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Abstract 41 

Hypocotyl length determination is a widely used method to phenotype young seedlings. The 42 

measurement itself has advanced from using rulers and millimetre papers to assessing 43 

digitized images but remains a labour-intensive, monotonous and time-consuming 44 

procedure. To make high-throughput plant phenotyping possible, we developed a deep 45 

learning-based approach to simplify and accelerate this method. Our pipeline does not 46 

require a specialized imaging system but works well with low-quality images produced with 47 

a simple flatbed scanner or a smartphone camera. Moreover, it is easily adaptable for a 48 

diverse range of datasets not restricted to Arabidopsis (Arabidopsis thaliana). Furthermore, 49 

we show that the accuracy of the method reaches human performance. We not only provide 50 

the full code at https://github.com/biomag-lab/hypocotyl-UNet, but also give detailed 51 

instructions on how the algorithm can be trained with custom data, tailoring it for the 52 

requirements and imaging setup of the user. 53 

 54 

Introduction 55 

Monitoring different aspects of seedling development requires determining certain physical 56 

dimensions of the plantlet. Among these, measurement of hypocotyl length is a key 57 

phenotypic trait to monitor and quantify different responses. Hypocotyl cells are formed in 58 

the embryo and their eventual number set after only a few cell divisions. During seedling 59 

growth, the length of the hypocotyl is determined by no further cell divisions but by the 60 

elongation of hypocotyl cells (Gendreau et al., 1997). Hypocotyl growth is regulated by a 61 

complex network of external and internal factors. Different hormones (auxins, ethylene, 62 

cytokinins, abscisic acid, gibberellins and brassinosteroids) are involved in the response 63 

(Vandenbussche et al., 2005; Hayashi et al., 2014). Among external cues, gravity not only 64 

determines the direction of growth (away from the soil surface) but also affects the hypocotyl 65 

elongation (Soga et al., 2018). Our knowledge about how light regulates hypocotyl 66 

elongation is much more detailed. Without light, etiolated plants develop elongated 67 

hypocotyls, whereas light triggers photomorphogenic development with characteristic, 68 

fluence rate-dependent inhibition of hypocotyl elongation, which is one of the key features of 69 

the so-called photomorphogenic growth (Fankhauser and Casal, 2004; Arsovski et al., 70 

2012). The role of different light-sensing molecules (photoreceptors) has been revealed in 71 

this response: phytochrome B (phyB) is the dominant photoreceptor in red (R), phyA in far-72 

red (FR) and cryptochrome 1 and 2 in blue (B) light (Lin et al., 1996; Nagy and Schäfer, 73 

2002). Photomorphogenic ultraviolet B (UV-B) radiation also induces inhibition of hypocotyl 74 

elongation (Kim et al., 1998) involving pathways controlled by UV RESISTANCE 8 (UVR8) 75 

UV-B receptor (Favory et al., 2009). Fluence rate response curves are used to depict 76 

hypocotyl length change over broad light fluences, demonstrating the involvement of 77 

specific receptors and their signalling partners in the examined responses. Temperature is 78 

the third external cue affecting hypocotyl length. It was recently shown how lower 79 

temperature shortens hypocotyl length via phyB in light (Jung et al., 2016; Legris et al., 80 

2016; Casal and Qüesta, 2018). 81 

These examples show that hypocotyl length is a seedling phenotypic trait of particular 82 

importance. On one hand it indicates the functionality of the examined signalling pathway(s), 83 

and on the other hand it is relatively easy to measure, generating quantified data of the 84 

observed response. Thus researchers measure hypocotyl length (i) to compare the effect of 85 

different light, hormone, etc. treatments, (ii) to analyse the role of signalling components 86 
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using mutants and overexpressor lines and (iii) to perform different reverse and forward 87 

genetic (screening) approaches. 88 

The methodology of the hypocotyl measurement has changed over time. In early studies 89 

hypocotyls were simply measured by hand one-by-one using a ruler or millimetre paper, in 90 

many cases rounding the observed value to the nearest millimetre (Köhler, 1978; Liscum 91 

and Hangarter, 1991; Pepper et al., 2001; Dieterle et al., 2005). A more precise and most 92 

widely applied quantification procedure involves the arrangement of seedlings on sticky 93 

surfaces or agar plates, subsequent scanning or photographing and measurement of 94 

hypocotyl length using a digital image processing software (Young et al., 1992; Borevitz and 95 

Neff, 2008; Ádám et al., 2013; Das et al., 2016). This approach gives the opportunity to 96 

store hypocotyl images and measure them at a later time while involving other 97 

experimenters in the measurement procedure. To speed up this process and reduce the 98 

invested work-time, different applications have been created to automate the quantification 99 

of hypocotyl length (Sangster et al., 2008; Wang et al., 2009; Cole et al., 2011; Spalding and 100 

Miller, 2013). These image processing tools have the potential to replace error prone and 101 

labour intensive manual image processing and to advance plant phenotyping by enabling 102 

high-throughput data analysis. A cornerstone of these algorithms is the plant segmentation, 103 

that is, the separation of the plant from the background. This is a difficult task due to the 104 

diversity of images, which can be caused, for example, by different image acquisition setups 105 

and conditions. However, good segmentation is key to downstream analyses, such as 106 

object boundary detection and midline tracking (Spalding and Miller, 2013). In addition to 107 

overall plant segmentation, fully automated identification of different plant subparts, such as 108 

cotyledons, roots and seedcoats, is a significant challenge, which has not been solved 109 

reassuringly in the previous efforts. For hypocotyl length measurement, a major difficulty is 110 

the localization of hypocotyl-root junction and robust identification of the cotyledons. Tools 111 

based on classical segmentation algorithms have troubles identifying these parts for several 112 

reasons, including high variance in phenotypes, variable imaging conditions or noisy 113 

images. Since imaging methods are very different from lab to lab and no gold standard is 114 

available, it is essential to provide a data analysis pipeline which works robustly for a 115 

diverse set of images. 116 

 117 

Up until the recent introduction of deep convolutional neural networks (CNN), a robust 118 

image analysis pipeline was extremely difficult to achieve. In contrast to classical methods, 119 

modern deep convolutional networks can surpass human performance in many image 120 

processing tasks, including object classification and detection (Geirhos et al., 2018). Instead 121 

of relying on hand crafted filters and features, a neural network learns the optimal 122 

representation of the data. This makes its performance exceptionally good, and given 123 

enough data, a well-trained neural network can generalize for a wide range of datasets. For 124 

plant phenotyping, these developments have yielded advances in trait identification and 125 

genotype/phenotype classification (Pound et al., 2017; Namin et al., 2018). 126 

 127 

In this paper, we present a deep learning-based approach which is able to provide 128 

quantified seedling phenotype data in a high-throughput manner. Compared to earlier tools, 129 

ours is fully-automated and achieves human expert accuracy on length measurement tasks 130 

for various plant species, such as Arabidopsis (Arabidopsis thaliana), mustard (Sinapis alba) 131 

and stiff brome (Brachypodium distachyon). The method does not require expensive 132 

imaging setups, and accurate results can be obtained with a simple flatbed scanner or a 133 

smartphone camera. In addition, the measurement itself requires only a few seconds per 134 
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image, thus reducing the time spent by several orders of magnitude. We provide full access 135 

to our algorithm as it is open source and also give detailed instructions how to perform 136 

training for customised hypocotyl length determination approaches. 137 

 138 

Results 139 

The architecture of the algorithm 140 

To extract the length data from images, first we perform segmentation, followed by the 141 

skeletonization of the segmented objects to be measured (Fig. 1A). In the case of a typical 142 

seedling, each image is segmented into three non-overlapping parts: 1) background 2) 143 

hypocotyl 3) non-hypocotyl seedling area. (The latter category differs between species, thus 144 

different non-hypocotyl parts should be defined accordingly.) Central to our approach is the 145 

U-Net deep CNN for segmentation, which is particularly excellent for finding thin objects. It 146 

has been applied on various problems with success, such as detecting cell nuclei in 147 

microscopic images or identifying subparts of the brain on MRI scans (Ronneberger et al., 148 

2015; Buda et al., 2019). U-Net is able to identify specific parts of the plants in images and 149 

separate them from the background. On a provided image, U-Net applies convolution 150 

operations with various filters followed by maximum pooling repeatedly, producing the 151 

segmentation masks. The major difference, as opposed to classical image processing 152 

algorithms, is that the filters used by the network are not given in advance but learned from 153 

the data during the so-called training phase. In this phase, the segmentation masks 154 

provided by the expert are shown for the algorithm several times, which is then able to learn 155 

how to classify each pixel either as background or as a specific plant organ. This training 156 

process gives rise to filters which are best suited for the task and data, resulting in an 157 

extremely robust and adaptable method. 158 

 159 

After the specific plant parts are segmented and identified, the binary images of all identified 160 

hypocotyls are skeletonized (Lee et al., 1994). Skeletonization is the reduction of binary 161 

shapes to 1 pixel-wide representations, a curve in the case of hypocotyls. This operation 162 

allows the length measurement of spatial objects. On the skeleton image, components 163 

representing hypocotyls were measured by calculating the number of pixels for each 164 

identified object and then converted from pixel unit to mm. Pixel to mm calculations were 165 

performed by either scaling directly with the DPI (dots-per-inch) value of the image or using 166 

a reference object on each image. After the measurement, very small objects, which are 167 

most likely due to segmentation errors, are filtered out. Finally, the obtained results are 168 

exported as an RGB image (Fig. 1B) and a csv file, ready for downstream analysis.  169 

 170 

The choice of the convolutional network architecture 171 

In general, a CNN repeatedly performs convolutional, pooling and in some instances, batch 172 

normalizing operations, eventually extracting a feature-level representation of the image. 173 

This is called encoding. During this part, information is compressed and can be lost during 174 

the pooling steps. For tasks such as image classification, this is not a problem (Pound et al., 175 

2017). However, for semantic segmentation tasks, the network is required to reconstruct the 176 

pixel-level segmentation mask, which is achieved by upsampling the feature-level 177 

representation. In this decoding step, the information lost during encoding cannot be 178 

recovered and will result in suboptimal results for small or thin objects, such as hypocotyls in 179 

our case. This problem was solved with the introduction of U-Net (Ronneberger et al., 180 

2015), originally created to find cells in microscopic images where the cells can grow on 181 
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each other, having only a thin (occasionally 1-2 pixel wide) region separating them. This is 182 

achieved by storing the intermediate feature-level representations before each pooling in the 183 

encoding step, then feeding this data to the corresponding upsampling layer. Ever since its 184 

inception, U-Net has become a state-of-the-art architecture for semantic segmentation. 185 

Because of its performance on small or thin objects, this choice of architecture was ideal for 186 

our purposes. To add a regularizing term and accelerate training speed, we have added 187 

batch normalizing layers after convolutional blocks (Ioffe and Szegedy, 2015).  188 

 189 

Phenotypic analysis of Arabidopsis seedlings 190 

Determining hypocotyl length of Arabidopsis seedlings is a key phenotyping procedure in 191 

myriads of studies; thus it was obvious to test our algorithm on this model plant first. We 192 

simply grew seedlings on wet filter papers under different fluences of monochromatic light 193 

sources, laid them on agar plates, scanned them and then used these images to train the 194 

algorithm. Altogether we annotated about 2500 hypocotyls and corresponding non-195 

hypocotyl plant parts during this procedure. To test the trained algorithm, we grew seedlings 196 

under different fluences of monochromatic R light as a routine treatment for phytochrome 197 

studies. Fig. 2A and Supplemental Fig. S1 show how the algorithm recognized long and 198 

short hypocotyls belonging to those plants which grow under low or high fluences of light, 199 

respectively. The fluence rate graph plotting of the measured hypocotyl length values 200 

demonstrates that the algorithm determined values similar to the human experimenters (Fig. 201 

2B). To further test the versatility of the algorithm we analysed hypocotyls of seedlings 202 

grown in FR and B light when the inhibition of hypocotyl elongation is mediated by phyA and 203 

cryptochrome photoreceptors, respectively. Additionally we analysed etiolated seedlings 204 

grown in darkness, which are used as important controls in photobiological studies. We 205 

found the performance of the algorithm is comparable to humans under these conditions, 206 

and the measurement works well even with pale, almost colourless etiolated seedlings 207 

(Supplemental Fig. S2, Fig S3, Fig. S4, Fig S5). It was tempting to further examine 208 

seedlings which have completely different body architecture. For this purpose, we grew 209 

plantlets on plant medium containing sugar with white light illumination. These seedlings 210 

have thick hypocotyls, fully developed and opened green cotyledons and long roots. Our 211 

results show that the algorithm is capable of measuring the hypocotyls of seedlings grown 212 

under light/dark cycles or under continuous white light supplemented with or without 213 

photomorphogenic (non-damaging) UV-B irradiation (Supplemental Fig. S6 and Fig. S7).  214 

 215 

Application of the algorithm on different plant species 216 

To test the usability of our algorithm on other species besides Arabidopsis, we chose 217 

mustard (Sinapis alba). Sinapis alba was an experimental object widely used a few decades 218 

ago to examine the dependency of hypocotyl elongation on different irradiation protocols. 219 

These works revealed the basic mechanisms of phytochrome action many years before 220 

identifying the involved molecular pathways or even the genes coding the photoreceptors 221 

(Schopfer and Oelze-Karow, 1971; Wildermann et al., 1978a; Wildermann et al., 1978b). A 222 

recent study demonstrates that determining the hypocotyl elongation of Sinapis alba 223 

seedlings as a phenotypic marker is still in use to monitor hormonal changes under different 224 

irradiation conditions (Procko et al., 2014). 225 

The Sinapis alba plantlets were grown on agar plates under constant white light for 4 days. 226 

These seedlings were too bulky to scan them with a flatbed scanner like we did with 227 

Arabidopsis seedlings. For this reason, images were taken with a smartphone. We used 228 

these images to train our algorithm to identify pixels belonging to Sinapis alba hypocotyls 229 
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and to determine hypocotyl length. During the training phase we annotated about 250 230 

hypocotyls and corresponding non-hypocotyl plant parts before performing the presented 231 

measurement. Fig. 3 and Supplemental Fig. S8 demonstrate that even low numbers of 232 

seedlings were sufficient to train the algorithm and determine hypocotyl length with high 233 

accuracy, which is comparable to the performance of human experts. 234 

We further tested the versatility of the algorithm by analysing monocotyledonous plants. In 235 

monocots, the coleoptile growth is a widely used phenotypic trait instead of the more 236 

difficultly observable hypocotyl. We chose stiff brome (Brachypodium distachyon), which is a 237 

small-sized model plant having a compact and sequenced genome (International 238 

Brachypodium Initiative, 2010) and an existing transformation system (Alves et al., 2009). 239 

These make it an ideal grass model species with emerging importance (Scholthof et al., 240 

2018). We grew the (Brachypodium distachyon) plants under different light fields for 4 days 241 

and took photos of them with a smartphone camera. In this case we used 8 images 242 

containing about 100 plants to train the algorithm. Fig. 3 and Supplemental Fig. S9 show 243 

how the algorithm processed the images and how it measured coleoptile length on the test 244 

images. The obtained values do not differ from those measured by the human experts, 245 

demonstrating the usability of the algorithm to analyse Brachypodium distachyon 246 

coleoptiles.  247 

 248 

Accuracy of the algorithm 249 

To quantitatively assess the performance of our algorithm, we decided to compare the 250 

obtained results to the performance of humans. Each measurement was repeated by two 251 

human experimenters. For each seedling identified by the algorithm, we calculated 252 

measurement accuracy by matching the seedling to the ground truth data provided by the 253 

experts (Fig. 4) and calculating the relative error of the measurement. For matching, we first 254 

calculated the bounding boxes for each object identified by the algorithm, which is the 255 

smallest box containing the segmented object (Fig. 1B). Then the expert provided ground 256 

truth segmentation masks were used to check whether there was an actual object in the 257 

same spatial location. To see this, bounding boxes of the ground truth masks were also 258 

calculated and their position was matched against the position of the algorithm identified 259 

object. If a bounding box with at least 10% overlap was found, we matched the two objects 260 

and calculated the relative error of the measurement, defined by |L - M|/L, where L is the 261 

actual length of the hypocotyl (measured by the experts) and M is the result of the 262 

measurement (provided by the algorithm). Since the seedlings were placed apart from each 263 

other, the possibility of a false matching was minimal. (The 10% overlap criterion was 264 

deliberately chosen to be permissive, since requiring larger overlaps essentially guarantees 265 

that the relative error is low, thus biasing the accuracy evaluation and masking flaws.) After 266 

matching the plants, the false positive (FP) and true positive (TP) ratios were calculated. For 267 

a more detailed view on the detection performance, we also calculated the precision and 268 

recall values. Precision is defined by TP/(TP + FP), whereas recall was calculated by 269 

TP/(TP + FN), with FN denoting the number of false negatives. We calculated accuracy, 270 

recall and precision individually for each plant, compared them to the measurement of each 271 

expert, then averaged the values. For all of our metrics, a higher value implies a better 272 

result (Fig. 4). To put this in perspective, a high precision means that most identified objects 273 

are indeed plants (as opposed to segmentation errors), whereas a high recall means that 274 

most plants were indeed detected in the image. In general, there is a tradeoff between recall 275 

and precision, which is controlled by the strictness of our criteria to accept a match. A too 276 

loose criteria lead to an abundance of false detections, resulting in potentially high recall but 277 
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very low precision. On the other hand, an excessively strict criteria would result in a high 278 

false negative rate, leading to low recall and potentially high precision. Thus, the 279 

combination of recall and precision together provides a good description on the performance 280 

of the algorithm. 281 

To obtain further data to characterize the hypocotyl measurement, as the method itself, both 282 

human experimenters measured each plant once more, having one month between their 283 

two measurements. Using these repeated measurements, we calculated the intra-expert 284 

accuracy exactly as we outlined above, using the two measurements provided by the same 285 

expert (Fig. 5). The inter-expert accuracy was calculated using the first measurement of 286 

both experts. The algorithm performs exceptionally well on plants with long hypocotyls but 287 

with slightly lower reliability in case of the very short seedlings grown under strong FR or B 288 

light. We also noted that (i) the performance of humans is also poorer when analysing these 289 

plantlets both in the case of intra- or inter-expert comparisons (Fig. 5) and that (ii) the 290 

algorithm only gives significant difference between groups when the expert measurements 291 

also show significant difference according to Student t-test (Fig. S10). 292 

 293 

Discussion 294 

Usability of the method 295 

Hypocotyl growth is controlled by the interplay of different external and internal cues, many 296 

of them with reciprocal effects. It follows that hypocotyl length is used (i) to characterise 297 

activity of numerous signalling pathways, including those controlled by light, hormones, 298 

temperature and gravity and that (ii) determination of hypocotyl length is a widely used basic 299 

seedling phenotyping assay. Here we report the development of a deep learning-based 300 

algorithm to simplify this measurement and save valuable time for the experimenter. There 301 

have been computer-based tools published earlier, but here we demonstrate the suitability 302 

of deep learning for quantitative plant phenotyping. This method is applicable to a diverse 303 

set of image-based phenotyping problems, not restricted to hypocotyl measurement. Our 304 

method uses the U-Net CNN architecture for segmentation and can identify not only 305 

hypocotyls, but also roots and cotyledons with previously unprecedented detail. To 306 

demonstrate the power of the algorithm, we have shown how it performs on other dicot or 307 

monocot seedlings. The method possesses several advantages: (i) no image preprocessing 308 

is needed; (ii) the algorithm can handle low quality images, i.e. ones made with a simple 309 

smartphone camera; (iii) the algorithm works with different imaging conditions; and (iv) its 310 

performance matches human accuracy. Moreover, the whole measurement pipeline is semi-311 

automated, and hypocotyl detection and measurement do not require manual intervention at 312 

all. This decreases the execution time with several orders of magnitude: while the expert 313 

spends 45 minutes on average manually measuring a complete image containing 270 314 

seedlings having different hypocotyl length and recording the data, our method performs the 315 

same task under a minute. With this speedup, high-throughput assays (testing numerous 316 

lines, phenotype-based screenings, etc.) are enabled for a wide array of questions. 317 

 318 

Assessing our results 319 

To assess the performance of our algorithm, first we focused on Arabidopsis, being the 320 

most widely used model plant. Our algorithm performed quite well on seedlings with various 321 

body architectures. We tested it on seedlings having short or long, thick or thin hypocotyls; 322 

opened or unopened cotyledons with different thickness, size and colour; roots with different 323 

length, shape and thickness (Fig. 2 and Supplemental Fig. S1-S7). The accuracy, the 324 
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precision and recall values, compared to the results of a human experimenter indicate that 325 

the algorithm is suitable to replace manual measurements for a wide array of scenarios (Fig. 326 

4 and Fig. 5). Our data also show that under specific circumstances, when the plants are 327 

short (under strong FR and B light), the accuracy of the algorithm is slightly lower compared 328 

to human experimenters. The reasons are quite diverse. 329 

(i) The accuracy value is heavily affected by the absolute size of the plant. For example, a 5 330 

pixel error on a 100-pixel-long plant has 0.95 accuracy, whereas on a 20-pixel-sized one, 331 

the same absolute error yields 0.75 accuracy. (In our images, a typical hypocotyl length of a 332 

seedling grown under high light intensities appeared as only approximately 20 pixels.) 333 

(ii) In case of short and thick hypocotyls, human experts cannot position their region of 334 

interest (ROI) at the middle of the hypocotyl. In this case skeletonization can be different 335 

from the human ROI placement.  336 

(iii) Misplaced seedlings (hypocotyls touching each other, roots laying over the hypocotyl, 337 

etc) or image problems (reflecting plastic plate edges, scratches of the agar surface) disturb 338 

the segmentation process but to a lesser extent as with the human experts. These issues 339 

can be corrected manually on the generated data, and also a certain carefulness is required 340 

during seeding placement onto the agar before the scanning. Another potential source of 341 

inaccuracy is the skeletonization of the segmented hypocotyls. Especially for more 342 

complicated shapes and cusps, the skeletons may have small additional branches or may 343 

not be simply connected at all, which can distort the length measurements. 344 

(iv) Especially in the case of seedlings having short and thick hypocotyls, it is not obvious 345 

how to define the border between the hypocotyl and the root. For that, images with higher 346 

magnification (i.e. microscopy) should be obtained(Fahn, 1990), which is not manageable 347 

when working with a high number of seedlings. This problem is a general caveat of the 348 

method: the observable morphological traits at the resolution of the scanned images are not 349 

sufficient sometimes to mark precisely where the hypocotyl ends and the root begins.  350 

Taken together, the inaccuracy generated in these ways is an inevitable component of 351 

hypocotyl measurement leading to the errors, not only in case of the algorithm, but also in 352 

case of measurements made by humans (Fig. 4 and Fig. 5). Similarly to the algorithm, the 353 

expert accuracy also decays when working with small seedlings. However, under these 354 

conditions, the expert performance is 10-20% better than the algorithm, although at some 355 

points the inter-expert (experts compared to each other) accuracy is not better than the 356 

accuracy of the algorithm compared to the experts (Fig. 5). To see if we could improve the 357 

accuracy, we trained a new model exclusively on these seedlings and achieved 81% 358 

accuracy, 78% precision and 81% recall on the test set. This performance is on par with the 359 

experts and points out the importance of the carefully chosen training dataset (Fig S3 and 360 

Fig S11). Conclusively, without having solid ground truth data, the training of the algorithm is 361 

unavoidably impaired. During the training procedure we annotated about 2500 Arabidopsis 362 

hypocotyls, whereas annotating approximately 250 Sinapis alba seedlings and about 100 363 

Brachypodium distachyon coleoptiles was sufficient to reach similar recognition metric 364 

parameters. These data indicate that Arabidopsis is a ‘difficult’ experimental object in terms 365 

of hypocotyl measurement, although we must note that our algorithm trained for Arabidopsis 366 

is suitable to analyse seedlings with diverse plant architecture, whereas in the case of the 367 

two other species we worked with plantlets were grown under only certain conditions.  368 

 369 

Future outlook 370 

In recent years, the introduction of deep learning and CNNs revolutionized computer vision-371 

based research, making the automation of various tasks and precise high-throughput 372 
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phenotyping available for many disciplines. In plant biology, several advances have been 373 

made with these methods regarding qualitative phenotyping (Pound et al., 2017; Namin et 374 

al., 2018; Pineda et al., 2018; Singh et al., 2018; Ramcharan et al., 2019). With these tools 375 

however, quantitative phenotypic traits can also be assessed as we demonstrated in this 376 

work. The presented segmentation pipeline is not only applicable to length measurements, 377 

but in principle it can also be used to measure other parameters, such as cotyledon area, 378 

hypocotyl hook opening, angle of cotyledons, etc. With the elimination of manual 379 

measurements, the current bottleneck in the phenotyping workflow is the ordered laying of 380 

the plantlets onto agar plates with special care to avoid overlaps between the plants. This 381 

labour-intensive step can be eliminated using object detection frameworks such as Mask-382 

RCNN (He et al., 2017); however, at present these may cause additional segmentation 383 

errors, thus reducing accuracy. 384 

While different technical aspects still remain to be overcome, we believe that increasing 385 

application and improvement of CNNs for image-based analysis of plants are laying the 386 

foundation for the next generation of plant phenotyping tools. 387 

 388 

Materials and methods 389 

Code and data availability 390 

The algorithm was implemented in Python, where the PyTorch framework was used for 391 

deep learning and the scikit-image library was used for image processing (van der Walt et 392 

al., 2014). The code is fully open source and available at GitHub (https://github.com/biomag-393 

lab/hypocotyl-UNet). Images used for training are also available at 394 

https://www.kaggle.com/tivadardanka/plant-segmentation. All trained models used in this 395 

study are available upon request. 396 

 397 

Image acquisition and data preparation 398 

Arabidopsis (Arabidopsis thaliana) seedlings were laid manually onto the surface of 1% w/v 399 

agar plates. To ensure optimal algorithm performance, the seedlings were arranged without 400 

any overlap. During scanning, a black matte cardboard sheet was used as a reflective 401 

document mat. The scanning was done using an EPSON PERFECTION V30 scanner at 402 

800 dpi and 24-bit colour setting, and pictures were saved as .tif or .jpg. After the 403 

acquisition, hypocotyls, cotyledons, seedcoats and roots were annotated using Fiji 404 

(Schindelin et al., 2012). Using the digitizer tablet (WACOM Intuos) instead of a mouse or a 405 

touchpad sped up the procedure. The annotated data then were used to create the mask for 406 

training the segmentation algorithm. Before training, the images were padded by mirroring a 407 

256 pixel-wide strip next to the border. The padded images were cropped up to non-408 

overlapping pieces with 800x800 pixel resolution, which were used to train the neural 409 

network. During training, 10% of the images were held out for validation purposes.  410 

Experts generated data (Expert 1 and Expert 2) by selecting the midline of the hypocotyls 411 

with a single piecewise linear curve, from which the length was measured by ImageJ/Fiji. 412 

 413 

Training the neural network 414 

To train the U-Net CNN for plant segmentation, about 2500 Arabidopsis hypocotyls, 250 415 

mustard (Sinapis alba) seedlings and 100 stiff brome (Brachypodium distachyon) plantlets 416 

were annotated. For each of the plant species, a different U-Net model was trained. More 417 

details on the U-Net architecture can be found in (Ronneberger et al., 2015). As additional 418 

regularization, batch normalization layers were used after the convolutional blocks, which 419 
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was shown to be highly effective for such CNN architectures (Ioffe and Szegedy, 2015). 420 

During training, the smooth Dice coefficient loss was used, introduced by (Milletari et al., 421 

2016; Sudre et al., 2017). The model was trained to classify each pixel as (i) background, (ii) 422 

hypocotyl (or coleoptile in the case of Brachypodium distachyon) or (iii) plant parts not 423 

included in the measurement (root, cotyledon, seedcoat, etc.). The output of the UNet model 424 

was an RGB image, where every pixel encoded the probability of belonging to one of the 425 

three categories (background: red; hypocotyl (or coleoptile): blue; non-hypocotyl plant parts: 426 

green). All connected components of the hypocotyl class were skeletonized, followed by 427 

pixel counting. No smoothing function was applied. To assure that the plant parts were 428 

precisely segmented, their corresponding term in the loss function was weighted fivefold 429 

compared to the background. Training was run for 1000 epochs with initial learning rate 1e-430 

4, which was consequently decreased during training to 1e-5, 1e-6 and 1e-7 after epochs 431 

200, 600 and 900. The algorithm was trained using a single nVidia Titan XP GPU. For 432 

optimization, the Adam optimizer was used (Kingma and Ba, 2014). To prevent overfitting, 433 

batch normalization and image augmentation was used. The augmentation transform was 434 

composed as a series of random 512x512 pixel crops, affine transforms with flips and a 435 

colour jitter transform. The detailed procedure of reproducing the workflow is described as 436 

an instructional help document in the Supplemental Method S1-S2. All presented hypocotyl 437 

and coleoptile length data were measured on images which were not involved in the training 438 

procedure. We recommend the potential users train the algorithm anew using images 439 

depicting plants similar to those to be measured and imaged using the same setup.  440 

 441 

Plant growth conditions and light treatments 442 

Arabidopsis (Columbia 0 ecotype) seeds were sown on 4 layers of wet filter paper and were 443 

kept at 4 oC for 3 days. To promote homogeneous germination, plates were exposed to 70-444 

100 μmol m−2 s−1 white light for 8 h (LUMILUX XT T8 L 36 W/865 fluorescent tubes, Osram), 445 

followed by exposure to continuous R (λmax= 660nm), FR (λmax= 735 nm) or B (λmax= 470 446 

nm) light for 4 days at 22 oC (SNAP-LITE LED light sources, Quantum Devices). Plates 447 

containing dark-grown seedlings plates were wrapped in aluminium foil and kept in dark for 448 

4 days at 22oC.  449 

Seeds sown on ½ Murashige and Skoog (MS, Sigma-Aldrich) medium containing 1% w/v 450 

sucrose and 0.8% w/v agar were surface sterilised and kept at 4 oC for 3 days. Seedlings 451 

were grown under 12 h white light (80 μmol m−2 s−1)/ 12 h dark photocycles at 22 oC in a 452 

growth chamber (MLR-350H, SANYO, Gallenkamp) for 7 days. Alternatively, after 3 days, 453 

the plates were placed under continuous white light (PHILIPS TL‐ D 18 W/33‐ 640 tubes, 454 

10 μmol m−2 s−1) supplemented with UV‐ B (PHILIPS ULTRAVIOLET‐ B TL20W/01RS 455 

tubes, 1.5 μmol m−2 s−1)) for 4 days at 22 °C. The seedlings were covered with transmission 456 

cut-off filters (WG series, Schott) using the WG305 filter for UV-B-treated seedlings (+UV-457 

B), and the WG385 filter for the control (-UV-B) seedlings as providing half maximal 458 

transmission at 305 or 385 nm, respectively (Bernula et al., 2017). 459 

Brachypodium distachyon (Bd21) seeds were sown on 1% w/v agar and kept at 4 oC for 5 460 

days and were treated with 24 h white light (130 μmol m−2 s−1) to induce even germination. 461 

Seedlings were grown either in darkness or under 50 μmol m−2 s−1 R light or 10 μmol m−2 s−1 462 

FR light or 130 μmol m−2 s−1 white light for 4 days. Subsequently, they were placed on a 463 
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matte black cardboard sheet and illuminated with even diffused light. Images of the 464 

seedlings were taken with a smartphone (iPhone SE, Apple) using the default settings of the 465 

camera. Every image contained a millimetre paper for scaling.  466 

Sinapis alba seeds were sown on 1% w/v agar and kept at 4 oC for 5 days. Seedlings were 467 

grown under 130 μmol m−2 s−1 white light at 22 oC for 4 days. Seedlings were photographed 468 

as described for Brachypodium distachyon plants.  469 

 470 
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Supplemental Figure S8. U-Net segmentation of Sinapis plantlets. 492 

Supplemental Figure S9. U-Net segmentation of Brachypodium plantlets. 493 
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Figures 502 

 503 

Figure 1. Overview of the method. 504 

(a) Arabidopsis seedlings were placed on agar plate surface and scanned, resulting in 505 

the original image. This image was then processed by the previously trained U-Net 506 

algorithm (see Materials and Methods chapter for details), which determines plant 507 

parts: hypocotyls (marked with blue colour) and non-hypocotyl plant parts (depicted 508 

by green colour). The background pixels appear in red. This step is called 509 

segmentation. During the next step, the algorithm determines a 1-pixel-wide line in 510 

the middle of the segmented hypocotyls. This procedure is called skeletonization, 511 

and the number of pixels consisting of the 1-pixel-wide lines is proportional to the 512 

hypocotyl length. White scale bar represents 1 mm. 513 

(b) An example of the graphical representation of the algorithm’s output. Besides the 514 

quantitative parameters of the detected hypocotyls exported to a .csv file, this kind of 515 

visualization of the results is also available for the identification of each seedling and 516 

for general quality checking of the measurement. The black characters indicate the 517 

index of the seedlings in the .csv output (N.1., N.2. etc.) whereas the red numbers 518 

show the corresponding hypocotyl length in mm.     519 

Figure 2. Hypocotyl measurement of red light-grown Arabidopsis seedlings. 520 

(a) Arabidopsis seedlings were grown on wet filter papers in red light for 4 days, placed 521 

on an agar plate and scanned. A close-up image shows a few seedlings grown 522 

under high or low fluences of red light and the U-Net segmented and skeletonized 523 

images generated from the original by our algorithm. Scale bars represent 1 mm.  524 

(b) This box-and-whisker diagram shows the distribution of seedling hypocotyl length 525 

values determined by the algorithm and two human experimenters. Median is 526 

marked by a horizontal line inside the box, boxes depict the quartiles, and whiskers 527 

extend to show the rest of the distribution. Black diamonds represent outliers. 528 

Sample number at every data point is n=30.529 
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Figure 3. Sinapis alba hypocotyl and Brachypodium distachyon coleoptile 530 

measurements by the algorithm. 531 

(a) Original images of light-grown Sinapis alba and Brachypodium distachyon plantlets 532 

(left side). Image panels at the right side depict the segmentation made by the 533 

algorithm. The original images also contain a millimetre paper for size scale. 534 

(b) Box-and-whisker diagrams show coleoptile and hypocotyl length values determined 535 

by the U-net algorithm and two human experts. Boxes depict the quartiles, whiskers 536 

extend to show the rest of the distribution, median is marked by a horizontal line 537 

inside the box, whereas black diamonds represent outliers. Sample number for 538 

Sinapis alba seedlings is n=91 and for Brachypodium distachyon plantlets is n≥14 in 539 

each light treatment. 540 

 541 

Figure 4. Accuracy, recall and precision metrics for the algorithm for each light 542 

condition. 543 

Further analysis of the data what are presented in Fig. 2, Fig. 3 and Supplemental Figures 544 

S2, S4, S6. Metrics were obtained by matching the plants identified by the algorithm to the 545 

ground truth given by the experts. (A match is required to have at least 10% overlap 546 

between the bounding boxes of the objects.) Accuracy is the relative accuracy of the 547 

measurement defined by 1 - |M - L|/L, where L is the ground truth length and M is the 548 

measured length. The precision of the algorithm is defined as TP/(TP + FP), where TP and 549 

FP denote the number of true and false positives, respectively. A high precision implies the 550 

majority of identified objects are indeed plants, not false detections. Finally, recall is given 551 

by TP/(TP + FN), where FN is the number of false negatives. The higher the recall, the more 552 

plants were identified by the algorithm.  553 

(a) Analysis of the data obtained on Arabidopsis seedlings. On the left side of the graph, the 554 

applied growth conditions are marked: the numbers indicate light intensity in μmol m−2 s−1, 555 

LD= 12 h light/12 h dark cycles, WL±UVB= white light supplied with or without UV-B, Dark= 556 

etiolated seedlings. 557 

(b) The same metrics were calculated from the data obtained on Brachypodium distachyon 558 

and Sinapis alba seedlings. 559 

 560 

 561 

Figure 5. Intra- and inter-expert accuracies vs the algorithm. 562 

Intra-expert accuracy was calculated by averaging the accuracies between the two 563 

measurements from the same expert. Inter-expert accuracy (Expert 1 vs Expert 2) was 564 

determined by comparing the first measurements of the two human experts. For 565 

comparison, the accuracy of the algorithm is also presented.  566 
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