the contribution of COSMIC signature 3 to base substitutions, or a combined measure
of different features, may be reasonably good at predicting platinum and PARP inhibitor sensitivity.
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Background
Somatic mutations in cancer genomes efficiently characterize
the DNA repair status of the cancer cells [1–3]. As a conse-
quence, there is much interest in using genomic mutation
patterns for the selection of treatments targeted at cells with
specific DNA repair defects.
Germline mutations in the genes encoding the hom-

ologous recombination (HR) factors BRCA1 or BRCA2
predispose for breast and ovarian cancer [4, 5] and also
play roles in the development of prostate, pancreatic,
and stomach cancers [6]. The inactivation of BRCA1 or
BRCA2 due to somatic mutations or BRCA1 promoter
methylation is also observed in these tumor types [7–9].
The BRCA1/2 status of tumors is relevant for treatment
selection, as a BRCA1/2 defect predicts sensitivity to
platinum drugs and PARP inhibitors [7, 10, 11].
Tumors with biallelic inactivation of BRCA1 or BRCA2

possess genome-wide somatic single nucleotide varia-
tions (SNVs) with a distinct spectrum termed COSMIC
signature 3, together with specific but different patterns
of short insertions and deletion (indels), and of struc-
tural rearrangements [12, 13]. COSMIC signature 3 is
one of a set of somatic base substitution signatures
identified in cancer genomes [14, 15]. Experiments with
isogenic cell lines provided causative evidence for the
role of BRCA1 or BRCA2 defects in these mutagenic
processes [16]. The existence of cancer cases with simi-
lar somatic mutation spectra but no BRCA1/2 mutations
[12] raises the possibility that these carry mutations in
genes of similar function and therefore may also benefit
from treatments designed for BRCA mutant cancer [17].
Indeed, whereas only about 30% of ovarian cancer cases
have BRCA mutations or promoter methylation [18],
there exists a cohort of non-BRCA mutant ovarian can-
cer cases with a similar mutation spectrum and mutation
burden to BRCA mutants [19], and PARP inhibitor treat-
ment was found to be effective in a patient cohort with-
out germline BRCA mutation as well [20].
Candidate genes to cause a BRCA-like phenotype are

those that code for other non-essential factors of the HR
pathway: the RAD51 paralogs RAD51B, RAD51C, RAD51D,
XRCC2, and XRCC3, which promote the formation of
RAD51 subnuclear foci and also can remodel the RAD51
nucleoprotein filament [21, 22]; the binding partners of
BRCA1 and BRCA2 including BARD1 [23], CtIP [24], and
PALB2 [25]; and further HR factors including RAD54 [26]
and RAD52 [27]. Checkpoint proteins involved in signaling
the presence of DNA breaks, including ATM and CHK2,
may have HR-related roles [28, 29]. Inherited mutations in
several of these genes increase the risk of breast or ovarian
cancer, including RAD51C, RAD51D, BARD1, PALB2,
ATM, and CHK2 [30–32]. Consequently, clinical trials are
underway to investigate the efficacy of PARP inhibitors on
tumors with various subsets of non-BRCA DNA repair gene

mutations (trial identifiers: NCT03344965, NCT02286687,
NCT03375307).
As an alternative to the search for deleterious gene

mutations, a genomic rearrangement-based phenotypic
measure of HR defect has been developed that does not
incorporate SNVs or short indels. The HRD score predicts
response to platinum-containing neoadjuvant chemother-
apy in triple-negative breast cancer [33], and also forms
part of clinical diagnostic tests for using PARP inhibitors
in ovarian cancer [34]. In addition, it has been an open
issue whether BRCA1/2 deficiency/HRD is predictive only
of PARP inhibitor/platinum sensitivity or of anthracyclines
as well [35, 36]. The incorporation of genomic mutation
signatures into the assessment of HR integrity has been
suggested [12], and COSMIC SNV signature 3 was found
to be associated with PALB2 and RAD51C mutations in
breast cancer [3].
The aim of this study was to experimentally determine

which HR or checkpoint gene defects cause somatic
mutational processes akin to those seen in BRCA1- or
BRCA2-deficient cells, and whether the presence of mu-
tational signatures correlates with treatment sensitivity.
Using an isogenic knockout cell line panel, we uncov-
ered and analyzed the spontaneous mutagenic processes
in HR-deficient cells and demonstrated that the inactiva-
tion of checkpoint kinases has negligible mutagenic con-
sequences. SNV mutagenesis showed good but imperfect
correlation with PARP inhibitor sensitivity, whereas the
mutagenic processes were poor predictors of sensitivity
to a range of common cancer cytotoxics.

Results
Increased single nucleotide substitution mutagenesis in a
range of HR mutant cell lines
To investigate the genetic dependence of spontaneous
mutagenesis, we assembled a collection of isogenic
chicken DT40 cell lines harboring homozygous disrup-
tions of each of eight key HR genes plus ATM and
CHK2, which are key components of the DNA damage
checkpoint. DT40 lymphoblastoma cells are the only iso-
genic system currently available to study null mutants
in this range of genes, and these cells adequately repro-
duce human somatic mutagenic processes [16]. The
RAD52−/− cell line was made for this study by deleting
a 3323-bp region of the gene including exons 3–7. The
derived cell lines were cultured for 50 days between two
single cell cloning steps, and DNA was prepared for
whole genome sequencing from each ancestral clone as
well as three descendent clones per cell line (Fig. 1a,
Additional file 1: Table S1). Base substitution muta-
tions and small indels were identified by simultan-
eously analyzing all sequences together with IsoMut
[37]. The mutations detected by IsoMut are unique to
one sample, thereby providing an accurate catalog of
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genetic changes that took place during the experiment
(Additional file 1: Tables S2 and S3).
Compared to wild type cells, we observed an approxi-

mately seven to eightfold increase in base substitution
(SNV) mutagenesis in BRCA1−/− and BRCA2−/− cells as
shown previously [16]. We found a similarly elevated SNV
mutagenesis in cell lines mutant for the RAD51 paralogs
RAD51C, XRCC2, and XRCC3, and in PALB2−/− mutants
(Fig. 1b, Additional file 1: Table S4). The mutation rate
was threefold elevated in RAD54−/− mutants compared to
the wild type, and the increase in mutation rate was highly
significant in all seven mutants when compared to the
wild type (p < 0.001, χ2 test on the summed counts with
Bonferroni’s correction for multiple comparison). No
increase was seen in RAD52−/− cells. Surprisingly, we ob-
served only a very moderate elevation of SNV mutation
accumulation in the checkpoint-deficient ATM−/− and
CHK2−/− cells, though the 1.5-fold change in ATM−/− cells
was significant (p < 0.001).

A common base substitution signature describes
mutagenesis in all HR-deficient cells
When viewed in the context of the neighboring nucleo-
tides, similar triplet mutation patterns resulted from the
disruption of BRCA1, BRCA2, PALB2, the RAD51 para-
logs, and also RAD54 (Fig. 1c, Additional file 2: Figure S1).
We summed the data by cell type and extracted de novo
triplet mutation signatures using non-negative matrix
factorization (NMF) on the 11 cumulative triplet mutation
datasets. A factorization rank of two provided two de novo
signatures, which could be used to reconstruct the muta-
tion spectra with small errors (Fig. 2a, Additional file 2:
Figure S2, Additional file 1: Table S5). The two signatures
resulting from this unsupervised approach appeared to
make good biological sense. One signature (termed Signa-
ture BG, for background) was similar to the mutation
pattern of the wild type, and it was present to a very
similar level in all mutants. An additional signature (Sig-
nature HRD, for HR deficiency) explained the increased

Fig. 1 Spontaneous accumulation of SNVs in isogenic cell clones. a Experimental scheme. The experiments were started with an ancestral single cell
clone. After 50 days of culturing, a further cloning step was performed. Genomic DNA was extracted from each ancestral and descendent clone as soon as
a sufficient number of cells were available. b The mean number of newly arising SNVs detected per sequenced genome in each indicated cell line. Red
symbols show the values for individual samples, error bars indicate standard error of the mean (SEM). c Mean spontaneous triplet SNV mutation spectrum
in the indicated cell lines. Each mutation class, as indicated at the top of the panel, is separated into 16 categories based on the identity of the preceding
and following nucleotide as shown below. The order of the following nucleotides, not shown due to lack of space, is alphabetical
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mutagenesis in all cell lines and can therefore be consid-
ered a general HR defect-specific triplet mutation signa-
ture. The inclusion in the NMF analysis of pre-existing
mutations in the ancestral clones provided a very similar
HRD-like signature (cosine similarity 0.995) and showed
that the experimentally determined ongoing mutation
rates do not correlate with past passaging (Additional file 2:
Figure S3). Moreover, performing NMF on individual
samples also resulted in near-identical HRD-like and BG-
like mutation signatures (cosine similarities 0.998 and
0.987, respectively; Fig. 2a, Additional file 1: Table S5). In
comparison to COSMIC version 2 signatures, Signature
HRD is very similar to signature 3 (cosine similarity
0.940), whereas Signature BG shows more limited cosine
similarities, but correlates best with signatures 1 and 5
using Spearman’s rank correlation (Fig. 2b, c, Add-
itional file 1: Table S6). Signature HRD showed best cor-
relation with SBS3 and the new SBS40 in version 3 of the
COSMIC signatures (Additional file 2: Figure S4A, B).
Interestingly, despite the similarity of signatures 3 and
HRD, only 50–60% of mutations in the HR mutant cell

lines were explained by signature 3 when attempting a
deconstruction with COSMIC version 2 signatures 1, 3
and 5, probably due to the similarity of signatures 3 and 5
(Additional file 2: Figure S4C). Nevertheless, modeling the
NMF process on differently sized sample sets drawn from
pre-set mixtures of signatures 3 and 5 showed that the
number of mutations detected in the HR-deficient cell
lines allows the separation of such “featureless” signatures
with only 5% mean absolute error (Additional file 2:
Figure S5), confirming that SNV mutagenesis in the
BRCA1, BRCA2, PALB2, and RAD51 paralog mutants is
indistinguishable both in rate and spectrum.

Disruption of the HR pathway at different stages gives
rise to different short deletion phenotypes
Few short insertions arose in the sequenced genomes,
and the difference in the number of short insertions be-
tween the wild type and the various mutants was only
significant in the case of XRCC2 (p = 0.03, χ2 test with
Bonferroni’s correction) and PALB2 (p = 0.044) (Fig. 3a).
In contrast, there was a highly significant (p < 0.001)

Fig. 2 A base substitution signature of HR deficiency. a De novo NMF of the detected cell line-specific SNV mutation spectra into two components,
termed Signature HRD and Signature BG (middle panel), and the error (root-mean-square deviation) of reconstructing the experimental dataset using
these two signatures (top panel). The bottom panel shows the individual SNV counts for each sequenced genome, split using NMF into “HRD” and
“BG” signatures that are virtually identical to Signature HRD and BG, respectively. b Triplet mutation spectra of Signature HRD and Signature BG shown
as the percentage contribution of each triplet mutation type, and COSMIC triplet signature 3 for comparison. c, d Correlation heat map of the
experimentally derived triplet signatures to 30 COSMIC signatures using cosine similarity (c) or Spearman’s rank correlation (d)
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increase of short deletions upon the disruption of BRCA1,
BRCA2, PALB2, RAD51C, XRCC2, or XRCC3, and a
significant (p = 0.039) increase in the RAD54 mutant. The
number of short deletions in RAD52−/−, ATM−/−, and
CHK2−/− cells did not significantly differ from the wild
type (Fig. 3b). To better understand how short deletions
arise upon defective HR, we classified deletions based on
their sequence context (Additional file 1: Table S4). In
BRCA2−/− and PALB2−/− mutants, whose genomes con-
tained the most deletions, over 50% of deletions showed at
least 1 bp of microhomology between the ligated DNA
ends (Fig. 3c). In all other HR mutants, deletions with no
homology or deletions at repeat sequences were at least as
common as the microhomology class. Deletions with

microhomology were generally longer than those in the
other categories (Fig. 3d) and the cumulative size distribu-
tion of all deletions also shows that BRCA2−/− and
PALB2−/− have a similar phenotype that is distinct from
those of other HR mutants (Fig. 3e). This phenotype of
more, larger deletions with more common microhomolo-
gies is presumably connected to a joint function of the
BRCA2/PALB2 complex. The phenotypes of the RAD51
paralogs were similar to each other; RAD54−/− had a
weaker deletion phenotype, whereas BRCA1−/− displayed
a surprising lack of short deletions in the 2–7-bp size
range. In agreement with this analysis, a classification of
indels into COSMIC version 3 short indel signatures [38]
found the microhomology deletion dominated signature

Fig. 3 The genetic dependence of the formation of short insertions and deletions. a, b The mean number of newly arising short insertions (a) or
short deletions (b) generated per sequenced genome in each indicated cell line. Red symbols show the values for individual samples. c A
classification of detected short deletion events by sequence context. The minimum length of classified microhomologies was 1 bp. Error bars
indicate SEM in a–c. d The length of each deletion is shown, color coded according to sequence context. e Cumulative size distribution of
genomic deletions in those cell lines in which the total number of deletions in the sequenced clones was greater than 10. f Cumulative size
distribution of deletions at two different CRISPR-targeted genomic loci in each of the indicated cell lines, obtained by amplicon sequencing. g
Stacked view of all deletions (orange) and insertions (blue) at two CRISPR-targeted loci in four indicated cell lines, shown as the percentage of all
sequenced amplicons obtained from genome preparations of cell populations sorted for successful transfection with a plasmid expressing Cas9
and the respective guide RNA
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ID6 mainly in the BRCA2−/− and PALB2−/− datasets (Add-
itional file 2: Figure S6). Thus, unlike in the case of SNVs,
the disruption of the HR pathway at the level of different
participating proteins results in distinct patterns of short
genomic deletions.

Spontaneously arising very short deletions are not the
consequence of double-strand break repair
To understand whether the different deletion phenotypes
are caused by the influence of a partially disrupted HR
pathway on DNA double-strand break (DSB) repair, we
investigated the spectrum of mutation events at CRISPR/
Cas9-induced blunt ended DSBs at two different genomic
loci using amplicon sequencing. The majority of mutation
events were deletions, alongside some insertions and some
mixed events (Additional file 2: Figure S7). Unlike in the
case of spontaneous deletions where deletion sizes varied,
the size distribution of Cas9 DSB-induced deletions was
very similar across all investigated HR mutants and the
wild type cell line and resembled the spontaneous gen-
omic deletion phenotype of BRCA2 and PALB2, with a
median deletion size of approximately 4 bp (Fig. 3f). In
contrast, we observed a reduction in the number and size
of deletions in a KU70−/− mutant cell line (Fig. 3f, g, black
line), demonstrating the role of non-homologous end join-
ing in shaping the outcome of DSB repair. The majority of
spontaneous deletions observed in HR mutants are thus
shorter than those observed at nuclease-induced DSBs.
With the caveat that the Cas9 cut does not reproduce all
types of potential spontaneous DSBs, these results sug-
gests that the very short deletions are not the consequence
of DSB repair but of a different process that is upregulated
in the absence of HR proteins.

Patterns of large-scale rearrangements differentiate HR
mutants
When searching for structural variations, we found a pre-
dominance of large deletions of a wide size range in
BRCA2−/− and PALB2−/− cells, as well as in the three
tested RAD51 paralog mutants (Fig. 4a, b, Additional file 1:
Tables S4 and S7). The rearrangement phenotypes in
these five cell lines could be best reconstructed with
rearrangement signature 5 defined from the analysis of
breast cancer genomes (Fig. 4c) [12]. Indeed, the size dis-
tribution of deletions and the presence of a few other
types of non-clustered rearrangements in RAD51C−/−,
XRCC2−/−, XRCC3−/−, BRCA2−/−, or PALB2−/− mutant
cells closely resembled the predominant rearrangement
signature of BRCA2-deficient breast tumors (Fig. 4d).

HR-deficient cells show differential sensitivities to cancer
cytotoxics
The main incentive to investigate the mutagenic pro-
cesses arising from the defect of a range of HR genes is

to determine whether the observed mutation patterns
may be predictive of therapeutic effect. To link muta-
tional signatures to therapy, we measured the sensitivity
of each experimental cell line to a wide range of com-
monly used cancer therapeutics (Fig. 5a, Additional file 1:
Tables S8 and S9). The greatest hypersensitivity was
seen in the case of the PARP inhibitors olaparib and
talazoparib. Most HR mutant lines were also hypersensi-
tive to platinum agents. A few cell lines, primarily
BRCA1−/−, BRCA2−/−, and PALB2−/−, were also slightly
sensitive to the anthracyclin doxorubicin, the topoisomer-
ase II inhibitor etoposide, the topoisomerase I inhibitor
SN-38 (the active form of irinotecan), and the alkylating
agent temozolomide. RAD51 paralog mutants were also
sensitive to PARP inhibitors, but to a lesser extent than the
BRCA1/2 mutants, and showed no sensitivity to topoisom-
erase inhibitors. Interestingly, RAD52−/− mutants were
most sensitive to platinum agents, whereas RAD54−/− mu-
tants showed specific sensitivity to PARP inhibitors. The
disruption of the DNA damage checkpoint in ATM−/−

mutants did not sensitize cells to most tested agents.
Even more unexpectedly, CHK2−/− mutant cells were
less sensitive to platinum agents, PARP inhibitors, and
topoisomerase inhibitors than the wild type line. We
confirmed the reduced sensitivity of CHK2−/− cells to
cisplatin, olaparib, and etoposide using a colony sur-
vival assay with short treatment duration to exclude the
possibility that this result was influenced by potentially
slower growth under the conditions of the cytotoxicity
assay (Fig. 5d, Additional file 2: Figure S8).
The reliability of the cytotoxicity assay is highlighted

by the excellent concordance of sensitivities to drugs
with common mechanisms (Fig. 5b, c) and by the lack of
sensitivity to drugs that do not cause DNA damage or
target DNA repair, such as paclitaxel and hydroxyurea.
The different pattern of sensitivities to oxaliplatin as
compared to cisplatin and carboplatin supports findings
that oxaliplatin kills cells through additional mechanisms
independent of the DNA damage response [39]. Minimal
sensitivities were seen to anthracyclins, restricted to a
slight doxorubicin sensitivity of BRCA1, BRCA2, and
RAD52 mutants.

Mutation patterns in cancer genomes with HR gene defects
We were able to detect specific mutational processes in
genomes of isogenic cell line models with disrupted HR
genes, but not in ATM−/− or CHK2−/− mutant cells. To
test the utility of the mutation patterns in identifying
cancers with defects in the same HR genes, we re-
investigated a panel of tumor whole exome sequences in
which cases of biallelic inactivation of HR-related genes
were identified (Additional file 1: Table S10) [40]. In
addition to BRCA1 and BRCA2, most tumors with bial-
lelic inactivation of RAD51C or PALB2 showed a high
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contribution of COSMIC signature 3 to the total exo-
mic somatic SNV load (Fig. 6a). In further agreement
with the cell line-based data, the majority of samples
with ATM or CHK2 biallelic inactivation showed zero
or very low contribution of signature 3. The median
contribution of signature 3 to a matched random
TCGA sample set with no inactivating mutation in the
genes investigated in this study was zero, but there
was a considerable number of mostly ovarian cancer
samples which nevertheless contained mutations
assigned to signature 3 (Fig. 6a, Additional file 2:
Figure S9). Using the entire signature set from COS-
MIC version 3 resulted in lower sensitivity but higher
specificity of detecting signature SBS3 in HR mutant sam-
ples (Additional file 2: Figure S10). The number of short
(< 50 bp) deletions showed no obvious differences between

the various genotypes. These were dominated by 1 bp
deletions at repeat sequences, some of which we sus-
pect to be false mutation calls (Additional file 1:
Table S10). However, there was a clear and specific
increase of deletions with microhomology in BRCA2
and PALB2 mutant samples (Fig. 6b), and the cumu-
lative size distribution of deletions also separates the
BRCA2 and PALB2 phenotypes from the others
(Fig. 6c), in remarkable agreement with the cell line-
based data. These results confirm the cell line-based
findings, suggesting that the contribution of signature
3 to the SNV load can be a useful biomarker for
identifying tumors with RAD51 paralog or PALB2
loss-of-function alongside those with BRCA1 or
BRCA2 defects, whereas deletions with microhomol-
ogy identify BRCA2 and PALB2 defects.

Fig. 4 Classification of large-scale rearrangements. a Total count of large-scale rearrangements in three sequenced genomes per cell line,
classified by CREST as interchromosomal translocation (CTX), intrachromosomal translocation (ITX), deletion, or insertion. b The size distribution of
large deletions. c Reconstitution of the rearrangement profile of cell lines with > 10 events using 6 rearrangement signatures (Rsig). d
Classification of rearrangements in the same cell lines according to categories used for the definition of rearrangement signatures [12].
Rearrangement signature 5 is shown for comparison
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Discussion
In this study, we used isogenic cell lines to detect simi-
larities and differences in the patterns of spontaneous
genomic mutagenesis resulting from the disruption of a
range of HR genes, and also demonstrated that the in-
activation of the DNA damage checkpoint does not give
rise to a phenotype indicative of HR deficiency. A data-
set derived from cytotoxicity measurements of common
cancer therapeutics promotes further investigation for
the evaluation of the predictive value of different gen-
omic mutational signatures.
Three main types of mutational features are available

for correlation with treatment sensitivity: base substitu-
tions, short indels, and large rearrangements. Six of the
tested mutants showed high rates of SNV mutagenesis
characterized by signature 3, and RAD54−/− cells had a
similar, more moderate phenotype. According to the cyto-
toxicity results, the contribution of signature 3 is therefore

a reasonable overall predictor of PARP inhibitor and plat-
inum sensitivity. However, the lower sensitivity of RAD51
paralog mutants compared to BRCA1−/−, BRCA2−/−, and
PALB2−/− suggests a lower predictive value of SNV signa-
tures for PARP inhibitor treatment. Deletion patterns can
most accurately identify defects of BRCA2 and PALB2,
also confirmed in tumor genomes; therefore, a high pro-
portion of deletions with microhomologies may be a good
predictor of treatment with PARP inhibitors, cisplatin or
carboplatin. Structural variations with rearrangement sig-
nature 5 specifically identify cells with disfunctional
BRCA2, PALB2, or RAD51 paralogs; therefore, their pres-
ence also correlates with sensitivity to PARP inhibitors
and platinum.
There are two caveats with using the investigated gen-

omic features for prediction of drug sensitivity. False
positives may arise due to different sensitivities of cell
lines with the same genomic features, e.g., in the case of

Fig. 5 Sensitivity of HR-deficient cell lines to cytotoxic agents. a Results of cytotoxicity measurements shown as the fold difference in sensitivity
to the indicated drugs of each mutant cell line as compared to the wild type. The mean relative IC50 values and SEM of three independent
measurements are shown. The mean absolute IC50 value of the wild type line is shown for each drug. b, c Correlation of the relative IC50 values
of cisplatin vs. carboplatin (b) and olaparib vs. talazoparib (c). Each marker represents a cell line, color coded as in a; the wild type is shown in
black. The r2 value for simple linear regression is shown. d Colony survival assay following the treatment of the indicated cell lines with cisplatin
for 1 h. The mean survival percentages and SEM of three independent measurements are shown
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RAD51C versus BRCA2 mutants. False negatives arise
due to the lack of certain genomic features in sensitive
cell lines, as in the case of the lack of signature 5 rear-
rangements in BRCA1 mutant cells, which are neverthe-
less very sensitive to PARP inhibitors. The use of a
linear combination of the strength of mutational pro-
cesses, and the incorporation of a rearrangement signa-
ture characteristic of BRCA1 mutant cells led to an
improved classification of BRCA1/2 deficiency, named
HRDetect [41]. The setup of our cell line-based experi-
ments did not produce a sufficient number of large
rearrangement events to meaningfully calculate HRDe-
tect scores, but the results suggest that HRDetect will
successfully identify cells and tumors with defects in
PALB2, RAD51 paralogs, or RAD54. Whereas this ap-
proach can lead to the reduction of false negatives, the
problem of false positives may be inherent to the differ-
ent mechanistic roles of the investigated proteins in the
HR pathways.

Genomic deletion data may help understanding the dis-
tinct functions of HR proteins. The majority of deletions in
wild type cells are very short, with a median length of 1 bp.
The same is true in BRCA1, RAD54, and RAD51 paralog
mutants, though an appearance of longer deletions with
microhomology is also seen. In contrast, longer deletions
with microhomology dominate in BRCA2 and PALB2 mu-
tants, and these closely resemble the spectrum of deletions
at Cas9-induced DSBs in wild type and HR mutant cells. It
therefore seems that HR proteins function in preventing
two distinct mutagenic processes that give rise to genomic
deletions. A replicative process may give rise to the very
short (1–2 bp) deletions as well as SNVs with an HRD
spectrum, and all investigated HR proteins antagonize this
apart from RAD52. The more moderate SNV and deletion
phenotype of RAD54 may simply be due to redundancy
with RAD54B [42]. Conversely, DSB repair by non-
homologous end joining is likely to produce the observed
longer (3–20 bp) deletions with microhomology. The

Fig. 6 Mutational features of HR-deficient tumor genomes. a The contribution of COSMIC signature 3 to the SNV spectrum derived from whole
exome sequence data of tumors from various tissues bearing biallelic inactivating mutations in the indicated genes. As a control, an equal
randomly selected set of whole exome datasets was used with the same tissue type distribution and no biallelic mutation in the analyzed genes.
A horizontal line indicates the median. Samples with over 40% of SNVs belonging to COSMIC spectra 6, 15, 20, or 26 suggesting mismatch repair
deficiency are shown in magenta; samples with over 40% of SNVs belonging to COSMIC spectrum 11 suggesting POLE defect are shown in cyan.
b Classification of deletions in the same samples by sequence context as on Fig. 3c; apparent deletions at repeats are not shown as these appear
to include many false positive mutation calls. c Cumulative size distribution of deletions in those mutants in which the total number of deletions
in all samples was greater than 10. Samples with suspected mismatch repair or POLE defect based on the SNV spectrum deconstruction were
omitted from b, c
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results therefore suggest that BRCA2 and PALB2 have a
distinguished role in preventing the formation of spontan-
eous DSBs, possibly through protecting stalled and re-
versed replication forks from nucleolytic cleavage [43, 44].
The near-complete lack of mutagenic consequences of

ATM or CHK2 disruption is surprising and suggests that
the main function of this DNA damage checkpoint mech-
anism is not the facilitation of correct repair, at least in
cells with a moderate amount of endogenous DNA dam-
age. This is in agreement with reports showing no impair-
ment of HR repair upon CHK2 inactivation [45, 46].
Indeed, our results and further recent data did not show
an increased contribution of signature 3 mutations to
somatic SNVs in ATM-deficient tumors [47, 48]. Instead,
the main relevance of the pathway to tumor cells may be
cell cycle arrest and p53-mediated apoptosis, explaining
the mutual exclusivity of ATM and TP53 inactivation in
breast cancer [47]. The ATM or CHK2 mutant cell lines
typically also did not show sensitivity to DNA damaging
agents and PARP inhibitors, and despite promising earlier
results, olaparib did not lead to improved overall survival
for patients with ATM-negative gastric tumors in a phase
3 trial [49, 50]. Taken together, the mutagenicity and drug
sensitivity results argue against making a connection be-
tween HR-deficient and ATM/CHK2-deficient cancers.

Conclusion
In conclusion, our results suggest that no single genomic
mutational class shows perfect correlation with sensitivity
to common treatments, but the contribution of COSMIC
signature 3 to SNVs, or a combined measure of different
features, may be reasonably good at predicting platinum
and PARP inhibitor sensitivity. The mutagenic processes
result from loss of integral HR pathway components;
therefore, cancers with non-BRCA HR defects, such as
germline or somatic mutations in PALB2, RAD51B,
RAD51C, or RAD51D, or their inactivation through pro-
moter methylation [3], would also receive a positive treat-
ment prediction. However, if the tested cell lines accurately
model the relevant tumor tissues, the lower sensitivity of
RAD51 paralog mutants to PARP inhibitors may predict a
reduced clinical response in tumors with the correspond-
ing gene defects. The employed p53-negative lymphoid cell
line model clearly has limitations [51, 52], but the multiple
levels of agreement between cell line and tumor-derived
mutation patterns encourage the further use of isogenic
cell line models to decipher the complex mutational pro-
cesses in human cancer.

Methods
Cell culture
The following DT40 cell lines were used: wild type,
BRCA1−/−, and BRCA2−/− as used in [16]; PALB2−/− [53];
RAD51C−/−, XRCC2−/−, and XRCC3−/− [22]; RAD54−/−

(gene name RAD54L) [54]; ATM−/− [55]; and CHK2−/−

(gene name CHEK2) [56]. RAD52−/− mutant cells were
generated by homologous gene targeting, replacing the
genomic region from the NdeI restriction site upstream of
exon 3 until the BamHI restriction site downstream of
exon 7 on each allele with blasticidin and hygromycin
selection cassettes, respectively. All cell lines and all gene
mutations were verified using the whole genome sequence
data. Cells were grown at 37 °C under 5% CO2 in RPMI-
1640 medium supplemented with 7% fetal bovine serum,
3% chicken serum, and 50 μM 2-mercaptoethanol. PX458
(Addgene plasmid #48138) [57] transiently expressing
Cas9, GFP, and a guide RNA was transfected into 600,000
cells using a Nucleofector 4D instrument (Lonza) with
program CN-150. GFP+ cells were sorted 24 h later, and
after a further 24 h, by which time the arising mutation
spectrum is expected to be stable [58], the regions of the
targeted loci were amplified from genomic DNA prepara-
tions using indexed PCR primers.

DNA sequencing and mutation calling
Whole genome sequencing on Illumina HiSeq X Ten in-
struments (2 × 150 bp paired end) to 30GB coverage per
cell clone was done at Novogene, Beijing, China. A mean
coverage of 27× was achieved in the near-diploid DT40
genome [52]. The alignment of reads was done as de-
scribed, using the Galgal4.73 reference genome (16). Inde-
pendently arising SNVs and short indels were identified
using IsoMut, run on all samples together with default set-
tings [37]. The output was post-filtered such that no more
than five SNVs and one indel were detected in the ancestral
clones, as mutations detected as unique in these samples
provide an internal control for false positives. To identify
mutations in each ancestral clone that formed since the last
common ancestor with the other cell lines, IsoMut was re-
run with the omission of the descendent clones of the
respective genotype. Mutations in protein coding se-
quences of ancestral clones are presented in Add-
itional file 1: Table S11. Short deletions were classified
as repeat if the deleted sequence was present in at least two
tandem copies and as microhomology if the sequence at
the two breakpoints contained at least 1 bp of homology.
Structural variations were detected using CREST [59] with
post-filtering steps. The post-filtering of the CREST output
utilized three filters to deem a structural event valid: both
breakpoints had to be unique among the samples, both
breakpoints had to be covered by reads in all of the sam-
ples, and the structural variant had to be supported by at
least five soft-clipped reads. CRISPR-targeted amplicons
were sequenced on Illumina HiSeq 2500.

Signature analysis
Individual SNV spectra were averaged for each genotype.
De novo NMF decomposition and fitting of triplet
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signatures was performed using the R package Mutatio-
nalPatterns [60]. During de novo NMF of experimental
data, an optimal component number of two was chosen
based on the cophenetic correlation coefficient and the
residual sum of squares values (Additional file 2: Figure
S2) and the same settings were used on simulated data
(Additional file 2: Figure S5). Signature deconstruction
was performed using the deconstructSigs R package [61]
using version 2 of the COSMIC signatures [15] unless
otherwise stated. For comparisons to COSMIC triplet
signatures, DT40 triplet signatures were adjusted by
multiplying with the ratio of triplet occurrences in the
human and chicken genomes [62]. COSMIC version 3
short indel classification (Additional file 1: Table S12)
was performed using a custom script that used the Iso-
Mut indel output list (Additional file 1: Table S3) as its
input. For the structural variation signature analysis, we
used the rearrangement signature set defined by [12].
Potential clustered events were detected using the R
package copynumber, using a piecewise constant fitting
method with parameters kmin = 10 and γ = 25. After
classifying the indels and the structural variants, the sig-
nature contributions were calculated by non-negative
least squares regression using the R package pracma.

CRISPR-based DSB repair analysis
Two loci were targeted: exon 6 of the HMBS gene (gRNA
directed against chr24:40917-40636) and exon 1 of the XPC
gene (gRNA directed against chr12:10787326-10787346).
The gRNA sequences targeting locus 1 and locus 2 were
GCACCAATGGTAAAGCCAGG and GATCTGCTCG
CCGCTATGGCG, respectively. To amplify the DNA in the
region surrounding the targeted sites, we used primers
gacNNNNNNCCACACTGCAAAACATTAAGTCC and ga
cNNNNNNCTGTTCAGTGTTGTGACTGC for locus 1
and gacNNNNNNGTCCGCCATCTTTCAAACC and gac
NNNNNNCCGGGCCGCCTTTTGC for locus 2, where
underlined letters denote flanking sequences and N’s denote
sample-specific barcodes. The amplicon sequencing reads
were first preprocessed with Trimmomatic [63] to remove
Illumina sequencing adapters and sequences of low base
quality. The read pairs were merged using FLASH2 [64] with
maximal overlap length set to 150 and maximal mismatch
density set to 0.05. The merged amplicons were aligned
against the theoretical amplicon sequence using the global
pairwise aligner Needle from the EMBOSS toolset [65] and
the sequence alterations found in each amplicon were sum-
marized and visualized with a custom Python script.

Sensitivity measurements
For cytotoxicity assays, 1000 cells per well in 384-well plates
were incubated with cytotoxic drugs (Additional file 1:
Table S9) at a range of concentrations. Cell viability was
measured after 72 h using PrestoBlue (Thermo Fisher) and

an EnSpire plate reader (Perkin-Elmer). Three tech-
nical replicates were averaged per experiment. Data
were normalized to untreated cells; curves were fitted
with the GraphPad Prism software using the sig-
moidal dose–response model. Curve fit statistics were
used to determine IC50 values. Colony survival assays
were performed by plating cell dilutions in medium
containing 1% methylcellulose following 1-h cisplatin
treatments or 24-h treatments with olaparib or etopo-
side, and counting the emerging cell colonies.

Analysis of TCGA samples
Whole exome sequencing data of samples from a wide var-
iety of tissues were obtained based on the pipeline described
by Riaz and colleagues [40] from the Broad GDAC Firehose
portal. Samples with fewer than 100 somatic SNVs were ex-
cluded from analysis. Mutational annotation format files
were processed with the R software environment. For each
investigated HR-related gene, only samples with germline or
somatic biallelic pathogenic mutations, either with loss of
heterozygosity or with compound heterozygosity, were con-
sidered as confirmed pathogenic variants. Samples with only
monoallelic pathogenic mutations or with variants of uncer-
tain significance but no confirmed pathogenic mutations
were excluded. For negative control, samples with neither
pathogenic mutations nor variants of uncertain significance
in any of the investigated genes were selected. Deconstruc-
tion of mutational signatures to the 30 COSMIC signatures
was performed with the deconstructSigs R package [61].
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Additional file 1: Table S1. Provides general sequencing statistics.
Tables S2 and S3. Contain a catalogue of all detected SNVs and indels,
respectively. Table S4. Contains a summary of all detected genetic alterations.
Table S5. Provides the numerical values of de novo SNV signatures. Table S6.
Contains numerical data for cosine similarity and Pearson correlation values
between SNV signatures. Table S7. Lists all detected and post-filtered SVs.
Table S8. Provides all measured IC50 doses on all cell lines. Table S9. Lists
the sources of all chemotherapeutic drugs used in this study. Table S10. Pro-
vides the identifier, genotype, mutation data and SNV signature contributions
of analysed TCGA samples. Table S11. Contains a catalogue of all detected
coding SNVs in the ancestral clones. Table S12. Contains aggregated indel
profiles according to PCAWG nomenclature.

Additional file 2: Figure S1. Shows SNV spectra normalised to the
frequency of each triplet occurrence. Figure S2. Shows the NMF output
used for defining signatures HRD and BG. Figure S3. Shows the
derivation of SNV signatures on a dataset that includes pre-existing mutations
in the ancestral clones. Figure S4. Correlates detected SNV spectra and
signatures with COSMIC SNV signatures. Figure S5. Shows a simulation of
separating ‘featureless’ SNV signatures. Figure S6. Shows a deconstruction of
detected indel datasets into indel signatures. Figure S7. Shows the results of
amplicon sequencing across Cas9 cut sites. Figure S8. Shows drug sensitivity
measurements on ancestral and descendent clones. Figures S9 and S10.
show the contribution to the SNV load of TCGA samples of COSMIC v2 and
v3 SNV signatures, respectively.

Additional file 3. Review history.

Póti et al. Genome Biology          (2019) 20:240 Page 11 of 13

https://doi.org/10.1186/s13059-019-1867-0
https://doi.org/10.1186/s13059-019-1867-0


Acknowledgements
The authors wish to thank David Gillespie for the CHK2–/– cell line.

Review history
The review history is available as Additional file 3.

Peer review information
YixinYao was the primary editor on this article and managed its editorial
process and peer review in collaboration with the rest of the editorial team.

Authors’ contributions
ALR, ZS, and DS conceived the study. DS made the RAD52 mutant. HG
performed the long-term cell culture. OR, STóth, DC, BS, and GS designed and
performed the cytotoxicity experiments. SS, CK, AP, and HG designed and
performed, and AP evaluated the CRISPR amplicon sequencing experiments. AP
and EN performed the bioinformatic analyses. STakeda provided the cell lines
and advice. DS wrote the manuscript. All authors analyzed the data and read
and approved the final manuscript.

Funding
This work was supported by the Research and Technology Innovation Fund
of Hungary (K_124881 to DS, FIEK_16-1-2016-0005 to DS and GS, PD_121381
to BS, KTIA_NAP_13-2014-0021 and NAP2-2017-1.2.1-NKP-0002 to ZS) and
the Breast Cancer Research Foundation (BCRF-18-137 to ALR, BCRF-18-159 to
ZS). STakeda is a recipient of the Core-to-Core Program of JSPS.

Availability of data and materials
Whole genome sequence data generated in the course of this study is
available from the European Nucleotide Archive under study accession
number PRJEB33877 [66]. Custom scripts are available at the github
repository https://github.com/szutsgroup/hrmutants [67]. Identifiers of the
analyzed TCGA samples are listed in Additional file 1: Table S10. Mutation
annotation files that formed the basis of the TCGA analysis can be
downloaded from the Broad GDAC Firehose portal using instructions
provided by Riaz et al. [40].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Enzymology, Research Centre for Natural Sciences, Hungarian
Academy of Sciences, Magyar tudosok krt 2, Budapest H-1117, Hungary.
2Department of Oncotherapy, University of Szeged, Szeged, Hungary.
3Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
02215, USA. 4Center for Functional Cancer Epigenetics, Dana-Farber Cancer
Institute, Boston, MA 02215, USA. 5Department of Radiation Genetics, Kyoto
University Medical School, Kyoto 606-8501, Japan. 6Institute of Cancer
Research, Medical University Vienna, Vienna, Austria. 7Computational Health
Informatics Program (CHIP), Boston Children’s Hospital, Boston, MA, USA.
8Harvard Medical School, Boston, MA, USA. 9Danish Cancer Society Research
Center, Copenhagen, Denmark. 10SE-NAP, Brain Metastasis Research Group,
2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
11Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Received: 7 May 2019 Accepted: 28 October 2019

References
1. Zhao H, Thienpont B, Yesilyurt BT, Moisse M, Reumers J, Coenegrachts L,

et al. Mismatch repair deficiency endows tumors with a unique mutation
signature and sensitivity to DNA double-strand breaks. Elife. 2014;3:e02725.

2. Kim J, Mouw KW, Polak P, Braunstein LZ, Kamburov A, Tiao G, et al. Somatic
ERCC2 mutations are associated with a distinct genomic signature in
urothelial tumors. Nat Genet. 2016;48(6):600–6.

3. Polak P, Kim J, Braunstein LZ, Karlic R, Haradhavala NJ, Tiao G, et al. A
mutational signature reveals alterations underlying deficient homologous
recombination repair in breast cancer. Nat Genet. 2017;49(10):1476–86.

4. Fackenthal JD, Olopade OI. Breast cancer risk associated with BRCA1 and
BRCA2 in diverse populations. Nat Rev Cancer. 2007;7(12):937–48.

5. Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George J, et al.
BRCA mutation frequency and patterns of treatment response in BRCA
mutation-positive women with ovarian cancer: a report from the Australian
Ovarian Cancer Study Group. J Clin Oncol. 2012;30(21):2654–63.

6. Cavanagh H, Rogers KM. The role of BRCA1 and BRCA2 mutations in
prostate, pancreatic and stomach cancers. Hered Cancer Clin Pract. 2015;
13(1):16.

7. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al.
Germline and somatic mutations in homologous recombination genes
predict platinum response and survival in ovarian, fallopian tube, and
peritoneal carcinomas. Clin Cancer Res. 2014;20(3):764–75.

8. Network CGAR. Integrated genomic analyses of ovarian carcinoma. Nature.
2011;474(7353):609–15.

9. Hennessy BT, Timms KM, Carey MS, Gutin A, Meyer LA, Flake DD 2nd, et al.
Somatic mutations in BRCA1 and BRCA2 could expand the number of
patients that benefit from poly (ADP ribose) polymerase inhibitors in
ovarian cancer. J Clin Oncol. 2010;28(22):3570–6.

10. Faraoni I, Graziani G. Role of BRCA mutations in cancer treatment with
poly(ADP-ribose) polymerase (PARP) inhibitors. Cancers (Basel). 2018;10(12):487.

11. Mylavarapu S, Das A, Roy M. Role of BRCA mutations in the modulation of
response to platinum therapy. Front Oncol. 2018;8:16.

12. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al.
Landscape of somatic mutations in 560 breast cancer whole-genome
sequences. Nature. 2016;534(7605):47–54.

13. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K,
et al. Mutational processes molding the genomes of 21 breast cancers. Cell.
2012;149(5):979–93.

14. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV,
et al. Signatures of mutational processes in human cancer. Nature. 2013;
500(7463):415–21.

15. COSMIC. COSMIC: signatures of mutational processes in human cancer. 2019.
http://cancer.sanger.ac.uk/cosmic/signatures_v2. Accessed on 24 July 2019.

16. Zamborszky J, Szikriszt B, Gervai JZ, Pipek O, Poti A, Krzystanek M, et al. Loss
of BRCA1 or BRCA2 markedly increases the rate of base substitution
mutagenesis and has distinct effects on genomic deletions. Oncogene.
2017;36(6):746–55.

17. Pilie PG, Gay CM, Byers LA, O'Connor MJ, Yap TA. PARP inhibitors: extending
benefit beyond BRCA-mutant cancers. Clin Cancer Res. 2019;25:3759–71.

18. Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD. Homologous
recombination deficiency: exploiting the fundamental vulnerability of
ovarian cancer. Cancer Discov. 2015;5(11):1137–54.

19. Dong F, Davineni PK, Howitt BE, Beck AH. A BRCA1/2 mutational signature
and survival in ovarian high-grade serous carcinoma. Cancer Epidemiol
Biomark Prev. 2016;25(11):1511–6.

20. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al.
Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian
cancer. N Engl J Med. 2016;375(22):2154–64.

21. Taylor MRG, Špírek M, Chaurasiya KR, Ward JD, Carzaniga R, Yu X, et al.
Rad51 paralogs remodel pre-synaptic Rad51 filaments to stimulate
homologous recombination. Cell. 2015;162(2):271–86.

22. Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, et al.
Chromosome instability and defective recombinational repair in knockout
mutants of the five Rad51 paralogs. Mol Cell Biol. 2001;21(8):2858–66.

23. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, et al. Identification
of a RING protein that can interact in vivo with the BRCA1 gene product.
Nat Genet. 1996;14(4):430–40.

24. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R. The C-terminal (BRCT)
domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP
pathway of transcriptional repression. J Biol Chem. 1998;273(39):25388–92.

25. Zhang F, Ma J, Wu J, Ye L, Cai H, Xia B, et al. PALB2 links BRCA1 and BRCA2
in the DNA-damage response. Curr Biol. 2009;19(6):524–9.

26. Heyer WD, Li X, Rolfsmeier M, Zhang XP. Rad54: the Swiss Army knife of
homologous recombination? Nucleic Acids Res. 2006;34(15):4115–25.

27. Lok BH, Powell SN. Molecular pathways: understanding the role of Rad52 in
homologous recombination for therapeutic advancement. Clin Cancer Res.
2012;18(23):6400–6.

Póti et al. Genome Biology          (2019) 20:240 Page 12 of 13

https://github.com/szutsgroup/hrmutants
http://cancer.sanger.ac.uk/cosmic/signatures_v2


28. Parameswaran B, Chiang HC, Lu Y, Coates J, Deng CX, Baer R, et al.
Damage-induced BRCA1 phosphorylation by Chk2 contributes to the timing
of end resection. Cell Cycle. 2015;14(3):437–48.

29. Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the
Mre11-Rad50-Nbs1 complex. Science. 2005;308(5721):551–4.

30. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkas K, Roberts J, et al.
Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;
371(6):497–506.

31. Kurian AW, Hughes E, Handorf EA, Gutin A, Allen B, Hartman A, et al. Breast
and ovarian cancer penetrance estimates derived from germline multiple-
gene sequencing results in women. JCO Precision Oncol. 2017;1(1):1–12.

32. Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, et al.
Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D
genes to ovarian cancer in the population. J Clin Oncol. 2015;33(26):2901–7.

33. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al.
Homologous recombination deficiency (HRD) score predicts response to
platinum-containing neoadjuvant chemotherapy in patients with triple-
negative breast cancer. Clin Cancer Res. 2016;22(15):3764–73.

34. Hodgson DR, Dougherty BA, Lai Z, Fielding A, Grinsted L, Spencer S, et al.
Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond
the BRCA genes. Br J Cancer. 2018;119(11):1401–9.

35. Mori H, Kubo M, Nishimura R, Osako T, Arima N, Okumura Y, et al. BRCAness
as a biomarker for predicting prognosis and response to anthracycline-
based adjuvant chemotherapy for patients with triple-negative breast
cancer. PLoS One. 2016;11(12):e0167016.

36. Wang C, Zhang J, Wang Y, Ouyang T, Li J, Wang T, et al. Prevalence of
BRCA1 mutations and responses to neoadjuvant chemotherapy among
BRCA1 carriers and non-carriers with triple-negative breast cancer. Ann
Oncol. 2015;26(3):523–8.

37. Pipek O, Ribli D, Molnar J, Poti A, Krzystanek M, Bodor A, et al. Fast and
accurate mutation detection in whole genome sequences of multiple
isogenic samples with IsoMut. BMC Bioinform. 2017;18(1):73.

38. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AW, Wu Y, et al. The
repertoire of mutational signatures in human cancer. bioRxiv. 2019:322859.
https://doi.org/10.1101/322859.

39. Bruno PM, Liu Y, Park GY, Murai J, Koch CE, Eisen TJ, et al. A subset of
platinum-containing chemotherapeutic agents kills cells by inducing
ribosome biogenesis stress. Nat Med. 2017;23(4):461–71.

40. Riaz N, Blecua P, Lim RS, Shen R, Higginson DS, Weinhold N, et al. Pan-
cancer analysis of bi-allelic alterations in homologous recombination DNA
repair genes. Nat Commun. 2017;8(1):857.

41. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X, et al. HRDetect is
a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures.
Nat Med. 2017;23(4):517–25.

42. Wesoly J, Agarwal S, Sigurdsson S, Bussen W, Van Komen S, Qin J, et al.
Differential contributions of mammalian Rad54 paralogs to recombination,
DNA damage repair, and meiosis. Mol Cell Biol. 2006;26(3):976–89.

43. Lemacon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S, et al. MRE11
and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent
fork rescue in BRCA2-deficient cells. Nat Commun. 2017;8(1):860.

44. Kolinjivadi AM, Sannino V, De Antoni A, Zadorozhny K, Kilkenny M, Techer
H, et al. Smarcal1-mediated fork reversal triggers Mre11-dependent
degradation of nascent DNA in the absence of Brca2 and Stable Rad51
nucleofilaments. Mol Cell. 2017;67(5):867–81.e7.

45. Lima M, Bouzid H, Soares DG, Selle F, Morel C, Galmarini CM, et al. Dual
inhibition of ATR and ATM potentiates the activity of trabectedin and
lurbinectedin by perturbing the DNA damage response and homologous
recombination repair. Oncotarget. 2016;7(18):25885–901.

46. Huang M, Miao ZH, Zhu H, Cai YJ, Lu W, Ding J. Chk1 and Chk2 are
differentially involved in homologous recombination repair and cell cycle
arrest in response to DNA double-strand breaks induced by camptothecins.
Mol Cancer Ther. 2008;7(6):1440–9.

47. Weigelt B, Bi R, Kumar R, Blecua P, Mandelker DL, Geyer FC, et al. The
landscape of somatic genetic alterations in breast cancers from ATM
germline mutation carriers. J Natl Cancer Inst. 2018;110(9):1030–4.

48. Yi-Mi W, Cieslik M, Lonigro RJ, Pankaj V, Reimers MA, Xuhong C, et al.
Inactivation of CDK12 delineates a distinct immunogenic class of advanced
prostate cancer. Cell. 2018;173(7):1770–82 e14.

49. Kubota E, Williamson CT, Ye R, Elegbede A, Peterson L, Lees-Miller SP, et al.
Low ATM protein expression and depletion of p53 correlates with olaparib
sensitivity in gastric cancer cell lines. Cell Cycle. 2014;13(13):2129–37.

50. Bang YJ, Xu RH, Chin K, Lee KW, Park SH, Rha SY, et al. Olaparib in combination
with paclitaxel in patients with advanced gastric cancer who have progressed
following first-line therapy (GOLD): a double-blind, randomised, placebo-
controlled, phase 3 trial. Lancet Oncol. 2017;18(12):1637–51.

51. Abe T, Branzei D. High levels of BRC4 induced by a Tet-On 3G system
suppress DNA repair and impair cell proliferation in vertebrate cells. DNA
Repair (Amst). 2014;22:153–64.

52. Molnár J, Póti A, Pipek O, Krzystanek M, Kanu N, Swanton C, et al. The
genome of the chicken DT40 bursal lymphoma cell line. G3 (Bethesda).
2014;4(11):2231–40.

53. Al Abo M, Dejsuphong D, Hirota K, Yonetani Y, Yamazoe M, Kurumizaka H,
et al. Compensatory functions and interdependency of the DNA-binding
domain of BRCA2 with the BRCA1-PALB2-BRCA2 complex. Cancer Res. 2014;
74(3):797–807.

54. Bezzubova O, Silbergleit A, Yamaguchi-Iwai Y, Takeda S, Buerstedde JM.
Reduced X-ray resistance and homologous recombination frequencies in a
RAD54−/− mutant of the chicken DT40 cell line. Cell. 1997;89(2):185–93.

55. Takao N, Kato H, Mori R, Morrison C, Sonada E, Sun X, et al. Disruption of
ATM in p53-null cells causes multiple functional abnormalities in cellular
response to ionizing radiation. Oncogene. 1999;18(50):7002–9.

56. Rainey MD, Black EJ, Zachos G, Gillespie DA. Chk2 is required for optimal
mitotic delay in response to irradiation-induced DNA damage incurred in
G2 phase. Oncogene. 2008;27(7):896–906.

57. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome
engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.

58. Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R, Lundin A, Cavallo AL, Madeyski-
Bengtson K, et al. Decoding non-random mutational signatures at Cas9
targeted sites. Nucleic Acids Res. 2018;46(16):8417–34.

59. Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J, et al. CREST
maps somatic structural variation in cancer genomes with base-pair
resolution. Nat Methods. 2011;8(8):652–4.

60. Blokzijl F, Janssen R, van Boxtel R, Cuppen E. MutationalPatterns:
comprehensive genome-wide analysis of mutational processes. Genome
Med. 2018;10(1):33.

61. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C.
DeconstructSigs: delineating mutational processes in single tumors
distinguishes DNA repair deficiencies and patterns of carcinoma evolution.
Genome Biol. 2016;17:31.

62. Szikriszt B, Poti A, Pipek O, Krzystanek M, Kanu N, Molnar J, et al. A
comprehensive survey of the mutagenic impact of common cancer
cytotoxics. Genome Biol. 2016;17:99.

63. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30(15):2114–20.

64. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to
improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.

65. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology
open software suite. Trends Genet. 2000;16(6):276–7.

66. Póti Á, Szüts D. Correlation of homologous recombination deficiency
induced mutational signatures with sensitivity to PARP inhibitors and
cytotoxic agents. PRJEB33877. European Nucleotide Archive. 2019. https://
www.ebi.ac.uk/ena/data/view/PRJEB33877.

67. Póti Á, Szüts D. Hrmutants supplementary scripts. Github. 2019. https://
github.com/szutsgroup/hrmutants.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Póti et al. Genome Biology          (2019) 20:240 Page 13 of 13

https://doi.org/10.1101/322859
https://www.ebi.ac.uk/ena/data/view/PRJEB33877
https://www.ebi.ac.uk/ena/data/view/PRJEB33877
https://github.com/szutsgroup/hrmutants
https://github.com/szutsgroup/hrmutants

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Increased single nucleotide substitution mutagenesis in a range of HR mutant cell lines
	A common base substitution signature describes mutagenesis in all HR-deficient cells
	Disruption of the HR pathway at different stages gives rise to different short deletion phenotypes
	Spontaneously arising very short deletions are not the consequence of double-strand break repair
	Patterns of large-scale rearrangements differentiate HR mutants
	HR-deficient cells show differential sensitivities to cancer cytotoxics
	Mutation patterns in cancer genomes with HR gene defects

	Discussion
	Conclusion
	Methods
	Cell culture
	DNA sequencing and mutation calling
	Signature analysis
	CRISPR-based DSB repair analysis
	Sensitivity measurements
	Analysis of TCGA samples

	Supplementary information
	Acknowledgements
	Review history
	Peer review information
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

