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The lectin pathway (LP) of the complement system is an
important antimicrobial defense mechanism, but it also con-
tributes significantly to ischemia reperfusion injury (IRI) asso-
ciated with myocardial infarct, stroke, and several other clinical
conditions. Mannan-binding lectin–associated serine protein-
ase 2 (MASP-2) is essential for LP activation, and therefore, it is
a potential drug target. We have previously developed the first
two generations of MASP-2 inhibitors by in vitro evolution of
two unrelated canonical serine proteinase inhibitors. These
inhibitors were selective LP inhibitors, but their nonhuman
origin rendered them suboptimal lead molecules for drug de-
velopment. Here, we present our third-generation MASP-2
inhibitors that were developed based on a human inhibitor scaf-
fold. We subjected the second Kunitz domain of human tissue
factor pathway inhibitor 1 (TFPI1 D2) to directed evolution
using phage display to yield inhibitors against human and rat
MASP-2. These novel TFPI1-based MASP-2 inhibitor (TFMI-2)
variants are potent and selective LP inhibitors in both human
and rat serum. Directed evolution of the first Kunitz domain of
TFPI1 had already yielded the potent kallikrein inhibitor, Kal-
bitor� (ecallantide), which is an FDA-approved drug to treat
acute attacks of hereditary angioedema. Like hereditary angioe-
dema, acute IRI is also related to the uncontrolled activation of a
specific plasma serine proteinase. Therefore, TFMI-2 variants
are promising lead molecules for drug development against IRI.

The complement system (CS)2 is an essential part of innate
immunity. It is a network of more than 30 plasma and cell sur-

face proteins that recognizes, labels, and eliminates microbial
pathogens and dangerously altered (e.g. apoptotic) self-cells,
triggers inflammation, and recruits immune cells (1–3).

The CS can be activated through three pathways. The classi-
cal pathway (CP) is activated primarily by immune complexes,
but it can also recognize microbial surfaces and apoptotic and
necrotic cells; it contributes to the elimination of unnecessary
synapses during ontogenesis; and it is important for the clear-
ance of immune complexes and cell debris (4, 5). The lectin
pathway (LP) recognizes ancient surface-exposed molecular
determinants on microbes via a diverse set of pattern recogni-
tion molecules (PRMs) and provides immediate defense against
microbial pathogens, which does not depend on specific anti-
bodies (6). The alternative pathway (AP) continuously chal-
lenges all surfaces by spontaneous low-level activation, but it
activates productively only on those that lack protecting com-
plement regulator molecules. Additionally, the AP provides an
important amplification loop for complement activation (7, 8).

Danger signal recognition triggers the activation of pathway-
specific serine proteinase zymogens. The activated proteinases
cleave downstream complement components that form sur-
face-bound C3 convertases: C4b2a for the CP and the LP and
C3bBb for the AP. At this point, the three activation pathways
converge to a common effector route leading to the labeling and
lysis of the pathogens, recruitment of immune cells, and trig-
gering of inflammation.

Normally, complement activation is tightly regulated (9).
Lack of complement inhibition is responsible for the patho-
mechanism of paroxysmal nocturnal hemoglobinuria, and
inappropriate complement activation contributes to the devel-
opment of diseases such as ischemia-reperfusion injury (IRI),
rheumatoid arthritis, age-related macular degeneration, and
neurodegenerative diseases including Alzheimer’s disease.
Therefore, there is a great need for potent and specific anti-
complement drugs that could provide targeted therapies for
these complement-related diseases (10). Whereas many anti-
complement compounds are under development (11), there are
only two molecules that have been approved for clinical use: the
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anti-C5 antibody Soliris� (eculizumab) and C1 inhibitor. Even
of these two, only eculizumab is a dedicated complement-tar-
geted drug. One of the most promising candidates among com-
plement-targeted lead molecules is compstatin and its deriva-
tives (12). These compounds effectively block the interaction of
the C3 convertases with C3 to inhibit erroneous complement
activation.

In most complement-related diseases, the contribution of
only one of the three pathways is dominant. The CP partici-
pates in Alzheimer’s disease (13) and myasthenia gravis (14),
the LP contributes to IRI of various tissues (15–18), and the AP
plays a significant role in age-related macular degeneration (19)
and atypical hemolytic uremic syndrome (20). Pathway-specific
inhibitors should be useful tools for academic research to iden-
tify individual roles of the three pathways in physiologic and
pathologic processes and ideal therapeutics that selectively
block the derailed pathologic pathway while leaving the pro-
tecting functions of the other two pathways undisturbed.

Pathway-specific proteinases are obvious targets of pathway-
selective drug development. However, as most plasma serine
proteinases have trypsin-like substrate specificity, selectively
targeting a single complement proteinase is a formidable chal-
lenge. Small molecules that target only the active site are rarely
monospecific. Fragment-based drug discovery (21) has been
successfully applied to develop highly selective small-molecule
inhibitors against factor D, a key enzyme of the AP (22). These
compounds target factor D in its unique, self-inhibited confor-
mation that is characteristically different from other protei-
nases. Proteins such as mAbs and canonical serine proteinase
inhibitors have much larger interacting surfaces and have
therefore greater potential to provide monospecificity.

In the last decade we have developed the first selective LP
inhibitors by directed evolution of canonical serine proteinase
inhibitors (23–25). The first-generation LP inhibitors were
based on the 14-amino acid sunflower trypsin inhibitor (SFTI)
scaffold, resulting in SFMI-1 and SFMI-2 (23). The second-
generation compounds were developed on the scaffold of the
35-amino acid Schistocerca gregaria proteinase inhibitor 2
(SGPI-2), yielding SGMI-1 and SGMI-2 (24, 25). With these
inhibitors, we revealed that both MASP-1 and MASP-2 are
essential for LP activity in human serum (23–25), and therefore,
both enzymes are promising targets for drug development.
However, MASP-1 has several functions outside the LP (26 –
29), and MASP-2 has a significantly lower plasma concentra-
tion than MASP-1 (30). Therefore, MASP-2 might be a better
target for the development of highly selective LP inhibitors.

Nonhuman origin rendered the previously developed MASP
inhibitors suboptimal for subsequent drug development.
Therefore, we decided to develop a third generation of MASP-2
inhibitors based on a human scaffold to reduce the risk of
immunogenicity in humans. We chose the factor Xa–inhibiting
second Kunitz domain of tissue factor pathway inhibitor 1
(TFPI1 D2), as it is normally present in the plasma and because
it has already been shown to be a low-affinity inhibitor of
MASP-2 (31). Here, we present how we developed TFPI1-based
MASP-2 inhibitor (TFMI-2) variants that potently inhibit both
human and rat MASP-2, enabling their use in proof-of-concept
studies in rats.

Results

Selection of the TFPI1 D2-phage library for binding to human
or rat MASP-2

We followed the same strategy we already applied for devel-
oping TFPI1 D2– based MASP-3 inhibitors (32). We random-
ized the P3–P4� region (33) of TFPI1 D2 (UniProt ID P10646)
except the P2 Cys that forms a structurally indispensable disul-
fide (Fig. S1). The inhibitor-phage library of 5 � 108 clones was
selected for binding to the catalytic fragment of human
MASP-2 (hMASP-2cf) or that of rat MASP-2 (rMASP-2cf) in
separate experiments. Target-binding clones were identified
and sequenced to determine sequence patterns that enable
binding to hMASP-2cf or rMASP-2cf. Amino acid and DNA
sequences of hMASP-2– and rMASP-2– binding clones are
listed in Tables S2 and S3, respectively.

Scaffold-dependent amino acid preferences of hMASP-2 at the
evolved inhibitor positions

The codon bias normalized sequence pattern of the hMASP-
2– binding TFPI1 D2 clones is presented in Fig. 1A as a
sequence logo. We compare this logo with those we obtained
previously when generating the SFTI-based (23) and the SGPI-
based MASP-2 inhibitors (24).

The three unrelated scaffolds stabilize the canonical loop
conformation through different intramolecular interactions,
including disulfides that we kept intact. Therefore, only the
three central loop positions, P1, P1�, and P2�, were randomized
on all three scaffolds. Human MASP-2 selected only Lys and/or
Arg at the P1 position on all scaffolds, but the relative frequen-
cies of these residues are scaffold-dependent. The enzyme pre-
ferred Lys on the SGPI-2 and Arg on the SFTI, whereas it exclu-
sively selected an Arg on the TFPI1 D2 scaffold. Similar
scaffold-dependent differences are observed at the P1� and P2�

Figure 1. Codon bias–normalized amino acid frequencies of human and
rat MASP-2–selected TFPI1 D2 variants. A, codon bias–normalized
sequence logo of human MASP-2 binding clones. B, codon bias–normalized
sequence logo of rat MASP-2– binding variants. A and B, positions are labeled
according to the Schechter–Berger nomenclature above each column. The
height of each column represents the degree of conservation. The cysteine at
P2 was not randomized; therefore, it shows the maximal column height. Letter
heights indicate normalized amino acid frequencies. Colors reflect the chem-
ical properties of the amino acid side chains.

TFPI1-based inhibitors inhibit both human and rat MASP-2
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positions. At P1�, hMASP-2 preferred Ala/Gly/Ser/Thr on
TFPI1 D2, whereas it accepted only Ser/Gly on SFTI and Leu/
Ala on SGPI-2. At P2�, on TFPI1 D2 hMASP-2 preferred ali-
phatic Val/Ala/Ile/Leu, whereas on SGPI-2, it selected only aro-
matic Trp/Tyr. On SFTI, the preference was a mixture of the
previous two, as mostly Tyr/Phe and, to a lesser extent, Ile/Met/
Leu were selected. The observed differences between the three
selected sequence patterns demonstrate that each unrelated
scaffold uniquely affects the side-chain preference of the same
enzyme at analogous canonical loop positions.

hMASP-2 and rMASP-2 share similar amino acid preferences at
most evolved TFPI1 D2 positions

Logos derived from the sequences of unique hMASP-2– and
rMASP-2– binding TFPI1 D2 clones are shown in Fig. 1, A and
B, respectively. At the two energetically most important posi-
tions, the two enzymes selected the same amino acids: Arg at P1
and Ala/Gly/Ser at P1�. At P2�, both enzymes selected hydro-
phobic side chains; hMASP-2 preferred aliphatic, whereas
rMASP-2 both aliphatic and aromatic residues. At P3� and P4�,
hMASP-2 shows a weak preference for positively charged resi-
dues, whereas rMASP-2 lacks any observable selectivity.

At P3, there is a clear species-specific difference in amino
acid preferences, but even here, there is an overlapping set of
selected residues. Whereas rMASP-2 selected only small
hydrophobic residues, Val/Pro/Ile/Gly, hMASP-2 preferred
Phe/Tyr and selected smaller residues, such as Pro/Val, at lower
frequencies.

Novel MASP-2 inhibitor variants designed based on the
sequence logos

We designed three TFMI-2 variants along the notion that
normalized amino acid frequencies generally correlate with
binding energy contributions of individual amino acid residues
(34 –37). TFMI-2a carries the hMASP-2–selected consensus
P3-P4� sequence (FCRAVKR) and is expected to have the high-
est affinity toward hMASP-2. On the other hand, due to its
bulky P3 Phe, it should be only a weak inhibitor of rMASP-2.
Therefore, we designed two additional inhibitors to efficiently
inhibit both hMASP-2 and rMASP-2. Such variants can serve as
surrogate compounds in studies investigating the in vivo effects
of MASP-2 inhibition in rats. As rMASP-2 mostly preferred a
Pro or Val at P3, we substituted the P3 Phe with Pro in TFMI-2b
(PCRAVKR) and Val in TFMI-2c (VCRAVKR).

TFMI-2 variants are efficient inhibitors of hMASP-2 and
rMASP-2, whereas they are completely inactive against
hMASP-1 and hMASP-3

TFPI1 D2 and TFMI-2a-c were expressed in Escherichia coli
and purified to homogeneity. Their equilibrium inhibitory con-
stants (KI) were determined against the catalytic fragments of
human MASP-1, human and rat MASP-2, and human MASP-3
(Table 1).

TFPI1 D2 was previously shown to inhibit hMASP-2 with
low affinity (31). We found that TFPI1 D2 is indeed a weak
inhibitor of hMASP-2 (KI � 1883 nM) and a moderate inhibitor
of rMASP-2 (KI � 185 nM).

All TFMI-2 variants are potent, low nanomolar inhibitors
of hMASP-2 with 50 –940-fold higher affinities toward the
enzyme than TFPI1 D2. As expected, TFMI-2a has the highest
affinity (KI � 2.0 nM), and it is 3-fold more potent than SGMI-2,
our previous best compound (24). Substituting P3 Phe with Pro
in TFMI-2b resulted in a 7.9 nM KI (4-fold affinity reduction),
whereas the introduction of Val at P3 in TFMI-2c resulted in a
36.7 nM KI value (18-fold affinity drop). Importantly, TFPI1 D2
and the TFMI-2 variants have either no or a negligible inhibi-
tory effect on hMASP-1 and hMASP-3.

In accordance with the sequence logos, TFMI-2b and
TFMI-2c are almost equally potent rMASP-2 inhibitors with KI
values of 7.2 and 7.5 nM, respectively. These values represent a
25-fold affinity improvement compared with TFPI1 D2. On the
other hand, TFMI-2a is significantly less potent with a KI value
of 640 nM. These results show that the hMASP-2– binding con-
sensus P1–P4� region (RAVKR) shared in all three TFMI-2 vari-
ants is compatible with rMASP-2 inhibition, but as expected,
P3 Phe of TFMI-2a is detrimental for binding to the enzyme,
causing an almost 100-fold affinity drop. SGMI-2 inhibits
rMASP-2 with a KI value of 22.7 nM.

In all, TFMI-2b and TFMI-2c are 3-fold stronger rMASP-2
inhibitors than SGMI-2, and most importantly, TFMI-2b is an
equally potent inhibitor of hMASP-2 and rMASP-2. Based on
these in vitro data, TFMI-2b can be a suitable surrogate of
TFMI-2a in subsequent proof-of-concept studies in rats.

TFMI-2 variants are potent and selective inhibitors of the LP in
normal human serum (NHS)

We characterized the effects of the TFMI-2 variants on LP
activation in several complement assays and compared the half-

Table 1
KI values of TFPI1 D2, TFMI-2a– c variants, and SGMI-2 on the catalytic fragments of human MASP-1, -2, and -3 and rat MASP-2

Inhibitor Sequence (P4 –P4�)
KI

Human MASP-1cf Human MASP-2cf Rat MASP-2cf Human MASP-3cf

nM

TFMI-2a GFCRAVKR NEa 2.0 � 0.1b 640 � 20b NE
TFMI-2b GPCRAVKR NE 7.9 � 0.3b 7.2 � 0.2c 30,000d

TFMI-2c GVCRAVKR NE 36.7 � 0.7b 7.5 � 0.3b NE
TFPI1 D2 GICRGYIT NE 1883 � 48b 185 � 4b NE
SGMI-2 VCTKLWCN NE 6e 22.7 � 1.6c 5200 � 300f

a NE, not effective; no inhibition could be detected.
b Average � range (n � 2).
c Average � S.D. (n � 3).
d Approximation based on a single measurement.
e Data from Ref. 24.
f Data from Ref. 25.

TFPI1-based inhibitors inhibit both human and rat MASP-2
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maximal inhibitory concentration (IC50) values with those of
SGMI-2.

TFMI-2 variants are selective inhibitors of the LP according to
the Wieslab test

Wieslab experiments demonstrated that the TFMI-2 vari-
ants are potent LP inhibitors, with IC50 values of 35–384 nM

(Fig. 2 and Table 2), whereas none of them inhibit the CP and
the AP. Compared with SGMI-2, TFMI-2a and TFMI-2b were
more whereas TFMI-2c was less efficient.

LP-inhibitory potencies of the TFMI-2 variants were
characterized in various C3 and C4 deposition assays using
diluted NHS

In ELISA tests using diluted NHS, we measured both C3 and
C4 deposition on mannan-coated and C4 deposition on acety-

lated BSA (AcBSA)-coated surfaces. We found that TFMI-2
variants are efficient LP inhibitors both in MBL-dependent and
ficolin-dependent assays (Fig. 3, A–C and Table 2) with IC50
values in the 11– 406 nM range. Just as in the Wieslab assay,
TFMI-2a and TFMI-2b were more whereas TFMI-2c was less
potent than SGMI-2 in these tests.

TFMI-2 variants inhibit C4 deposition driven by pre-activated
PRM:MASP complexes

In the above mentioned assays, the inhibitors were co-incu-
bated with the serum prior to transferring the samples on the
activator surface. In contrast, in the first phase of this assay, we
generated activated, surface-bound PRM:MASP complexes by
incubating 2-fold diluted NHS on mannan-coated surface at
high ionic strength. Under these conditions, PRMs attach to the
surface and the MASPs activate, but deposition of C4 fragments
is prevented (23, 38, 39). After washing out the unbound com-
ponents, we added purified C4, pre-incubated with the inhibi-
tors in a physiological buffer. The IC50 values obtained for
SGMI-2 and the three TFMI-2s were between 423 and 3574 nM

(Fig. 3D and Table 2).
Importantly, all inhibitors, if applied at a high enough con-

centration, could completely block C4 deposition even with-
out pre-incubation with MASP-2, demonstrating that these
compounds rapidly form stable ternary PRM:MASP-2:inhib-
itor complexes. Interestingly, we found that in this assay, all
TFMI-2 variants were superior to SGMI-2.

TFMI-2 variants are LP-selective inhibitors in 2-fold diluted
NHS and are significantly more potent than SGMI-2

We also performed pathway-selective ELISAs in more con-
centrated, 2-fold diluted NHS (25) (Fig. 4 and Table 2). In the LP

Figure 2. Effects of the TFMI-2 variants and SGMI-2 were selectively
determined on the three individual complement pathways by using the
Wieslab kit. All inhibitors inhibited the lectin pathway (black pentagons) in a
concentration-dependent manner, whereas the activities of the classical
(open gray pentagons) and the alternative (solid gray pentagons) pathways
were unaffected. The IC50 values are between 35 and 384 nM (Table 2).
TFMI-2a and TFMI-2b are more efficient than SGMI-2, whereas TFMI-2c is the
least efficient LP inhibitor in the set. Data points represent the average of two
experiments, whereas the error bars represent the S.E.

Table 2
IC50 values of the TFMI-2 variants and SGMI-2 in various complement
ELISA tests
For easier comparison, values normalized to those of TFMI-2a are also listed. *, with
the Wieslab (previously known as WiELISA) kit (67), one can measure the activation
of the three CS pathways independently. In this table, only the results of the LP-
selective assays are shown.

Figure 3. LP-inhibitory effects of TFMI-2 variants and SGMI-2 in various
complement deposition ELISA tests with NHS. Shown are LP-inhibitory
effects of TFMI-2a (f), TFMI-2b (F), TFMI-2c (Œ), and SGMI-2 (�) on C3 depo-
sition ELISA on a mannan-coated surface with 100-fold diluted NHS (A), C4
deposition ELISA on a mannan-coated surface with 60-fold diluted NHS (B),
C4 deposition ELISA on an AcBSA-coated surface with 60-fold diluted NHS (C),
and deposition of the C4b fragment of purified C4 by pre-activated PRM:
MASP complexes generated on a mannan-coated surface (D). Data points
represent the average of four experiments, whereas the error bars represent
the S.E. The corresponding IC50 values are listed in Table 2.

TFPI1-based inhibitors inhibit both human and rat MASP-2
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assays, we used 100 �g/ml sodium polyanethole sulfonate (SPS)
to selectively suppress the activation of the CP and the AP (40,
41) and detected C4 deposition. In this assay, all TFMI-2 vari-
ants were significantly, 13.4 –35.8-fold more potent than
SGMI-2 (Fig. 4 and Table 2). Interestingly, in this assay,
TFMI-2b was the most potent LP inhibitor, with 2-fold lower
IC50 than the second best TFMI-2a (Table 2).

In the SPS-free CP and AP assays, we applied inhibitor con-
centrations that provided up to 90% inhibition in the LP assays.
In the CP assay, the surface was coated with human IgG, and
deposited C4 was detected. In the AP assay, we prevented the
activation of the CP and the LP by using an EGTA-containing
buffer free from Ca2� ions and measured C3 deposition. The
TFMI-2 variants were completely inactive in these CP and AP
assays, demonstrating that TFMI-2s are efficient and LP-spe-
cific inhibitors even at high serum concentration (Fig. 4).

TFMI-2b inhibits the LP in rat serum

We performed LP ELISA tests on mannan-coated plates with
diluted individual sera of Wistar rats. We detected the deposi-
tion of C3, C4, or the terminal complement antigen C5b-9 in
three different assays and compared the inhibitory potencies of
TFMI-2b and SGMI-2 (Fig. 5 and Table 3). TFMI-2b proved to
be more efficient than SGMI-2 in all three assays with IC50

values 2.2–3.9-fold lower than those of SGMI-2 (Table 3). The
IC50 ratios of the two inhibitors are in agreement with their
corresponding KI ratios on rMASP-2 (Table 1). These data
demonstrate that TFMI-2b is active in rat serum, which is a
prerequisite for using it as a surrogate of TFMI-2a in in vivo rat
studies.

TFMI-2 variants do not inhibit blood coagulation

We tested whether the TFMI-2 variants interfere with the coag-
ulation process in three standard assays, the thrombin time (TT),
the prothrombin time (PT), and the activated partial thromboplas-
tin time (APTT). The inhibitors were applied in a 5-fold serial
dilution, reaching a highest final concentration of 36 �M, which is
3–4 orders of magnitude higher than the KI values of the inhibitors
toward hMASP-2. Even at the highest concentration, TFMI-2
variants have no effect in the PT and TT tests (Fig. 6, A and B) and
have only a negligible effect in the APTT test (Fig. 6C).

Discussion

Complement LP is a powerful antimicrobial mechanism of
innate immunity that is important for maintaining immune
homeostasis. However, inappropriate or uncontrolled LP acti-
vation contributes to several types of IRI. In mice, genetic
MASP-2 deficiency or pretreatment with MASP-2–inhibitory
mAbs was shown to result in smaller infarction size in myocar-
dial and gastrointestinal IR injury models (16, 42) and to reduce
neurological deficit and histopathological lesion after focal cer-
ebral ischemia (18). MAp44 (MAP-1) is an endogenous LP
inhibitor, which binds to the PRMs of the LP and competes off
the MASP enzymes. MAp44 was effective in attenuating myo-
cardial IRI (43), and an antibody against MBL, a major PRM of
the LP, provided similar effects (44).

In humans, MBL deficiency is associated with a smaller
infarction size and favorable outcome after ischemic stroke
(45). Moreover, consumption of ficolin-2 (46) and activation of
MASP-2, both suggesting LP contribution, were also observed
in myocardial IRI (47). A comprehensive recent summary of the
field is available in the review of Panagiotou et al. (48). Although
many smaller studies convincingly associated human IRI with
uncontrolled LP activation, data from IRI-related clinical trials

Figure 4. Inhibitory effects of TFMI-2 variants and SGMI-2 in 2-fold
diluted NHS assessed by pathway-selective ELISA tests. All inhibitors
inhibited the lectin pathway (black pentagons) in a concentration-dependent
manner, whereas the activities of the classical (open gray pentagons) and the
alternative (solid gray pentagons) pathways were unaffected. The IC50 values
are between 430 nM and 15.4 �M (Table 2). In terms of IC50 value ratios, all
TFMI-2 variants are 13.4 –35.8-fold more potent LP inhibitors than SGMI-2.
Data points represent the average of four (in the case of the LP) or two (in the
case of the CP and the AP) experiments. The error bars represent the S.E.

Figure 5. LP-inhibitory effects of TFMI-2b and SGMI-2 in complement
deposition ELISA with rat serum. Shown are LP-inhibitory effects of
TFMI-2b (F) and SGMI-2 (�) in C3 deposition ELISA on a mannan-coated sur-
face with 70-fold diluted rat serum (A), C4 deposition ELISA on a mannan-
coated surface with 60-fold diluted rat serum (B), and C5b-9 deposition ELISA
on a mannan-coated surface with 50-fold diluted rat serum (C). Data points
represent the average of two experiments, whereas the error bars represent
the S.E.
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on selective LP inhibitors, involving a much larger patient
cohort, are still being awaited.

In various studies, Schwaeble and co-workers (16, 18) dem-
onstrated that MASP-2 deficiency or MASP-2 depletion pro-
vides significant protection against experimental IRI in cardiac,
brain, and gastrointestinal tissues. In these experiments, the
authors used MASP-2 KO mice or MASP-2–specific ablating
antibodies. The administration of the mAbs always preceded
the experimentally induced ischemia by hours or even days
(16, 18). From a therapeutic aspect, the requirement for such
a long pretreatment with a drug is compatible only with pre-
dictable cases of IRI accompanying organ transplantation
and other scheduled surgeries or with chronic diseases
where sustained MASP-2 inhibition is needed. Interestingly,
all ongoing clinical trials related to anti-MASP-2 mAb
(OMS721) initiated by OMEROS target chronic diseases
such as thrombotic microangiopathies (NCT02222545), IgA
nephropathy, lupus nephritis, membranous nephropathy
and C3 glomerulopathy (NCT02682407), or atypical hemo-
lytic uremic syndrome (NCT03205995), whereas targeting
acute clinical conditions, such as IRI accompanying myocar-
dial infarct or stroke, have not been reported yet. In this
paper, we presented our third-generation small-protein
inhibitors, the TFMI-2s that have been developed via

directed evolution of human TFPI1 D2 to minimize the risk
of immunogenicity and thereby maximize therapeutic
potential.

In terms of fundamental research, these third-generation
MASP-2 inhibitors provided additional data on how canonical
serine proteinase inhibitors work. Over 20 years ago, Laskowski
and co-workers concluded that the sequence of the canonical
binding loop autonomously determines the specificity and
affinity of serine protease inhibitors (49) (i.e. the role of the
scaffold is indirect (50)). They named this phenomenon inter-
scaffolding additivity.

Our first two generations of MASP-2 inhibitors already
revealed that inhibitory loop sequences of canonical serine pro-
teinase inhibitors evolved against the same enzyme can be char-
acteristically scaffold-dependent (23–25). The unrelated third-
generation MASP-2 inhibitors provided additional evidence
that the sequence of the canonical binding loop does not auton-
omously determine specificity and affinity, verifying that inter-
scaffolding additivity is not a general phenomenon.

In a very recent study, we used pancreatic digestive proteases,
trypsin and chymotrypsin, and two unrelated inhibitors and dem-
onstrated that the canonical loop does not act independently of the
scaffold (37). Instead, the loop and the scaffold constitute one
inseparable functional unit, and different parts of the molecules
need to be coevolved to provide stable and highly functional inhib-
itors (37). Although directed evolution via phage display is a pow-
erful tool to develop serine proteinase inhibitors with novel spec-
ificities (51), grafting an optimized inhibitor loop onto an
unrelated scaffold is unlikely to be successful (37). These observa-
tions should provide valuable information for all those who aim at
developing novel proteinase inhibitors.

In terms of translational research, our third-generation
inhibitors have important promising qualities as follows. All
tested TFMI-2 variants are selective MASP-2 inhibitors and are
inactive against MASP-1 and MASP-3. They inhibit only the LP
while leaving the CP, AP, and the common pathway of the CS
perfectly intact. This means that TFMI-2 variants do not inhibit
C1s, C1r, factor D, the C3-convertases C4b2a, C3bBb, and their
related C5-convertases. Demonstrated pathway specificity of
the TFMI-2s would ensure that whereas LP activation is tem-
porarily shut down for therapeutic purpose, the other two com-
plement pathways would still provide their vital functions.

Importantly, TFMI-2s completely and instantaneously in-
hibit C4 deposition via already surface-deposited and pre-acti-
vated PRM:MASP complexes, demonstrating that TFMI-2s can
readily form ternary PRM:MASP-2:inhibitor complexes. This
feature should be important for the treatment of acute IRI (e.g.
in myocardial infarct and stroke).

Table 3
IC50 values of TFMI-2b and SGMI-2 in complement ELISA tests with rat serum
For easier comparison, values normalized to those of TFMI-2b are also listed.

Inhibitor
C3 deposition C4 deposition C5b-9 deposition

IC50 Relative to TFMI-2b IC50 Relative to TFMI-2b IC50 Relative to TFMI-2b

nM nM nM

TFMI-2b 903 1 96 1 958 1
SGMI-2 1951 2.2 331 3.4 3754 3.9

Figure 6. Effects of the TFMI-2 variants in the three standard blood coag-
ulation tests. Shown are the effects of TFMI-2a (f), TFMI-2b (F), and TFMI-2c
(Œ) in the three standard blood coagulation tests: TT (A), PT (B), and APTT (C).
The inhibitors do not affect the TT and the PT values and cause a minor
increase in the APTT when applied in high concentrations. All data points
represent the average of two measurements. Error bars, S.E. Control values
were averaged from six measurements with blood containing no inhibitors
and are represented as a dashed line.
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TFMI-2a carries a bulky Phe at the P3 position, which is optimal
for hMASP-2 inhibition but deleterious for rMASP-2 binding.
Therefore, TFMI-2a is unsuitable for proof-of-concept studies in
rats. As we anticipated such species-specific incompatibilities, we
designed our set of third-generation MASP-2 inhibitors to contain
at least some variants that are equally potent against human and
rat MASP-2, to enable subsequent proof-of-concept studies.
Indeed, this approach yielded variants, including TFMI-2b, that
could serve as surrogates of TFMI-2a. A suitable surrogate mole-
cule should resemble the clinical candidate as much as possible
with regard to production process, impurity profile, affinity, and
pharmacological mechanism (52, 53). TFMI-2b, which is a single-
point mutant of TFMI-2a, meets these requirements and outper-
forms SGMI-2 in all LP-inhibitory tests, both in human and rat
serum.

TFPI1, harboring TFPI1 D2, the parent molecule of our
TFMI-2s, is present in the human plasma and is an important
regulator of coagulation. TFPI1 is a potent natural fXa inhibitor
(54) via TFPI1 D2 (55, 56) and inhibits coagulation assessed by
the PT and APTT tests (54). Importantly, according to the
results of our PT, TT, and APTT tests, TFMI-2s do not inhibit
any of the six coagulation serine proteinases: thrombin, fVIIa,
fIXa, fXa, fXIa, and fXIIa.

The first Kunitz domain of TFPI1 has already been utilized in
a phage display– based drug development project that yielded
the potent plasma kallikrein inhibitor, ecallantide (Kalbitor�),
which is an FDA-approved drug for the treatment of acute
attacks of hereditary angioedema (57, 58). This demonstrates
that in vitro evolved Kunitz domain derivatives of TFPI1 are
suitable for human therapy. We chose the second Kunitz
domain of human TFPI1 (TFPI1 D2) as the starting molecule, as
it had previously been shown to weakly inhibit MASP-2 (31).
The IC50 of recombinant TFPI1 for LP inhibition, even in 100-
fold diluted NHS, was determined to be 10 �M (31). At the
reported 2.25 nM plasma concentration of TFPI1 (59), this low
inhibitory effect is physiologically irrelevant. On the other
hand, the ability of TFPI1 D2 to weakly interact with MASP-2
indicated for us that the molecule could be evolved into an
efficient MASP-2 inhibitor, which turned to be the case.

Ecallantide (Kalbitor�) shares considerable similarity with
the TFMI-2 variants, and it is repeatedly used to alleviate
potentially life-threatening angioedema attacks in HAE
patients. Moreover, its half-life was successfully increased by
PEGylation.

This suggests that our TFPI D2– based MASP-2 inhibitors
could be suitable for acute treatment of life-threatening disease
conditions accompanied by IRI, such as myocardial infarct or
stroke. Moreover, their serum half-lives could also be opti-
mized by standard methods to enable their use in chronic dis-
eases and predictable cases of IRI. Animal studies with the com-
pounds to assess pharmacokinetics, pharmacodynamics, and in
vivo efficacy are under way.

Experimental procedures

Recombinant MASP fragments

The three-domain catalytic fragments of hMASP-1,
hMASP-2, and hMASP-3 were produced as described previ-

ously (60 –62). These fragments are catalytically equivalent to
the full-length enzymes (61, 63). rMASP-2cf was produced sim-
ilarly to hMASP-2cf (61). rMASP-2cf starts with Gln-298 and
ends with Phe-685 according to the sequence of UniProt entry
Q9JJS8 and was produced with an extra Met-Thr dipeptide at
the N terminus.

Construction of the TFPI1 D2 library

The TFPI1 D2 library was identical to the one published pre-
viously (32). The phagemid vector encodes a fusion protein
consisting of an N-terminal FLAG tag, TFPI1 D2 and the p8
coat protein, connected by Ser/Gly linkers (Fig. S1). The
sequences of the mutagenesis primers are listed in Table S1.

Selection and identification of hMASP-2– and rMASP-2–
binding variants

Human and rat MASP-2cf (20 �g/ml) were immobilized on
MaxiSorp (Nunc) plates in 200 mM sodium carbonate, pH 9.4,
at room temperature for 2 h. Three selection and amplification
cycles were performed, and individual clones from the second
and third selection cycles were tested for target binding.
Sequences of 43 unique hMASP-2– binding (Table S2) and 53
unique rMASP-2– binding (Table S3) clones were determined.

Sequence logo generation

Amino acid frequencies were normalized to the expected ini-
tial codon frequencies in the NNK codon set to eliminate codon
bias as described (36), and the corresponding sequence logo
was created by the WebLogo program (64).

Construction, expression, and purification of TFPI1 D2 and the
TFMI-2 variants

Three TFPI1 D2– based MASP-2 inhibitor (TFMI-2) vari-
ants were designed. The DNA fragment encoding TFPI1 D2
was cloned into a modified pMal p2G phagemid vector. This
vector was used as a template to produce the TFMI-2a-en-
coding DNA by Kunkel mutagenesis (65). The DNA frag-
ments encoding TFMI-2b and TFMI-2c were produced by
megaprimer mutagenesis. All inhibitor genes were cloned
into the S100A4 fusion expression vector described previ-
ously (32). The sequence of the gene and the encoded fusion
protein is shown in Fig. S2. Sequences of the oligonucleo-
tides are shown in Table S1.

The inhibitors were expressed and purified as described
previously (32). Correct molecular mass values of the inhib-
itors were confirmed by electrospray ionization-MS. The
concentration of the inhibitor variants was determined by
titration against active site–titrated trypsin.

Determination of the equilibrium inhibitory constants on the
MASP enzymes

The experiments were performed as desribed previously
(23), with some modifications. The KI values of TFPI1 D2 and
the TFMI-2 variants on human and rat MASP-2cf, hMASP-1cf,
and hMASP-3cf and the KI value of SGMI-2 on rMASP-2cf
were determined in a 200 �l final assay volume in 20 mM

HEPES, 145 mM NaCl, 5 mM CaCl2, 0.05% Triton X-100, pH 7.5,
buffer on 96-well microtiter plates using a BioTek Synergy H4
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microplate reader. Constant concentrations of the enzymes
were co-incubated with serial dilutions of the inhibitors for 2 h
at room temperature. 250 �M Z-Lys-SBzl thioester substrate
and 500 �M 5,5�-dithiobis(2-nitrobenzoic acid) co-substrate
were added, and the residual enzyme activity was measured at
410 nm in at least two parallel experiments.

The KI values were determined using the OriginPro software
based on the following equation,

�E� � �E�0 �
�E�0 � �I�0 � KI � �	�E�0 � �I�0 � KI


2 � 4�E�0�I�0

2

(Eq. 1)

where [E], [E]0, and [I]0 represent the molar concentration of
the free enzyme, the total enzyme, and total inhibitor,
respectively.

Complement ELISAs with NHS

All assays were performed using NHS pooled from at least 10
healthy individuals. Photometric signals were recorded using a
PerkinElmer EnSpire microplate reader. IC50 values were cal-
culated using the OriginPro software. Residual complement
activities were plotted as the function of the logarithm (log10) of
the inhibitor concentration, and the DoseResp function was
fitted to the data.

Wieslab tests

To separately test the effect of the TFMI-2s on the three
complement pathways, Wieslab COMPL 300 tests were per-
formed according to the manufacturer’s protocol with some
modifications (23). Two parallels were measured for each data
point.

C3 deposition ELISAs with diluted NHS

C3 deposition was measured based on the work of Møller-
Kristensen et al. 66 and Kocsis et al. (23) with some modifica-
tions. Greiner high-binding microtiter plates were coated with
10 �g/ml mannan dissolved in 50 mM sodium carbonate, pH
9.6, buffer (coating buffer). Wells were blocked for 1 h with 1%
BSA, 50 mM Tris, 150 mM NaCl, 0.1% Tween 20, pH 7.4, buffer
(TBS/BSA/T) and washed with 50 mM Tris, 150 mM NaCl, 5 mM

CaCl2, 0.1% Tween 20, pH 7.4, buffer (TBS/Ca/T). NHS was
diluted 100-fold in 10 mM HEPES, 150 mM NaCl, 5 mM CaCl2, 5
mM MgCl2, 0.1% Tween 20, pH 7.4, buffer (serum dilution
buffer) and incubated with serial dilutions of the inhibitors for
30 min at room temperature. Samples were transferred onto
the plate and incubated for 30 min at 37 °C. The plate was
rinsed with TBS/Ca/T, followed by applying polyclonal rab-
bit anti-human C3c antibody (A0062, DakoCytomation)
diluted 2,000-fold in TBS/BSA/Ca/T to the plate, which
was incubated for 1 h at 37 °C. After washing, horseradish
peroxidase– conjugated monoclonal mouse anti-rabbit IgG
antibody (A1949, Sigma-Aldrich) diluted 40,000-fold in
TBS/BSA/Ca/T was added to the wells, and the plate was
incubated for 30 min at 37 °C. The plate was washed, and 1
mg/ml o-phenylenediamine dihydrochloride chromogenic
peroxidase substrate in 50 mM citrate, 0.1% H2O2, pH 5.0,
buffer was added. After signal development (3–5 min), the

reaction was stopped by 50 �l/well of 1 M H2SO4, and the
absorbance values were recorded at 490 nm. Four parallels
were measured for each data point.

C4 deposition ELISA with diluted NHS on mannan- or
AcBSA-coated surfaces

The assays were performed as in the case of C3 deposition
from diluted NHS with the following modifications. (i) Plates
were coated with 10 �g/ml mannan or 50 �g/ml AcBSA. (ii)
The dilution of NHS was 60-fold. (iii) C4 deposition was mea-
sured using polyclonal rabbit anti-human C4c antibody
(Q0369, DakoCytomation) as the primary antibody in a 2,000-
fold dilution on a mannan-coated surface and in a 1,000-fold
dilution on an AcBSA-coated surface. BSA acetylation was
done as described (40).

C4 deposition ELISA with pre-activated PRM:MASP complexes

The assay was performed as described previously (23, 38, 39).
Greiner high-binding microtiter plates were coated with 1
mg/ml mannan in coating buffer. Wells were blocked with 20
mM HEPES, 140 mM NaCl, 5 mM EDTA, 0.1% Tween 20, pH 7.4,
buffer (blocking buffer) for 30 min at room temperature. The
plate was rinsed with 20 mM HEPES, 140 mM NaCl, 5 mM CaCl2,
0.1% Tween 20, pH 7.4, buffer (washing buffer). NHS was mixed
with 40 mM HEPES, 2 M NaCl, 10 mM CaCl2, 0.1% Tween 20, pH
7.4, buffer in a 1:1 volume ratio and transferred onto the plate,
which was incubated for 1 h at 37 °C. The plate was rinsed with
20 mM HEPES, pH 7.4, 1 M NaCl, 5 mM CaCl2, 0.1% Tween 20
buffer and then with washing buffer. Serial dilutions of the
inhibitors were made in serum dilution buffer containing 1
�g/ml C4 �-chain. The samples were applied to the plate and
incubated for 1 h at 37 °C. The plate was rinsed with blocking
buffer, and polyclonal rabbit anti-human C4c antibody
diluted 1,000-fold in blocking buffer was added to the wells,
and the plate was incubated for 1 h at 37 °C. After washing
with blocking buffer, horseradish peroxidase– conjugated
monoclonal mouse anti-rabbit IgG antibody diluted 40,000-
fold in blocking buffer was added, and the plate was incu-
bated for 30 min at 37 °C. The plate was rinsed with washing
buffer, and 1 mg/ml o-phenylenediamine dihydrochloride in
50 mM citrate, 0.1% H2O2, pH 5.0, buffer was added to the
wells. After signal development (3–5 min), the reaction was
stopped by adding 50 �l/well 1 M H2SO4, and the absorbance
values were recorded at 490 nm. Four parallels were mea-
sured for each data point.

Pathway-selective complement ELISAs using 2-fold diluted
serum

The assays were carried out based on the work of Héja et al.
(25).

Lectin pathway

Microtiter plates were coated with 10 �g/ml mannan in coat-
ing buffer overnight at 4 °C. The wells were blocked with TBS/
BSA/T. NHS was mixed in a 1:1 ratio with serial dilutions of the
inhibitors made in 2-fold concentrate serum dilution buffer.
The samples contained SPS at 100 �g/ml final concentration
(40, 41). The serum:inhibitor samples were incubated for 30
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min at room temperature. The plate was rinsed with TBS/Ca/T,
and the samples were applied to the plate, which was incubated
for 30 min at 37 °C. C4 deposition was measured as described
above using polyclonal rabbit anti-human C4c antibody in a
5,000-fold dilution. Four parallels were measured for each data
point.

Classical pathway

The assays were performed as in the case of the LP measure-
ment with the following modifications. (i) Plates were coated
with 10 �g/ml human IgG. (ii) SPS was omitted from the buf-
fers. Two parallels were measured for each data point.

Alternative pathway

The assays were performed as in the case of the LP measure-
ments with the following modifications. (i) Plates were coated
with 10 �g/ml Salmonella lipopolysaccharide. (ii) Serum dilu-
tion buffer lacked CaCl2 and was supplemented with 10 mM

EGTA. (iii) SPS was omitted from the buffers. (iv) C3 deposition
was measured using polyclonal rabbit anti-human C3c anti-
body (A0062, DakoCytomation) in a 5,000-fold dilution. Two
parallels were measured for each data point.

Complement ELISAs with rat serum

Individual sera of Wistar rats were used in these experiments.

C3 deposition ELISA with diluted rat serum

The assay was performed similarly to the C3 deposition assay
with diluted NHS, but rat serum was used in a 70-fold dilution.
The polyclonal rabbit anti-human C3c antibody recognizes the
deposited rat C3 fragments, and it was used as primary antibody
in a 2,000-fold dilution.

C4 deposition ELISA with diluted rat serum

The assay was performed on mannan-coated ELISA plates
similarly to the C4 deposition assay with diluted NHS, but rat
serum was used in a 60-fold dilution. The polyclonal rabbit
anti-human C4c antibody recognizes the deposited rat C4 frag-
ments, and it was used as primary antibody in a 2,000-fold
dilution.

C5b-9 deposition ELISA with diluted rat serum

The assay was performed similarly to the C3 deposition assay
with diluted NHS, but rat serum was used in a 50-fold dilution.
Monoclonal mouse anti-rat C5b-9 antibody (sc-66190, Santa
Cruz Biotechnology, Inc.) was used as primary antibody in a
1,000-fold dilution, and peroxidase-conjugated anti-mouse
polyclonal antibody (AP308P, Merck) was used as secondary
antibody in a 3,000-fold dilution.

Blood coagulation assays

The effect of TFMI-2 variants on blood coagulation was
tested in three standard assays: the TT, testing any direct
effects on thrombin; the PT, testing any effects on the extrin-
sic pathway; and the APTT, testing any effects on the intrin-
sic pathway. Blood was collected from a healthy individual by
vein puncture after informed consent. The blood was treated
with sodium citrate (3.8%, w/v) and centrifuged. All three

assays were performed on an automated CA-1500 instru-
ment (Sysmex) with Innovin reagent (Dale Behring, Mar-
burg, Germany).
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