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ABSTRACT 

 

 

 

In this thesis, a new adaptive refinement coupled with variational multiscale 

element free Galerkin method (EFGM) is developed for solving high gradient 

problems.  The aim of this thesis is to propose a new framework of moving least 

squares (MLS) approximation with coupling method based on the variational 

multiscale concept.  Additional new nodes will be inserted automatically at high 

gradient regions by adaptive algorithm based on refinement criteria.  An enrichment 

function is embedded in the MLS approximation for the fine scale part of the 

problem.  Besides, this new technique will be parallelized by using OpenMP which is 

based on shared memory architecture.  The proposed new approach is first applied in 

two-dimensional large localized gradient problem, transient heat conduction problem 

as well as Burgers' equation in order to analyze the accuracy of the proposed method 

and validated with an available analytic solutions.  The obtained numerical results 

show a very good agreement with the analytic solutions and is able to obtain more 

accurate results than the standard EFGM.  It is found that the average relative error 

of this new method is reduced in the range of 15% to 70%.  Besides, this new method 

is also extended to solve two-dimensional sine-Gordon solitons.  The results obtained 

show good agreement with the published results.  Moreover, the parallelization of 

adaptive variational multiscale EFGM can improve the computational efficiency by 

reducing the execution time without loss of accuracy.  Therefore, the capability and 

robustness of this new method has the potential to investigate more complicated 

problems in order to produce higher precision solutions with shorter computational 

time.  
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ABSTRAK 

 

 

 

 Dalam tesis ini, satu kaedah baru berdasarkan gabungan penyesuaian 

penghalusan dengan kaedah multiskala ubahan tanpa unsur Galerkin (EFGM) telah 

dibangunkan untuk menyelesaikan masalah dengan kadar perubahan tinggi.  

Matlamat tesis ini adalah untuk mencadangkan satu rangka kerja baru penghampiran 

jenis pergerakan kuasa dua terkecil (MLS) dalam kaedah gabungan ini berdasarkan 

konsep multiskala ubahan.  Algoritma penyesuaian akan memasukkan nod tambahan 

baru secara automatik di kawasan kecerunan tinggi berdasarkan kriteria penghalusan.  

Suatu fungsi tambahan akan digunakan dalam anggaran jenis MLS dalam bahagian 

skala halus pada masalah tersebut.  Selain itu, teknik baru pengiraan ini akan 

diselarikan dengan menggunakan OpenMP yang berasaskan seni bina perkongsian 

memori. Kaedah cadangan baru ini akan digunakan untuk menyelesaikan masalah 

dua dimensi kecerunan tinggi setempat, masalah pengaliran haba serta persamaan 

Burgers untuk menganalisis ketepatan kaedah ini dan disahkan dengan penyelesaian 

sebenar.  Keputusan berangka yang diperolehi menunjukkan penyesuaian yang 

sangat baik dengan penyelesaian analitik dan mampu memperolehi keputusan yang 

lebih tepat berbanding dengan EFGM piawai.  Didapati bahawa purata ralat relatif 

kaedah baru ini boleh dikurangkan dalam lingkungan 15% hingga 70%.  Selain itu, 

kaedah baru ini juga dikembangkan untuk menyelesaikan dua dimensi soliton sinus-

Gordon. Keputusan yang diperolehi menunjukkan penyesuaian yang baik berbanding 

dengan keputusan yang telah diterbitkan.  Tambahan pula, kecekapan pengiraan 

daripada keselarian penyesuaian multiskala ubahan EFGM boleh dipertingkatkan 

dengan mengurangkan masa kiraan tanpa kehilangan ketepatan.  Oleh sebab itu, 

keupayaan dan keteguhan kaedah baru ini mempunyai potensi untuk mengkaji 

masalah yang lebih kompleks untuk menghasilkan penyelesaian yang lebih tepat 

dengan masa pengiraan yang lebih pendek. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1  Introduction 

 

In this chapter, the background of the problem will be briefly introduced.  

After that, statement of the problem and objectives of the study will be clearly 

defined.  Besides, the scope of the study will be discussed as well as the significance 

of the study.  Lastly, for clarity, the layout of the thesis is briefly outlined. 

 

 

 

1.2 Background of the Problem 

 

 The finite element method (FEM) has been widely used by researchers to 

approximate the solution of partial differential equations.  However, the FEM has its 

drawbacks as this is a mesh-based method and highly reliance on meshes.  When 

dealing with large deformation or high gradient problems, the FEM will produce 

lower accuracy solutions due to the mesh become extremely skewed or compressed. 

Moreover, the FEM is also not well suited for discontinuous solutions since the 

element edges must be aligned to the discontinuity.  To overcome these difficulties, 

the re-meshing process is needed to avoid mesh distortion and allows mesh line to 

remain coincident with any discontinuities.  However, this re-meshing process is 

tedious and leads to degradation in computational efficiency.  Thus, the FEM is not 

an ideal method to couple with adaptive refinement as the re-meshing of the problem 
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domain is necessary in every computational time step. 

 

 The meshfree methods [1,2,3,4,5,6,7,8,9] have been proposed as an 

alternative numerical techniques to the FEM.  This class of numerical methods solve 

the problem through constructing the function based on a series of scattered points 

over the problem domain.  Although the re-meshing process can be avoided in the  

meshfree methods, but this advantage does not come cheap.  In particular, the 

computational cost in element free Galerkin method (EFGM) is much more 

expensive than the FEM.  The increased in computational cost is especially evident 

for adaptive refinement analysis due to the computation of moving least squares 

(MLS) shape functions which are formulated at every integration point.  The high 

computational cost is the predominant drawback of EFGM.  Furthermore, the EFGM 

also encounters difficulty in enforcing the essential boundary conditions as its shape 

functions do not satisfy the Kronecker delta property.  Therefore, several methods 

have been proposed to overcome this problem, in particular, Lagrange multiplier 

method [1], penalty method [10] and coupling to finite element method [11]. 

However, the drawback of Lagrange multiplier method is additional unknowns are 

introduced.  In contrast, coupling to finite element method requires well-defined 

boundary meshes.    

 

 The EFGM is an ideal technique to solve steep gradient or rapid variations 

problems due to the property of meshfree approximations with no nodal connectivity 

is needed.  However, special care must be taken to capture the solution precisely near 

the high gradient regions and to avoid numerical pollution.  A number of techniques 

have been used in dealing with high gradient problems.  The first technique is to 

refine the spatial discretization near the locally high gradient computation region as 

reported in References [12,13,14].  In these papers, dense of nodes are moved with 

the crack tip at each step to provide a more accurate solution.  Besides, a higher order 

quadrature will be used in all the cells where the crack would possibly occur 

[15,16,17], but this technique will increase the computational cost.  Another 

approach is to use an enriched basis as conducted in [18,19].  However, the 

enrichment of the trial functions proposed in [19] introduces additional unknowns 

and considerable computer programming is required.  Therefore, more research 
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efforts should be devoted by researchers for solving problems involving sharp 

gradient or rapid variation in solutions. 

 

 

 

1.3 Statement of the Problem 

 

Adaptive EFGM and variational multiscale EFGM have been numerous 

reported to solve various kind of problems with satisfactory results obtained.  In 

dealing with sharp gradient problems, numerical errors may occur due to the abrupt 

change in numerical solutions.  Hence, it is desired to obtain the good properties of 

adaptive EFGM and variational multiscale EFGM to refine the high gradient zones 

locally in order to get more accurate solutions.  Therefore, the development of a 

numerical model with combination of both properties with less computational cost is 

in demand.  This is the intention of this thesis and this research will clarify the 

following questions: 

 

1)   How to overcome the deficiency in penalty method for EFGM? 

 

 2)   How to obtain good properties of adaptive EFGM and variational 

  multiscale EFGM?  

 

 3)   How to improve the solution accuracy in the proposed new method? 

 

 4)   What is the application of the proposed new technique? 

 

 5)   How to reduce the execution time in numerical analysis of the proposed 

        new scheme? 
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1.4   Objectives of the Study 

 

The principal goal of this thesis is to couple the adaptive refinement analysis with 

variational multiscale EFGM for high gradient problems.  The five main objectives 

associated with the principal goal are as follows: 

 

1) To improve the penalty method for EFGM and apply it to enforce the 

essential boundary conditions.  

 

2) To couple the adaptive EFGM with variational multiscale EFGM and develop 

its numerical solution procedure. 

 

3) To propose a new moving least squares approximation function to improve 

the solution accuracy by enhancing the shape functions with an enrichment 

function. 

 

4) To apply the proposed new technique to high gradient problems as well as 

sine-Gordon solitons. 

 

5) To develop and implement a parallel computer code using Open Multi-

Processing (OpenMP) application programming interface in the proposed 

new scheme. 

 

 

 

1.5       Scope of the Study 

 

There are many sets of meshfree methods available in literature.  This 

research will only focus on one of the meshfree methods, in particular element free 

Galerkin method.  Moreover, the development and implementation of the proposed 

new scheme is limited to two-dimensional regular high gradient problems. The 

computational tool used to compute the numerical result is C programming language.  

Furthermore, the parallel programming scheme developed in this work is focused on 

OpenMP which is based on share memory architecture.   
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1.6       Significance of the Study 

 

The methods for imposition of essential boundary conditions are the essential 

tool for EFGM.  In this work, the penalty method used in EFGM has been improved 

and higher accuracy results are obtained compared with the classical penalty method.  

The mathematical model and algorithm produced in this work will combine the good 

properties of adaptive refinement analysis and variational multiscale EFGM.  In 

addition, the proposed coupling method with parallelization is capable to produce 

higher precision results with less time consumption.  Thus, this technique is ideally 

used to solve large deformations problems as well as large domain size problems.  

The obtained results will be beneficial in the study of large gradient problems in 

mathematics and engineering fields.  Also, the findings obtained can be used for 

further research in related areas.   

 

 

 

1.7 Layout of the Thesis 

 

This thesis consists of seven chapters and it organized as follows: 

 

Chapter 1 starts with the background of the problem, statement of the 

problem and objectives of the study.  In addition, the scope and significance of the 

study are also demonstrated. 

 

Chapter 2 presents a detailed literature review of previous studies on 

meshfree methods, element free Galerkin method, variational multiscale meshfree 

methods, adaptive meshfree methods, parallel computing, OpenMP and sine-Gordon 

equation.  

 

In Chapter 3, the standard penalty method has been improved for enforcing 

essential boundary conditions in EFGM.  This chapter starts with the development of 

the moving least squares approximation. The fundamentals required for the 

numerical implementation in EFGM are reviewed such as efficient calculation of 

MLS shape functions and derivatives, determination of domain of influence and the 
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weight function.  A discussion on Lagrange multiplier method and penalty method 

used for enforcing essential boundary conditions in EFGM are given. Also, an 

improved penalty method is introduced to impose the essential boundary conditions 

and validated with a numerical problem with Dirichlet and mixed boundary 

conditions. 

 

In Chapter 4, a new approach based on the coupling of adaptive EFGM and 

variational multiscale EFGM is developed.  A discussion on adaptive procedures 

such as the refinement criteria, refinement strategy and data mapping are provided as 

well as the description on variational multiscale method. Additionally, the 

formulation of a new MLS approximation is described in detail.  The description on 

the coarse scale shape functions and the fine scale shape functions with enrichment 

function are also outlined.  An efficient computation of fine scale shape functions 

and its derivatives are also considered.  Furthermore, a numerical solution procedure 

based on the combination of refinement procedure and variational multiscale 

procedure is introduced.  The formulation of error analysis for the new approach is 

shown.  The feasibility and efficiency of the proposed new scheme are validated with 

three high gradient problems with available analytical solutions.  

 

Chapter 5 extends the new scheme presented in Chapter 4 to solve two-

dimensional sine-Gordon solitons. The problem description of two-dimensional sine-

Gordon equation is illustrated. The formulation of adaptive variational multiscale 

EFGM for sine-Gordon equation is demonstrated.  Two two-dimensional sine-

Gordon solitons problems are examined to verify the performance of the proposed 

new scheme and the solutions obtained are validated with results from the literature. 

 

In Chapter 6, a shared memory parallel computer implementation is 

developed. The parallel execution scheme in OpenMP and the performance of 

parallel programs are illustrated.  In addition, the implementation of parallel scheme 

in the new coupling approach is given. The performance of the parallel 

implementation is validated with solving two numerical problems and analyzed with 

the corresponding serial implementation.   
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Finally, conclusions are drawn and recommendations for future research are 

illustrated in Chapter 7. 
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