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We review approaches to the assessment of ecological condition and conservation 24 
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The review highlights research gaps and emphasizes the importance of developing 26 

more holistic indicators of ecosystem condition. 27 

Indicators that better reflect landscape level changes in structure and functioning of 28 

floodplain rivers are needed. 29 
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Studies that distinguish the role of different river floodplain habitat types in 30 

ecosystem services provision are needed. 31 

More effective spatial conservation prioritization tools are needed at the river 32 

floodplain scale. 33 

Abstract 34 

Large floodplain rivers (LFRs) are currently threatened by high levels of human alteration, 35 

and utilization is expected to grow. Assessments to determine ecological condition should 36 

address the specific environmental features of these unique ecosystems, while conservation 37 

management requires balancing maintenance of good ecological condition with the ecosystem 38 

services provided by LFRs. However, a systematic evaluation of the scientific literature on 39 

assessment of ecological condition of LFRs and trade-offs to guide conservation management 40 

is currently lacking. Here, we reviewed 153 peer reviewed scientific articles to characterize 41 

methodological patterns and trends and identify knowledge gaps in the assessment of LFRs. 42 

Our review revealed that most approaches used classical biotic indices for assessing 43 

ecological condition of LFRs. However, the number of articles specifically addressing the 44 

peculiarities of LFRs was low. Many studies used watershed level surveys and assessed 45 

samples from small streams to large rivers using the same methodological protocol. Most 46 

studies evaluated the status of main stem river habitats only, indicating large knowledge gaps 47 

with respect to the diversity of river-floodplain habitat types or lateral connectivity. Studies 48 

related to management were oriented toward specific rehabilitation actions rather than broader 49 

conservation of LFRs. Papers relating to ecosystem services of LFRs were especially few. 50 

Most importantly, these studies did not distinguish the different functional units of river-51 

floodplain habitat types (e.g. eupotamon, parapotamon) and their role in ecosystem services 52 

provision. Overall, the number of articles was too low for meaningful analyses of the 53 

relationships and tradeoffs between biodiversity conservation, maintaining ecological 54 

condition, and use of ecosystem services in LFRs. Our review highlights research gaps and 55 

emphasizes the importance of developing more holistic indicators of ecosystem condition, 56 

which better reflect landscape level changes in structure and functioning of LFRs. As human 57 

use of water and land increases, the need to develop more effective spatial conservation 58 

prioritization tools becomes more important. Empirical research in this field can aid in solving 59 

conflicts between socio-economic demands for ecosystem services and nature conservation of 60 

LFRs. 61 

key words: ecological condition, biological integrity, ecological status, rehabilitation, 62 

restoration, biodiversity, ecosystem services 63 
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Introduction 65 

Large floodplain rivers (LFRs) are the lifelines of our landscapes. By draining large 66 

catchment areas, they integrate environmental, topographic and hydro-geomorphic conditions. 67 

LFRs are four dimensional systems, with longitudinal connectivity along the river gradient, 68 

lateral connectivity to the floodplain, vertical connections with the substrate and the 69 

groundwater layer, and having a temporal trajectory (Ward, 1989). Large river habitats can be 70 

considered hierarchically nested from regions down to river reaches, with quality and spatial 71 

arrangement of habitat units at the finer spatial scales controlled by processes at coarse spatial 72 

levels (Gurnell et al., 2016). Regularly occurring floods and droughts make rivers 73 

disturbance-driven systems subjected to periodic rejuvenation of habitats through erosion and 74 

deposition processes. As a result, LFRs provide a dynamic mosaic of habitats in various 75 

successional states that differ in complexity, connectivity and patchiness (e.g., Thorp et al., 76 

2006), which is usually considered the foundation of their exceptionally high biodiversity 77 

(e.g., Tockner and Ward, 1999).   78 

 79 

At the same time, LFRs are subject to intense use by humans, including transformation, 80 

reclamation, and degradation of the natural landscape (Tockner and Stanford, 2002; Peipoch 81 

et al., 2015). Ancient civilizations arose on floodplains by cultivating the fertile land. 82 

Increasing agriculture and urbanization, and the associated river regulation (e.g. 83 

channelization, building of dams, flood control by levees) over time have substantially 84 

reduced the area as well as the spatial and temporal complexity of LFRs. For example, more 85 

than 50% of the world’s population currently lives within 3 km of freshwaters (Kummu et al., 86 

2011), and more than 600,000 km of inland waterways have been altered for navigation 87 

worldwide (CIA, 2002). The net result is constriction of floodplains by more than 50% of the 88 

historical expanse (for details, see Tockner and Stanford, 2002). In Europe, which is the most 89 

human dominated continent, up to 90% of former floodplains have been degraded to 90 

functional extinction (Tockner et al., 2010). Modification and degradation is ongoing due to 91 

agriculture, urbanization, navigation and development of large hydropower projects, making 92 

LFRs the most threatened ecosystems on Earth (Arthington et al., 2010; Sommerwerk et al., 93 

2010).  94 

In sum, LFRs are highly complex natural systems of high biodiversity and societal value, but 95 

severely degraded and in urgent need of protection and rehabilitation. It shall be noted here 96 

that rehabilitation is used throughout this article to reference all measures and attempts to 97 

mitigate degradation and to improve ecosystem functions and processes. This acknowledges 98 

the persistence and irreversibility of certain uses and changes, respectively, and the 99 

corresponding impossibility to restore LFRs to historical or pristine states (i.e. restoration). 100 

Due to their size, inherent complexity and integrative nature, LFRs are costly to sample and 101 

assess (e.g. de Leeuw et al., 2007; Flotemersch et al., 2011). Broader challenges include the 102 

need to identify and prioritize the most pressing stressors on LFRs while balancing 103 

conservation and rehabilitation of ecological condition with the diverse benefits that LFRs 104 

provide to society (i.e. ecosystem services; see Fig. 1). Accordingly, examples of in-depth 105 

assessment of pressure effects, rehabilitation measures in or rehabilitation guidance for LFRs 106 

are rather scarce (e.g. Zajicek et al., 2018). Correspondingly, in Germany an analysis of the 107 

first river basin management plans implementing the European Water Framework Directive 108 

(WFD, 2000/60/EEC) revealed that huge knowledge gaps were evident (especially for large 109 

rivers), and mostly conceptual measures were planned (Kail and Wolter, 2011). Trade-offs 110 

and synergies between the spatial distribution of ecological condition and ecosystem services 111 

have to be understood and quantified. LFR management is expected to either spare the land 112 



for biodiversity conservation or for human use, or to share it between conservation and use for 113 

the joint benefit of both nature and the society (Cordingley at et al., 2016; Doody et al., 2016). 114 

This evaluation procedure requires scientifically robust methods that can assess the ecological 115 

or conservation status of LFRs and also identify optimal solutions for the allocation of 116 

resources (i.e. prioritization of the landscape for conservation/rehabilitation and/or for use). 117 

This systematic review aims to evaluate status and progress in assessing and managing LFRs, 118 

defining research gaps and future research avenues. Several research and review articles 119 

emphasize the importance of natural patterns and processes in the effective conservation of 120 

LFRs (e.g. Jungwirth et al., 2002; Thorp et al., 2010). However, a systematic evaluation of 121 

assessment approaches for LFRs and how well they address societal goals of maintaining 122 

good ecological condition, conserving biodiversity, and capitalizing on ecosystem services is 123 

currently lacking. Consequently, we conducted a systematic review to summarize trends in 124 

the assessment of ecological condition, conservation and ecosystem services of LFRs. 125 

Specifically, we asked the following two questions: 1) how is ecological condition of LFRs 126 

assessed, and 2) how can maintenance of ecological condition be balanced with use of 127 

ecosystem services of LFRs?  128 

Materials and Methods 129 

We conducted a systematic evaluation of the peer-reviewed literature relating to the 130 

determination, conservation and rehabilitation of ecological condition, the conservation of 131 

biodiversity and/or the use of ecosystem services in LFRs. We performed a literature search in 132 

the Web of Science (WoS; http://apps.webofknowledge.com) database using the following 133 

keywords combination: („ecological status” OR „ecological condition” OR „ecosystem 134 

health” OR "ecological integrity" OR "biological integrity" OR conservation OR 135 

rehabilitation OR restoration OR biodiversity OR "ecosystem services") AND (river* OR 136 

floodplain* OR „floodplain-lake*” OR oxbow*). For simplicity, we selected English 137 

language articles only. The search was executed on 11 December 2017, and yielded 2426 138 

articles in the time period from 1992 to 2017. All authors were assigned an equal number of 139 

articles to screen against review criteria. Because the definition of large rivers varied, we 140 

decided to incorporate all studies dealing with potamal floodplain rivers larger than 1000 km
2
 141 

in catchment size. Articles were excluded from the analyses if i) the main topic was not 142 

related to assessment of ecological condition, conservation or ecosystem services, ii) the focus 143 

was only on small streams and rivers, or iii) evaluations were performed at the level of sites or 144 

sub-catchments with unclear relation to LFRs. We also excluded review articles, except where 145 

they contained detailed case studies for effective evaluation (e.g. details of restoration projects 146 

in Jungwirth et al., 2002). This procedure resulted in a total of 153 papers matching our study 147 

criteria. 148 

From each study, we extracted the location, spatial scale, year(s) of investigation, the 149 

floodplain habitat types studied and other circumstances of data collection (see Appendix I.). 150 

We paid special attention to evaluating the role of different river-floodplain functional habitat 151 

types (for details see Amoros et al., 1982; 1987; Ward and Stanford, 1995) in assessment and 152 

management goals. We distinguished five habitat types as follows: MR, main river or 153 

eupotamon habitats, which include the main channel and side arms that are connected to the 154 

main channel even at low flow; FP1, floodplain 1 or parapotamon, and plesiopotamon 155 

habitats, which are abandoned braided channels or backwaters blocked from upstream 156 

(parapotamon) and from both upstream and downstream direction (plesiopotamon), but often 157 

connected to the main arm depending on water level; FP2, floodplain 2 or paleopotamon 158 

http://apps.webofknowledge.com/


habitats are oxbows in the floodplain area, which are only rarely connected to the river and to 159 

other side arm components by surface flow; FPA, flood protected area, which contains 160 

oxbows separated completely from the floodplain by dams; and R, riparian areas, which 161 

include all other terrestrial habitats belonging to the floodplain.  162 

We characterized each study into six categories based on the main study objectives, as (1) 163 

assessment of ecological condition (EC; note that this broad term incorporates evaluation of 164 

ecological or ecosystem status, health, condition or ecological/biological integrity), (2) 165 

conservation (C), (3) rehabilitation or restoration (R, hereafter we use the term rehabilitation 166 

only, because – although the term is widely used – true restoration, e.g. of pristine or natural 167 

conditions of LFR is rarely intended), (4) ecosystem services (ES), (5) trade-off situation 168 

between C and ES (C/ES), and (6) biodiversity inventory or monitoring (BDM). Studies that 169 

addressed more than one topic were classified to more than one type (e.g., to both EC and 170 

BDM).  171 

For ecological assessments (EC), we classified the taxonomic group(s), number and type of 172 

variables (metrics) used for the evaluation, the number and type of stressors measured, and 173 

the characterization of reference condition. For conservation (C), rehabilitation (R) and 174 

ecosystem service (ES) studies we examined the components of biodiversity and services, and 175 

whether and how trade-off relationships were handled. We also evaluated the reported 176 

involvement of stakeholders in achieving study objectives. Further details of the data 177 

collected and reviewed are provided in Appendix I. 178 

Results and Discussion 179 

General findings 180 

Of the 153 articles reviewed, 60.0%, 24.7%, 9.5%, 4.2%, 1.6%, and 0.0% addressed EC, 181 

BDM, R, C, ES, and C/ES, respectively. The geographic distribution of the studies was highly 182 

unequal across continents and ecoregions (Fig. 2). A majority of the studies were conducted 183 

in Europe (32.0%) and North America (28.1%), whereas studies from Asia (16.3%), Africa 184 

(8.5%), South America (7.8%) and Australia and New Zealand (7.2%) were much less 185 

represented. Altogether 73 ecoregions were represented in studies. However, a relatively large 186 

proportion were conducted in just three ecoregions: Central & Western Europe 10.5% 187 

(Europe), the Upper-Danube 9.2% (Europe), and the Lower Mississippi 5.9% (North 188 

America). 189 

Assessment of ecological condition 190 

Evaluation of ecological condition (EC articles) was mostly performed (48.9% of the studies) 191 

using main river assemblages (i.e. in eupotamon habitats). In contrast, other floodplain 192 

habitats were assessed by a much lower number of studies (Fig. 3). Specifically, floodplain 193 

habitats type 1 (parapotamon, plesiopotamon) and type 2 (paleopotamon) were assessed by 194 

22.6% and 18.9% of the studies, respectively, and flood protected areas and riparian systems 195 

were considered in only 6.3% and 3.2%, respectively. A majority of the studies (60.9%) 196 

incorporated only one habitat type for evaluating ecosystem status. Similar numbers of studies 197 

evaluated two (16.5%) and three (19.1%) habitat types; however, only 3.5% studies 198 

incorporated four habitat types. No study evaluated all five habitat types of LFRs.  199 



The taxonomic groups most often used to assess ecological condition were fishes and benthic 200 

invertebrates, accounting for 45.6% and 35.0% of the studies, respectively. All other taxa (e.g. 201 

algae, macrophytes) were much less frequently used (Fig. 4). 83.0% of the papers used only a 202 

single taxonomic group for the assessment, 10% applied two groups, and only 7.0% of the 203 

studies used three or more groups. Taxonomic (e.g. species richness, number and/or 204 

abundance of specific taxa) and functional (e.g. % omnivores, % invertivores) metrics were 205 

the most frequently used biological response variables across all studies. In studies using fish 206 

as the response group, index-based approaches (i.e., scoring alteration metrics from a 207 

reference value and summing values into a single index) were most common (see e.g. 208 

Ganasan and Hughes, 1998; Sharma et al., 2017); however, it should be noted that this 209 

methodology was typically unchanged from how it is applied to assess site-level degradation 210 

in small streams and rivers (e.g., Karr, 1981). Assessments that focused on benthic 211 

invertebrates tended to rely on diversity indices (e.g. Shannon-Wiener, Simpson indices) and 212 

density metrics (individuals m
-2

) (see e.g. Cabecinha et al., 2004; Raburu et al., 2009), which 213 

were only infrequently used in fish based studies. Though few in number, studies on 214 

macrophytes incorporated structural vegetation variables like maximum vegetation height. 215 

For example, in the San Pedro River, (Gila ecoregion, U.S.A.), Stromberg et al. (2006) 216 

examined how groundwater withdrawal influences the ecological condition of the floodplain 217 

system based on maximum vegetation height across the floodplain, % shrubland cover, and 218 

absolute as well relative cover of hydric perennial herbs. Interestingly, algae were also 219 

relatively rarely used in EA of LFRs. Utilizing algae as indicators, for example, Greiner et al. 220 

(2010) used classification algorithms (Self-Organizing Maps) to set up biotypes along an 221 

alteration gradient and to determine ecological thresholds for setting up the boundaries of 222 

condition classes.  223 

Many studies, however, did not use biotic indices or any other quantitative assessment of 224 

ecological condition. These studies instead examined how the structure (i.e. presence/absence 225 

or relative abundance) of biological assemblages was associated with the degradation (i.e. 226 

ecological condition) of the habitats using multivariate community analyses (e.g. Pan et al., 227 

2014). Further, some articles exclusively assessed habitat condition, which of course is an 228 

important component of overall ecological condition, but cannot be used per se for this 229 

purpose, if the biotic response to the habitats is not considered. For example, in Austrian 230 

rivers Muhar et al. (2000) concluded that only 43 km (5.9%) out of 731 km of large alluvial 231 

rivers remained in relatively intact condition using a scoring system that characterized the 232 

habitat quality based on morphological character, instream structures, longitudinal and lateral 233 

connectivity, and hydrological regime compared with reference conditions.  234 

A surprisingly large number of papers did not provide a clear description of the methodology 235 

of ecological condition assessment by specifying the type of stressors or the response biotic 236 

metrics. In fact, many studies used only the biotic groups as indicators of ecological condition 237 

without evaluating the role of stressor variables (e.g. only 32.5% of the papers examined 238 

stressor metric relationships). When stressors were analyzed as part of the assessment, land 239 

use variables (e.g. percentage of forest, agricultural land) were the most frequently used, 240 

reported in 54.4% of the papers. Land use is not only easy to derive from thematic maps; it 241 

seemingly provides a good approximation for ecological degradation of large rivers. For 242 

example, Trautwein et al. (2012) found two simple land use metrics, % agriculture and % 243 

urbanization, were the best correlated stressor metrics with fish-based biotic indices (i.e. 244 

ecological condition) in the Upper Danube ecoregion, Austria; however, stream fish 245 

assemblages of lower mountain rivers were more sensitive to land use changes than fish 246 



assemblages inhabiting low gradient, large rivers. In the Paraiba do Sul ecoregion, Brasil, 247 

Pinto et al. (2006) found land use (especially % pasture, % urban area) and riparian condition 248 

closely associated with fish biotic indices.  249 

Physical stressors were assessed in 34.2% of the papers. Among these, connectivity (effect of 250 

dams), instream and riparian habitat structure (flow regulation, channel modification) were 251 

most frequently measured. For example, in main stem rivers in the Central & Western Europe 252 

ecoregion, Czech Republic, Musil et al. (2012) demonstrated that weirs and dams affected the 253 

biotic status of fish assemblages. In the Upper Lancang (Mekong) ecoregion, China, Zhai et 254 

al. (2010) demonstrated how a series of hydropower dams affected the ecological condition 255 

due to alteration of flow, water quality and sediment transport. Chemical (i.e. water quality) 256 

stressors were utilized in 28.1% of studies and included primarily sediment pollution, point 257 

source pollution, concentration of nutrients and oxygen content. For example, in the Liao He 258 

ecoregion, China, basic physiochemical parameters, BOD5, CODcr, TN, TP, NH3-N, DO, 259 

petroleum hydrocarbon and conductivity were associated with an integrated ecological health 260 

index (Meng et al., 2009). This integrated index combines physical habitat quality, fecal 261 

coliform count, attached algae diversity, and a benthic index of biotic condition (Meng et al., 262 

2009). Biological stressors appeared in only 7.0% of studies, and were largely comprised of 263 

the number or abundance of non-native species (fish) and livestock grazing. For example, in 264 

the Southern Iberia ecoregion, Spain, dominance of non-native fishes was an important 265 

determinant of ecological condition indicated by fish-based indices (Hermoso et al., 2010). In 266 

the Lake Victoria Basin ecoregion, Kenya, excessive grazing and deforestation affected fish-267 

based ecological condition (Raburu and Masase, 2012). Nevertheless, most studies showed 268 

that a combination of stressors shape the structure and assemblages of biotic communities in 269 

large rivers (e.g. Weigel and Dimick, 2011; Sarkar et al., 2017), which corresponds well with 270 

findings from smaller streams and rivers (Hering et al., 2006; Feld and Hering, 2007). 271 

Most assessments used either field intensive (50.0%) or field rapid (27.9%) data collection 272 

methodology (Fig. 5). This result clearly reflects a certain need for extensive sampling of 273 

biota to represent status of LFRs, and which can be only partially replaced by modern remote 274 

methods, even if collection of biological data is time consuming and resource intensive (e.g. 275 

Flotemersch et al., 2011). However, besides conventional methodologies, innovative 276 

methodological approaches became increasingly implemented. For example, Dzubakova et 277 

al., (2015) applied LiDAR imagery to evaluate the dynamics of lateral connectivity in river 278 

floodplain habitats, and similarly, Karim et al. (2014) developed a method to quantify 279 

connectivity (timing, duration) of floodplain wetlands over space and time using high 280 

resolution laser altimetry. A large majority of studies measured ecological condition against a 281 

reference; however, the method used to define reference conditions varied widely (Fig. 6), 282 

with designation of reference sites (29.8%) and modelling stressor-response relationships 283 

(29.8%) being equally most important. In contrast, half of the studies did not describe how 284 

natural variation was partitioned from human impacts (Fig. 7). When natural variation was 285 

addressed, most studies used site-based classifications (i.e. evaluation of sites in major 286 

typological classes) or focused on a single habitat type for filtering the role of natural 287 

environmental variation to detect perturbation effects (22.8%, Fig. 7). These approaches 288 

generally concur with those used in smaller streams and rivers (see Roset et al., 2007; 289 

Hermoso and Linke, 2012).  290 

Conservation, rehabilitation and relationship with ecosystem services 291 



Studies addressing management actions were more rehabilitation than conservation oriented. 292 

This is probably due to the typically high levels of human use throughout LFRs. Also, 293 

although systematic conservation planning exercises may be done at large spatial scales, 294 

selection of areas for conservation focus is typically at finer scales (i.e. among stream 295 

segments and their associated watersheds) within large river systems (Esselman and Allan, 296 

2011; Hermoso et al., 2011; Dolezsai et al., 2015). These studies do not deal with the 297 

peculiarities of LFRs by addressing different scales, which are only indirectly related to the 298 

conservation management of LFRs. Our review suggests that systematic approaches that 299 

select among different reaches and floodplain habitats within the potamal section of LFRs are 300 

relatively rare. We also found that although floodplain habitats and their associated main stem 301 

section are often the focus of large scale rehabilitation projects (e.g. Tockner and Schiemer, 302 

1997; Whalen et al., 2002), these areas are selected rather haphazardly or based on their 303 

ecological status relative to a small number of potential candidate sites (Buijse et al., 2002; 304 

Jungwirth et al., 2002; Sommerwerk et al., 2010; Hein et al., 2016). Most rehabilitation efforts 305 

targeted the enhancement of habitat at small spatial extents (e.g. hundreds of meters to a few 306 

kilometres; see e.g. Thomas et al., 2015; Morandi et al., 2017) or focused on increasing lateral 307 

connectivity between the main channel and the floodplain (see e.g. Jacobson et al., 2011; 308 

Riguier et al., 2015; Kozak et al., 2016). The emergent general conclusion of the studies is: 309 

although in many cases rehabilitation activities enhanced habitat conditions and increased 310 

biodiversity to some degree, the outcome of the rehabilitation depended greatly on the 311 

selected abiotic and biotic variables, the spatial scale of the rehabilitation activity and the 312 

temporal scales considered for evaluating rehabilitation effects (Bernhardt et al., 2005; Palmer 313 

et al., 2010; Muhar et al., 2016). Prime reasons for failure of rehabilitation activities in LFRs 314 

were: i) the overarching effect of catchment or landscape level alterations, ii) inadequate 315 

improvement of instream habitat quality, iii) limited recolonization potential of the species 316 

pool, and iv) the lack of a diverse species pool in the altered catchments (Palmer et al., 2010; 317 

Tonkin et al., 2014; Muhar et al., 2016; Stoll et al., 2016).  318 

We found surprisingly few papers (1.6%) addressing ecosystem services in LFRs. Although 319 

the number of studies on ecosystem services of freshwaters is generally increasing, Hanna et 320 

al. (2018) concluded these are almost exclusively quantifying ecosystem services at the scale 321 

of watersheds or across multiple watersheds. Consequently, this review agrees with Hanna et 322 

al. (2018) that evaluation of ecosystem services at the scale of LFRs is still rare. Ecosystem 323 

services studies also did not distinguish between the different functional units of river-324 

floodplain habitat types (i.e. eupotamon, parapotamon, plesiopotamon) and their potential role 325 

in ecosystem services provision. An important exception is Schindler et al. (2014), who 326 

reviewed the effects of 38 floodplain management interventions on 21 ecosystem services. 327 

The authors found that rehabilitation measures generally improved the multifunctionality of 328 

the riverscape and resulted in win-win situations for enhancing the overall supply of 329 

ecosystem services (Schindler et al., 2014, 2016). Overall, the number of studies is still too 330 

low for meaningful analyses of the relationships between biodiversity conservation, 331 

maintenance of ecological condition and ecosystem services in LFRs (but see e.g. Thorp et 332 

al., 2010 for a more general paper). 333 

Conclusions and suggestions for future research 334 

Our systematic review revealed a strong geographic bias in the literature toward developed 335 

countries in Europe and North America. Given systematically high levels of threat to rivers 336 

around the globe (Vörösmarty et al. 2010), this is a substantial research gap and further 337 

studies are clearly required in less examined continents to better understand the ecology and 338 



conservation management of LFRs. In fact, conservation management of LFRs could 339 

significantly benefit from intensive research in currently less studied and still relatively intact 340 

LFRs in terms of spatial organization of habitat patterns, functional connectivity between 341 

them and potential reference conditions. Europe and North America have a long history of 342 

intense, large scale river engineering and use and thus, largely lack stretches appropriate for 343 

use as natural references. Potential reference LFRs, however, may still exist in less developed 344 

areas, such as areas of South America, Asia and Africa. Even if they occur in markedly 345 

different biogeographic realms than more altered LFRs, which limits their applicability as 346 

reference for taxonomic evaluations, they can still provide reference for functional 347 

composition of species communities as well as functional connectivity between resources and 348 

thus, will enhance our understanding of ecological function and processes in LFRs. We 349 

acknowledge that ecology of LFRs has been investigated in some areas that our review 350 

indicates are understudied (e.g. in Russia and China), where results have simply not yet 351 

reached the English-dominated contemporary scientific literature. 352 

Our review suggests that most ecological assessments to date have adopted use of classical 353 

biotic index based evaluations (e.g. Angermeier and Karr, 1994; Karr, 1999). Not 354 

surprisingly, these evaluations rely largely on fish and benthic invertebrate assemblages. Both 355 

taxa have a relatively long history of development and application as indicators (Karr, 1981), 356 

with established sampling guidance and diagnostic tools, particularly in small rivers (Herman 357 

and Nejadhashemi, 2015). However, it should be noted that the number of articles specifically 358 

addressing application of biotic indices in LFRs is low. Many studies applied sampling at the 359 

watershed level, where samples from small streams to large rivers were evaluated using the 360 

same methodological protocol. In addition, most studies evaluated the status of main stem 361 

river habitats only (see e.g. Flotemersch et al., 2006; Whittier et al., 2007; Birk et al., 2012a; 362 

Ruaro and Gubiani, 2013), but did not specifically consider the peculiarities of LFRs. The 363 

number of articles addressing the ecological assessment of the whole riverine landscape (i.e. 364 

all types of riverscape habitats) was very small (Fig. 3).  365 

Most indices used to evaluate biotic condition were not specific to LFRs. A notable exception 366 

is the floodplain index, which was developed to assess ecological condition of and lateral 367 

connectivity between individual water bodies within a floodplain landscape (multiple riverine 368 

habitat types). The index is based on species specific habitat preferences, which were assigned 369 

to indicator values (Chovanec and Waringer, 2001; Chovanec et al., 2005; Illyova and 370 

Matecni, 2014; Šporka et al., 2016; Funk et al., 2017). The index is an effective biological 371 

indicator of spatial and temporal changes in the lateral hydrological connectivity of river-372 

floodplain functional habitat types (Chovanec et al., 2005; Šporka et al., 2016). Since 373 

dynamic lateral hydrological connectivity is one of the most important determinants of river-374 

floodplain systems (Bayley, 1995; Johnson et al., 1995; Ward et al., 2001), the floodplain 375 

index may serve as key measure for evaluating the ecological condition of LFRs at the 376 

landscape scale. However, the floodplain index cannot be related to specific stressors and 377 

thus, may not effectively indicate the summed effect of different physical, chemical and 378 

biological stressors on biota and the LFR system in general. Therefore, other metrics are also 379 

necessary for the effective evaluation of the ecological condition of LFRs, which we briefly 380 

review here to guide future assessment research. 381 

To quantify the degree of landscape alteration and assess ecological condition it is necessary 382 

to determine how much area of the original landscape has been lost, and how structural 383 

components and functional processes have been altered (Beechie et al., 2010; Peipoch et al., 384 



2015). However, most biotic indices quantify only site level alteration and consequently do 385 

not consider or provide information on habitat loss and alteration – including spatial 386 

configuration and diversity of different habitat types - at the landscape level. LFRs suffered 387 

most from large scale loss of their original habitat due to increasing agricultural land use 388 

(Tockner and Stanford, 2002). Therefore, we suggest that assessments of LFRs should 389 

explicitly incorporate landscape level metrics of habitat alteration. Patch based evaluations of 390 

habitat quantity, complexity (i.e. configuration, diversity, connectivity of patches) and quality 391 

are routinely used in terrestrial landscape ecology (Pascual-Hortal and Saura, 2006; Lausch et 392 

al., 2015). However, their application in riverscape ecology warrants greater consideration 393 

(Erős and Grant, 2015), particularly in ecological assessment and conservation management. 394 

For example, environmental history provides an excellent approach for quantifying spatial 395 

and temporal changes in habitat quantity, configuration and diversity in LFRs (see e.g. 396 

Hohensinner et al., 2004; Farkas-Iványi and Trájer, 2015). Further, graph theoretic and other 397 

network based methods are increasingly applied to quantify connectivity relationships (Erős et 398 

al., 2012; Wohl et al., 2018). In addition, since lateral diversity of habitats and the biota is a 399 

key component of LFRs, the floodplain index mentioned above can serve as a coarse measure 400 

for spatial and temporal changes in hydrologic connectivity and its effects on biota. Modelling 401 

stressor response relationships with more effective analytical tools (e.g. machine learning 402 

methods, Bayesian models) may lead to better predictive indices in the future (Kuehne et al., 403 

2017). These tools could better incorporate both structural and functional parameters. In fact, 404 

measures of ecosystem function (e.g. water retention, organic matter decomposition, 405 

production of trophic levels) are still underutilized in river management (von Schiller et al., 406 

2017). Overall, what is still missing is a more holistic approach, i.e. the effective integration 407 

of the different approaches in a unified assessment framework (but see Flotemersch et al., 408 

2016 for an approach at the watershed level).  409 

Classic indices are routinely used for determining quality of the biota (Birk et al., 2012a, 410 

2012b; Ruaro and Gubiani, 2013). However, local, single habitat and single index based 411 

assessments may fail to correctly reflect the broader ecological condition of LFRs and the 412 

alteration of the riverscape (see also Moss et al., 2008), particularly if areas lost by water 413 

regulation, land use alteration and other kinds of habitat modification are not considered. For 414 

example, a riverscape that has lost 90% of its original area may show good ecological 415 

condition at the local scale, due to remnant river-floodplain segments with sufficient habitat 416 

quality and connectivity, while at the catchment scale the riverscape is seriously altered. This 417 

narrow focus on the site scale and single elements of the riverscape is standard in most 418 

environmental assessments of LFRs. For example, in Hungary the assessment of the 419 

ecological condition of large floodplain rivers (Danube, Tisza) is exclusively based on 420 

monitoring the main channel and the floodable area along the river. Oxbows and former side 421 

arms in the historic floodplain are treated as lakes in the ecological assessment procedure and 422 

their ecological condition is evaluated based on the criteria established for lakes. The formerly 423 

vast floodplain area cut off by levees for flood protection is considered terrestrial habitat and 424 

thus not evaluated at all. In the German environmental assessment system for the WFD, even 425 

the active floodplain is not considered part of the water body and thus not addressed by 426 

monitoring. Approaches that restrict the riverscape to the floodplain remaining between 427 

levees fall short in assessing the ecological condition, because they ignore the original extent 428 

of the riverscape as reference. Such an assessment largely underestimates the loss of habitats, 429 

neglects lateral fragmentation effects and consequently cannot estimate the full losses due to 430 

human alteration of LFRs. We are fully aware that many historical floodplain areas are 431 

irreversibly lost; however, we argue for their conceptual consideration as functional habitats. 432 

For fish in particular, small floodplain water bodies that are infrequently connected with the 433 



main channel have been identified as key habitats for floodplain specialists (Schomaker and 434 

Wolter, 2011). We argue that integrating landscape level and local scale evaluations will lead 435 

to more effective evaluation of the ecological condition of LFRs. The joint application of the 436 

different types of indicators of environmental quantity, complexity and quality together with 437 

information on ecological threat indices (Paukert et al., 2011; Tulloch et al., 2015) will allow 438 

development of more informed conservation and management decisions.  439 

Limitations on conservation resources means that it is critically important to optimize 440 

solutions across multiple conservation/rehabilitation purposes and/or other ecosystem 441 

services. As indicated by the very low number of articles on ecosystem services of LFRs, this 442 

challenge remains widely unaddressed. Furthermore, studies that specifically quantify trade-443 

off relationships between different ecosystem services and biodiversity conservation or the 444 

maintenance of ecological condition are virtually lacking for LFRs. Watershed level studies 445 

offer examples of how to optimize land use for the delivery of ecosystem services and for 446 

conservation and/or rehabilitation of biota (e.g. Doody et al., 2016; Terrado et al., 2016; Erős 447 

et al., 2018). Similar studies should be conducted in the segments of LFRs, because 448 

examining trade-off relationships at larger scales and spatial extents may require different 449 

approaches and result in different management outcomes (Erős et al., 2018; Hanna et al., 450 

2018).  451 

In LFRs, selecting areas for conservation or rehabilitation should focus on reaches sufficiently 452 

large to maintain a diverse array of floodplain habitat types and a diverse biotic community 453 

(Hein et al., 2016). Spatial prioritization and optimization approaches could help to define 454 

river segments 1) of priority for conservation and/or rehabilitation (e.g. biodiversity hotspots, 455 

regeneration potential, nutrient retention, ecotourism), 2) primarily for human use (e.g. 456 

infrastructure, housing, gravel mining), and 3) for both conservation functions and human use 457 

shared according to societal needs and intentions. Taking the “land sharing versus land 458 

sparing debate” (see Fisher et al., 2014; Shackelford et al, 2015) into the water would be 459 

useful for developing more effective conservation decisions that address societal concerns, 460 

especially for LFRs, where human needs for water seem to be in special conflict with 461 

conservation aims (Arthington et al., 2010; Sommerwerk et al., 2010).  462 

In summary, our review of the ecological research identified substantial challenges in 463 

assessing and managing LFRs, primarily emerging from an insufficient recognition of the 464 

spatial (longitudinal and lateral) and temporal complexity of LFRs. This review highlights 465 

research gaps and emphasizes the importance of developing more holistic indicators and 466 

assessment schemes of ecological condition  that can better reveal landscape level changes in 467 

the structure and functioning of LFRs. Improved assessment tools will help to effectively 468 

select areas for conservation and rehabilitation, and evaluate those areas which are 469 

rehabilitated. Indeed, as human use of water and land is increasing, developing effective 470 

spatial prioritization tools becomes more important. Empirical research in this field can aid in 471 

solving conflicts between socio-economic demands for ecosystem services and nature 472 

conservation in LFRs. 473 
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Captions to figures 793 

 794 
Figure 1. A schematic representation of the purpose of this study for exploring the assessment 795 

of ecological condition and its relationship with ecosystem services and for showing the 796 

balance between conserving and/or rehabilitating nature and utilizing it for human purposes 797 

appearing in peer-reviewed scientific articles. 798 

 799 

Figure 2. The distribution of the studies among continents and ecoregions. Letters indicate the 800 

type of the article as follows. EC, assessment of ecological condition; C, conservation; R, 801 

rehabilitation/restoration; ES, ecosystem services; BDM, biodiversity inventory or 802 

monitoring; C/ES, trade-off between C and ES. 803 

 804 

Figure 3. The percentage (%) distribution of the studies among the different river-floodplain 805 

habitat types. Abbreviations for the functional habitat types are as follows. MR, main river 806 

(eupotamon); FP1, floodplain 1 (parapotamon, plesiopotamon); FP2, floodplain 2 807 

(paleopotamon); FPA, former riverscape habitats in the flood protected area (oxbows etc); 808 

RIP, riparian areas.  809 

 810 

Figure 4. Representation (percentage % of all studies) of different taxonomic groups used to 811 

evaluate ecological condition in EC studies.  812 

 813 

Figure 5. The percentage (%) distribution of the type of data collection methods for the 814 

assessment of ecological condition among the articles. Field-intensive (>0.5 day site
-1

), field-815 

rapid (<0.5 day site
-1

), desktop (based primarily on spatial and/or remotely sensed data), 816 

expert (synthesis of expert knowledge). 817 

 818 

Figure 6. The percentage (%) distribution of the methods of defining reference condition 819 

among the articles. Basis of comparison for ecological condition: Site, selection of reference 820 

sites; BPJ, best professional judgement or expert knowledge; Historical, based on empirically 821 

derived estimate of historical condition; Model, models reference conditions using empirical 822 

approach; Ambient, uses measured range of response.  823 

 824 

Figure 7. The percentage (%) distribution of the methods among EC articles that partitioned 825 

natural variation from anthropogenic impacts. The categories used were as follows. 826 

Classification, categorization of sites based on their habitat characteristics; Untest, univariate 827 

tests of factors; Model, models which account for natural gradients; RGR, restricting 828 

geographic range. 829 
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