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Abstract

Intrinsically disordered proteins (IDPs) or regions (IDRs) perform diverse cellular functions, but are also prone
to forming promiscuous and potentially deleterious interactions. We investigate the extent to which the
properties of, and content in, IDRs have adapted to enable functional diversity while limiting interference from
promiscuous interactions in the crowded cellular environment. Information on protein sequences, their
predicted intrinsic disorder, and 3D structure contents is related to data on protein cellular concentrations,
gene co-expression, and protein–protein interactions in the well-studied yeast Saccharomyces cerevisiae.
Results reveal that both the protein IDR content and the frequency of “sticky” amino acids in IDRs (those more
frequently involved in protein interfaces) decrease with increasing protein cellular concentration. This implies
that the IDR content and the amino acid composition of IDRs experience negative selection as the protein
concentration increases. In the S. cerevisiae protein–protein interaction network, the higher a protein's IDR
content, the more frequently it interacts with IDR-containing partners, and the more functionally diverse the
partners are. Employing a clustering analysis of Gene Ontology terms, we newly identify ~600 putative
multifunctional proteins in S. cerevisiae. Strikingly, these proteins are enriched in IDRs and contribute
significantly to all the observed trends. In particular, IDRs of multi-functional proteins feature more sticky
amino acids than IDRs of their non-multifunctional counterparts, or the surfaces of structured yeast proteins.
This property likely affords sufficient binding affinity for the functional interactions, commonly mediated by
short IDR segments, thereby counterbalancing the loss in overall IDR conformational entropy upon binding.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

To carry out their function, proteins tend to
associate with other macromolecules (other pro-
teins, nucleic acids, etc.) [1] as well as with small-
molecule ligands. These functional associations
take place in the crowded cellular environment,
where they have to compete with promiscuous non-
functional binding events that may be detrimental
thors. Published by Elsevier Ltd. This is an
/licenses/by-nc-nd/4.0/).
to fitness because they sequester interaction
partners [2,3].
There is mounting evidence that to mitigate the

interference from non-functional interactions, nature
acts at several levels. These include adapting the
amino acid sequence to modulate protein solubility
and intrinsic stability [4,5], temporal, condition-
dependent regulation of gene expression [6,7], or
protein abundance and half-life [8]. Other means of
open access article under the CC BY-NC-ND license
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reducing such interference involve post-translational
modifications (PTMs) [9,10], binding to various protein
adaptors [11], or the sequestration of proteins within
specialized cellular compartments [7,12].
Of particular interest in this context are intrinsically

disordered proteins (IDPs) and proteins with intrinsi-
cally disordered regions (IDRs). IDPs/IDRs and their
properties have been extensively reviewed [13,14].
These are polypeptides, or segments thereof, which
are essentially devoid of stable secondary or tertiary
structures, when in isolation. These segments are
described as ensembles of conformations that inter-
convert on a range of timescales [15,16]. Nonethe-
less, a significant fraction of IDPs and IDRs have
some regions with residual transient secondary
structures. These regions often mediate function
through association with other proteins (mostly to
structured domains in these proteins), and can
undergo disorder-to-order transitions as part of the
recognition process [17].
Functional associations of IDPs/IDRs tend to be

mediated by peptide recognitions motifs, the so-
called short linear motifs (SLiMs), which are rela-
tively well conserved in evolution [15,18,19]. While
interactions mediated by individual motifs tend to be
quite weak, interactions with several motifs of the
same IDR may act cooperatively, thereby increasing
the range of observed affinities [20,21] and enabling
interactions with multiple partner proteins [22–25].
These properties empower IDPs/IDRs to carry out a
diverse range of important functions, more particu-
larly in regulatory [26,27] and signaling processes
[15,28]. Intrinsic disorder has also been suggested
to play a role in promoting the assembly of protein
complexes [29].
The same properties, however, may also prompt

disordered proteins to form promiscuous interactions
with other proteins, especially at higher protein
concentrations, causing, for example, deleterious
dosage sensitivity in yeast [2]. It has also been
observed that proteins with a high degree of intrinsic
disorder are often hubs in protein–protein interaction
(PPI) networks of human and other model organisms
[22,24,25,30,31], with hubs being defined as the
subset of protein nodes that form interactions with
many other proteins, typically more than 10. While
many of these interactions may be functional in
nature [32], the fact that they may also include non-
functional interactions needs to be considered [33].
The cellular abundance of a protein is a crucial

parameter governing its association with other cellular
components, since this association depends on the
standard free energy of the binding reaction and on
the concentrations of the interacting components [34].
Previous analyses have shown that the abundance
and residence time of IDPs in the cells of yeast
Schizosaccharomyces pombe and human were
tightly regulated by fine-tuning the rates of translation,
protein degradation, and transcript clearance [35].
Another mechanism of regulating availability of IDPs
was suggested to involve synthesizing them at the
site where they are required, by localization of the
corresponding mRNA [36].
The main question addressed in the present study is

if and to what extent the chemistry and other properties
of IDPs and IDRs have adapted to mitigate their risk of
engaging in promiscuous interactions, while enabling
their diverse functional roles. To address this question,
we focus on proteins of the yeast Saccharomyces
cerevisiae, one of the most extensively studied
organisms in terms of protein function, proteome-
scale PPI data [33,37], gene expression [38], and
protein abundance [39]. We relate information on
protein sequences, their predicted intrinsic disorder
content, and 3D structures to cellular protein abun-
dance, and associate these relationships with protein
function. In addition, we analyze patterns of the
physical interactions of these proteins in a high-
confidence (HC) PPI network of yeast soluble proteins
[40]. These patterns are correlated to the intrinsic
disorder content and abundance level of the corre-
sponding proteins, as well as to the functional similarity
and gene co-expression of their interacting partners.
Importantly, we complement the analysis by identifying
multi-functional proteins on the basis of their Gene
Ontology (GO) annotations [41], and evaluate the
relative contribution of proteinmulti-functionality versus
its degree of intrinsic disorder to the observed trends.
Results of our analysis yield new insights into how

the IDR content of proteins and the amino acid
composition of IDRs have adapted to enable IDR-
containing proteins to perform diverse functional
roles, while reducing interference from promiscuous
interactions in the crowded cellular environment.
Results and Discussion

Intrinsic disorder content in relation to protein
abundance and functional annotations

Figure 1 plots the fraction of proteins encoded by the
S. cerevisiae genome containing a high degree of
intrinsic disorder as a function of their abundance in the
cell. Proteinswith a high degree of disorder are defined
as those with ≥30% of their residues predicted to be in
IDRs of ≥20 consecutive residues along the chain.
Disordered residues were predicted using the IUPred
software [42,43], but essentially the same results were
obtained using other disorder prediction methods (see
Materials and Methods). Data on protein abundance
were obtained from the Protein Abundance Database
(PaxDb) database [39]. These data are expressed in
parts per million (ppm), a quantity linearly related to the
protein copy number in cells [44].
The plot of Fig. 1 shows a clear trend for the fraction

of proteins displaying high intrinsic disorder to decrease



Fig. 1. Fraction of S. cerevisiae proteins with a high
degree of putative intrinsic disorder, as a function of their
cellular abundance. The graph reveals a strong negative
correlation between the fraction of highly disordered
proteins and the corresponding protein abundance level
(Spearman correlation rS = −0.76, p = 0.02). A stronger
and highly significant correlation is obtained when applying
a somewhat higher abundance threshold and a lower but
significant correlation is observed when taking into
account the fraction of all the disordered residues in a
protein (see text). Proteins featuring a high degree of
intrinsic disorder are defined as those containing ≥30% of
their residues in IDRs of at least 20 consecutive residues.
Proteins in the yeast proteome were divided according to
their abundance into 10 equally populated bins (498
proteins each). Numbers along the horizontal axis repre-
sent the rounded upper limit in the protein abundance
range of each bin.
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with increasing protein abundance. This trend trans-
lates into a strong inverse correlation between the
fraction of highly disordered proteins and their abun-
dance (rS = −0.76, with rS being the Spearman's rank
correlation coefficient), which is, however, weakly
significant (p = 0.02), likely due to the dip in the fraction
of highly disordered proteins in the lowest abundance
range. Indeed, the correlation becomes stronger and
highly statistically significant (rS = −0.94 p = 2e−16)
when ignoring proteins with abundance below 8 ppm.
The latter tend to includemembrane proteins, for which
cytoplasmic abundance is underestimated [12], and
various cellular proteins that are not reliably detected by
current proteomics methods [45,46] (see Materials and
Methods for details). A highly statistically significant but
lower correlation coefficient is obtained (rS = −0.11, p =
4e−15) when taking into account the fraction of all the
residues in a protein that are predicted to be intrinsically
disordered, over the entire range of protein abun-
dances. Taken together, these results indicate that
IDRs, especially IDRs ≥20 residues, are selected
against as protein abundance increases.
Both the abundance and the degree of putative

intrinsic disorder of a protein were shown to correlate
with protein function to some extent [47]. To re-
examine these correlations in our data set, we
computed the enrichment in the biological process
(BP) GO terms in S. cerevisiae proteins in the highest
and lowest one third of the abundance range,
respectively. This was repeated for subsets in each
of these two categories, comprising proteins of high
and low disorder, featuring ≥30% and b10% of their
residues in IDRs of ≥20 residues, respectively, with
results displayed in Fig. 2.
The first two columns of the heatmap in Fig. 2

clearly indicate that most BP terms related to cellular
metabolism, ribosome biogenesis, translation, and
protein folding are overrepresented in high-
abundance proteins and are underrepresented in
proteins of low abundance. This trend is reversed,
with an overrepresentation in low-abundance pro-
teins, and an underrepresentation in highly abundant
ones, of processes related to the cell cycle,
chromosome segregation, transcription, cellular
component morphogenesis, and signal transduction.
Interestingly, these same trends are significantly

strengthened in the subsets of proteins with the
highest and lowest disorder content in each of the
two abundance categories (last two heatmap col-
umns in Fig. 2). For example, the overrepresentation
of metabolic processes, ribosome biogenesis, and
translation and protein folding is more pronounced in
high-abundance proteins with low IDR content than
in all high-abundance proteins. The same applies to
the underrepresentation of the same processes in
low-abundance proteins with high IDR content.
Likewise, the highlighted reverse trend for processes
such as chromosome segregation, transcription, and
cell cycle processes is also significantly more
pronounced when IDR content is considered.
These various trends are in good agreement with

those reported in a previous study examining the
relation between proteins with high IDR content in
UniProt [48] and their BP annotations [49]. The new
insight provided by our analysis is that the relation of
IDR content to protein function also depends on
protein abundance, an aspect likely reflecting a
more complex level of regulation and adaptation in
evolution.

Residue properties of IDRs in relation to protein
abundance

In the following, we investigate the relationships of
various sequence properties of the IDRs with the
abundance levels of the corresponding proteins. The
main properties examined are the average stickiness
of IDR residues, with stickiness representing an
interaction propensity scale derived from structural
data (see Ref. [4] and Fig. 3d), and the average
aggregation propensity of residues in IDR regions, as
measured by different aggregation propensity scales
(see Materials and Methods for details). These
properties were computed only for IDRs of ≥20
consecutive residues along the polypeptide.
The most statistically significant correlation is found

between the average stickiness value of residues in



Fig. 2. Enrichment in GO terms for proteins with different abundance levels and intrinsic disorder contents. The first
column lists the BP terms of the GO [56,57] for which statistically significant enrichments were obtained. The number of
S. cerevisiae proteins with the corresponding BP term in the reference data set is indicated in parentheses. The last four
columns represent the heat maps of the computed statistically significant enrichment levels for each of the listed BP terms
among proteins in the following 4 categories respectively. Proteins among the 33.3 percentile most abundant and least
abundant proteins, respectively (columns 2 and 3); the subset of proteins from each of the previous categories with high
(≥30%) and low (b10%) IDR content, respectively (columns 4 and 5). The number of proteins in each of the four categories
is listed at the bottom. The BP GO terms are those from the GO slim yeast ontology in the BiNGO [84] application for
Cytoscape [85] with all possible evidence codes. Enrichments were computed using as reference, all S. cerevisiae
proteins with available GO annotation and abundance levels of at least 2 ppm (4900 proteins in total). The statistical
significance of the computed enrichment was evaluated using the hypergeometric test with Benjamin and Hochberg false
discovery rate (FDR) multiple testing correction [93].
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IDRs and protein abundance. From the scatter plot
of Fig. 3a, we see that the average stickiness of
IDRs decreases with protein abundance (rS = −0.31
p = 6e−59). Interestingly, this trend is very similar to
that reported earlier for the average stickiness values
of surface (solvent-accessible) residues of globular
proteins in S. cerevisiae and other model organisms
[4].



(a) (b)

(c) (d)

Fig. 3. Average residue stickiness versus protein abundance. (a) Scatter plot of the average residue stickiness in IDRs
≥20 residues of 2874 (2566 ≥2 ppm) S. cerevisiae proteins, as a function of protein abundance. (b) Scatter plot of average
stickiness of surface residues in 452 yeast globular proteins retrieved from the PDB, as a function of protein abundance.
The Spearman's correlation coefficients (rS) and the corresponding p values are given at the top of each panel. For both
data sets, correlations were calculated using proteins with an abundance value of at least 2 ppm. (c) Boxplots of average
residue stickiness on the surface of globular proteins (white) and in IDRs ≥20 residues (gray) for proteins in three
abundance ranges: low (2–15.5ppm), medium (15.6–64.7ppm), and high (64.8–21866). The corresponding average
stickiness values (diamond in each boxplot) are as follows: −0.13, −0.06, −0.14, −0.10, −0.17, and −0.15. P values
(computed using theWilcoxon rank‐sum test) between pairs of distributions in the three abundance ranges are given at the
top of the panel in parentheses. The number of data points in each distribution (n) is shown below each boxplot. The
horizontal line in each boxplot indicates the median value. Outliers are not depicted. (d) Bar plot of the stickiness score of
amino acids in Ref. [4]. Protein abundance values were obtained from PaxDb [39] (see Materials and Methods).
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Retrieving the atomic coordinates of globular
soluble yeast proteins, totaling 452 structures, from
a recent version of the Protein Data Bank (PDB;
October 2017), and computing the average sticki-
ness values of their surface residues, we confirm the
previously reported [4] negative correlation between
these values and protein abundance (rS = −0.26, p =
2e−8) (Fig. 3b). Using our more recent larger data
set of yeast protein structures, we also reproduce
the reported negative correlation [4] between the
average stickiness of residues in the protein interior
and protein abundance (rS = −0.22, p = 2e−6)
(Supplementary Fig. S1). But unlike in Ref. [4], we
observe a weak positive correlation between protein
size and the stickiness of both interior and surface
residues, respectively (Supplementary Fig. S2a, b).
The latter positive correlation may reflect the greater
tolerance of larger proteins for surface residues to
evolve toward optimizing interactions with binding
partners at the cost of compromising intrinsic
stability, owing to the smaller surface to volume
ratio of larger proteins [50].
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Finally, we note that the average residue hydro-
phobicity of IDRs, measured using the Kyte and
Doollitle scale [51] (Supplementary Fig. S3a), was
also negatively correlated with protein abundance,
albeit to a lesser degree (rS = −0.12, p = 4e−10) than
the average stickiness.
Following Ref. [4], we interpret the decrease of

average IDR stickiness with protein abundance as
reflecting the fact that proteins tend to limit promiscuous
interactions by reducing the stickiness of residues in
readily accessible, solvent-exposed regions: the IDRs
of at least 20 residues, analyzed here, and the surface
residues of structured proteins and domains.
Somewhat unexpectedly, however, in proteins of all

abundance levels, and particularly in less abundant
proteins, the average stickiness of residues in IDRs is
shifted toward higher values (more sticky) relative to
surface residues of globular proteins (p = 1e−10 to
2e−4), as witnessed by the distributions in Fig. 3c. To
gain further insight into the origins of this shift, we
examine the amino acid propensities in the two types
of regions respectively (Fig. 4a), using the full yeast
proteome as reference. We find that both IDRs and
surface residues of globular proteins are depleted in
sticky amino acids, especially in the aromatics W, Y,
and F, and in C, and somewhat enriched in the
least sticky chargedaminoacids (Fig. 3d). Interestingly,
the depletion in the four sticky amino acids is more
pronounced in IDRs, whereas surface residues are
enriched in the least sticky charged amino acids
(E, D, K) (Fig. 4a). To understand how these trends
contribute to the higher stickiness of IDRs relative to
Fig. 4. Comparing amino acid propensities of IDRs to
propensities in IDRs ≥20 residues (horizontal axis) versus th
axis) using the yeast proteome as reference (see Materials an
code. The Spearman's correlation coefficient between the tw
given at the top of the graph. (b) Frequencies of amino acids
surface residues, one must take into account amino
acid frequencies in the proteome (Fig. 4b). We see,
indeed, that the more sticky amino acids (W, Y, F, C)
are the least abundant amino acids overall, whereas
the less sticky charged amino acids (E, D, K, R) are
among the most abundant amino acids. Thus, the
higher average stickiness of IDRs relative to surface
residues is the consequence of the protein surface
being enriched in less sticky and highly abundant
charged amino acids. For the full list of amino acid
frequencies and propensities, see Supplementary
Table S2.
This higher stickiness of IDRs is interesting. It may

reflect the need to afford a minimum binding affinity for
the SLiMs of IDRs that commonly engage in interac-
tions with binding partners. Such minimum binding
affinity would partially compensate for the overall loss
in conformational entropy upon binding, and may
therefore relate to the more multi-functional nature of
these proteins in comparison to their structured
counterparts, an aspect examined further along this
study. Also noteworthy is the enrichment in the more
abundant S and T amino acids in IDRs relative to
surface residues (Fig. 4a). These very marginally
sticky residues commonly undergo phosphorylation.
Their enrichment in IDRs is hence consistent with the
frequent role of IDRs in signaling processes [15,28].
Lastly, we find that there is virtually no overlap

between putative IDRs and aggregation prone
segments identified using two different computational
methods: TANGO, an algorithm for predicting aggre-
gation prone regions in unfolded polypeptide chains
those on surfaces of globular proteins. (a) Amino acid
ose on the surfaces of globular proteins/domains (vertical
d Methods). Amino acids are represented by the one-letter
o sets of propensities and the corresponding p value are
(%) in the yeast proteome.
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[52], and PASTA2.0, a predictor of residues likely to
be part of amyloid fibrils [53]. Less than 1% of the
residues in IDRs overlapped with aggregation prone
residues predicted by both methods, indicating that
unlike globular proteins [52–54], IDRs are essentially
devoid of such segments. Recent findings on intra-
cellular liquid-like protein compartments, which often
lead to the formation of fibrillar aggregates involving
IDRs, suggest indeed that these aggregation phe-
nomena are distinct from those occurring in the
unfolded state of structured proteins [55].

Relating protein properties to the pattern of their
physical and functional interaction in the cell

Having gathered evidence that structural disorder
has evolved properties that promote its capacity to
form functional interactions with other proteins, we
proceed to investigate how several of the protein
properties analyzed above relate to the patterns of
physical and functional interactions proteins form in
the cell. These patterns are investigated in the high
confidence (HC) PPI network of S. cerevisiae soluble
proteins, built from data obtained by two different
groups using affinity purification and mass spectrom-
etry techniques [40]. This network, thereafter denoted
as the Collins network, contains 1622 proteins,
representing only a fraction (~25%) of all yeast
(a) (b)

Fig. 5. Relating protein abundance to the number of inte
(a) Boxplots of the number of interaction partners (node degree)
medium (15.6–64.7 ppm), and high (64.8–21866 ppm).P values
of distributions in the three abundance ranges are given in paren
shown below each boxplot. The horizontal line in each boxplot
mean value. Outliers are not depicted in the panel. (b) Scatter p
(those with ≥10 interaction partners) are colored from orange to
from light to dark blue, according to the three protein abundance r
respectively, of proteins of low, medium, and high abundance in
proteins. These proteins engage in 9070 reliably
detected “interactions” (see Materials and Methods
and Ref. [40] for details). The detected “interactions”
represent in fact co-complex associations, of which
only a fraction corresponds to direct physical contacts
[33].
For each protein in the network, we retrieved their

abundance values and several other properties of
interest. The functional implications of the interactions
were obtained by associating each protein node to its
functional annotations, retrieved from theGO resource
[56,57], as well as its mRNA expression profiles
measured in a set of different conditions (COX-
PRESdb [38]). This information was further analyzed
to quantify the degree of functional diversity among the
interacting proteins.
Relating protein abundance and intrinsic disorder to
the number of interaction partners

The number of interactions formed by a protein in a
PPI network dependson several factors.Whenpresent
at higher concentrations, a protein may engage in
promiscuous interactions with multiple partners [58,59]
and is generally more readily detected by experimental
methods [33,37]. Interactions with multiple partners
may also be a distinctive property of proteins that
carry out multiple functions. It is therefore not surprising
raction partners (node degree) in the yeast interactome.
for proteins in three ranges of abundance: low (2–15.5 ppm),
(computed using theWilcoxon rank‐sum test) between pairs
theses. The number of data points in each distribution (n) is
indicates the median value, and the diamond indicates the
lot of protein abundance versus node degree. Hub proteins
brown, and non-hubs (b10 interaction partners) are colored
anges given in panel a. Hubs represent 22%, 30%, and 39%,
the HC Collins interactome.
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to find that the number of interaction partners (node
degree) of a protein in the Collins yeast network is
significantly positively correlated with its abundance
(rS = 0.18, p = 5.2e−13) (Fig. 5a). As a result, hubs in
the network, defined as proteins (nodes) connected to
at least 10 other proteins, are enriched in abundant
proteins (Fig. 5b).
Next, we investigate the relation between the number

of interaction partners of a protein and its intrinsic
disorder level, with the latter defined as described
above. Depicting the histograms of predicted protein
disorder and the corresponding node degree distribu-
tions side by side (Fig. 6a), there appears to be no
correlation between the two parameters (rS = −0.02,
p = 0.44). This lack of correlation confirms earlier
findings by Schnell et al. [60], but disagrees with a
several other studies according towhich network hubs
tend to be more intrinsically disordered than non-hub
proteins [22,24,25,61].
Being fully aware that PPI networks of the same

organism detected by different experimental methods
or derived from different databases may differ
(a)

(b) (c

Fig. 6. Node degree of proteins with different levels of int
histogram of the intrinsic disorder ranges (fraction of disordered
Collins yeast PPI network [40]. Shown on the left are boxplots
partners (node degree) for individual disorder ranges of diso
corresponding p value are given at the right-hand side of the
(1 partner) proteins at different IDR length cutoffs in the HC y
for proteins in a recent version of the BioGRID [65] interactom
and end proteins was calculated using the two-sample test for e
chi-squared statistic).
substantially (for review, see Refs. [33,37,62–64]),
we hypothesized that differences between the yeast
PPI networks used in different studies are the main
reason for these contradictory observations. To test
this hypothesis, we computed histograms displaying
the fractions of proteins featuring increasing levels of
disorder in hubs and “end” proteins, respectively. This
was done for proteins in the PPI network used here
and for those in a recent version (March 2018) of the
multi-validated (MV) PPI network of yeast, down-
loaded from BioGRID (interactions supported by at
least two publications) [65]. We considered this
literature-curated network, hereafter denoted as
BioGRID, because earlier versions of this network
were used in two of the above mentioned earlier
studies [22,32].
Our results show striking differences between the

corresponding histograms (Fig. 6b, c). In the Collins
network, hub proteins tend to be less disordered
(albeit not significantly) than “end” proteins (average
p ≥ 0.05). On the other hand, hubs in the BioGRID
network are significantly more disordered than “end”
)

rinsic disorder. (a) Depicted on the right-hand side is the
residues in IDRs ≥20 residues long) of protein nodes in the
representing the distributions of the number of interaction
rder. The Spearman's correlation coefficient (rS) and its
panel. (b) The fraction of hub (≥10 partners) and “end”

east PPI network of Collins. (c) The same as panel b but
e. In both panels, the p value between the fraction of hub
quality of proportions with continuity correction (Pearson's
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proteins (maximum p = 1e−5), in excellent agreement
with previous observations (Fig. S1 of Ref. [22]).
These opposing trends cannot be attributed to a bias
in protein disorder content of the respective networks,
since both networksare similarly enriched in IDP/IDRs
relative to the proteome as a whole (Supplementary
Fig. S4).
Reproducing the same trends as in Ref. [22] with

an up-to-date version of the BioGRID network,
therefore, suggests that other differences between
the BioGRID and Collins networks may be at play. In
the Materials and Methods section, we present
evidence that the BioGRID and Collins networks
differ substantially in a number of important aspects.
We show, in particular, that the Collins network is
significantly less noisy than the BioGRID network,
despite the fact that the latter includes PPI data from
multiple detection methods, in agreement with
previous finding [33], thereby justifying the use of
the Collins network throughout our analysis.
Relating protein intrinsic disorder to the properties of
its interaction partners

Having demonstrated that the level of intrinsic
disorder of a protein is not significantly correlated
with the number of its interaction partners in the PPI
network, we now examine the relation of protein
disorder with various properties of its partners. In
particular, we considered the disorder level of the
(a)

(b) (c)

Fig. 7. Relating intrinsic disorder of protein nodes to the
illustrations of node types and their computed properties. (b) H
the HC Collins yeast PPI network [40], depicted in Fig. 6a. Sho
various properties of the interaction partners of protein nodes in
Average disorder (fraction of disordered residues in IDRs≥ 20 r
similarity (semantic similarity of their BPGOannotations, BPSem
(Pearson correlation coefficient of the mRNA expression profile
coefficient (rS) and its corresponding p value are given at the
comprising b10 proteins (grayed boxplots) were not considered
interacting partners, their gene co-expression rela-
tionship, and their functional similarity based on GO
terms. The latter two properties were evaluated for
protein pairs and averaged over all pairs of the direct
interaction partners of a given protein node (see
Materials and Methods for details).
Our analysis reveals that more disordered protein

nodes tend to interact with more disordered partners
(rS = 0.31 p = 2e−37) (Fig. 7b, c). On the other hand,
statistically significant negative correlations are
detected between the disorder level of the protein
node and both the average pairwise semantic
similarity of the BP GO annotations (rS = −0.13 p =
4e−4) and the average pairwise correlation coeffi-
cient of the gene expression profiles (rS = −0.15, p =
3e−7) of its partners (Fig. 7b, d, e).
To further scrutinize the latter findings, weexamined

properties of hub proteins and their interaction
partners. Hubs interact with a larger number of
partners, yielding more robust statistics for trends in
various partner properties. We segregated hubs into
two groups: hubs with weakly co-expressed partners
(average pairwise Pearson correlation coefficient
b|0.5 |) and hubs with highly co-expressed partners
(average pairwise Pearson correlation coefficient
≥0.5) (see Materials and methods). In line with the
correlations described above, we find that, on
average, hubs with weakly co-expressed partners
contain nearly twice as many disordered residues
than those interacting with highly co-expressed
(d) (e)

properties of their interaction partners. (a) Schematic
istogram of the intrinsic disorder levels of protein nodes of
wn to the right are boxplots representing the distributions of
the disorder ranges depicted on the far-left histogram. (c)

esidues long) of interaction partners, (d) average functional
Sim) of interactions partners, and (e) average coexpression
s [38]) of interaction partners. The Spearman's correlation
top of each panel. Nodes with the highest disorder level
in the analysis.



(a) (b)

(c) (d)

Fig. 8. Contrasting the properties of protein nodes and their interaction partners in hubs with highly and weakly co-
expressed interaction partners. (a) Boxplots depicting the average disorder level of: hubs with highly co-expressed
partners (average partners' mRNA expression profiles Pearson correlation coefficient ≥0.5; dark gray), hubs with weakly
co-expressed partners (average partners' mRNA expression profiles Pearson correlation coefficient b|0.5 |; light gray), all
protein nodes in the HC Collins interactome (white). (b–d) Boxplots depicting respectively the distributions of disorder
content, abundance levels (ppm) and half-life (min) of the interaction partners for the same three categories of protein
nodes as in panel a. Abundance values are from PaxDb [39], and yeast protein half-lives are taken from Ref. [78]. P values
(computed using the Wilcoxon rank‐sum test) between pairs of distributions in the three groups are given in parentheses.
The number of data points in each distribution (n) is shown below each boxplot. The horizontal line in each boxplot
indicates the median value, and the diamond indicates the mean value. Outliers are not depicted. The table at the bottom
lists the average values of the corresponding displayed distributions.
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partners (19% versus 11%, p = 5e−6) (Fig. 8a). The
weakly co-expressed partners of the first category of
hubs are also more disordered than the highly co-
expressed partners of the second category (26% of
disordered residues versus 17%, p = 4e−41) (Fig. 8b).
Interestingly, the same weakly and highly co-
expressed partners of the corresponding two hub
categories display, on average, significantly different
abundance levels (p = 3e−35) and half-lives (p =
6e−5) (Fig. 8c, d). Average values for all the parameter
distributions are listed in the table of Fig. 8. These
various trends hold when segregating hubs into those
with low-to-medium and high abundance levels,
respectively (Supplementary Fig. S5).
In summary, the picture emerging from these

observations is that more disordered proteins tend to
interactwithmoredisordered partners. The interaction
partners of these proteins are also more weakly co-
expressed and functionally diverse, as well as less
abundant and shorter lived. These trends are consis-
tent with previous findings, where more disordered
network hubs were suggested to play distinct roles
in diverse signaling cascades [32] (Supplementary
Fig. S6). In the next section, we explore an alternative
explanation that takes the multifunctional character of
the protein nodes into account.

Contribution of multifunctional proteins to the
observed trends

While the low functional similarity and weak co-
expression of interaction partners are often linked to
noise (promiscuous interactions) in the corresponding
PPI data [33,37,66–68], they may also reflect a
genuine functional behavior, namely of proteins
performing multiple cellular functions. How to define
such proteins remains, however, a subject of much
debate. Some authors focus on proteins performing
unrelated molecular functions (moonlighting) [69–72],
and others integrate information from functional
(molecular and cellular) annotations and/or protein
interaction data [41,69]. These different definitions
and approaches often yield small and poorly overlap-
ping sets of multifunctional proteins (MFPs) for the
Table 1. Intrinsic disorder enrichment in MFPs of S. cerevisia

Data set Proteins Highly disordered
proteins

Whole proteome 6437 1055
MFPs 595 137
Interactome 1622 314
MFPs in interactome 246 64
Hub proteins 530 92
MFP hubs 58 16

Highly disordered proteins are those with ≥30% disordered residues
a P values from the two-sample test for equality of proportions (Pea
same organism (for data on yeast, for example, see
Supplementary Section I).
To evaluate the contribution of protein multifunc-

tionality to the observed trends, we identified putative
MFPs in the S. cerevisiae proteome. To this end, the
GO functional annotations of each yeast protein
(including multidomain proteins) were clustered
using a metric reflecting the similarity between these
annotations [41]. A protein was classified as multi-
functional if it is annotated with GO terms belonging
to at least two clusters (see Materials and Methods
and Supplementary Figs. S7 and S8 for details). The
analysis was performed for both the GO BP and
MF terms.
By applying this procedure to the full S. cerevisiae

proteome (6437 proteins), we identified a total of 595
putative MFPs on the basis of the GO BP terms and
423 MFPs on the basis of the GO MF terms. These
two sets are essentially distinct as only 74 proteins
are common to both. For the purpose of the present
analysis, we considered mainly the MFPs based
on GO BP terms, as we were primarily interested
in multiple functions of a protein, most likely to affect
the number and types of interactions it forms in
the cell.
Results show that the identified putative MFPs are

enriched in structural disorder (proteins with N30% of
their residues in IDRs ≥20 residues). As shown in
Table 1, the full set of 595 MF proteins is 44%
enriched in IDRs, relative to the entire proteome. The
subset of MFPs that is part of the PPI network is 37%
enriched in IDRs relative to all proteins in the
network, whereas MFP hubs are most highly
enriched in IDRs (65%), relative to non-MFP hubs
in the network. This enrichment is all the more
significant considering that MFPs tend to be slightly
more abundant than the entire yeast proteome
(Supplementary Fig. S9a), a trend that should in
principle lower the proportion of IDRs (Fig. 1). The
observed enrichment therefore agrees with the view
that protein intrinsic disorder may promote more
diverse functional roles in the cell [72].
Furthermore, we find that the IDRs of the predicted

MFPs display on average higher stickiness values than
e

Fraction highly disordered
proteins

pa Enrichment

0.16 5e−5 1.44
0.23
0.19 0.02 1.37
0.26
0.17 0.08 1.65
0.28

rson's chi-squared statistic).



Table 2. Average stickiness scores in IDRs of MFP and
non-MFP in S. cerevisiae

Data
set

Proteins bStickinessN SD pa

Whole
proteome

MFPs 367 −0.0947 0.1151 0.04
NMFPs 2507 −0.1095 0.1195

Collins
interactome

MFPs 160 −0.1144 0.1129 6e−4
NMFPs 771 −0.1474 0.1210

NMFPs, non-MFPs; bStickinessN, average IDR stickiness per
protein. More negative values correspond to lower stickiness.

a P values from the two-sample test for equality of proportions
(Pearson's chi-squared statistic).
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their non-functional complement, when considered in
the context of both the whole yeast proteome and the
interactome (Table 2). This trend is consistent with the
hypothesis presented above that higher stickiness of
IDRs relative to surface residues of globular proteins
may be linked to the thermodynamics of the IDR
mediated functional interactions.
(a) (b)

Fig. 9. Relations of high intrinsic disorder content and the m
their interaction partners. Panels a–c compare the distribution
and the mRNA co-expression levels, respectively, of interaction
content (≥30% residues in IDRs ≥20 residues): putative multi-fu
gray) and non-multi-functional proteins nodes (light gray). P va
the pair of distributions are given in parentheses. The numbe
boxplot. The horizontal line in each boxplot indicates the media
are not depicted. The table at the bottom lists the average val
Next we investigate the potential influence of
intrinsic disorder and multifunctionality on the prop-
erties of their interaction partners. To tease out these
influences, we analyzed various properties of the
interaction partners of MFPs and their non-MFPs
counterpart with the same extreme intrinsic disorder
levels: respectively, those with ≥30% and those with
b10% of their residues in disordered regions.
The results summarized in Fig. 9 (and the table

within) show that among highly disordered proteins,
the subset of MFPs interacts with more disordered
partners on average (31% versus 25% disordered
residues in partners of MFPs versus non-MFPs, p =
4e−3). These partners also tend to display a lower
level of functional diversity (average semantic
similarity of 0.40 for MFPs versus 0.52 for non-
MFPs, p = 4e−3) and weaker gene co-expression
(0.33 for MFPs versus 0.42 for non-MFPs, p = 1e−3)
than their equally disordered non-MFP counterparts
(Fig. 9a–c). On the other hand, among the set of
most highly structured (least disordered) proteins,
(c)

ultifunctional nature of protein nodes to the properties of
s of the disorder levels, functional similarity (BP SemSim),
partners in the two groups of proteins with a high disorder
nctional protein nodes of the Collins PPI network [40] (dark
lues (computed using the Wilcoxon rank sum test) between
r of data points in each distribution is shown below each
n value and the diamond indicates the mean value. Outliers
ues of the corresponding displayed distributions.
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the interaction partners of MFPs display on average
a similar level of disorder and functional diversity to
non-MFPs, while nonetheless maintaining a similar
lower level of gene-co-expression as in the highly
disordered set (Supplementary Fig. S10). Importantly,
consistent with the higher intrinsic disorder in MFPs,
20% of the proteins in the highly disordered set are
predicted to bemultifunctional, whereas this fraction is
only 13% for the more structured set.
Lastly, we note that somewhat surprisingly, MFPs

interact on averagewith fewer partners in the yeast PPI
network than their non-MFP counterparts (Supplemen-
taryFig. S9b).Considering thatMFPs represent a small
fraction of the proteins in the network, this observation
may reflect the general bias in the PPI data toward
more abundant proteins, which are more likely to form
promiscuous interactions [33,37].
Thus, taken together, these observations indicate

that multifunctionality contributes significantly to the
elevated stickiness of IDRs in comparison to the
surfaces of globular proteins. Multifunctionality also
increases significantly the propensity of disordered
proteins to interact with more disordered and
functionally diverse partners.
Concluding Remarks

In this study, we evaluated how intrinsic disorder of
proteins and the properties of disordered regions have
adapted to mitigate the risk of engaging in non-
functional interactions, while at the same time enabling
the corresponding proteins to perform diverse cellular
functions. To this end, we used information on the
protein sequences, 3D structures, and genome-scale
data on cellular protein concentrations, gene co-
expression, and PPIs in one of the most thoroughly
studied model organisms, the yeast S. cerevisiae.
We found that the fraction of highly disordered

proteins decreases significantly with increasing pro-
tein abundance, in agreement with previous findings
[35]. This trend suggests that protein intrinsic disorder
is selected against as protein abundance increases, in
line with the observation that disorder is associated
with deleterious dosage sensitivity in yeast [2].
A significant new finding is that IDRs of highly

abundant proteins have adapted their amino acid
composition in order to minimize promiscuous interac-
tions with other proteins, in a way similar to surface
residues of globular proteins [4]. This adaptation has
lowered the frequency of “sticky” amino acids found
more frequently in protein–protein interfaces and
raised the frequency of polar and charged amino
acids, which tend to remain solvated even for proteins
present at high concentrations in the cell. We find,
however, that IDPs/IDRs of≥20 contiguous disordered
residues maintain a somewhat higher average sticki-
ness than surface residues at all protein abundance
levels. This is explained by the lower frequency of less
sticky polar and charged amino acids in IDRs than on
the surface of globular proteins.
We propose that the trend toward higher stickiness

of IDRs likely reflects the need to provide sufficient
binding affinity for the SLiMs-mediated functional
interactions to counterbalance the large loss of
conformational entropy that generally accompanies
these interactions. A good example is the binding of
the trans-activator domain (TAD) of p53 to the nuclear
coactivator-binding domain (NCBD) of CREB-binding
protein (CBP), largely driven by intermolecular hydro-
phobic contacts involving two short segments of the
disordered portion of p53 [73].
Investigating the pattern of interactions made

by IDPs/IDRs in the context of the HC S. cerevisiae
PPI network yielded further important insight into
the balancing act of protein disorder, enabling it to
engage in diverse functional interactions while mini-
mizing promiscuity. Overall, proteins with a higher
level of intrinsic disorder were found to interact more
frequently with more highly disordered partners.
These partners also tend to be functionally more
diverse, as evident by the reduced similarity of their
GO functional annotations and the weaker correlation
of their gene expression profiles.
Most importantly still, our study makes significant

headway toward assessing the respective contribu-
tions of functional versus promiscuous interactions to
the observed trends. GO functional annotations were
used to identify ~600 putative MFPs in S. cerevisiae,
and these proteinsweremapped to andanalyzed in the
context of the yeast PPI network. Interestingly, we
found that MFPs, which represent ~20% of the highly
disordered proteins in the PPI network (Table 1), make
a significant contribution to the trends described above.
They are enriched in IDRs (by 44%–65%, Table 1),
their interaction partners tend to be more disordered
(p = 4e−3), and the functional similarity of these
partners is significantly lower (p = 4e−3 for their
partners GO-BP semantic similarity annotations; p =
1e−3 for their partnersgeneco-expression) (Fig. 9a–c),
in comparison to their non-MFPs counterpart.
Moreover, the IDRs of MFPs display higher sticki-

ness values than IDRs of their non-multifunctional
complement (Table 2), lending support to the idea
that the somewhat higher average stickiness of IDRs
reflects the thermodynamic requirements of forming
specific interactions with cognate proteins, mediated
by SLiMs. Indeed, our yeast MFPs do feature, on
average, a somewhat higher coverage of SLiMs
predicted by the ANCHOR algorithm [74] than non-
MFPs (between 32% and 34% for MFPs in the whole
proteome and Collins interactome, and 28% for the
non-MFPs in both data sets respectively; see
Supplementary Fig. S11).
Nevertheless, it is reasonable to assume that a

fraction of the interactions formed by both structured
proteins and IDPs/IDRs is likely non-functional under
certain conditions but may serve as a reservoir for
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future adaptation to altered conditions and environ-
mental contexts [3,75]. Evidence has, indeed, been
accumulating that IDPs/IDRs are frequently involved
in intracellular liquid-like compartments, where they
form both functional and spurious interactions
[55,76]. More data on such cellular assemblies and
on the functional interactions involving IDPs/IDRs in
specific systems [77] are clearly needed to better
evaluate the functional contexts of the trends
uncovered in our analysis.
It also remains to be seen if the trends observed

here for yeast proteins are shared by other
organisms. The study by Levy et al. [4] showed
that the stickiness of surface residues in structured
human proteins is more weakly anti-correlated to
protein abundance than in yeast. This may be
attributed to the fact that protein abundance is ill
defined in human cells, due to the variety of cell
types and to a higher degree of compartmentaliza-
tion of proteins in human cells, which relieves some
of the pressure to decrease their propensity to
engage in promiscuous associations. This may also
be the case for IDPs/IDRs, as the latter can be
translated into a spatially localized fashion within
mammalian cells [36].

Materials and Methods

Data sets

Data on protein sequences abundance levels and
half-life

Data on S. cerevisiae protein sequences were
taken as provided by the PaxDb version 4.0 (March
2016) [39].
Data on protein abundance levels in yeast S.

cerevisiae, expressed as ppm, a quantity linearly
related to the protein copy number in the cell [44],
were obtained from PaxDb. We used the integrated
organism-level abundance data provided by PaxDB
for a total of 6437 yeast proteins. From these data,
1457 proteins with very low abundance levels
(b2ppm) were discarded from our analysis, as they
were found to have higher variability among individ-
ual data sets deposited in PaxDB and therefore
considered as less reliable (see Supplementary Fig.
S12).
Data on the steady-state half-life of yeast proteins

expressed in minutes were obtained from Ref. [78].
Gene co-expression data

Data on the Pearson correlation coefficient of
mRNA expression profiles of S. cerevisiae gene
pairs, taken to represent the co-expression levels of
the corresponding gene, were extracted from the
COXPRESdb [38]. The mRNA profiles were com-
puted from mRNA expression data (microarrays)
measured under a large set of different conditions
and retrieved from the ArrayExpress database
bhttps://www.ebi.ac.uk/arrayexpressN. The expres-
sion data were normalized using the robust multi-
array average method [79].

PPI data

Data on genome-wide PPIs in the yeast S.
cerevisiae were taken from the study by Collins et al.
[40]. This study derived an HC PPI network involving
soluble yeast proteins, starting from the raw data
obtained by affinity purification andmass spectrometry
analysis in the two independent high-throughput
studies by Krogan et al. [66] and Gavin et al. [80].
The HC “Collins” yeast PPI network was derived

using the protein enrichment (PE) statistical scoring
scheme to filter out spurious interactions. Applying a
PE threshold of ≥3.19 [40], the “Collins” PPI network
contains 9070 HC co-complex associations, com-
monly denoted as “interactions” among 1622 distinct
proteins (1600 protein with abundance levels
N2ppm). The estimated TP/FP ratio for this data
set is ~30, where TP (true positive) are detected
interactions from the positive examples and FP
(false positive) are detected interactions from the
negative examples. The PPI data set with the
associated PE scores was downloaded from
bhttp://interactome-cmp.ucsf.edu/N.
In addition, we examined S. cerevisiae PPI data

retrieved from the March 2018 release of the
BioGRID database [65]. These data include PPIs
annotated from the scientific literature, detected by
both high- and low-throughput methods of variable
stringencies, and include both co-complex and
binary interactions. We used the MV data set of
BioGRID. In this data set, the reliability criteria for a
given interactions are based on the number of
experimental systems and publications where the
physical interaction between the proteins was
detected.

Data on structures of yeast globular proteins

Adata set of yeast globular proteinswas assembled
from the PDB (RCSB-PDB) [81] (September 2017).
We selected entries comprising x-ray structures
determined at 3-Å resolution or better, which contain
only proteins (no DNA or RNA) from S. cerevisiae,
displaying ≤90% sequence identity. For these struc-
tures, we downloaded both the atomic coordinates
and biological assembly assignments. Structures
representing membrane proteins (annotated intra- or
trans-membrane regions in UniProt [48] or predicted
by TOPCONS [82]), and those lacking UniProt [48]
identifiers or protein abundance information in PaxDb
[39] or identified as probable errors in QSbio [83] (low
and very-low confidence) were discarded. This set

https://www.ebi.ac.uk/arrayexpress%3e
http://interactome-cmp.ucsf.edu/%3e
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was further reduced to a total of 452 structures by
retaining entries containing only a single protein chain
(e.g., hetero-complexes were not considered). All
subsequent calculations were performed on the
biologically meaningful assembly state of the protein
(Biological Unit).

Gene functional annotations, enrichment analysis,
and functional similarity

Functional annotations for yeast proteins were
downloaded from the GO [56] (July 2016). Unless
otherwise specified, onlyGO terms based on evidence
codes IDA (Inferred from Direct Assay) and IPI
(Inferred from Physical Interaction) from the BP and
MF ontologies, respectively, were considered for
the present analysis. The GO enrichment analysis
was performed using the BiNGO [84] plugin for
Cytoscape [85].
The extent to which two interacting proteins carry

out similar functions was evaluated using the seman-
tic similarity measure. The specific measure was that
(a)

(c) (d)

Fig. 10. Comparing the Collins and BioGRID interactomes o
MV BioGRID interactome [65] (March 2018) are compared aga
and Methods for detail). Four properties of interacting proteins
coefficient of mRNA expression profiles (gene co-expression)
SemSim), (c) the ratio of protein abundance levels, and (d) the
the Wilcoxon rank‐sum test) between pairs of distributions in th
data points in each distribution is shown below each boxplot. D
on half-life are from Ref. [78].
of Wang et al. [86] implemented in the R-package
GOSemSim [87]. This measure evaluates the simi-
larity of two GO terms based on both the locations of
these terms in theGOgraph and their relations to their
ancestor terms.

Comparing the Collins and BioGRID PPI networks

To justify the use of the Collins PPI network for the
bulk of our analysis, we compared various properties
of interacting protein pairs in the MV BioGRID and
HC Collins yeast PPI networks, respectively, with
those of a random network having the same node
degree distribution as the Collins network (generat-
ed as described below).
The evaluated properties are derived from indepen-

dent data types routinely used to gauge the quality
and biological relevance of experimentally derived
PPI networks. For individual interacting protein pairs
in each network, we computed the GO BP semantic
similarity score [86], the gene co-expression Pearson
correlation coefficient, and the ratio of the protein
(b)

f S. cerevisiae. The HC interactome of Collins [40] and the
inst each other and to a random PPI network (see Materials
pairs in the network are compared: (a) Pearson correlation
, (b) the semantic similarity of the BP GO annotation (BP
ratio of protein half-life. (c and d) P values (computed using
e three networks are given in parentheses. The number of
ata on protein abundance are from PaxDb [39], and those
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abundance levels [38,39]. These values were then
averaged over all the interacting pairs in each of
the networks.
First, we note that while 42% of the proteins of the

larger MV BioGRID network are shared with the HC
Collins network, only 14% of the PPI in MV
BioGRID are also part of the Collins network
(Supplementary Fig. S13a, b). As a result, the
proteins defined as “hubs” (protein nodes connect-
ed to N10 interaction partners in the network) and
those defined as “ends” (proteins connected to only
1 partner) differ substantially (Supplementary Fig.
S13c, d).
Next, our analysis shows (Fig. 10a) that the

distribution of the Pearson correlation coefficient of
the mRNA expression profiles of interacting pairs for
both the HC Collins and MV BioGRID networks is
significantly different from the distribution for the
random network. On the other hand, the distribution
for the HC Collins network is bimodal, with a
significant fraction of interacting pairs (~57%, 4387
out of 7636 pairs with a coexpression correlation
value) displaying highly correlated expression pro-
files (≥0.5), shifting it further toward higher values
relative to the random distribution than the distribu-
tion computed for the MV BioGRID network. We find,
furthermore, that the HC Collins network features a
larger fraction of functionally similar interacting pairs
(SemSim values ≥0.6) and a smaller fraction of
functionally diverse pairs (≤0.4) than the MV Bio-
GRID network, and that the SemSim distributions of
both networks depart significantly from random (Fig.
10b). In addition, the distributions of the pairwise
protein abundance ratio and the half-life ratio of
interacting protein pairs are more significantly shifted
toward lower values in the HC Collins network than
for the MV BioGRID network, although the distribu-
tions for both networks differ significantly from
random (Fig. 10c, d).
On the basis of this multipronged comparison, we

conclude that the HC Collins network is of higher
quality than the MV BioGRID network, confirming
earlier findings that the HC Collins network is one of
the highest-quality interaction networks of the soluble
S. cerevisiae proteome and therefore is the network of
choice for the present analysis. Many of its interac-
tions were indeed confirmed by subsequent publica-
tions, allowing for the generation of CYC2008, a
widely used updated version of annotated yeast
protein complexes [88].

Generation of random networks

Ten different random networks were created, which
preserve the number of protein nodes and the node
degree distribution of the Collins PPI network [40].
Starting from the Collins network, binary interactions
(network edges) were randomly shuffled using the
sample_degseq function in the igraph package for R
bhttp://www.igraph.org/rN, avoiding repeating inter-
actions and self-loops. Next, the identities of the
protein nodes were randomly shuffled using the
sample function without replacement in the base
package of R bhttp://www.r-project.orgN. The resulting
networks were pruned to eliminate the few interactions
that were also in the Collins network, yielding
essentially identical random networks shown in the
Supplementary Fig. S14.

Residue properties and amino acid propensities

The stickiness scale of Levy and Teichmann [4]
(values were taken from the Supplementary Material
of Ref. [4]) was used to evaluate the propensity of a
protein residue to be part of an interaction interface
with another protein. In addition, we used the Kyte–
Doolittle amino acid hydrophobicity scale [51].
Surface residues were defined as those with a
relative solvent-accessible surface area (RSASA) of
at least 20, with RSASA = SASAprotein/SASAfree,
where SASAprotein is the accessible surface area of
the residue in the protein structure and SASAfree is
the accessible surface area of the corresponding
amino acid free in solution. The accessible surface
area values were computed using FreeSASA [89].
The amino acid composition of IDRs and surface

residues of globular proteins, respectively, was
evaluated using a propensity score. The latter was
derived by calculating the fractional occurrence (f) of
each individual amino acid with respect to the total
number of residues in each data set (IDRs or surface
residues in the data set of globular proteins). Amino
acid propensities (p) were then calculated using p =
log10(fA/fB), where fA is the fractional contribution of
an amino acid for a given residue subset (IDRs or
protein surfaces) and fB is its average fraction
computed for the full yeast proteome.

Prediction of intrinsically disordered and
aggregation-prone residues

Residues likely to be part of IDRs were predicted
from the amino acid sequence by the IUPred software
[43], using the long-window option. To decrease the
level of noise, we considered only segments of at least
20 consecutive residues predicted to be disordered. In
addition, we analyzed predicted IDRs from the meta-
predictor MobiDB-lite [90] and observed the same
trends as with IDRs inferred by IUPred. These are the
following: (1) the negative correlation between the
fraction of highly disordered proteins and protein
abundance levels gets stronger when filtering out
proteins with an abundance of b2 and b8 ppm [rS =
−0.26 (p = 0.48) and rS = −0.84 (p = 2e−3),
respectively]; (2) at the protein abundance cutoff of
2ppm, there is a negative correlation between protein
abundanceand IDRstickiness (rS=−0.29,p=1e−47);
and (3) and a significant but weak negative correlation

http://www.igraph.org/r%3e
http://www.r-project.org
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between protein abundance and IDR hydrophobicity
(rS = −0.07, p = 5e−4). Moreover, we observed a
very high correlation between the amino acid
propensities in IDRs predicted by both software
tools (rS = 0.98, p = 6e−6) using the whole yeast
proteome as reference.
The propensity of amino acid residues to be

aggregation prone was evaluated from the amino
acid sequence using respectively the TANGO [52]
and PASTA2.0 [53] software. TANGO, which predicts
aggregation prone regions in unfolded polypeptide
chains, was applied using the default parameters
for pH, temperature, and ionic strength (7298 K
and 0.1, respectively). An aggregation prone region
was defined as a segment of at least five con-
secutive residues with a β-aggregation propensity
of minimum 5%.
PASTA2.0, a predictor of residues likely to be part

of amyloid fibrils [53], was applied using parameters
optimized to achieve 90% specificity. The file
containing the “best pairs” was used to retrieve the
putative amyloid forming regions.

Identifying putative MFPs

Putative MFPs in the genome of S. cerevisiae
were identified on the basis of publically available
functional annotations using a slight modification of
the procedure of Khan et al. [41].
In summary, protein annotations were retrieved

from UniProtKB Swiss-Prot database bhttp://www.
uniprot.org/N. GO terms [56,57] from all UniProtKB
evidence codes were extracted. Next, the GO terms
belonging to MF and BP category were clustered
separately. Clustering was done using single
linkage clustering [91] based on the sematic
similarity among GO terms, with similarity cutoff of
0.1 and 0.5. A protein was classified as multi-
functional if it is annotated with GO terms (a)
belonging to two or more clusters with sematic
similarity cutoff of 0.1 and (b) belonging to four or
more clusters with sematic similarity cutoff of 0.5
(Supplementary Figs. S7 and S8). These cutoff
values were empirically determined (2014) [41].
When only MF GO terms are available, the number
of clusters based on BP terms was assigned as 0
(zero). Multi-domain proteins were included in the
analysis. Ideally Multi-functional proteins identified
by this approach should be validated on the basis of
manual curation of the literature and other sources
[41]. However, this very time-consuming process
was therefore foregone in this study, but may be
performed in the future, using recently developed
text-mining techniques [92].
In the present study, we considered protein clusters

derivedon the basis of theGOBP terms.Results were
essentially unchanged when considering the union of
putative MFPs inferred using, respectively, the MF
and BP GO annotations.
Statistical analyses

The statistical analyses and the corresponding
graphical representations were performed using
custom R scripts. To evaluate the relationships
between variables, we used the non-parametric
Spearman's rank correlation coefficient (rS) and its
p value as implemented in the cor.test function in R
Stats package. To compare pairs of distributions of
the same variable, the non-parametric Wilcoxon
rank‐sum (Mann–Whitney U) test was used. In case
of multiple distribution comparison, the Bonferroni
correction was applied. To compare the fraction of
elements in different groups, we used the two-
sample test for equality of proportions with continuity
correction (Pearson's chi-squared statistic).
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