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μ-OR  μ-opioid receptor 
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Cyp  cyprodime 

DA    dopamine 

DAMGO D-Ala2, N-MePhe4, Gly-ol]-enkephalin 

I.p.  intraperitoneal  

I.th.  intrathecal  

I.v.  intravenous 

Morph  morphine 

MPE  maximum possible effect 

Oxy  oxycodone 

Sal   saline  
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Bullet point summary  

1. What is already known: PZM21 is a new opioid efficacious for the ‘supraspinal’ component 

of pain with reduced side effects and rewarding activity.  

2. What this study adds: PZM21 presents antinociceptive effects in reflexive test and supresses 

morphine reward. However after repeated treatment causes tolerance and withdrawal. 

3. Clinical significance: PZM21 may be a promising treatment for opioid use disorder.   
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ABSTRACT 

Background and purpose: The concept of opioid ligands biased toward the G protein pathway 

with minimal recruitment of β-arrestin-2 has become a promising approach for the 

development of novel, efficient and potentially nonaddictive opioid therapeutics. A recently 

discovered biased μ-opioid receptor agonist, PZM21, was reported to be analgesic and possess 

reduced side effects. Here, we aimed to further investigate the behavioural and biochemical 

properties of PZM21. 

Experimental approach: We evaluated antinociceptive effects of systemic and intrathecal 

PZM21 administration. Its addiction-like properties were determined using several behavioural 

approaches: conditioned place preference, locomotor sensitization, precipitated withdrawal and 

self-administration. Further, we assessed the influence of PZM21 on morphine-induced 

antinociception, tolerance and reward. Effects of PZM21 on striatal release of monoamines 

were evaluated using brain microdialysis.  

Key results: PZM21 caused long-lasting dose-dependent antinociception. It did not induce 

reward- and reinforcement-related behaviour, however, its repeated administration led to 

antinociceptive tolerance and naloxone-precipitated withdrawal symptoms. Pretreatment with 

PZM21 enhanced morphine-induced antinociception and attenuated the expression of 

morphine reward. In comparison to morphine, PZM21 administration led to moderate release 

of dopamine and robust release of serotonin in the striatum.  

Conclusion and implications: PZM21 presents antinociceptive efficacy and does not possess 

rewarding or reinforcing properties. However, its clinical application may be restricted, as it 

induces tolerance and withdrawal symptoms. Notably, its ability to diminish morphine reward 

implicates that PZM21 may be useful in opioid use disorder therapy.  
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INTRODUCTION   

Although opioid analgesics are usually the first choice and most effective treatments for pain, 

numerous side effects, including a strong addictive potential, severely limit their clinical 

effectiveness (Webster et al., 2011). Substantial evidence indicates that opioid-induced 

analgesia and adverse effects are processed by distinct cell signalling pathways: analgesia is 

promoted by G protein signalling, whereas multiple undesirable effects are mediated through 

the regulatory protein β-arrestin-2 (βarr2; Bohn et al., 1999; Raehal et al., 2005). Therefore, 

there is a growing interest in pharmacological approaches that allow separation of analgesia 

from opioid side effects by developing biased (functionally selective) ligands that preferentially 

activate G protein signalling with minimal engagement of the βarr2 signalling pathway (Brust 

et al., 2016; Chen et al., 2013; DeWire et al., 2013; Groer et al., 2007; Maillet et al., 2015; 

Manglik et al., 2016). The majority of the research has addressed the μ-opioid receptor (μ-OR) 

as a target for action of biased ligands, since μ-OR agonists are the most effective analgesics 

(Madariaga-Mazón et al., 2017). However, the μ-OR also represents a key molecular trigger 

for reward processing and contributes to the development of addictive behaviour (Contet et al., 

2004). Thus, in addition to the exclusion of somatic side effects associated with opioid use, the 

main challenge for μ-OR ligands biased toward G protein signalling is reduction of opioid-

induced reinforcement. At present, there is no μ-OR agonist devoid of rewarding potential.  

A novel, recently discovered G protein-biased opioid analgesic, PZM21, was described as a 

potent, selective μ-OR agonist and was reported to inhibit the emotional reaction to thermal 

nociceptive stimuli (named ‘affective analgesia’) with reduced morphine-like side effects and 

addictive potential in mice (Manglik et al., 2016). In the present study, we aimed to further 

investigate behavioural and biochemical properties of PZM21 as well as possible mechanisms 

underlying its action and distinct effects on antinociception and addiction-like behaviour. We 

show that acute treatment with PZM21 results in long-lasting dose-dependent antinociception 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=319
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9286
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1627
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that is mediated by the μ-OR, but repeated administration of this compound causes the 

development of antinociceptive tolerance and expression of withdrawal symptoms upon 

naloxone administration. Furthermore, PZM21 is devoid of opioid-like reinforcing properties; 

however, its action is accompanied by slight, but dose-dependent release of dopamine (DA) in 

the striatum. Interestingly, PZM21 induces a robust increase in striatal extracellular levels of 

serotonin (5-HT). Furthermore, we demonstrated that pretreatment with PZM21 may influence 

behavioural responses to morphine in mice and notably, is able to diminish opioid reward.  

METHODS 

Animals. All behavioural tests were performed on adult C57BL/6J mice (25-30 g, 8 weeks old 

at the beginning of the experiments, RRID:IMSR_JAX:000664), apart from experiments with 

intrathecal drug delivery and intravenous self-administration, which were performed on Wistar 

(RRID:RGD_13508588) and Sprague–Dawley (RRID:RGD_70508) rats (280-350 g, 10 weeks 

old at the beginning of the experiments), respectively. Experiments were carried out on male 

rodents to compare our results with previously published data (Manglik et al., 2016; Hill et al., 

2018) and to avoid the possible influence of the menstrual cycle and reproductive status of 

female rodents on obtained results. C57BL/6J mice and Sprague-Dawley rats were acquired 

from the Maj Institute of Pharmacology PAS breeding facility (Krakow, Poland); Wistar rats 

were obtained from Charles River (Hamburg, Germany). All animals were group housed, mice 

8-10 per cage (265 × 180 × 420 mm, Ehret Labor- und Pharmatechnik GMBH & Co.KG, 

Germany) and rats 5 per cage (380 × 200 × 590 mm, Ehret Labor- und Pharmatechnik GMBH 

& Co.KG, Germany) with aspen litter (MIDI LTE E-002 Abedd, AnimaLab, Poland), under 

standard room temperature 22 ± 2°C, humidity 50 ± 5%, and 12/12 h light–dark cycle, with 

free access to food and water (standard diet, Special Diets Services, England) and 

environmental enrichment. Animal studies are reported in compliance with the ARRIVE 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5
https://scicrunch.org/resources/Any/search?q=IMSR_JAX%3A000664&l=IMSR_JAX%3A000664
https://scicrunch.org/resources/Any/search?q=RGD_13508588&l=RGD_13508588
https://scicrunch.org/resources/Any/search?q=RGD_70508&l=RGD_70508
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guidelines (Kilkenny et al., 2010) and in compliance with the guidelines made by the British 

Journal of Pharmacology. Experiments were performed according to the European Union 

regulations and the Directive 2010/63/EU and were approved by the II Local Bioethics 

Commission (permit numbers: 1213/2015, 1305/2016, 66/2017, 84/2018; Krakow, Poland). 

Animals were randomly assigned to treatment groups and the experimenter was blinded to drug 

treatment until after data analysis has been performed. The n values in the experiments were 

chosen based on our previous experience with similar experimental protocols. The total number 

of animals as well as their suffering was minimized, according to the 3R principle. The exact 

numbers of animals in each group used in the experiments are listed in the Supplementary 

Materials (Table S5; n in each group >5). The criteria for excluding animals from experiments 

and statistical analysis in the present study included: abnormal basal response in the tail flick 

test (higher than 6 s indicating attenuated pain sensitivity) as well as technical issues (catheter 

obstruction, equipment malfunction).  

Drugs and reagents. PZM21 was synthesized according to the previously published procedure 

(Manglik et al., 2016). A detailed synthesis procedure as well as data confirming high 

enantiomeric purity of the synthesised compound are included in the Supplementary Materials 

(Fig. S1, S2, Table S1, S2). PZM21 displayed high μ-OR affinity similar to that of the 

prototypic μ-OR ligand DAMGO (Fig. S3, Table S3), which is in accordance with previously 

described results regarding the μ-OR-mediated G protein activity of the compound (Manglik 

et al., 2016). The δ opioid receptor (δ-OR) affinity of PZM21 was significantly lower compared 

to the μ-OR affinity (Fig. S3, Table S3).  

PZM21 was administered to mice at doses of 20, 40 or 80 mg·kg-1, depending on the 

experimental schedule. For intrathecal drug delivery, PZM21 was administered at doses of 2.5, 

5 and 7.5 µg and for intravenous drug self-administration PZM21 was used at doses of 0.05 

and 0.5 mg·kg-1 (per infusion). Morphine (Pharma Cosmetic, Poland; 5, 10, 20 mg·kg-1) or 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1647
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=317
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oxycodone (Mundipharma, Poland; 0.06 mg·kg-1 (per infusion) were used as positive control 

treatments. As a negative control physiological saline was used. Cyprodime (Tocris, USA; 10 

mg·kg-1) and naloxone (Merck, Poland; 4 mg·kg-1) were used as a selective μ-OR antagonist 

and nonselective opioid antagonist, respectively. All the drugs were dissolved in saline and 

administered intraperitoneally (i.p.) in a volume of 10 ml/kg, intrathecally (i.th.) in a volume 

of 5 µl/administration or intravenously (i.v.) in a volume of 0.0125 ml/infusion. Drugs used for 

anesthesia: ketamine (7.5 mg·kg-1 in mice and 100 mg·kg-1 in rats), xylazine (1 mg·kg-1 in mice 

and 10 mg·kg-1 in rats) and pentobarbital (60 mg·kg-1 in rats) were supplied by Biowet-Pulawy 

(Poland). The chemicals used for HPLC were purchased from Merck (Poland).  

Intrathecal catheter implantation and drug delivery. The intrathecal (i.th.) drug 

administrations were achieved through implanting catheters according to the method described 

by Yaksh and Rudy (1976) under pentobarbital (60 mg·kg-1) anesthesia, as reported previously 

(Rojewska et al., 2014). Briefly, a polyethylene catheter (PE 10, Intramedic, Clay Adams, 

Becton Dickinson and Company, Rutherford, USA) was sterilized by flushing with 70% 

ethanol and then sterile water prior to insertion. Rats were placed on a on a stereotaxic table 

(David Kopf Instruments, USA) and an incision was made in the atlantooccipital membrane. 

Then the catheter was carefully introduced through the atlantooccipital membrane to the 

subarachnoid space at the rostral level of the spinal cord lumbar enlargement (L4–L6), flushed 

with 10 μl of sterile water, and tightened with the tip. After implantation, the animals were 

allowed to recover for a minimum of 7 days and received enrofloxacin (KRKA, Slovenia) 0.1 

ml s.c./rat once daily for 2 days. The i.th. injections were performed using a 50 μl Hamilton 

syringe with a 30 1/2-gauge needle; 5 μl was injected per animal, followed by 10 μl of saline. 

Antinociception assessment. Tail flick. Tail flick was performed using a tail flick apparatus 

(Ugo Basile, Italy), and a light beam was used as a thermal nociceptive stimulus. The light 

beam was applied to the dorsal side of animals’ tail, and the time latency to tail withdrawal or 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7093
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shaking was recorded. To avoid tissue damage, a cut-off latency was set at 9 s. Responses were 

expressed as a percentage of the maximum possible effect (% MPE), calculated according to 

the formula: [(T1 - T0)/(T2 - T0)] × 100, where T0 and T1 are the tail-flick latencies before and 

after drug injection, respectively, and T2 is the cut-off time. To study for the influence of 

PZM21 on morphine-induced antinociception, the compound was administered 30 min prior 

to morphine and tail flick test was performed as described above.  

Hot plate. The hot plate test was conducted using a hot plate analgesia meter (COTM, Poland). 

The mice were placed on the plate, which was preheated to 52.5°C, and the time latency to the 

first sign of spinally-mediated withdrawal reflexes (later described as a paw flinching) was 

measured. Moreover, we have measured the time latency to the first sign of complex behaviour 

(including licking/biting of the paw and/or jumping). A maximum exposure time was set at 30 

s (cut-off) to avoid tissue damage. Both types of responses were expressed as % MPE.  

Tolerance to thermal antinociception. To assess the development of tolerance to thermal 

antinociception induced by treatment with morphine or PZM21, the animals received injections 

with the drugs for 7 consecutive days and were tested in the tail flick assay 1 hour after drug 

administration. To study for the influence of PZM21 on the development of tolerance to 

morphine antinociception, mice were pretreated with PZM21 30 min prior to morphine and 

then tail flick test was performed.  

Conditioned place preference test (CPP). The CPP procedure was conducted as previously 

described (Szklarczyk et al., 2012). Briefly, a CPP apparatus (Med Associates, USA) consisted 

of three different compartments. The CPP procedure began on day 0 with 5 min of 

acclimatization to the apparatus. On day 1 (preconditioning test), mice were allowed to freely 

explore the whole apparatus for 20 min, and time spent in each compartment was measured. 

The procedure was unbiased, so that no significant differences in compartment preference were 

found within each group during preconditioning test. During the conditioning days (days 2–
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11), mice were injected with morphine or PZM21 (day 3, 5, 7, 9, 11) or saline (day 2, 4, 6, 8, 

10) and immediately placed in the respective compartment for 60 min. To study the effects of 

PZM21 on morphine-induced CPP, separate groups of mice were subjected to the procedure, 

and 30 min prior to the morphine injection, they received a pretreatment with PZM21. The 

postconditioning test was performed on day 12 and was the same as the preconditioning one. 

The difference between the times spent in the drug- and vehicle-paired compartments during 

the postconditioning session was considered to be a measure of CPP (CPP score).  

Locomotor sensitization. The measurement of locomotor sensitization lasted for 6 days and 

was performed using custom-made activity chambers. Each day, all animals were first injected 

with saline, placed in the chambers for 2 hours, received the appropriate injection (saline, 

morphine or PZM21) and were placed back in the boxes for an additional 2 hours. To study for 

the influence of PZM21 on sensitization to morphine-induced hyperlocomotion, separate 

groups of mice received PZM21 injections 30 min prior to morphine. The expression of 

sensitization was tested after 8 days-incubation period. All animals were habituated to the 

chambers for 2 hours 1 day before the onset of the experiments. 

Naloxone-precipitated withdrawal. For naloxone-precipitated withdrawal mice were 

chronically (at 8:00 and 16:00 for 5 consecutive days) treated with saline, morphine or PZM21, 

similarly to method described by Abdel-Zaher et al. (2006). On the sixth day, three hours after 

the final saline or drug administration, all animals received 4 mg·kg-1 naloxone and 

immediately after the injection each animal was placed in a transparent acryl cylinder (20 cm 

in diameter, 50 cm in height) for 15 min to observe jumps, which were considered as a 

manifestation of withdrawal.  

Intravenous drug self-administration. A self‐administration procedure was performed as 

previously described (Solecki et al., 2013). Briefly, rats were anesthetized with ketamine (100 

mg·kg-1) and xylazine (10 mg·kg-1) and implanted with a silastic catheter in the external jugular 
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vein. For catheter implantation, a guide cannula (C313G, Plastics One Inc., USA), attached to 

silastic tubing (0.025 inner diameter, Bio-Sil, Bio-Rad, USA) and Marlex mesh via dental 

cement, was inserted subcutaneously between the shoulder blades and exited the skin via a 

dermal biopsy hole (3 mm). The other end of the tubing was threaded under the skin, inserted 

3 cm into the right jugular vein, and then sutured securely to the underlying muscle tissue. 

After the catheter implantation, rats underwent 7 days of surgical recovery during which the 

catheters were flushed with 0.3 ml of saline and 0.2 ml of heparin solution (Braun, Germany) 

in order to prevent occlusion. All animals were given an anti-inflammatory and analgesic drug 

Tolfedine 4%, 1 ml·kg-1, i.p. (Vetoquinol Biowet, Poland) and 5 ml of glucose to prevent 

dehydration during post-surgery recovery. For the first three days after the operations, animals 

were treated with antibiotics added to the drinking water (Sul-Tridin 24%, Biowet-Pulawy, 

Poland). Self‐administration training was preceded by 2–3 days of food restriction to ~90 % of 

free feeding levels. Rats were trained under a fixed ratio 1 schedule of reinforcement during 

which each active lever press led to intravenous drug infusion and conditioned stimulus (CS) 

cue presentation (tone + stimulus light for 6 s) in standard operant chambers (Med Associates, 

USA). Each active lever response was followed by a 20‐s time out during which lever pressing 

had no programmed consequences. Similarly, inactive lever presses had no programmed 

consequences. Each rat underwent 2 hours daily training sessions for 10 consecutive days.  

Drug seeking under extinction conditions. Drug seeking under extinction conditions was 

performed as previously described (Solecki et al., 2013, 2018). After drug self-administration 

training, rats underwent 3 days of forced abstinence in their home cages without access to drug 

or drug-associated contextual and discrete cues. This forced withdrawal period did not include 

extinction to better model the medical detoxification experienced by many people with 

substance use disorders that occurs without behavioural extinction training. On withdrawal day 

3, animals were placed in operant chambers for 2 h, and active lever presses led to the discrete 
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CS presentation (i.e., 6 s tone and light) with no drug delivery. A 20-s timeout followed the CS 

termination, during which time responses were recorded but had no programmed 

consequences. Inactive lever presses had no programmed consequences. In such testing 

settings, drug seeking (i.e., active lever responding) was driven by both contextual cues and 

discrete CS presentation contingent upon active lever presses. 

Brain microdialysis and analytical procedure. Mice were anesthetized with ketamine (7.5 

mg·kg-1) and xylazine (1 mg·kg-1), and a vertical microdialysis probe was implanted into the 

striatum using the coordinates (from Bregma): AP +1.0, L +1.8 and V -3.8. On the next day, 

the probe inlets were connected to a syringe pump (BAS, IN, USA), which delivered aCSF 

composed of [mM]: NaCl 147, KCl 2.7, MgCl2 1.0, CaCl2 1.2; pH 7.4 at a flow rate of 1.5 

µl/min. After 1 h of the washout period, three basal dialysate samples were collected every 20 

min, the animals were injected with the appropriate drugs as indicated in figure captions, and 

fraction collection continued for 240 min. At the end of the experiment, the mice were 

sacrificed by decapitation under isoflurane anesthesia, brains were removed and histologically 

examined to validate the probe placement. The DA and 5-HT content of the dialysate fractions 

was analysed by high-performance liquid chromatography (HPLC) with coulochemical 

detection. Chromatography was performed using an Ultimate 3000 System (Dionex, USA) and 

a coulochemical detector, Coulochem III (model 5300, ESA, USA), with a 5020 guard cell, 

5014B microdialysis cell and Hypersil Gold-C18 analytical column (3 x 100 mm). The mobile 

phase was composed of 0.1 M potassium phosphate buffer adjusted to pH 3.6, 0.5 mM EDTA, 

16 mg·l-1 1-octanesulfonic acid sodium salt, and 2% methanol. The flow rate during analysis 

was set at 0.7 ml·min-1. The applied potential of the guard cell was +600 mV, while those of 

the microdialysis cells were as follows: E1=-50 mV and E2=+300 mV with a sensitivity set at 

50 nA·V-1. The chromatographic data were processed by Chromeleon v. 6.80 (Dionex, USA) 

software and run on a personal computer. All obtained microdialysis data were presented as a 
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percent of the basal level assumed to be 100% to allow comparison of the magnitude of DA 

and 5-HT release.  

Statistical analysis. For statistical analysis, GraphPad Prism 7.0 (GraphPad Prism Software 

Inc., USA, RRID:SCR_002798) and Statistica (12.5, Stat‐Soft, Poland, RRID:SCR_014213) 

were used. Group sizes listed in the Table S5 present the number of independent 

samples/animals. Statistical analyses of behavioural data were performed using unpaired 

Student's t-test (μ-OR antagonism in hot plate test), one-way ANOVA (conditioned place 

preference experiments, antinociception in hot plate test and naloxone-precipitated 

withdrawal), two way ANOVA (drug seeking in self-administration experiments), two-way 

repeated measures ANOVA (antinociception and μ-OR antagonism in tail flick test, 

antinociceptive tolerance, locomotor sensitization test and microdialysis experiments) or three-

way repeated measures ANOVA (drug self-administration procedure) followed by Bonferroni 

post hoc tests where appropriate (performed only when F achieved p<0.05 and there was no 

significant variance inhomogeneity). Data are presented on graphs as the mean ± SEM. 

Statistical significance was set at the p<0.05. Statistically significant differences are marked 

with the symbols * and #. The data and statistical analyses comply with the recommendations 

on experimental design and analysis in pharmacology (Curtis et al., 2018). 

Nomenclature of targets and ligands. Key protein targets and ligands in this article are 

hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common 

portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al., 2018) 

and are permanently archived in the Concise Guide to PHARMACOLOGY 2017/18 

(Alexander et al., 2017). 
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RESULTS 

Antinociceptive effects of PZM21 

Antinociceptive efficacy of PZM21 was assessed using two thermal antinociceptive tests: tail 

flick (mice and rats) and hot plate (mice). Administration of 10 mg·kg-1 morphine (i.p.), used 

as a positive control, resulted in antinociception (treatment × time interaction: F4,56=17.49, 

p<0.05, Fig. 1A). Treatment with PZM21 (i.p.) exerted an antinociceptive effect in the tail flick 

test at all of the tested doses: 20, 40 and 80 mg·kg-1 (treatment × time interaction: F12,120=7.08, 

p<0.05, Fig. 1B), compared to saline. PZM21-induced antinociception was dose-dependent 

and lasted up to 8 hours. Pretreatment with a selective μ-OR antagonist, cyprodime (10 mg·kg-

1, i.p.), prevented the antinociception induced by 40 mg·kg-1 PZM21 in the tail flick test 

(treatment × time interaction: F4,72=7.65, p<0.05, Fig. 1C). In the hot plate test, we have 

distinguished two types of reaction: paw flinching and licking of the paw or jumping. The 

obtained data indicate that only morphine (10 mg·kg-1) induced a significant effect on the paw 

flinching reflex (F4,42=2.56, p<0.05) when compared to saline. PZM21 did not affect this 

reaction at any of the tested doses. At the same time, both PZM21 (at a dose of 80 mg·kg-1) 

and morphine (10 mg·kg-1) increased the latency to the second type of reaction (paw 

licking/jumping) (F4,42=5.63, p<0.05) in the hot plate test (Fig. 1D). Pretreatment with 

cyprodime attenuated the effects induced by 40 mg·kg-1 PZM21 in hot plate test (t19=2.10, 

p<0.05 and t19=2.53, p<0.05 for two types of reactions, Fig. 1E). Therefore, we demonstrated 

that antinociceptive effects of PZM21 are mediated by μ-OR. What is more, i.th administration 

of PZM21 (2.5, 5 and 7.5 µg) caused dose-dependent antinociception in tail flick test in rats 

(treatment × time interaction: F12,88=3.1, p<0.05, Fig. 1F), which shows that this compound is 

effective for the reflexive, spinally-mediated component of pain reaction.   
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Influence of PZM21 on addiction-like behaviour in mice 

The influence of PZM21 on addiction-like behaviour in mice was investigated in CPP and 

locomotor sensitization tests. Moreover, we measured the development of antinociceptive 

tolerance and naloxone-precipitated withdrawal symptoms after chronic PZM21 administration 

in order to assess its potential to cause physical dependence. Treatment with PZM21 did not 

induce CPP at any of the tested doses (20, 40 and 80 mg·kg-1, i.p.), whereas morphine-treated 

animals (10 mg·kg-1, i.p.) developed a significant preference to the drug-associated 

compartment (F4,45=9.16, p<0.05, Fig. 2A). Interestingly, the obtained data suggest that 

treatment with PZM21 at a dose of 80 mg·kg-1 led to a drug-induced aversion (t18=2.626, 

p<0.05, compared to saline group, Fig. 2A). Repeated 6-day administration of PZM21 did not 

influence animals’ locomotor activity at any of the doses, while treatment with morphine 

induced locomotor sensitization (treatment × time interaction: F20,210=2.37, p<0.05, Fig. 2B). 

Morphine-treated animals showed increased expression of sensitization measured after 8-day 

incubation period, while only a slight increase in locomotor activity was observed in the group 

treated with 80 mg·kg-1 PZM21 (treatment × time interaction: F4,42=30.16, p<0.05, Fig. 2B). 

On the other hand, chronic administration of 80 mg·kg-1 of PZM21 as well as 10 mg·kg-1 of 

morphine resulted in the occurrence of naloxone-induced jumps, considered as physical signs 

of withdrawal (F4,51=35.98, p<0.05, Fig. 2C). Moreover, repeated treatment with both 40 

mg·kg-1 and 80 mg·kg-1 PZM21 resulted in the development of antinociceptive tolerance 

measured by the tail flick test (treatment × time interaction: F9,99=3.12, p<0.05, Fig. 2D). 

Therefore, our results indicate that PZM21 is devoid of opioid-like rewarding properties, 

however it induces physical dependence.  
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Assessment of reinforcing properties of PZM21 in intravenous self-administration 

paradigm in rats 

PZM21, similar to saline, did not induce intravenous self-administration during 10-day training 

sessions in rats (Fig. 3A-C), in contrast to robust oxycodone self-administration, measured as 

a number of drug infusions (treatment × time interaction: F(27, 279) = 2.7, p<0.05,  Fig. 3A). 

Essentially, rats in the saline and PZM21 groups did not differentiate between active and 

inactive levers throughout training, whereas oxycodone self-administering rats presented more 

responses on active in comparison to inactive lever, starting from day 5 of training (treatment 

× lever × time interaction: F(27, 558)=2.88, p<0.05, Fig. 3B-C). Finally, only rats which self-

administered oxycodone, but not saline or PZM21, demonstrated drug seeking behaviour, 

expressed as presses on previously active lever after 3 days of abstinence (treatment × lever 

interaction: F(3, 58)=10.81, p<0.05, Fig. 3D). Thus, our data indicate that PZM21 does not act 

as a reinforcer and it does not induce craving upon drug abstinence.  

Increased monoamine release in the striatum in response to PZM21 

Striatal DA and 5-HT levels following drug administration were measured for 4 h in freely 

moving mice. Both 40 and 80 mg·kg-1 (i.p.) PZM21 as well as 10 and 20 mg·kg-1 morphine 

(i.p.) markedly increased extracellular DA release (treatment × time interaction: F25,275=13.001, 

p<0.05, Fig. 4A). The increase in DA release induced by 10 mg·kg-1 of morphine and 40  

mg·kg-1 of PZM21 was comparable, whereas the effect of higher dose of PZM21 (80 mg·kg-1) 

was similar in magnitude to 20 mg·kg-1 of morphine. The action of both drugs on DA release 

is also presented as the total effect expressed as the area under the curve (AUC) (F4,25=175.60, 

p<0.05, Fig. 4A). Moreover, administration of PZM21 at doses of 40 and 80 mg·kg-1 as well 

as morphine (10 and 20 mg·kg-1) caused an increase in 5-HT extracellular levels (treatment × 

time point interaction: F25,275=17.22, p<0.05, Fig. 4B). Treatment with 40 mg·kg-1 of PZM21 
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resulted in the extracellular elevation of striatal 5-HT that was similar to 20 mg·kg-1 of 

morphine. However, higher dose of PZM21 (80 mg·kg-1) produced a robust release of 5-HT, 

reaching above 350% of the basal level at the peak. PZM21 and morphine action on 5-HT is 

also presented as the total effect expressed as the AUC in the Fig. 4B (F4,25=275.30, p<0.05). 

An additional figure presenting microdialysis probe placement is provided in the 

Supplementary Materials (Fig. S5). 

Consequences of pretreatment with PZM21 on morphine-induced behaviour  

We then investigated whether PZM21 may influence antinociceptive and addictive effects of 

morphine. For these experiments, we chose doses of 20 and 40 mg·kg-1 PZM21 (i.p.), as our 

previous data suggested a ceiling effect of PZM21 above the dose of 40 mg·kg-1and these doses 

did not induce physical dependence or aversion. First, we determined the dose of morphine (5 

mg·kg-1) that induced approximately 50% of MPE in the tail flick test and assessed how 

pretreatment with PZM21 will influence morphine-induced antinociception. Our results show 

that the dose of 40 mg·kg-1 of PZM21 enhanced and prolonged antinociception evoked by 

morphine (treatment × time interaction: F8,108=5.29, p<0.05, Fig. 5A). Next, we used a model 

of tolerance to morphine-induced antinociception and assessed the effect of PZM21 under these 

conditions. The obtained data showed that pretreatment with PZM21 did not influence 

tolerance development during repeated administration of 10 mg·kg-1 of morphine (treatment × 

time interaction: F6,69=1, p>0.05, Fig. 5B). To investigate whether PZM21 modulates addictive 

properties of morphine we performed CPP and locomotor sensitization tests. The results 

obtained show that preadministration of 40 mg·kg-1, but not 20 mg·kg-1 of PZM21, prevented 

the formation of morphine-induced CPP (F2,34=6.81, p<0.05, Fig. 5C). Pretreatment with 

PZM21 did not affect the development of morphine-induced locomotor sensitization (treatment 

× time interaction: F10,140=1.64, p>0.05, Fig. 5D), however a slight tendency toward the 

reduction of morphine effects was observed. Moreover, PZM21 did not influence the 
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expression of morphine sensitization after the 8-day incubation period (treatment × time 

interaction: F2,28=2.27, p>0.05, Fig. 5D). Taken together, our results show that PZM21 

enhances antinociceptive effects of morphine and supresses its rewarding properties. 

DISCUSSION AND CONCLUSIONS 

In the present study, we examined a novel G protein-biased μ-OR ligand, PZM21, as a potential 

nonaddictive analgesic and assessed its ability to modulate morphine-related behaviour in 

mice. We demonstrated that PZM21 (administered both i.p. and i.th.) efficiently exerts dose-

dependent, long-lasting antinociception, and that cyprodime, μ-OR antagonist, blocks this 

effect. Further, we confirmed that PZM21 is a compound selective for μ-OR, while weakly 

interacting with δ-OR. Therefore, our results suggest that PZM21 induces antinociception by 

acting selectively via μ-OR signalling. Interestingly, PZM21 did not elicit maximum possible 

effect in the tail flick test at any of the tested doses, suggesting that increasing the dosage 

beyond a certain level would not enhance antinociception, which is known as a ceiling effect 

(Trescot et al., 2008). PZM21 increased the latency to paw licking/jumping reaction it the hot 

plate test. Therefore, our study confirmed the effectiveness of PZM21 in the ‘supraspinal’ 

component of pain processing, as was suggested by Manglik et al. (2016). However, our results 

clearly demonstrate that PZM21 action is not restricted to supraspinal central nervous system 

areas, because we observed the antinociceptive effect after i.th. administration of the compound 

in the tail flick test that is known to be a measure of spinal reflex (Deuis et al., 2017). Taken 

together, our study indicate that PZM21 is a compound with antinociceptive efficacy. Notably, 

G protein-biased opioid analgesics were reported to have broader therapeutic window than 

conventional opioids, which allows for antinociception in the absence of respiratory depression 

(Schmid et al., 2017). However, Hill et al. (2018) have shown that PZM21 depresses 

respiration, therefore a question why PZM21 induces suppression of respiration regardless of 

its bias toward the G protein remains to be addressed in the future studies. Opioid drugs possess 
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rewarding properties, which is one of the undesirable effects of their administration (Fields and 

Margolis, 2015). In our study, all of the tested doses of PZM21 failed to induce CPP, indicating 

that this compound is devoid of rewarding effects, and these results are consistent with the 

previous report (Manglik et al., 2016). However, it is possible that we did not capture PZM21-

induced reward-related behaviour due to possible differences in the duration of action between 

morphine and the compound. Interestingly, at the highest dose (80 mg·kg-1), we observed a 

drug-induced aversion, indicating that under certain conditions the compound may act as an 

antagonist. We also showed that in contrast to morphine, PZM21 did not induce locomotor 

sensitization, considered as a sign of drug-induced plasticity (Marie et al., 2018). Furthermore, 

we demonstrated that PZM21 is not readily self-administered by rats and does not induce drug 

seeking behaviour after abstinence period, strongly suggesting no PZM21 does not present 

reinforcing properties at the tested doses. To our knowledge, this is the first publically-available 

report to assess PZM21 as a possible reinforcer. Therefore, these results show that PZM21 is 

devoid of opioid-like rewarding and reinforcing activity, which is unique among opioid drugs, 

also in biased agonists group (Soergel et al., 2014; Altarifi et al., 2017; Austin Zamarripa et 

al., 2018).  

In the present study, we observed that naloxone administration-precipitated withdrawal 

syndrome after chronic administration of PZM21. To date, studies regarding the potential of 

biased opioids to induce withdrawal are limited. Kliewer et al. (2019) suggested, that reducing 

βarr2 recruitment to μ-OR might not improve the safety profile of opioids, as genetically 

modified mice with receptors unable to recruit βarr2 displayed typical signs of withdrawal after 

chronic opioid treatment. What is more, our results showed that after repeated daily 

administration, PZM21 caused rapid development of antinociceptive tolerance at doses of 40 

and 80 mg·kg-1, which is in line with the previous report (Hill et al., 2018). βarr2-mediated μ-

OR desensitization was previously indicated as a possible cause of tolerance to opioids 
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(Przewlocka et al., 2002; Raehal et al., 2005; Yang et al., 2011; Mori et al., 2017; Kliewer et 

al., 2019). However, the currently accepted idea that G protein-biased ligands should not 

produce tolerance has little evidence to support it and our data suggest that even opioids biased 

toward G protein might cause tolerance, limiting their utility as analgesics. Previous studies 

suggest that the development of tolerance may depend not only on long-term adaptations 

connected with βarr2 function but should be considered as an attribute of a particular ligand 

(Koch and Höllt, 2008). For example, according to some reports, tolerance to antinociceptive 

properties of morphine is mediated by c-Jun N-terminal kinase rather than by the action of 

βarr2 (Kuhar et al., 2015; Marcus et al., 2015; Yuill et al., 2016). Thus, it seems that the 

development of opioid tolerance may be ligand-specific and involve both βarr2-dependent and 

independent pathways, leading to differential mechanisms of tolerance observed in vivo. 

Interestingly, it was shown that high efficacy μ-OR agonists require lower receptor reserves to 

maintain an analgesic effect and in turn cause lower tolerance (Stevens and Yaksh, 1989). Our 

results showed that PZM21 displayed high μ-OR affinity, but in terms of antinociception, 

presented relatively low efficacy. This observation is consistent with our data revealing that 

PZM21 activates G protein signalling moderately, as the maximal stimulation of receptor-

mediated G protein activity is low and corresponds to a weak partial agonist activity. Therefore, 

a possible mechanism associated with PZM21-induced tolerance might be connected with its 

agonistic efficacy, however it should be further investigated why PZM21 produces such a rapid 

development of tolerance to antinociception, regardless of its biased agonism. Taken together, 

our results indicate that PZM21 does not exhibit rewarding and reinforcing properties. 

However, chronic treatment with this compound leads to rapid development of tolerance and 

causes signs of physical dependence. Thus, our report demonstrates that PZM21 differentially 

influences motivational and physical aspects of addictive behaviour.  
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In a search for possible mechanisms underlying the lack of reward-associated behaviour in 

PZM21-treated animals, we measured extracellular monoamine levels in the striatum using 

brain microdialysis in mice. A single systemic administration of PZM21 slightly but dose-

dependently enhanced the extracellular release of DA. Our data show that administration of 40 

mg·kg-1 of PZM21 induces similar release of DA to 10 mg·kg-1 of morphine and effect of 80 

mg·kg-1 of PZM21 is comparable to that evoked by treatment with 20 mg·kg-1 of morphine. 

Thus, the doses of both drugs that produced similar release of striatal DA had different effects 

on reward-related memory measured in CPP paradigm. Namely, 10 mg·kg-1 of morphine 

induced strong preference toward drug-associated compartment, whereas 40 mg·kg-1 of 

PZM21 did not present rewarding properties. The enhancement of DA-dependent 

neurotransmission within the striatum after opioid administration was commonly associated 

with their addictive properties (Di Chiara and Imperato, 1988; Spanagel et al., 1990; Barik et 

al., 2010). However, it was also proposed that DA is dispensable for morphine-induced reward 

measured in the CPP paradigm and for heroin self-administration (Pettit et al., 1984; Hnasko 

et al., 2005; Borgkvist et al., 2007). Thus, the hedonic properties of opioids may only partly 

depend on DA release within the striatal circuity. On the other hand, an enhancement of striatal 

DA release is strongly related to opioid-induced hyperlocomotion and locomotor sensitization 

(Saito, 1990; Murphy et al., 2001). We showed that PZM21 treatment does not influence 

locomotor activity. In agreement with our results, a previous study in mice revealed that βarr2 

knockout may reduce the expression of some DA-dependent behaviours such as locomotor 

activity (Bohn et al., 2003). Interestingly, we demonstrated a robust, dose-dependent increase 

in 5-HT striatal release following PZM21 treatment. The ratio of brain 5-HT to DA was 

reported to underlie the analgesic effectiveness of opioids (Major and Pleuvry, 1971) as well 

as the abuse potential of drugs, since 5-HT neurons were shown to provide an inhibitory 

influence over mesolimbic DA neurons (Rothman et al., 2008; Navailles and De Deurwaerdère, 
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2011). Therefore, we propose that PZM21, through the modulation of 5-HT release, might 

inhibit some DA-related behaviours such as locomotor sensitization. Furthermore, 5-HT-

dependent neurotransmission may enhance and prolong PZM21-induced antinociception; 

however, this hypothesis needs to be examined in further studies.  

Lastly, we investigated whether PZM21 may influence some outcomes of morphine 

administration. Pretreatment with PZM21 had no effect on the development of antinociceptive 

tolerance to morphine, but it enhanced morphine-induced antinociception. This observation 

suggests that PZM21 might be used in pain relief alone or in combination with other opioid 

drugs. On the other hand, PZM21 prevented the formation of morphine-induced CPP. One 

possible explanation for PZM21-mediated suppression of morphine reward is that it directly 

antagonized the morphine effects at the μ-OR due to its high affinity for this receptor. 

Interestingly, our studies on PZM21 suggest that it shows partial agonist characteristics. The 

use of partial agonists of μ-OR, such as buprenorphine or nalbuphine, appears to be a successful 

strategy for the attenuation of opioid-induced reward and treatment of opioid use disorder (Tao 

et al., 2006; Abdel-Ghany et al., 2015; Nielsen et al., 2016; Robinson et al., 2017). Hence, 

antirewarding properties of PZM21 may be dependent on its pharmacological profile. 

PZM21 was firstly described as a potent and selective μ-OR agonist (Manglik et al., 2016). 

However, our behavioural results suggest that it acts as a partial agonist/antagonist of μ-OR, as 

it displays a ceiling effect in antinociceptive tests, presents a tendency toward inducing 

aversion at high doses and interacts with morphine, modulating some effects of its 

administration. Notably, recently published Ca2+ imaging study have shown that PZM21 

actually is a partial μ-OR agonist, because, when compared to DAMGO, it induces smaller 

activation of G protein-coupled inwardly rectifying potassium channels and smaller inhibition 

of a nociceptive channel - transient receptor potential melastatin (Yudin and Rohacs, 2019). 

Therefore, our study provide a novel insight into pharmacological properties of this compound 
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that differ from these described in the original publication (Manglik et al., 2016) and in many 

aspects are more consistent with reports by Hill et al. (2018) and Yudin and Rohacs (2019).  

Taken together, present study revealed new characteristics of PZM21. The drug does not induce 

rewarding and reinforcing effects, indicating that biased signalling could be an attractive 

direction for future pharmacological studies of novel opioid-based therapeutics. However, our 

results point out that PZM21 does not evoke a very potent antinociception when compared to 

morphine and produces antinociceptive tolerance, suggesting that it may not be sufficient in 

clinical pain management, especially under chronic pain conditions. Further studies are 

required in order to assess the effects of PZM21 under different pain conditions and effects of 

its co-administration with other opioid therapeutics. It is especially worth considering PZM21 

as a pharmacological tool for the modulation of morphine effects, especially for diminishing 

reward-related behaviour and therefore, PZM21 may be considered a potential treatment for 

opioid use disorder.  
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Fig. 1 Effects of PZM21 on acute thermal antinociception. [A] Administration of morphine (10 

mg·kg-1, i.p.), used as a positive control, resulted in an attenuated sensitivity to painful stimulus 

in the tail flick test. [B] Treatment with PZM21 (20, 40 and 80 mg·kg-1, i.p.) caused dose-

dependent antinociceptive effect measured in the tail flick test. When compared to saline, the 

antinociceptive effect of 20 mg·kg-1 of PZM21 was statistically significant 2 and 4 hours after 

the drug administration, while treatment with doses of 40 and 80 mg·kg-1 of the compound 

induced antinociception which lasted from 1 to 4 hours after the treatment. Morphine and 

PZM21 groups are compared to the same saline controls. [C] A selective μ-OR antagonist, 

cyprodime (10 mg·kg-1, i.p.), administered 15 min prior to PZM21 (40 mg·kg-1), prevented 

antinociception in the tail flick test. [D] PZM21 had no influence on the paw flinching reaction 

in the hot plate test. However, at a dose of 80 mg·kg-1, it increased the latency to paw 

licking/jumping behaviour. Treatment with morphine significantly attenuated both types of 

reactions. Both responses were measured 90 min after drug administration. [D] Pretreatment 

with cyprodime attenuated the effects of 40 mg·kg-1 of PZM21 on both types of reaction in the 

hot plate test. [E] Intrathecal administration of PZM21 (at doses of 5 and 7.5 µg) caused 
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antinociceptive effect in tail flick test in rats. Data are presented as the mean ± SEM. 

Statistically significant effects are marked with: * p<0.05. A-E: PZM21-treated groups 

compared to appropriate controls. Sal – saline, Cyp – cyprodime, MPE – maximum possible 

effect. Numbers of animals used in experiments presented in Table S5.  
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Fig. 2 Influence of PZM21 on addiction-like behaviour in mice. [A] In contrast to morphine 

(10 mg·kg-1, i.p.), PZM21 (20, 40, 80 mg·kg-1, i.p.) did not induce a preference toward drug-

associated compartment in a CPP test at any of the tested doses. [B] Repeated treatment with 

morphine induced locomotor sensitization and expression, whereas that effect was not 

observed after PZM21 administration. Mice treated with 80 mg·kg-1 PZM21 presented a slight 

expression of sensitization after an 8-day incubation period. [C] Chronic administration of 

PZM21 (80 mg·kg-1, but not 20 or 40 mg·kg-1) as well as morphine induced naloxone-

precipitated jumps, considered as a physical sign of withdrawal. [D] Repeated treatment with 

40 and 80 mg·kg-1 PZM21 resulted in a decrease of antinociceptive efficacy of the compound. 

Tolerance was assessed using tail flick test performed on each experimental day, 1 hour after 

the drug administration. Data are presented as the mean ± SEM. Statistically significant effects 

are marked with: */# p<0.05. A, C: PZM21-treated groups compared to saline controls, B, D: 

within group effects compared to the first day of experiment are marked with *, expression of 

locomotor sensitization within groups compared to the last day of sensitization development 

are marked with #. Sal – saline, Morph – morphine, CPP – conditioned place preference, MPE 

– maximum possible effect. Numbers of animals used in experiments presented in Table S5.  
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Fig. 3 Evaluation of PZM21 effects on intravenous self-administration in rats. [A] Rats that 

self-administered oxycodone (0.06 mg·kg-1 per infusion, i.v.), but not PZM21 (0.05 and 0.5 

mg·kg-1 per infusion, i.v.), presented an increasing number of infusions over time. [B] Only 

rats from the oxycodone group presented an increasing number of active lever responses. [C] 

No differences between groups were observed in inactive lever presses during self-

administration training. [D] Unlike the oxycodone group, rats in the saline and PZM21 groups 

did not present drug-seeking behaviour after abstinence period, as they did not discriminate 

between active and inactive levers and made a similar number of responses on both levers. 

Data are presented as the mean ± SEM. Statistically significant effects are marked with: * 

p<0.05. A: within group effects compared to the first day of experiment, B-D: comparison 

between active and inactive lever responses within experimental groups. Sal – saline, Oxy – 

Oxycodone. Numbers of animals used in experiments presented in Table S5. 
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Fig. 4 Effects of PZM21 on striatal DA and 5-HT levels. [A] Administration of 40 and 80 

mg·kg-1 PZM21 (i.p.) as well as 10 and 20 mg·kg-1 of morphine (i.p.) increased extracellular 

level of DA in the striatum. Basal extracellular levels were 3.71±0.51 pg in a volume of 10 µl 

(n=30). [B] All doses of PZM21 and morphine potentiated striatal 5-HT release when 

compared to saline. Basal extracellular levels were 0.40±0.06 pg in a volume of 10 µl (n=30). 

Data are presented as the mean ± SEM. Bar graphs presenting cumulative data are expressed 

as AUC. Statistically significant effects of each treatment compared to saline are marked with: 

* p<0.05. Sal – saline, Morph – morphine, AUC – area under the curve, DA-dopamine, 5-HT-

serotonin. Numbers of animals used in experiments presented in Table S5.  
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Fig. 5 Influence of PZM21 on behavioural effects of morphine. [A] PZM21 (at dose of 40 

mg·kg-1, i.p.), administered 30 min prior to morphine, enhanced antinociception evoked by 5 

mg·kg-1 of morphine (i.p.) in the tail flick test. [B] Pretreatment with PZM21 had no effect on 

the development of tolerance to antinociception induced by 10 mg·kg-1 of morphine. Tolerance 

was assessed using tail flick test performed on each experimental day, 1 hour after the drug 

administration. [C] Preadministration of PZM21 at a dose of 40 mg·kg-1, but not 20 mg·kg-1, 

prevented the formation of conditioned response to morphine (10 mg·kg-1). [D] Pretreatment 

with PZM21 resulted in a tendency toward reduced development, but not expression, of 

locomotor sensitization induced by repeated administration of morphine (10 mg·kg-1). Data are 

presented as the mean ± SEM. Statistically significant effects are marked with * p<0.05. A–D: 

experimental groups compared to morphine controls. Sal – saline, Morph – morphine, MPE – 

maximum possible effect, CPP – conditioned place preference. Numbers of animals used in 

experiments presented in Table S5. 


