
Machine Learning Applications for
Thermal Manufacturing Processes

DISSERTATION

zur Erlangung des Doktorgrades
der Naturwissenschaften (Dr. rer. nat.)

der Fakultät für Physik
der Universität Regensburg

vorgelegt von
Peter Weiderer

aus Zwiesel

September 2019



Promotionsgesuch eingereicht am: 26. September 2019

Die Arbeit wurde angeleitet von: Prof. Dr. Elmar W. Lang



Contents

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Thermal Manufacturing Process: Metal Casting . . . . . . . . . . . 2
1.1.2 Blind Source Separation with Matrix Factorisation . . . . . . . . . 4
1.1.3 Literature Review: Machine Learning and Data Mining in Manufac-

turing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Scope of this Thesis and Research Questions . . . . . . . . . . . . . . . . . 8
1.3 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theory and Methods 11
2.1 Nonnegative Matrix Factorisation . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Unsupervised Learning and Matrix Factorisation . . . . . . . . . . 11
2.1.1.1 Low Rank Matrix Approximation . . . . . . . . . . . . . 13
2.1.1.2 Singular Value Decomposition and Principal Component

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1.3 Moore-Penrose-Inverse . . . . . . . . . . . . . . . . . . 16

2.1.2 The NMF Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2.1 Why Nonnegativity? . . . . . . . . . . . . . . . . . . . . 18
2.1.2.2 The Cost Function . . . . . . . . . . . . . . . . . . . . . 19
2.1.2.3 Strategies for NMF . . . . . . . . . . . . . . . . . . . . 19
2.1.2.4 Initialisation Techniques . . . . . . . . . . . . . . . . . . 21
2.1.2.5 An SVD-based Initialisation . . . . . . . . . . . . . . . . 22

2.1.3 Alternating Least Squares and Hierarchical Alternating Least Squares 23
2.1.4 Alternating Least Squares Algorithm . . . . . . . . . . . . . . . . 24
2.1.5 Extensions to ALS . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.5.1 L1- and L2-regularisations . . . . . . . . . . . . . . . . . 26
2.1.5.2 L2-regularisation . . . . . . . . . . . . . . . . . . . . . . 27
2.1.5.3 L1-regularisation . . . . . . . . . . . . . . . . . . . . . . 28



iv Contents

2.1.6 Hierarchical Alternating Least Squares . . . . . . . . . . . . . . . 28
2.1.7 HALS with Regularisation . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Linear Regression with NMF Preprocessing . . . . . . . . . . . . . 34
2.2.2 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . 38

3 Practical Part 41
3.1 The Manufacturing Process: Gravity Mould Casting . . . . . . . . . . . . . 41

3.1.1 Data Collection during the Casting Process . . . . . . . . . . . . . 47
3.2 The NMF Approach for Time Aeries of Physical Quantities . . . . . . . . . 48

3.2.1 Physics: The Heat Equation . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Deriving the Matrix Decomposition . . . . . . . . . . . . . . . . . 49
3.2.3 A Physics Inspired Initialisation Strategy for NMF . . . . . . . . . 53

3.2.3.1 Initialisation for Temperature Time Curves . . . . . . . . 55
3.2.4 The NMF Model for Temperature Time Curves . . . . . . . . . . . 56

3.2.4.1 Decomposition of Toy Data . . . . . . . . . . . . . . . . 59
3.3 Application to Real-World Datasets . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Real-World Data from a Thermal Manufacturing Process . . . . . . 61
3.3.1.1 Dataset 1: A Simple Process . . . . . . . . . . . . . . . 61
3.3.1.2 Dataset 2: A Complex Process . . . . . . . . . . . . . . 62

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2.1 Results for Dataset 1 . . . . . . . . . . . . . . . . . . . . 63
3.3.2.2 Results for Dataset 2 . . . . . . . . . . . . . . . . . . . . 70
3.3.2.3 Study on Convergence Speed . . . . . . . . . . . . . . . 72

3.3.3 Remarks about the NMF-based Decomposition Approach . . . . . 73
3.3.4 The Effect of Regularisation . . . . . . . . . . . . . . . . . . . . . 74

3.4 An Application in Process Monitoring . . . . . . . . . . . . . . . . . . . . 81
3.4.1 A Data-driven Soft Sensor . . . . . . . . . . . . . . . . . . . . . . 81
3.4.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.2.1 Dependent Variable: Measurements of Layer Thickness . 82
3.4.2.2 Independent Variables: NMF Component Processes . . . 85

3.4.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.4 Discussion and Interpretation . . . . . . . . . . . . . . . . . . . . 91

3.4.4.1 Application as a Monitoring System . . . . . . . . . . . 92
3.4.4.2 Limitations of the Approach . . . . . . . . . . . . . . . . 94



Contents v

4 Conclusion 97
4.1 Discussion and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.1 Comments on the NMF-based Approach . . . . . . . . . . . . . . 97
4.1.1.1 Comparison with other Matrix Decomposition Techniques 98
4.1.1.2 Physically Inspired Machine Learning . . . . . . . . . . 99
4.1.1.3 Initialisation Strategies . . . . . . . . . . . . . . . . . . 100

4.1.2 Comments on the NMF-based Virtual Sensor . . . . . . . . . . . . 101
4.1.2.1 Comparison to other Approaches . . . . . . . . . . . . . 101

4.1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2 Summary of the Main Results . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Outlook and Further Research . . . . . . . . . . . . . . . . . . . . . . . . 105

A Additional NMF Results 107
A.1 Initialisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.2 Model Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3 PCA and ICA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

List of Figures 115

References 121





Chapter 1

Introduction

In this thesis I present the results of my investigation of possible applications of machine
learning methods for thermal manufacturing processes. The main goal is the design of
new approaches to extract information from sensory data generated during manufacturing
processes. The central theme throughout this thesis is a technique called Nonnegative
Matrix Factorisation (NMF) and its ability to decompose sensory data into physically
meaningful components. The data used in this thesis was provided by the German car
manufacturer BMW Group AG and the findings discussed in this thesis found immediate
implementation in one of their production plants.

1.1 Background and Motivation

Industry 4.0 is the key word for a wide variety of recent developments in automation and data
exchange in the manufacturing industry. The term includes innovations in cloud computing,
internet of things as well as cognitive computing and is sometimes referred to as the fourth
industrial revolution. One major key pillar in this ongoing trend are recent advances in the
use of machine learning techniques in the production environment, which help in the early
detection of defects and production failures, thus increasing productivity and quality (see
[106, 67] for recent reviews).

The data used in this thesis was provided by BMW Group AG and stems from their metal
foundry in Landshut, Germany. Metal casting is a thermal manufacturing process which is
generally unstable and the quality of the products depends on many interacting variables,
which turns the defect analysis into a challenging task as it includes a lot of trial and error
approaches. Data analysis has always been part of the problem-solving strategy practised
by engineers, but still remains tedious and often ineffective. With increasing complexity in
manufacturing, the amount of generated process data to be analysed with regular statistical
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methods soon becomes too large and more sophisticated techniques are needed. What is
needed are tools to automatically extract the most important information from large datasets
and this is where machine learning comes into play.

Machine learning is the general term for algorithms that can be used to teach a computer
to perform a task without explicit programming. Instead, the computer is supposed to "learn"
the necessary rules by detecting patterns and inference from data [9]. Machine learning
as a field of study has a long history, with earliest publications during the 1960s [94], but
limited computational processing power made most algorithms unviable for any usage in
production. Due to the rising computational abilities of modern times, machine learning
has now become an already widely used tool to analyse large and complex datasets and its
applications in industry are now being widely discussed by researches and practitioners alike.
However, the field is very broad and available methods, promising to solve specific problems,
are diverse. This is why application studies are needed to provide a "handbook" of methods
that have been proven to yield results that can be implemented in industrial applications. This
is also the general motivation behind this thesis and, after having realised the difficulties in
analysing industrial data, I started to specifically focus on feature learning algorithms like
NMF. The reason for this is that sometimes not even domain knowledge is enough to evaluate
the sensory data generated during manufacturing processes.

1.1.1 Thermal Manufacturing Process: Metal Casting

In metalworking and jewellery making, "casting" is a process in which a liquid metal is
delivered into a cavity (it is usually delivered by a crucible) that contains a hollow form
of the intended shape. This casting cavity is also called "mould" and in this thesis, I am
going to switch between the two expressions. The metal is poured into the mould through a
hollow channel, called a sprue. Both metal and mould are then cooled, and the metal part
(the casting) is extracted. Casting is mostly used for making complex shapes that would
be difficult or uneconomical to be fabricated by other methods [103, 104]. In Germany, a
significant portion of the casting parts are produced for the automotive industry. Fig. 1.1
shows different car parts made out of aluminium and where they are placed inside of the car.
In this thesis, I am mainly going to focus on one specific process called "gravity casting,"
which is shown in fig. 1.2. Gravity casting is a typical process to produce parts with rather
complex geometry like cylinder heads or crankcases (see fig. 1.1). In gravity casting, the
liquid metal is poured into a cavity from the top, i.e. the main driving force for the filling
process is gravity.

The source of data used in this thesis is the sensory data collected during the continuous
production of metal parts with a casting machine. The casting industry has a thousand years
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Fig. 1.1 Car parts produced by metal casting. The image has been provided by the BMW
Group AG.

of history and its roots trace back back to the mining industry. This traditional background
is one of the reasons why modern methods for process monitoring and data mining have
not been employed to a significant extent in this domain compared to other industries like
semiconductor manufacturing. From an economic view point, the main motivation behind
the development of data mining solutions in the metal casting industry has always been
the reduction of scrap rate and the optimisation of processes. Metal casting is a complex
physical process in which a variety of defects can occur and the same defects can usually
have multiple causes. Typical defect types are related to solidification issues like cracks,
cold runs or porosities. Apart from that, also an incorrect filling can cause defects like air
entrapment or surface defects. The variety of defects and their possible causes fills books and
very detailed documentations can be found in related engineering literature. Because of that,
there is a definite need for tools and solutions to speed up the process of root cause analysis,
and data mining methods appear to be promising candidates due to their ability to extract
complex information and interdependencies from large amounts of process data collected
during series production.
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Fig. 1.2 Picture taken during the filling of the mould during a gravity casting process with a
modern casting machine.

1.1.2 Blind Source Separation with Matrix Factorisation

Forming a quantitative model of the observed data, by stating suitable assumptions about the
data generation process, is the goal of Blind Source Separation techniques (BSS) [27]. The
use of BSS in this thesis is motivated by the idea idea of individually extracting information
about the many interacting physical processes during a casting process from single sensor
signals. In a BSS model, each underlying influencing factor can be seen as one of K different
component processes. There is a variety of models, which assume the data to be generated by
a set of K unknown and hidden sources that overlap. Such models are commonly referred to
as latent variable models. The definition of "latent variable" depends upon the assumptions
made about the data generation process. With BSS techniques, this superposition can be
modelled and sometimes reversed, which yields a new representation of the observed data.
Widely used BSS techniques are the principal component analysis (PCA) and the independent
component analysis (ICA), which respectively assume the underlying components to be
mutually uncorrelated or statistically independent. An example to introduce the concept of
BSS is given in fig. 1.3. During the casting of a metal part, a temperature sensor, which
is embedded into the steel cavity, records a temperature time series. This sensor signal
is the result of multiple different parameters and physical mechanisms. Of course, the
rising temperature stems from the heat transfer from liquid metal into the steel cavity and
the decreasing temperature marks the solidification of the metal part. Yet slight changes
in the initial metal temperature, the temperature of the steel cavity or the environmental
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Fig. 1.3 Illustration of a standard blind source separation problem occuring in industrial
manufacturing.

conditions all have a distinct effect on the shape of the sensor signal. If it is possible to
model these distinct effects, the sensor signals can be represented in a new form, namely as
the combination of different physical conditions present during the manufacturing process.
This way, the information yield from single sensors that monitor the process is increased
and the additional knowledge can be used by the process engineers. This combination of
distinct effects, caused by process related mechanisms, is unravelled by a demixing system.
If we model the superposition process with a linear model, the BSS model (i.e. the demixing
system) schematically shown in fig. 1.3 can be expressed as a matrix factorisation

T = WΘΘΘ, (1.1)

or written as a sum

Ti∗ =
K

∑
i=1

WikΘΘΘk∗. (1.2)

If T contains the samples of the observed data as M-dimensional row vectors, they can be
written as a linear combination of K components ΘΘΘk∗, using the coefficients Wik, which can
be interpreted as the contribution of a specific component within the respective observation.

1.1.3 Literature Review: Machine Learning and Data Mining in Man-
ufacturing

As already mentioned, the variety of machine learning methods is quite extensive and the
same goes for the applications of machine learning methods, which can be seen in a number
of publications about the use of machine learning in manufacturing. Industrial processes
typically generate a vast amount of machinery and sensory data, which first needs to be
reduced into a manageable form to be evaluated and analysed by human experts. This
dimensionality reduction can either be done manually, by designing features with prior
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domain knowledge, or by the use of feature extraction algorithms. These techniques can be
summarised with the term "data mining" or "automatic feature extraction." Automatic feature
extraction reduces the time in analysing large data sets and can lead to previously unknown
insights about processes if the right algorithm is chosen. Automatic feature extraction has
already found various use cases in industrial applications.

One industry with a huge selection of data mining applications is semiconductor man-
ufacturing. Here, the main research focus is also the analysis of failure causes and the
prevention of possible defects and scrap. An important discussion about the non-triviality
in choosing the right data preprocessing and the proper data mining method is given in [6]
and the need for general guidelines is highlighted. Neural networks (NN) have repeatedly
been studied for different application purposes in industry, because of their incorporated
feature extraction ability and I am only going to deal with a fraction of the many publications
about the application of neural networks in this domain. A main focus is the modelling of
individual processes, real time equipment controlling, failure detection and the classification
of process problems [64, 40].
Also standard statistical methods of nonparametric tests, like ANOVA, are used to discover
root causes for defects or machine malfunctions, for example in [110, 4, 20].
Decision trees have always been popular, as they give interpretable results based on simple
"Yes" and "No" rules. In [100], a classification and regression tree (CART) was used to
analyse process data from semiconductor manufacturing and the obtained results have been
compared to standard statistical methods. Compared to neural networks, decision trees do
not transform the input data, but rather perform a feature selection and pick out the most
relevant features by some statistical criteria. This way they are highly dependent on the
correct choice of data preprocessing.
BSS techniques are also studied in this domain, and this is one reason which motivated
the use of BSS in the course of this thesis. For example, independent component analysis
(ICA) has been used specifically to model the generation of quality data stemming from a
manufacturing process or to model process variations [98]. Projection Pursuit and mixture
models have also been used to detect dependencies and irregularities in multivariate data
sets [93]. PCA and ICA are also suitable algorithms for process monitoring or multivariate
process monitoring (see [72, 42] ), as they can be used to model latent features in process
datasets. NMF, the method used in the practical work of this thesis, also has been used in
this application domain to extract failure patterns from wafer test data [95].

Another industry, where data mining techniques are an established tool, is chemical
engineering and manufacturing. This application domain is worth mentioning in this section
as the generated process data in chemical manufacturing is similar to the process data
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generated during metal casting (pressure and temperature time series, humidity etc.). Here,
one of the main applications of machine learning methods is for process monitoring tasks,
i.e. the monitoring of a desired quantity (for example a quality index). A common approach
for this task is the design of "soft sensors" or "virtual sensors," which indirectly measure
the desired quantity by modelling the process data and its variations. These approaches are
typically based on the use of a matrix decomposition technique as a preprocessing step, like
PCA [59, 44, 56]. More generally speaking, the design of data-driven soft sensors employs
an automatic feature extraction and the fitting of a regression model.

In comparison to other fields of manufacturing, metal casting lacks wide-spread appli-
cation of data mining techniques and the literature about studies in this domain yields only
few results. A thorough study of different machine learning applications can be found in the
thesis of Dörmann [31]. In his thesis, he outlines a general approach to integrate machine
learning models or statistical models into the production process chain of casting processes.
His work provides a descriptive study on existing machine learning methods and a concept
work on how they can be applied in the metal casting industry. In contrast to his work, the
focus of my thesis is going to be the study of a specific method and the design of an approach,
which can readily be used in this manufacturing domain.
One goal for machine learning techniques in casting processes is defect prediction. Many
casting defects can only be detected by cumbersome investigation methods like X-ray or
computer tomography imaging. Those investigations are usually done hours after the actual
casting process and the casting part has already gone through additional processing steps. If
casting defects can be predicted in an early step, or even right after the casting of the part,
these additional value chain steps can be saved and costs are reduced. This potential appli-
cation is also discussed in [31]. The potential for saving costs will increase even further if
processing steps are located across different plants. More recent publications about machine
learning based control systems are for example [66] and [99].

To sum up, there is a wide variety of different data analysis and machine learning
tools available, which can be applied to all kinds of data generated during manufacturing.
Combined with domain knowledge, any mentioned algorithm can lead to an improvement in
production and help in the diagnosis of defect causes. Yet every method has its limitations
and can be more suitable for one application than the other. This is why methods need to be
studied in different application domains to be able to correctly interpret and implement the
obtained results.
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1.2 Scope of this Thesis and Research Questions

This thesis was written with the intention of developing new analysis tools to aid engineers
in their daily work to discover the root causes for various defects and to monitor the status of
the processes and the quality of the produced parts. During the last three years, I have been
working together with BMW Group in their plant in Landshut, Germany. I was given access
to their databases, which store a tremendous amount of data collected during the production
of motor parts like crankcases or cylinder heads. I decided to focus on the sensory data which
is generated during the actual casting process and to develop methods to extract potentially
useful information from it. Blind Source Separation methods proved to yield the remarkable
ability to extract physically interpretable components. The main focus lies on a technique
called Nonnegative Matrix Factorisation (NMF) and its ability to extract features from
sensory data sets. This is why the main contribution of this thesis lies in the application
of machine learning techniques to new domains and in investigating the results and their
potential applications. Due to the close cooperation with the experts working in the plant, the
explored methods have actually been developed to a degree, which makes them usable during
running production. With these results, this thesis is at the forefront of machine learning
applications in the casting industry.
Although the datasets used in the course of this thesis solely stem from metal casting pro-
cesses, the developed principles are potentially applicable to other manufacturing processes.

1.3 Structure of this Thesis

This thesis is organised as follows: Chapter 2 introduces the theoretical background of the
main algorithms used in the course of this thesis. After a general introduction to unsupervised
learning with matrix factorisation techniques, NMF is introduced by providing a brief
overview of multiple existing applications of the method. Afterwards, general concepts of
implementational aspects concerning cost functions and optimisation strategies are discussed.
The bulk of chapter 2 is dedicated to the derivation of the "Hierachical Alternating Least
Squares" (HALS) algorithm, which is an efficient and flexible implementation to solve the
NMF problem. This algorithm was used to estimate the decompositions of the sensory data
in the practical works in chapter 3. An important research aspect of this thesis is the problem
of properly initialising an NMF algorithm. The problem of non-convex optimisation and
the necessity of a proper initialisation strategy is also discussed in chapter 2. Further, an
initialisation strategy based on singular value decomposition (SVD) is derived. At the end of
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chapter 2, I provide an introduction to linear regression and its combination with a feature
extraction method like NMF.

The first part of chapter 3 gives an illustrative introduction to metal casting processes
and the process which has provided the datasets. This part intentionally contains multiple
photographs of the process and does not go into technical details because its main purpose is
to provide the reader with an overall comprehension of metal casting processes.
Following this, I am going to present the interesting connection between the physical pro-
cesses behind temperature time series and matrix decomposition techniques. This idea is
introduced by first discussing the physical effects present during simple thermal processes
and how they effect the temperature signal recorded by a thermocouple. In the end, a general
form of the decomposition of a time series of any physical quantity is presented. Using this
result, I am then going to present a novel initialisation strategy for any NMF decomposition
of a time series of a physical quantity, which is based on designing initial guesses for the
components by deriving the first order terms of the multivariate Taylor expansion of the
physical quantity. The approach is tested and demonstrated by decomposing simulated toy
datasets.

Having all the theoretical background set up, the outlined approach in chapter 3 is
applied to real-world data sets collected from a gravity casting process. Two different
datasets are used in this part and the obtained results and decompositions are discussed and
interpreted. Each NMF component can be related to a process relevant quantity. In order
to further study the application of the NMF-based approach, experiments with changing
regularisation constraints are shown and discussed. At the end of chapter 3, the before
mentioned combination of NMF with linear regression is applied to sensory data collected
from another casting process. I am going to demonstrate how a "virtual sensor" for the
release agent used in metal casting can be trained with this approach, a method which can be
used to monitor the ongoing production.

In chapter 4, I am going to give a summary of the main findings of this thesis and discuss
my results in the context of recent research areas. The thesis ends with an outlook about
possible next steps of this work.





Chapter 2

Theory and Methods

2.1 Nonnegative Matrix Factorisation

NMF is one of the central algorithms used in the course of this thesis. In this section, I am
going to provide a general introduction to this algorithm, starting from general concepts
about matrix factorisation techniques and implementational issues, and afterwards I am going
to present a detailed derivation of an efficient implementation of NMF.

2.1.1 Unsupervised Learning and Matrix Factorisation

Signal processing, data analysis and data mining are a pervasive topic throughout the manu-
facturing industry and engineering. Under the general topics of "Digitalisation", "Industry
4.0" and "Data Science", the extraction of interesting knowledge from raw datasets, mea-
surements, observations and the understanding of complex data have become an important
challenge and objective. In this thesis, I am going to focus on the fact that datasets generated
by complex phenomena are usually the representation of the integrated result of several
interrelated variables or a superposition of underlying latent components or factors. Thus,
an important goal is to decompose these datasets, and separate them into components, to
discover their structure and extract hidden information for further analysis.

Approximate low-rank matrix and tensor factorisations or decompositions are techniques
that replace the original data by a lower dimensional approximate representation obtained
via a matrix factorisation or decomposition [26]. In a multitude of applications, the signals
or measurements are nonnegative quantities, or are sparse or smooth in nature. As it turns
out, it is preferable to take these constraints into account to extract components or factors
with physical meaning or reasonable interpretation and to avoid absurd results. In other
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Fig. 2.1 Illustration of a linear dimension reduction via a factorisation model T≃ (W,ΘΘΘ).
W contains the new coordinates of the input data in the reduced space and ΘΘΘ the latent
components.
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applications, the best sensor position or the actually important information might not be
known beforehand, but has to be extracted from the gathered signals.

Nonnegative matrix factorisation is one of the main tools used for the work provided in
the practical part of this thesis. The data collected during thermal manufacturing processes is
characterised by unstable processes and changing environmental conditions, which makes
any kind of data analysis or machine learning a challenging task. Approximate matrix fac-
torisations offer effective tools to separate all these influencing factors and extract knowledge
important for engineers to optimise the manufacturing process or to monitor the process. In
the following sections, a general introduction to NMF is given and a detailed description of
the main algorithms used in this thesis to solve the NMF problem is provided.

2.1.1.1 Low Rank Matrix Approximation

Suppose we have a dataset T ∈ RN×M, where N is the number of samples and M the number
of features, i.e. the dimension of the dataset. Then a low rank matrix factorisation can be
understood as any method that calculates an approximation of T with two factor matrices
W ∈ RN×K and ΘΘΘ ∈ RK×M:

T≃WΘΘΘ (2.1)

Fig. 2.1 shows an illustration of the dimensions of the factor matrices and fig. 2.2 illustrates
the decomposition in equation (2.1).

M

N

K

K

W ΘT

M

N≃

Fig. 2.2 Illustration of a linear dimension reduction via a factorisation model T≃ (W,ΘΘΘ).
W contains the new coordinates of the input data in the reduced space and ΘΘΘ the latent
components.

K is the number of dimensions in a new lower dimensional subspace of the original space.
The general idea is that if such a low rank approximation is possible, then the most important
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information about the dataset must be contained in this lower dimensional subspace. The
columns of matrix W are the new coordinates in the lower dimensional subspace and can
be used instead of the full feature vectors in T. The rows in ΘΘΘ are the basis vectors of the
subspace and should point into directions, which capture latent structures in the original
cloud of high dimensional data points T. A low rank approximation of the form given in
(2.1) can also be written as a sum of rank one matrices (see fig. 2.3). The terms in this
expression are calculated as outer products of the columns in W and the rows in ΘΘΘ. From
this expression it becomes clear how the complexity or redundancy in the dataset T can be
reduced by dropping terms on the right-hand side in fig. 2.3.

M

N

W (Θ )T

M

N≃

M

N

M

N

1 W2 W31

T (Θ )
2

T (Θ )
3

T

+ +

Fig. 2.3 Illustration of a rank one approximation via a factorisation model.

2.1.1.2 Singular Value Decomposition and Principal Component Analysis

One of the oldest matrix factorisation techniques is principal component analysis (PCA),
which up to this day is still widely used in a variety of applications and can be considered
one of the most popular linear dimensionality reduction techniques due to its simplicity [46].
PCA is a purely data-driven approach that constructs a low-dimensional representation of
the data, which explains as much of the variance in the data as possible. In mathematical
terms, PCA finds a new orthogonal basis of the data, which is oriented in such a way that the
variance of the coordinates in the new basis is maximal. The usual scenario in which PCA is
used, is when one can assume that there is a redundancy in the dataset under consideration.
This redundancy should be reflected in terms of correlations, since the transformed data is
uncorrelated after the application of PCA.

PCA is commonly performed with Singular Value Decomposition (SVD). Let T be our
data matrix with dimension N×M, where N is the number of samples and M is the number
of variables. SVD is based on a theorem in linear algebra, which states that any real valued
matrix T can be decomposed as

T = UΣΣΣVT , (2.2)
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where U ∈ RN×N , ΣΣΣ ∈ RN×M and VT ∈ RM×M. In full matrix form, the SVD of T is as
follows:

T =

 u11 uN1
. . .

u1N uNN




σ1 0
. . .

σJ
. . .

0 0


 v11 vM1

. . .

v1M vMM

 (2.3)

ΣΣΣ is diagonal with only non-negative entries, which are the so called singular values ΣΣΣ. The
usual convention is to order the columns of ΣΣΣ from high to low with the highest singular
value in the upper left of ΣΣΣ. Any matrix T will have as much singular values as its rank J.
Both U and VT are orthogonal, i.e.

UUT = 1
N×N , VVT = 1

M×M. (2.4)

This decomposition allows us to rewrite TTT as

TTT = UΣΣΣVVT
ΣΣΣUT = UΣΣΣ

2UT . (2.5)

Here, we can see that U acts as an orthogonal basis transformation, which diagonalises TTT ,
because ΣΣΣ is diagonal and thus also ΣΣΣ

2. As TTT is proportional to the covariance matrix of
the data matrix T, U also diagonalises the covariance matrix, which results in uncorrelated
variables with a transformation to the basis given by the columns of U. From (2.2) it is
possible to construct a low rank approximation of the data matrix T by first rewriting

T = UΣΣΣVT = W̃VT , (2.6)

with W̃ = UΣΣΣ and then just dropping the rows and columns except the ones with a high
singular values σi:

T≃WΘΘΘ, (2.7)

where W is made up of the first K columns of W̃ = UΣΣΣ and ΘΘΘ the frist K columns of VT .
This low rank approximation is then called principal component analysis and the K rows in
ΘΘΘ are called the first K principal components.

This low rank approximation comes with useful properties for real-world applications.
First, the components are uncorrelated due to the derivation from the SVD. Second, they are
naturally ordered by their variance. The first principal component always is the direction in
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the dataset with maximum variance. Finally, it can be shown that PCA always yields the low
rank approximation with the lowest overall mean squared error.
The SVD decomposition in (2.2) can also be written as a sum of outer products

TTT =
J

∑
j=1

σ ju jvT
j =

J

∑
j=1

σ jC( j), (2.8)

where we have set C( j) = u jvT
j and u j and m f v j are the column vectors of U and V. From

this expression we can see that by using the SVD-based low rank approximation, the terms
in (2.8), that have a small contribution, are omitted and only the latent contributions are kept.

2.1.1.3 Moore-Penrose-Inverse

From the just obtained SVD decomposition we can derive a way to calculate the so-called
pseudo-inverse of matrices of any dimension [32, 86]. A pseudo-inverse has some properties
of a regular inverse matrix, but not necessarily all of them, and does not have to exist for
for every arbitrary matrix. Let A be a matrix of size NxM and the SVD decomposition is as
defined in the section before

A = UΣΣΣVT . (2.9)

A pseudo-inverse A+ of matrix A has to satisfy the condition AA+A=A. The pseudo-inverse
can then be readily obtained by

A−1 = VΣΣΣ
+UT , (2.10)

where ΣΣΣ
+ is formed from ΣΣΣ by taking the reciprocal of all the non-zero elements and then

transposing the matrix.

2.1.2 The NMF Problem

As mentioned before, PCA can be described as a low rank approximation with the constraint
that the data has to be projected onto orthogonal basis vectors that point in directions of
maximum variance. Roughly speaking, all low rank approximation techniques mainly differ
in the choice of constraints applied to the factor matrices. The constraint for NMF is to
restrict the factor matrices to yield strictly additive decompositions. Let T be a data matrix
with the same dimensions as before. T is now also strictly nonnegative, i.e. Ti j ≥ 0 ∀ i, j.
We wish to find an approximation into two factor matrices like before, but with additional
nonnegativity constraints:

T≃WΘΘΘ, Wi j ≥ 0,Θi j ≥ 0 (2.11)
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Fig. 2.4 Illustration of the parts-based reconstruction of faces with the components extracted
with NMF. This reconstruction is just one example of the many applications, where NMF
yields highly interpretable results. Illustration is taken from [74].

The dimensions of the factor matrices are W ∈ RN×K and ΘΘΘ ∈ RK×M. K has to be a number
with K ≤ min(N,M). The approximation in (2.11), together with the constraint, is called the
NMF problem. As it turns out by enforcing the rather simple nonnegativity constraints, the
NMF decomposition yields highly interpretable results in multiple application areas.

When tracking the history of NMF, we find many publications which mention the stated
problem and give suggestions for solving it, but the first detailed introduction can be found
in a publication of Paatero and Tapper in 1994 [85]. A few years later, the potential of
NMF was widely recognised after a famous publication by Lee and Seung in 1999, where
the algorithm they proposed was applied to images of human faces [74]. The astonishing
result was that NMF is able to decompose the images into a parts-based representation with
naturally emerging interpretable components. The images of human faces were decomposed
into parts like eyes, nose and mouth, which corresponds to human visual perception. Fig. 2.4
shows the decomposition from their publication. Since then, NMF has been applied in many
different areas:

• In image data processing, NMF decomposes images into parts-based representations,
which can be used for face detection, handwritten digit recognition and general image
classification problems [75, 13, 18, 70].

• In biomedical applications, NMF found application in microarray data analysis [19,
71, 39, 11].

• In text mining, NMF can extract topics of semantic features from collections of
documents [97].

• In sound recognition and classification, NMF can be used to extract acoustic features,
like instrument-specific patterns, to perform blind source separation [21, 101].
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• NMF has an inherent clustering property and has found various applications in this
domain [119, 97, 30].

• In spectral analysis, NMF can be used to decompose time-domain signals into different
frequency components [89].

• NMF is a popular choice for blind source separation problems in multisensor systems
[16].

• In industrial manufacturing applications, NMF is used to discover latent structure in
process data [38, 120, 95].

The factorisation in (2.11) can be estimated with various optimisation strategies, but the
general approach is the same for most algorithms. First, we have to define a goodness of fit
measure for the approximation error in (2.11), which is going to be called D(T|WΘΘΘ) in the
following. Then, during an optimisation procedure, the two factor matrices are alternatingly
going to be updated until a stopping criterion is reached. In the following, I intend to go
through the general concept and the most common algorithms to solve the NMF problem.
Afterwards, I am going to provide a detailed introduction to the algorithm which is used in
the practical part of this thesis.

2.1.2.1 Why Nonnegativity?

In real-world applications many quantities are nonnegative by nature and hidden components
have a physical meaning only when nonnegative. For a data-driven approach to yield
components with a physical interpretation, nonnegativity is often desirable or necessary,
for example in image processing and computer vision or spectral analysis. Many physical
quantities are strictly nonnegative by definition, for example energy, intensities or frequency.
Yet enforcing nonnegativity causes some of the explained variance of the approximate
model to be lost, as there is a trade-off between interpretability and statistical fidelity. This
problem is going to be be discussed later in this thesis by using the terms "overfitting" and
"regularisation." Another advantage of nonnegativity is the fact that the decompositions are
strictly additive, i.e. the extracted sources cannot cancel each other. This means that one
source is either "present" or "not present" and the corresponding loadings in the factor matrix
W measures the strength of the contribution.

The data analysed in this thesis are temperature time curves, which are also naturally
nonnegative. Yet an additive decomposition of temperature-time curves does not have a
straight forward physical interpretation because in general, it is not meaningful to sum up
temperatures. In chapter 3, I am going to show the mathematical connection between an
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additive decomposition of temperature curves and the underlying physical mechanisms of
the corresponding thermal manufacturing process.

2.1.2.2 The Cost Function

The cost function quantifies the approximation error between T and its reconstruction with
WΘΘΘ. A popular cost function is the squared Euclidean distance or quadratic error function
[70, 76]:

D(T|WΘΘΘ) = ∥T−WΘΘΘ∥2
F = ∑

i j

(
(Ti j− [WΘΘΘ]i j

)2
. (2.12)

The ∥ · ∥F is called the Frobenius norm. If we divide the Frobenius norm by the number of
entries M ·N, it can be interpreted as a the mean reconstruction error of the reconstruction
of T with WΘΘΘ. Another commonly used cost function is the generalised Kullback-Leibler
divergence (KLD) [70]:

D(T|WΘΘΘ) = ∑
i j

(
Ti j log

Ti j

[WΘΘΘ]i j
+[WΘΘΘ]i j−Ti j) (2.13)

The Kullback-Leibler divergence is originally a quantity used in probability theory to measure
the difference between probability distributions. Algorithms based on the KLD can be
interpreted as obtaining underlying probability distributions of latent factors. Apart from
those two, there are many other possible choices for the cost function. Most of them are
divergence measures like the KLD, for example Bregman divergences [28], α-divergences
[24] and Itakura-Saito divergences [35]. The algorithm used in this thesis employs the
Frobenius norm in (2.12).

2.1.2.3 Strategies for NMF

In this chapter, I am going to present the most commonly used algorithms for the NMF
problem derived from the two cost functions (2.12) and (2.13) and address the question of
initialisation and model order selection. The main difficulty in minimising the cost functions
(2.12) and (2.13) lies in the fact that we have two matrices we do not know. W and ΘΘΘ must
be found by an iterative procedure alternating between updating one matrix while keeping
the other one fixed.
Lee and Seung introduced the following multiplicative update rules for the quadratic cost
function (2.12)

ΘΘΘi j←Θk j
[WT T]k j

[WT WΘΘΘ]i j
and Wi j←Wik

[TΘΘΘ
T ]ik

[WΘΘΘΘΘΘ
T ]ik

(2.14)
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and another set of update rules for the generalised KL-divergence DKL (2.13)

ΘΘΘi j←ΘΘΘk j
∑i WikTi j/[WΘΘΘ]i j

∑l Wlk
and Wi j←Wik

∑ j ΘΘΘk jTi j/[WΘΘΘ]i j

∑p ΘΘΘkp
. (2.15)

In [70], they gave mathematical proof that these multiplicative updates never increase their
respective cost function.

How well an NMF algorithm converges depends on the specific algorithm and for most
update rules, global convergence is hard to proof. Most NMF implementations test the
convergence by measuring the decrease of the cost function between iterations and stop if
the difference falls below some threshold value [51, 77, 63, 62]. Furthermore, the result of
the decomposition depends on multiple factors one has to take into consideration. If the goal
is to achieve the best nonnegative approximation, then other parameters are more important
than if the goal is to extract interpretable decompositions. For a detailed comparison of the
most common NMF algorithms see [128].
Overall, the following questions need to be addressed when solving the NMF problem:

• Which cost function to choose? See section 2.1.2.2.

• How to initialise the matrices W and ΘΘΘ? The matrices W and ΘΘΘ are sometimes
initialised with arbitrary nonnegative numbers, but there are various more sophisticated
strategies for the initialisation. The goal is to find good starting point in the solution
space, for example by doing k-means clustering or PCA [127, 2]. Since NMF algo-
rithms are gradient based techniques, they suffer from getting stuck in local minima
depending on the initialisation.

• How to optimise the cost function?
The multiplicative update rules presented in this section are obviously not the only
way to minimise the respective cost function. Several numerical strategies have been
developed to solve the optimisation problem (some good survey papers are [105, 5, 22]).
Multiplicative update rules and the alternating least squares (ALS) technique are the
two most commonly used algorithms because they do not require additional parameters
and thus are easy to implement [26, 69].
One could also consider to place additional constraints on the matrices W and ΘΘΘ. In
sparse NMF, the matrix ΘΘΘ is assumed to be sparse, i.e. most of its entries are assumed
to be zero [55]. It is also possible to relax the non-negativity constraints. This leads to
NMF variants like semi-NMF and convex-NMF [30].
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• What is the best choice for K, i.e. the number of hidden components?
The model order K has to be chosen beforehand. As already mentioned, this is a
difficult issue because there is no optimal decision criterion and in some cases, there
does not even have to exist an ideal value for K. Information criteria like the "Bayes
information criterion" (BIC) or the "Akaike information criterion" (AIC) can be useful
to have a rough estimate for K [1, 96], but in practice it is often reasonable to try
different values for K and decide by comparing the solutions. In some cases, there
might be prior knowledge about the latent components or sources, which are present in
the dataset. In such cases, the number of components can be chosen accordingly.

• The stopping criterion. NMF is estimated in an iterative optimisation procedure, so a
simple stopping criterion would be a predefined number of iterations or a fixed running
time. In literature, we can find different suggestions for stopping criteria. Brunet et. al
suggest to measure the difference between recent iterations and set a threshold as a
stopping criterion [11]. In the studies done in the course of this thesis, this stopping
criterion was used. Other authors invoke stopping criteria from bound constrained
optimisation [78]. The violation of the Karush-Kuhn-Tucker optimality conditions can
also be used as a measure to construct a stopping criterion [63].

2.1.2.4 Initialisation Techniques

Without constraints, the NMF algorithm yields two indeterminancies. One is the non-
uniqueness of the extracted components scaling. Each solution WΘΘΘ can be transformed by
multiplying with a matrix B and its inverse WBB−1ΘΘΘ. The matrix B can be at least any
non-negative monomial matrix, i.e. a permutation and scaling matrix. Secondly, the number
of the extracted components is not determined automatically, but must be set to a fixed K
beforehand. How to deal with the non-uniqueness remains an open question and there is
no satisfactory solution yet for all cases [68, 53, 95]. Hence, different strategies exist to
render an NMF solution unique. These strategies are closely related to the question of how
to initialise an NMF decomposition. The initialisation has a large impact on the algorithm’s
performance and output. NMF algorithms are prone to get stuck in local minima due to the
fact that the cost function is non-convex if one considers both arguments. This means that a
random initialisation is almost never advisable, because the solutions will be different for
each run and the number of iterations needed for a good fit will be larger. In practice it is
recommended to run an algorithm several times using different random initialisations and
pick the solution which offers the best approximation.
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Canonically, a generally simple and effective way towards unique NMF solutions is
to fix the initialisation of the factor matrices ΘΘΘ and W. The nonnegative double singular
value decomposition (NNDSVD) initialisation is an effective way to choose an initial set of
components ΘΘΘk∗ [10]. This approach is based on the SVD, which has already been explained
in section 2.1.1.2. The main idea behind using SVD to initialise NMF is the fact that it
is mathematically provable that SVD yields the smallest approximation error (in (2.12))
compared to other matrix factorisation approaches.

In the practical part of the thesis, I am going to introduce an alternative to a canonical data-
driven approach by incorporating prior knowledge and deliberately initialise the component
temperature-time functions by physically motivated dependencies. This is done by connecting
the heat equation with a matrix factorisation via the multivariate Taylor expansion. I am
going to demonstrate that this way, we can achieve highly interpretable decompositions.

2.1.2.5 An SVD-based Initialisation

In this section, I am going to outline how the SVD is used to calculate an initial guess for
the factor matrices W and ΘΘΘ in (2.11). A very detailed mathematical derivation can be
found in the original publication by Boutsidis et. al [10]. The authors also show that this
initialisation dramatically speeds up the convergence of NMF algorithms compared to plain
random initialisations.

From section 2.1.1.2, we take the formulation of the SVD as a sum of J singular triplets:

T =
J

∑
j=1

σ ju jvT
j =

J

∑
j=1

σ jC( j) (2.16)

where we have set C( j) = u jvT
j . If we assume the matrix T to be nonnegative, the NNDSVD

method uses a modification of this sum. We denote any vector x or matrix X, which is
projected into the positive quadrant, as x+ ≥ 0,X+ ≥ 0, where x+,X+ denotes a vector
or matrix of the same size that has all negative components set to zero. In the same way,
the projection into the negative quadrant is denoted x− ≥ 0,X− ≥ 0 and is defined by
X = X+−X−, with a corresponding definition in case of a vector. Note that for both the
negative and positive projection, we use a "greater than or equal" sign, because, if the original
matrix X contains zero elements, the zeroes will be present in both projections. Using this
definition we can write:

σ jC( j) = σ j(u j+−u j−)(v j+−v j−)
T , (2.17)

= σ j(u j+vT
j++u j−vT

j−)−σ j(u j+vT
j−+u j−vT

j+) (2.18)
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The positive and negative section can thus be written as:

σ jC
( j)
+ = σ j(u j+vT

j++u j−vT
j−) and (2.19)

σ jC
( j)
− = σ j(u j+vT

j−+u j−vT
j+) (2.20)

We only take the positive section σ jC
( j)
+ and consider their SVD decomposition. It can be

proven that they have rank(σ jC
( j)
+ )≤ 2, hence that they possess at most only two non-zero

singular values µ j+,µ j− and corresponding eigenvectors. The eigenvectors and eigenvalues
can be readily obtained from (2.19). Let û j± =

u j±
∥u j±∥ and v̂ j± =

v j±
∥v j±∥ be the normalised

positive and negative sections of u and v, then the SVD decomposition of σ jC
( j)
+ is given by:

σ jC
( j)
+ = µ j+û j+v̂T

j++µ j−û j−v̂T
j−, (2.21)

µ j+ =
∥∥u j+

∥∥∥∥v j+
∥∥σ j and (2.22)

µ j− =
∥∥u j−

∥∥∥∥v j−
∥∥σ j. (2.23)

From there, we take the dominant singular triplet (µ j−, û j−, v̂T
j−) or (µ j+, û j+, v̂T

j+) to
initialise the columns and rows of W and ΘΘΘ:

W: j =
√

µ j+û j+,

ΘΘΘ j: =
√

µ j+v̂T
j+.

(2.24)

If we wish to initialise an NMF run with K ≤ J components, we take the dominant
(µk±,uk±,vT

k±) derived from the K leading σkC(k).
In addition to the already mentioned performance improvements compared to random

initialisation techniques, this initialisations also incorporates a natural order, similar to
PCA, into the NMF decomposition. The initialisation is constructed by the dominant
(µk±,uk±,vT

k±) and as such, the final NMF result is likely to keep this ordering, and the
obtained components will be ordered according to their individual contributions in the
reconstruction of T. Another advantage is that NNDSVD is a purely data-driven approach
as it is strictly mathematical and no prior knowledge about the data generation process is
needed.

2.1.3 Alternating Least Squares and Hierarchical Alternating Least
Squares

The algorithm used in the practical part of this thesis is based on the so called Alternating
Least Squares algorithm (ALS) and is called Hierachical Alternating Least Squares (HALS)
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[25]. HALS provides a fast and reliable solver for the NMF problem. Compared to the
multiplicative update rules described in the last section, HALS is suitable for large scale
datasets, which are commonly generated during industrial manufacturing. The first part of this
section aims at explaining the standard ALS algorithm and modifications. As standard ALS
still suffers from unstable convergence properties and the problem of suboptimal solutions,
a detailed summary of the most common extensions is provided. Those extensions include
additional constrains like sparsity or smoothness, which are implemented by adding suitable
regularisation functions to the Frobenius norm cost function [125, 2, 52, 112]. After the
derivation of the regularised ALS algorithm, I intend to go through the derivation of the the
more efficient HALS algorithm, which was used for the practical applications in chapter
three. The following sections are abstracted from the book of Cichocki et. al [26].

2.1.4 Alternating Least Squares Algorithm

ALS is the most used strategy for solving the NMF problem and is based on an alternating
iteration of the factorisation matrices. The starting point is the known standard NMF model.

T = WΘΘΘ, s.t. Wi j ≥ 0 and Θi j ≥ 0 with ΘΘΘ ∈ RK×M W ∈ RN×K (2.25)

As the name suggests, the cost function for this approach is the basic Euclidean distance
function or Frobenius norm:

D(T ∥WΘ) =
1
2
∥ T−WΘ ∥2

F (2.26)

The ALS optimisation procedure now considers these cost functions as two separate optimi-
sations or projections [23, 70].

W (k+1) = argminW ∥ T−WΘ
(k) ∥2 s.t. W≥ 0 (2.27)

and
Θ
(k+1) = argminΘ ∥ T−W(k)

Θ ∥2 s.t. Θ≥ 0 (2.28)

This set of minimisation problems is now solved by exploiting a fixed point approach. For
a solution in nonlinear programming to be optimal, it has to satisfy the already mentioned
Karush-Kuhn-Tucker (KKT) optimality conditions [17]. The KKT conditions are an exten-
sion of Lagrange multipliers. From the KKT optimality condition it can be conducted that
any stationary point ΘΘΘ

∗ and W ∗ of the cost functions (2.27) and (2.28) has to satisfy [49]:

W∗ ≥ 0, ΘΘΘ
∗ ≥ 0 (2.29)
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∇W D(T ∥W∗ΘΘΘ∗) = W∗ΘΘΘ∗ΘΘΘ∗T −TΘΘΘ
∗T ≥ 0, W⊙∇W D(T ∥W∗ΘΘΘ∗) = 0 (2.30)

∇ΘD(T ∥W∗ΘΘΘ∗) = W∗T W∗ΘΘΘ∗−W∗T T≥ 0, Θ⊙∇ΘD(T ∥W∗ΘΘΘ∗) = 0 (2.31)

Here, ⊙ is defined as component-wise multiplication.
Under the assumption of strictly positive entries, we estimate the stationary points by setting
the gradients in (2.30) and (2.31) to zero:

∇W D(T ∥W∗
ΘΘΘ
∗) = [W∗ΘΘΘ∗ΘΘΘ∗T −TΘΘΘ

∗T ]+ = 0 (2.32)

∇ΘD(T ∥W∗ΘΘΘ∗) = [W∗T W∗ΘΘΘ∗−W∗T T]+ = 0 (2.33)

[·]+ is the projection onto the positive quadrant as defined in section 2.1.2.5. From there, we
obtain the standard nonnegative ALS update equations:

W ←− [TΘΘΘ
T (ΘΘ

T )−1]+ = [TΘΘΘ
−1]+ (2.34)

Θ←− [(WT W)−1WT T]+ = [W−1T]+ (2.35)

The pseudocode for standard ALS using these update rules is summarised in Algorithm 1.
This basic algorithm is efficient and easy to implement, but suffers from a tendency to get
stuck in local minima. In the following, some extensions for the standard ALS, aiming to
avoid this problem, are going to be discussed in detail.

Algorithm 1: Standard ALS algorithm
1 function ALS (T,K);

Input :Nonnegative matrix T ∈ RN×M
+ : data matrix, K: rank of approximation

Output :Nonnegative factorisation matrices W ∈ RN×K
+

2 and ΘΘΘ ∈ RK×M
+ such that the cost function (2.26) is minimised.;

3 begin
4 Initialise W and ΘΘΘ;
5 repeat
6 Update W←− [TΘΘΘ

−1]+;
7 Update ΘΘΘ←− [W−1T]+;
8 until a stopping criterion is met;
9 end
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Fig. 2.5 The effect of regularisation on the obtained solution.

2.1.5 Extensions to ALS

2.1.5.1 L1- and L2-regularisations

Overfitting is a problem, which affects both supervised and unsupervised learning algorithms.
A model which captures too much of the noise or outliers in the dataset, is said to be
overfitting, because it does not learn general rules but instead random chance. Applying
an overfitted model to new unseen data will show an increased error in its prediction or
reconstructions. The chance of overfitting a model increases significantly if the number of
dimensions in the dataset is larger or comparable to the number of samples available.

Regularisation is one strategy to avoid overfitting. Matrix factorisation techniques in
particular are prone to overfitting, due to the naturally high complexity of the model (i.e.
number of parameters). The number of parameters that have to be obtained from the
optimisation in the standard NMF problem (see (2.25)) is

N×K +K×M, (2.36)

which in most cases means more parameters than training points. Intuitively, the risk of
overfitting should decrease if the number of training samples is increased, but in real-world
applications, the number of samples is usually limited. Regularisation adds additional penalty
terms to the cost function, which then favours solutions that do not contain extreme values or
have a high local reconstruction error. This way, regularisation allows the training of complex
models on a limited amount of data without severe overfitting.

The general cost function for NMF with regularisation using the Euclidean distance can
be written in this form:

DFr(T ∥WΘΘΘ) =
1
2
∥ T−WΘΘΘ ∥2

F +γW RW (W)+ γΘRΘ(ΘΘΘ) s.t.Wi j ≥ 0, Θi j ≥ 0 (2.37)
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γW and γΘ are the respective regularisation parameters and the terms RW (W) and RΘ(ΘΘΘ)

are the regularisation penalties, which are chosen to enforce a certain desired property
(smoothness, sparsity etc.). The regularisation parameters, which control the strength of
the constraint, must either be chosen beforehand or calculated during the iteration steps.
A common strategy is to choose the regularisation parameter γ with respect to the noise
level E = T− T̂, which is unknown, but in some cases can be estimated beforehand. If the
noise level is known, one can use the noise variance γ = σ2

E . We can solve this optimisation
problem in (2.37), the same as without regularisation, by setting the gradient to zero:

∂

∂Wi j
D(T ∥W∗

ΘΘΘ
∗) = [W∗

ΘΘΘ
∗
ΘΘΘ
∗T −TΘΘΘ

∗T ]i j + γW
∂RW (W)

∂Wi j
= 0, (2.38)

∂

∂Θi j
D(T ∥W∗ΘΘΘ∗) = [W∗T W∗

ΘΘΘ
∗−W∗T T]i j + γΘ

∂RΘ(ΘΘΘ)

∂Θi j
= 0, (2.39)

Applying the half-rectifying projection, we derive the following update rules for the general
case:

W← [(TΘΘΘ
T − γW

∂RW (W)

∂W
)(ΘΘΘΘΘΘ

T )−1]+ with
∂RW (W )

∂W
∈ RN×K (2.40)

ΘΘΘ← [(WT W)−1(WT T− γΘ

∂RΘ(ΘΘΘ)

∂W
)]+ with

∂RΘ(ΘΘΘ)

∂W
∈ RK×M (2.41)

In the following, the most used choices for the regularisation parameters RW (W) and RΘ(ΘΘΘ)

are shown and the way how they affect the final decomposition is discussed.

2.1.5.2 L2-regularisation

If we want to impose smoothness constraints to the solution of the NMF optimisation, a stan-
dard approach is to use RW (W) =∥W ∥2

F and RΘ(ΘΘΘ) =∥ΘΘΘ ∥2
F . This choice of regularisation

also bounds the obtained solution, because too large values will be suppressed during the
optimisation. In a mathematical sense, smoothness in this context can be understood as small
local variance in the obtained solution. Using the general derivation 2.40 and 2.41, we can
now optimise the new cost function

D(T ∥WΘΘΘ) =
1
2
(∥ T−WΘΘΘ ∥2

F +γW ∥W ∥2
F +γΘ ∥ΘΘΘ ∥2

F) (2.42)

and obtain the following update rules:

W← [(TΘΘΘ
T )−1(ΘΘΘΘΘΘ

T + γW I)]+ with I ∈ RK×K (2.43)

ΘΘΘ← [(WT W+ γΘI)(WT T)]+ with I ∈ RK×K (2.44)
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I is the identity matrix. This type of regularisation is called Tikhonov regularisation or
L2-regularisation.

2.1.5.3 L1-regularisation

Another common regularisation is the so-called L1-regularisation, where we use RΘΘΘ(ΘΘΘ) =∥
ΘΘΘ ∥1. Instead of the Frobenius norm, we use the l1-norm, which is defined as ∥X ∥= ∑i j |xi j|.
The cost function with L1-regularisation is:

D(T ∥WΘΘΘ) =
1
2
(∥ T−WΘΘΘ ∥2

F +γW ∥W ∥1 +γΘ ∥ΘΘΘ ∥1) (2.45)

The ALS update rules now become:

W← [(TΘΘΘ
T − γW 1N×K)(ΘΘΘΘΘΘ

T )−1]+ (2.46)

ΘΘΘ← [(WT W)−1(WT T− γΘ1K×M)]+ (2.47)

1K×M and 1N×K are matrices where all entries are one.
L1-regularisation is useful if a sparse nonnegative representation is a desired property of

the solution. Sparse representations mostly contain zeros in the activation matrix and only a
few non-zero elements. With the parameter γW and γΘ, the sparsity in either the activations
or the components can be controlled. Sparsity is a desired property in many applications,
because a sparse model definitely removes redundancy in the original dataset, if the new
representation given by the model still has a high fidelity to the original data.

2.1.6 Hierarchical Alternating Least Squares

In the previous sections, the ALS algorithm was explained in detail. It is the foundation of
the extension of the NMF implementation, which was used in the practical part of this thesis.
The basic idea behind the Hierachical Alternating Least Squares (HALS) is that instead of
one cost function, a set of local cost functions is used, which are sequentially minimised.
This implementation of NMF yields advantages over other implementations, as it is shown to
work well also for undercomplete cases (i.e. a system with less sensors than signals). The
extensive practical applications of this algorithm show the validity and high performance of
the HALS [26].

The first step in the derivation of the HALS update rules is to construct the set of cost
functions from the standard cost function. In order to do so, we look at the rows and columns
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of the factorisation matrices
W = [w1,w2, . . . ,wK], (2.48)

with wk being the column vectors of W and

ΘΘΘ
T = H = [h1,h2, . . . ,hK], (2.49)

with the hk’s being the row vectors of ΘΘΘ or the columns of H. The already known Frobenius
norm cost function can be rewritten like this:

D(T ∥WΘΘΘ) =∥ T−
K

∑
k=1

wkhT
k ∥2

F=∥ E ∥2
F (2.50)

EW
ΘT

(N x M)

= +

(N x M)(N x K) (K x M)

Fig. 2.6 Illustration of the definition of the error matrix. The error matrix E is the difference
between original data and the current factorisation matrices.

Here, the factorisation is expressed as a sum over outer products between wk and hk,
which is a sum of rank 1 matrices. E is the error between the factorisation and original data
matrix T (see fig. 2.6 ). With this representation, we define a set of residua

T( j) = T−∑
k ̸= j

wkhT
k = T−WHT +w jhT

j = E+w jhT
j (2.51)

and minimise the set of cost functions

D( j)
W (w j) =

1
2
∥ T( j)−w jhT

j ∥2
F , for fixed h j (2.52)

D( j)
H (h j) =

1
2
∥ T( j)−w jhT

j ∥2
F , for fixed w j. (2.53)

The definition of the residua matrices T( j) is illustrated in fig. 2.7:
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T (j)

=

E

+

wj jhT

(N x M) (N x M) (N x 1) (1 x M)

Rank 1
matrix

Fig. 2.7 Illustration of the definition of the residuum matrices. The residua matrices are
calculated by adding a rank 1 matrix to the current error matrix.

The KKT optimality conditions for the set of cost functions

D( j)
F (T( j) ∥ w jhT

j ) =
1
2
∥ T( j)−w jhT

j ∥2
F (2.54)

for j = 1, . . . ,K subject to w j ≥ 0 and h j ≥ 0 are

w j ≥ 0, h j ≥ 0, (2.55)

∇w jD
( j)
F (T( j) ∥ w jhT

j )≥ 0, ∇h jD
( j)
F (T( j) ∥ w jhT

j )≥ 0, (2.56)

w j⊙∇w jD
( j)
F (T( j) ∥ w jhT

j )0, h j⊙∇w jD
( j)
F (T( j) ∥ w jhT

j ) = 0. (2.57)

The update rules are now derived as before by calculating the gradient with respect to w j and
h j:

▽w j D( j)
F (T( j) ∥ w jhT

j ) =
∂D( j)

F (T( j) ∥ w jhT
j )

∂w j
= w jhT

j h j−T( j)h j, (2.58)

▽h j D( j)
F (T( j) ∥ w jhT

j ) =
∂D( j)

F (T( j) ∥ w jhT
j )

∂h j
= wT

j wT
j h j−T( j)T w j. (2.59)

Setting these gradients to zero and assuming strictly positive entries w j and h j for all j we
obtain the HALS update rules without regularisation, which are also illustrated in fig. 2.8.

w j←
1

hT
j h j

[T( j)h j]+ =
1

hT
j h j

[T( j)h j]+, (2.60)

h j←
1

wT
j w j

[T( j)T w j]+ =
1

wT
j w j

[T( j)T w j]+. (2.61)
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[ · ]+ is defined the same way as the positive section in section 2.1.2.5. In practical imple-
mentations of the HALS we do not set any emerging negative entries to zero but to a small
positive constant ε > 0.

jh

(M x N)

wjT(j)T

+
(M x 1)

(N x 1)

jh

+(N x 1)

(M x 1)

wj T

(N x M)

(j)

(b)(a)

Fig. 2.8 (a) The update rule for w j. The following normalization step for w j is not depicted
here. (b) The update rule for h j.

In algorithm 2, the complete HALS procedure in its standard way is shown. Note that also
a normalisation at each iteration step is performed on w j , which scales the column vectors to
norm one (l2-norm). The key difference between HALS and regular ALS is the consecutive
optimisation of individual column vectors instead of the full matrices, which makes HALS
more efficient and flexible than ALS. The iterative update of individual column vectors gives
the opportunity to apply constrains only to specific components. Another possibility would
be to keep certain components or coefficients constant during the training procedure. In ALS,
such variations are not possible because in each iteration step, a full factor matrix is updated.
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Algorithm 2: HALS algorithm
1 function HALS (T,K);

Input :Nonnegative matrix T ∈ RN×M
+ : data matrix, K: rank of approximation

Output :Nonnegative factorisation matrices W ∈ RN×K
+

2 and ΘΘΘ ∈ RK×M
+ such that the cost function (2.26) is minimised.;

3 begin
4 Initialise W and Θ = HT ;
5 foreach w j in W do
6 w j← w j/ ∥ w j ∥2
7 end
8 E = T−WHT ;
9 repeat

10 for j = 1, . . . ,K do
11 T (k)←− E+w jhT

j ;
12 h j← 1

wT
j w j

[T( j)T w j]+;

13 w j← 1
hT

j h j
[T( j)h j]+;

14 w j← w j/ ∥ w j ∥2;
15 E←− T(k)−w jhT

j ;
16 end
17 until a stopping criterion is met;
18 end
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2.1.7 HALS with Regularisation

The set of cost functions for the HALS algorithm can also be extended with regularisation
terms. Incorporating L1- and L2-regularisation for the matrix ΘΘΘ and W leads to the following
set of cost functions:

D( j)
F (T( j) ∥ w jhT

j ) =
1
2
∥ T( j)−w jhT

j ∥2
F + (2.62)

γ1,h ∥ h j ∥1 +
1
2

γ2,h ∥ h j ∥2
2 + (2.63)

γ1,w ∥ w j ∥1 +
1
2

γ2,w ∥ w j ∥2
2 . (2.64)

With the same calculations as in the previous sections, we can derive the following update
rule for h j (see equation (2.41)) [26]:

h j←

[
1

1+ γ2,h
I([T( j)]T w j− γ1,h1K×1)

1
wT

j w j

]
+

(2.65)

If we consider, that the cost function is symmetric then the update rule for w j is

w j←

[
1

1+ γ2,w
I(T( j)h j− γ2,h1K×1)

1
hT

j h j

]
+

(2.66)

With these update rules, the HALS procedure offers a flexible algorithm, which allows to
apply regularisation constraints of any type to individual components or weights of the decom-
position. In chapter 3, I am going to present a study about the effect of different combinations
of regularisations on the decomposition results obtained from industrial datasets.

2.2 Linear Regression

So far in this thesis, I have mainly focused on unsupervised learning, which is also going
to be in the center of the results of the practical work. In this short section, I am going to
introduce one algorithm from the domain of supervised learning called linear regression.
This technique is used in conjunction with NMF to design a so-called "virtual sensor," which
is going to be presented in the results discussed in chapter 3 of this thesis.

The goal of regression is to predict the value of one or more continuous target variables y
given the value of a K-dimensional vector of features x. The following section is abstracted
from [9]. Suppose we have multiple observations or samples xi, where i = 1, . . . ,M, and
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a corresponding set of target values yi. Our goal is to predict the value of the target ynew

for new values of the input vector xnew. In more general terms, we intend to find the
probability distribution p(t|x). If we have this predictive distribution, we have a measure
for the uncertainty of the value t for each value of x. As the name suggests, in linear
regression, the goal is to estimate a linear mapping of y onto x. Mathematically, we have to
obtain a coefficient vector b and a bias term b0, with which the following equation closely
approximates the output y:

yn ≃ bT xn +b0; (2.67)

Just as it is the case in unsupervised learning, we need to define a suitably chosen cost
function and an optimisation scheme. For linear regression, the Euclidean distance can be
used as a cost function:

ED(b) =
1
2

N

∑
n=1
{yn−bT xn−b0}2, (2.68)

2.2.1 Linear Regression with NMF Preprocessing

Suppose we have a data set of multiple time series described by a data matrix T, whose rows
contain time series. Tn is a row vector of the n-th time series in T. We now want to extend the
standard linear regression to handle time series input. From a strictly mathematical viewpoint,
there is no problem in using the full data matrix T as feature matrix and treat every time point
Tn(t) as an input feature for the regression model, but this approach has practical limitations.
First, this will in most cases unnecessarily increase the input dimension compared to the
information content of the whole time series. If only certain aspects of the time curve contain
predictive information for the target variable y, the model complexity will be too large for the
problem at hand. In such cases, we risk to overfit the model during the training process, i.e.
the model maps noise features to the target y and will then perform poorly on new data. This
fact is even more problematic if the set of target variables y is limited, which it usually is if y
stems from real-world measurements. The standard approach is then to derive predefined
features from the time series and use those as independent features for the regression model.
This approach is advisable if combined with domain knowledge. In the practical part of this
thesis, we deal with a dataset, where there is no domain knowledge about the most important
features. So instead of predefining features, we use a feature learning algorithm like NMF. As
explained before, NMF decomposes the data into latent factors that model the most dominant
variations in the data. This way, the dominant information within the data matrix T should
be captured while the input dimension is decreased. Furthermore, most of the random noise
should be filtered after transforming the data into the NMF feature space. So the first step is
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to train an NMF model on a data matrix T of sufficient size and keep the factorisation matrix
ΘΘΘ (see fig. 2.9). ΘΘΘ can then be used to project new data onto the NMF components.

W
ΘT

(N x M)

=

(N x K)

(K x M)

ΘT h1 hh2 3

≈ ,
(M x K)

Fig. 2.9 An NMF model is trained and the fixed ΘΘΘ can be used to project new unseen data
onto the components .

With NMF preprocessing, the cost function without the bias term for the linear regression
model becomes

ED(b) =
1
2

N

∑
n=1
{yn−bT

Θ̂ΘΘ(((Tn)))}2, (2.69)

where the Θ̂ΘΘ(·) are transform functions which take the time series as input and return the
corresponding value of the loadings estimated by the NMF model. Suppose Tn is a new, still
unseen time curve:

T 
[°

C
]

t [s]

Tn

new data

(1 x M)

Fig. 2.10 Unseen data is represented as a new data vector.

Then
Θ̂ΘΘ(Tn) = (Θ̂1(Tn),Θ̂2(Tn), . . . ,Θ̂K(Tn))

T (2.70)

is the projection of the time series vector Tn onto the component processes from the NMF
model (with K components). Θ̂ΘΘ(Tj) can be described as repeatedly executing the optimisation
procedure in (2.60) using the fixed ΘΘΘ until a stopping criterion is reached. The update
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procedure is then executed only one-sided to estimate new weights w j. First the residua
matrices are calculated using the fixed column vectors h j:

EW ΘT
(1 x M)

n
= +

Tn(j)

=
E

(1 x M) (N x 1) (1 x M)
+

wj jhT

(1 x M)(1 x K)
(K x M)

(1 x M)

(a)

(b)

Fig. 2.11 (a) The approximation error. (b) The residuum matrix for a single value.

Afterwards, the update step for w j is performed and repeated together with the estimation of
the residuum matrices until a convergence criterion is reached.

jh

+

(1 x 1)

(M x 1)

wj

T

(1 x M)

(j)
n

Fig. 2.12 The update step for a single value.

Similar to NMF, a regression model can be extended with regularisation terms .Using a
regularisation term, the cost function becomes

ED(b) =
1
2

N

∑
n=1
{yn−bT

Θ̂ΘΘ(((Tn)))}2 +
λ

2

K

∑
j=1

∣∣b j
∣∣q , (2.71)

where q defines the type of regularisation and λ the strength of the regularisation. q = 1
(L1-regularisation) is called lasso regression [109]. If we set q = 2 (L2-regularisation), we
perform ridge regression. Both regularisation types can be mixed and the parameter λ can
be adjusted to the specific problem at hand. Lasso regression has the property that the
coefficients in bT are sparse, i.e. the b j are driven to zero.

As mentioned before, regularisation allows to train the model with training datasets of
limited size without the risk of severe over-fitting because the model complexity is limited
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(the solution space for the coefficients is reduced), but the optimal value for λ has to be
determined during the training phase. Solving (2.71), we first set the gradient with respect to
b equal zero

∇bED(b) =
N

∑
n=1
{yn−bT

Θ̂ΘΘ(((Tn)))}Θ̂ΘΘ(((Tn)))
T = 0. (2.72)

This leads to a simple algebraic solution for the least squares problem in (2.68):

b = (ξ T
ξ )−1

ξ
T y, (2.73)

with (ξ T ξ )−1ξ T beeing the Moore-Penrose pseudo-inverse. The elemensts of ξ ∈ RM×K are
defined as

ξi j = Θ̂ j(Ti), (2.74)

i.e. the projection of the i-th time curve onto the j-th NMF component. In summary, our
combined NMF regression model includes the following training steps:

• step 1: Train an NMF model with K components on a training dataset T;

• step 2: Use the projection onto NMF components as preprocessing function Θ̂ΘΘ(·);

• step 3: Estimate the regression coefficients b by solving the least squares problem in
(2.68).

The regression equation together with the Θ̂ΘΘ are then combined to construct the final
model, which can be applied to any new time curve Tnew. From a pretrained NMF model,
we construct the transformation functions Θ̂ΘΘ(·). Then the regression equation is computed
via linear least squares minimisation and the final model is then given by the combination of
regression model and NMF model, which can be applied to any unseen time curve.
Usually, a regression model also contains a bias parameter b0 that compensates for the
difference between the averages (over the training set) of the target values and the weighted
sum of the averages of the independent variables. The cost function with a bias parameter is

ED(b) =
1
2

N

∑
n=1
{yn−b0−bT

Θ̂ΘΘ(((Tn)))}2. (2.75)

By setting the gradient with respect to the bias parameter to zero, we obtain

b0 = ȳ−
K

∑
j=1

b j
¯̂
Θ j, (2.76)
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where

ȳ =
1
N

N

∑
k=1

yk, (2.77)

¯̂
Θ j =

1
N

N

∑
k=1

Θ̂ j(Tn) (2.78)

2.2.2 Semi-supervised Learning

The combination of NMF, which is an unsupervised learning algorithm, and linear regularised
regression, which is a supervised learning technique, can be seen as a so-called semi-
supervised learning procedure. Semi-supervised learning in general is a class of machine
learning tasks and techniques that make use of unlabelled data in a supervised learning
setting [129]. Typically, the amount of labelled data is small compared to the amount of
unlabelled data in this setting. In our case, we can exploit the fact, that we have a large
unlabelled dataset for the training of the NMF model. The NMF model can be trained on a
matrix Tunlabelled ∈ RN1×M, while the regression with the transformation function Θ̂ΘΘ(Tn) can
be trained on a matrix Tlabelled ∈ RN2×M, where N1 > N2. This way, the latent components,
which are only identifiable from a huge amount of time series, can be used as input features
for a supervised learning task, although only a few samples of labelled data are available.

In literature, many researchers report that the use of unlabelled data together with a
small amount of labelled data can considerably improve the performance of regression or
classification models (see the survey paper by Zhu for an overview [129]). In real-world
applications, this scenario is not uncommon, for example if the acquisition of labelled data
requires a human agent with expert knowledge (e. g. evaluating the content of images or
classifying the results of experiments) or if the costs for a fully labelled dataset are too large
(e.g. performing costly experiments). At the same time, the acquisition of unlabelled data
might be relatively unproblematic. In an industrial manufacturing process, sensory data
is generated en masse, but complicated measurements evaluating the machine status are
costly and can usually only be performed while interrupting the series production. In such a
scenario, a semi-supervised approach might be advisable.

Semi-supervised learning is often guaranteed to improve the model performance, if the
underlying data generation process can be described as a mixture model [14, 15, 92, 36, 83, 3].
In such a scenario, the observed data x can be modelled as a combination of underlying latent
components, i.e. probability distributions. The idea is to estimate a probabilistic model that
generates the observed data. By sampling from this model, we are able to generate new data.
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A mixture model with K components and given assumptions M takes the general form:

p(x|M) =
K

∑
k=1

p(x|Mk,k) p(k|M0) (2.79)

On this basis the data can be generated by stochastically choosing one of the components
under p(k|M0) and then drawing from p(x|Mk,kk), where Mk are the component model
assumptions and M0 are assumptions about the mixture process. The model assumptions
represent the model definition, i.e. parameters, model structure and prior information. p(x|M)

quantifies the likelihood of the observed data if it is generated with the model assumptions M.
The mixture model components can be identified if we have a large enough amount of data.
If the mixture model assumption about the data generation is correct, the model performance
can be improved, but if not, it is possible to effect the performance negatively, which was
shown by Cozman et al. in [34]. This is why it is important to carefully construct the mixture
model to reflect reality or to yield a sufficient approximation thereof.

Blind Source Separation techniques based on matrix factorisations (ICA, NMF) are a class
of machine learning techniques that can be interpreted as techniques to extract underlying
mixture models with certain mathematical properties. Nonnegative matrix factorisation
in particular has a strong connection to well-known methods based on mixture model
assumptions like probabilistic latent semantic analysis (PLSA) [41, 30]. According to [41],
NMF can be interpreted in a similar manner like PLSA factors, which are probabilities. It has
to be noted that most of the cited publications refer to semi-supervised classification tasks
instead of a regression task. In general, the machine learning literature mainly focuses on
semi-supervised classification tasks in this domain. Some algorithms naturally extend from
classification to regression, so most of the empirical findings are similar and the theoretical
background is transferable. The results reported in chapter 3 in this thesis contribute to the
ongoing research in this domain.





Chapter 3

Practical Part

The previous chapter has provided the reader with an overview of the theoretical background
of the the main algorithms used in this thesis. At the beginning of chapter 3, I am going
to give an introduction to the manufacturing process in which the sensory data used in the
experiments was recorded. This introduction is not intended to provide the reader with
precise technical details about the manufacturing process, which can be found in related
engineering literature. Instead, the goal is to create an intuitive understanding of the data
generation process and this is why the following section contains multiple images taken
during the ongoing production at different manufacturing steps. Afterwards, I am going
to outline the construction of an NMF-based model, which allows for the extraction of
highly interpretable information from sensory data that is recorded from a manufacturing
processes. This model is formulated in a general way to make it applicable to different kinds
of measurement data recorded as time series. After this, the model is applied to real-world
data and its capabilities are presented. In the last part of chapter 3 the model is combined
with the previously outlined regression approach and I am going to show how it is possible
to design a virtual sensor which can be used to for in-line monitoring of a manufacturing
process.

3.1 The Manufacturing Process: Gravity Mould Casting

The thermal manufacturing process, from which the datasets are taken, is called "gravity
mould casting." As already mentioned, a thorough technical description of casting processes
is beyond the scope of this thesis, instead this chapter includes multiple graphical illustrations
and images to give the reader an overall understanding of the data generation process. Typi-
cally, motor parts are produced with gravity casting, which is a casting processes especially
suited for the production of complex geometries. In the following, I will explain the main
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concepts of a casting process by providing an illustrated guide through the production cycle
of a cylinder head.

(b)(a)

Fig. 3.1 (a) A look at the inside of the cavity. The white surface is due to a coating with
a release agent. (b) A NiCr-Ni temperature sensor, which is placed inside the steel of the
mould.

Gravity mould casting, sometimes referred to as permanent mould casting, is a repeatable
casting process used for non-ferrous alloy parts, typically aluminium or copper based alloys.
As the name suggests, the main force driving the filling process is gravity. The process can
be summarised into three main stages:

1. The mould is preheated and prepared for the filling process. An important step, which
is done before the casting process starts, is the preparation of the cavity’s surface. Fig.
3.1 (a) shows an inside view of the cavity surface, that has been coated with a release
agent (white color). Usually, this release agent is a mixture of Na2O and SiO2, which
dries under the influence of CO2. This coating ensures that the finished casting part can
be removed from the cavity after solidification. The coating also has an isolation effect,
i.e. it decreases the heat transfer number, which affects the temperature profile inside
the cavity. Secondly, it smooths the roughness of the surface and thus influences the
flow velocity of the liquid metal during the filling process. Both effects are critical for
the production of parts with sufficient quality. Usually, the coating is applied manually
with a spray pistol. Fig. 3.1 (b) shows a NiCr-Ni temperature sensor, which can be
embedded in the cavity. From the backside of the cavity, holes are drilled that end 1-2
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cm below the cavity surface and in which the temperature sensors are embedded.
At this stage, sand cores are sometimes placed into the empty cavity to form the inner
geometry of the metal part to be produced. In fig. 3.2, the empty cavity and the casting
machine are shown. On the left side of the cavity, the "mould spure" can be seen, which
has the purpose of "guiding" the liquid metal to flow into the cavity from the bottom
up through a pipe system. Afterwards, the sand cores, which shape the geometry of
the metal parts are placed into the cavity and the cavity is closed. Fig. 3.3 shows the
casting machine after all preparations for the filling process are done.

Fig. 3.2 The empty cavity within the casting machine.
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Fig. 3.3 The closed cavity with sand cores.

2. Now the casting ladle is moved over the mould sprue and tilted to start the filling
process (see fig. 3.4). The liquid metal is now rising inside the cavity until it is
completely filled. The molten metal flows into the cavity from below through the
"mould sprue." This method reduces turbulence in the flow of the alloy, which might
cause casting defects.

Fig. 3.4 The filling process (image provided by BMW AG).
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3. This is the solidification phase. Usually, the solidification phase is guided by cooling
or heating channels that run through the steel. Afterwards, the cavity is opened and
the part is removed automatically. From fig. 3.5 to fig. 3.6, we can see how the metal
is shrinking down due to solidification and during this critical time period, most of
the casting defects will occur, if solidification is not controlled. The final step is the
retrieval of the casting part (see fig. 3.7) and afterwards the removal of the sand cores
that are still inside the casting part (fig. 3.8).

Fig. 3.5 The cavity filled with liquid metal (image provided by BMW AG).

Fig. 3.6 The metal shrinks during the solidification (image provided by BMW AG).
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Fig. 3.7 The solid casting part is automatically removed from the cavity (image provided by
BMW AG).

Fig. 3.8 Sand cores are removed with hammers (image provided by BMW AG).
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3.1.1 Data Collection during the Casting Process

The whole casting process is monitored by multiple temperature sensors placed in different
positions in the steel mould.

Fig. 3.9 Illustration of the data generation process. (a) Liquid metal is poured into the cavity.
Until the metal reaches the sensor position, the sensor reflects the temperature of the steel.
(b) The liquid metal reaches the position of the sensor. The temperature starts to rise. (c)
Cavity is filled and metal cools down and solidifies. (d) Solid metal part is ejected and the
temperature recording stops.

In this study, I focus on the sensor signals collected from one specific sensor during
consecutive production of components (see fig. 3.1 (b) for an image of a typical Ni-NiCr
sensor used to monitor the casting processes). These recordings resulted in a datasets
TTT ∈ RN×M, where N is the number of production cycles, i. e. consecutive time series
recorded at the sensor, and M the number of time points at which the sensor signal was
sampled. Fig. 3.9 schematically illustrates how a typical temperature curve is generated
during the casting process. When the liquid metal is poured in and reaches the sensor position,
the temperature at the sensor starts to rise. The sensor then records a temperature - time
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curve, whose shape is determined by the heat flux of the cooling metal, cooling channels and
heating in the steel mould. The whole casting process takes roughly three minutes (depending
on the specific part type) and the sensor stops recording when the cavity automatically opens
after the solidification is finished.

3.2 The NMF Approach for Time Aeries of Physical Quan-
tities

The focus of this thesis lies on analysing temperature time series with NMF, but the approach,
which is outlined in this section is generally applicable to any time series of a physical
quantity, if certain conditions are met. So in this section, the approach is motivated from the
viewpoint of temperature time series at first, but the end result is going to be formulated in a
general form.

3.2.1 Physics: The Heat Equation

Considering the flow of heat energy Q = cpρT inside the mould and the liquid metal filling,
local temperature changes, as recorded by any specific sensor, are determined by the non-
stationary heat equation, which represents a parabolic partial differential equation

∂T (rrr, t)
∂ t

−λT ∇
2T (rrr, t) = f (rrr, t), rrr ∈ℜ

3, t > 0. (3.1)

∇ denotes the nabla operator estimating the local gradient, T (rrr, t) denotes the temperature
measured at fixed sensor position rrr and at time points t, and λT = λq/(ρcp) represents the
thermal diffusivity, λq the thermal conductivity, ρ the mass density and cp the specific heat
at constant pressure [12]. For simplicity, here we consider units such that λT = 1. In our
case, we also have external heat sources like heating and cooling channels, which can be
modeled by a source function f (rrr, t) ∝ (ρcp)

−1∂q(rrr, t)/∂ t where q(rrr, t) denotes the heat
flux density. The corresponding stationary and homogeneous situation is described by the
Laplace equation ∆∆∆LT (rrr) = 0, the solution of which is composed of harmonic functions.
Hereby, ∆∆∆L ≡ ∇2 denotes the Laplace operator. However, the inhomogeneous stationary case
is ruled by the Poisson equation ∆∆∆LT (rrr)+ f (rrr) = 0 and its solutions can be obtained with
the help of Green’s functions.
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A special solution of the heat equation, called the fundamental solution, yields the heat
kernel, which belongs to the family of exponential functions (a Gaussian):

T (rrr, t) =
1√

2πσ2(t)
exp

(
− ∥ rrr ∥2

2σ2(t)

)
, (3.2)

where σ2 denotes the spatial variance and ∥ .. ∥ the Euclidean norm.
The general solution to the non-stationary, inhomogeneous heat equation is given by a

sum of contributions
T (rrr, t) = T h(rrr, t)+T s(rrr, t), (3.3)

where T h(rrr, t) solves the homogeneous case, and T s(rrr, t) denotes the specific solution to
the inhomogeneous problem in case of vanishing initial contributions from the external heat
sources:

∂T s(rrr, t)
∂ t

= ∇
2T s(rrr, t)+ f (rrr, t), rrr ∈ℜ

3, t > 0

and T s(rrr, t = 0) = 0.
(3.4)

Here, the source function f (rrr, t) describes any heat source active during the process. So the
resulting temperature at the sensor can be written as a sum of contributions, of which one
captures the information about external sources in the process.

3.2.2 Deriving the Matrix Decomposition

Let T (rrr0, t) be the solution to the heat equation given in (3.1). T (rrr0, t) describes the sensor
signal recorded by a sensor at fixed sensor position rrr0. With NMF, we wish to model
the registered temperature - time curves T (rrr0, t) at fixed sensor position rrr0 as a linear
superposition of unknown, independent component processes.

In order to connect the solution of the heat equation with a matrix decomposition, let us
look at the definition of the multivariate Taylor expansion

f (xxx) = ∑
|α|≤k

Dα f (aaa)
α!

(xxx−aaa)α + ∑
|β |=k+1

Rβ (xxx)(xxx−aaa)β (3.5)

Rβ (xxx) =
|β |
β !

∫ 1

0
(1− t)|β |−1Dβ f (aaa+ t(xxx−aaa))dt, (3.6)

with Dα f = ∂ |α| f
∂xα1

1 ···∂xαn
n
, |α| ≤ k and the sum being constructed using the multi-index

notation
|α|= α1 + · · ·+αn, α! = α1! · · ·αn!, xxxα = xα1

1 · · ·x
αn
n . (3.7)
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In the derivation of T (rrr0, t), multiple external factors, physical parameters or initial conditions
like initial temperature or changing isolation effects have to be considered. So T (rrr0, t) can
be seen as a function which also depends on these quantities. For example, we could extend
the arguments in the following form:

T (r0, t,T0,TS,α), (3.8)

where T0 is the initial temperature of the steel at the sensor position, TS is the initial tempera-
ture of the liquid metal and α is the thermal diffusivity. Note that this is a simplification of
the complex three dimensional scenario of a real world thermal process. With the definition
of the multivariate Taylor expansion from above, T (r0, t,T0,TS,α) can be approximated up
to the first order as a matrix decomposition:

T (r0, t,T0,TS,α)|T0=T ∗0 ,TS=T ∗S ,α=α∗ ≃ (3.9)

T (r0, t,T ∗0 ,T
∗

S ,α
∗)+ (3.10)

∂T
∂T0
|T0=T ∗0 (T0−T ∗0 )+ (3.11)

∂T
∂TS
|TS=T ∗S (TS−T ∗S )+ (3.12)

∂T
∂α
|α=α∗ (α−α

∗) = (3.13)

[
1 (T0−T ∗0 ) (TS−T ∗S ) (α−α∗)

]
×


T (r0, t,T ∗0 ,T

∗
S ,α

∗)
∂T
∂T0
|T0=T ∗0

∂T
∂TS
|TS=T ∗S

∂T
∂α
|α=α∗

 . (3.14)

Since we want to extract and model contributions, which change during the running pro-
duction, t and r0 are kept constant. From this relation, we can expect that if the variations
occurring during the ongoing production are small enough, their overall effect on the temper-
ature signal should be approximately proportional to their corresponding partial derivative.

As an example, consider a simple physical system with a time-dependent temperature
T (t) that has the initial temperature T (t = 0) = T0. This system is embedded into an infinite
space at constant temperate TS ≥ T0. The temporal dynamics of this system are described by
the one-dimensional heat transfer equation

∂T (t)
∂ t

= α(TS−T (t)). (3.15)
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Solving (3.15) yields a simple exponential heating process:

T (t) = TS +(T0−TS)e−αt (3.16)

If we take the partial derivatives ∂T
∂T0

, ∂T
∂TS

and ∂T
∂α

from (3.16), we obtain the following
expressions:

∂T
∂TS

= 1− e−αt , (3.17)

∂T
∂T0

= e−αt , (3.18)

∂T
∂α

= (TS−T0)te−αt . (3.19)

If we suppose that, during the ongoing production, these three parameters vary between
different manufacturing processes, then also the recorded temperature time curve will vary.
If these process-related variations are small enough (i.e. non-linearities are negligible), we
can model their distinct effect on the signal response with the exponential expressions given
in (3.17), (3.18) and (3.19). Let us further look at the following intervals:

T0 ∈ [T0,min ,T0,max], (3.20)

TS ∈ [TS,min ,TS,max], (3.21)

α ∈ [αmin ,αmax], (3.22)

which are the smallest intervals, which contain all values that T0, TS and α take on during
the considered period of time of running production. If we calculate the Taylor expansion at
α∗=αmin, T0∗= T0,min and TS∗= TS,min, the bracket terms (α−α∗),(T0−T ∗0 ) and (TS−T ∗S )
in (3.11),(3.12) and (3.13) will be strictly nonnegative. By enforcing nonnegativity on the
weight matrix W, the NMF solution should be guided to extract the evaluation of the partial
derivatives at the lower bounds of the intervals given in (3.20), (3.21) and (3.22), i.e. the
NMF decomposition estimates the first order Taylor approximation at αmin, T0,min and TS,min.
Fig. 3.10 illustrates schematically how the processes described by the partial derivatives
(3.11) to (3.13) will affect the shape of the measured temperature signal. Fig. 3.10 (a)
shows the effect if the thermal diffusivity α is changed, which will result in a faster rising
temperature but also a faster cooling effect. The dashed signal is calculated with a lower value
for α . The change in curvature shape is plotted in the middle column, which is described by
the partial derivative shown in the right column. Fig. 3.10 (b) and (c) respectively, illustrate
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Fig. 3.10 Illustration of how different contributing factors change the shape of the recorded
sensor signal. The left column shows the initial curve (dashed line) and the curve after one
parameter was changed (dotted line). The middle column shows the shape of the change and
the right column the corresponding partial derivative from the Taylor expansion. For (a), the
parameter α was increased. For (b), the initial temperature T0 and for (c), the environmental
temperature TS were increased.

the effect of a changing initial temperature at the sensor position and a changing environment
temperature TS.

In general, this interpretation makes NMF a promising candidate in many other problem
settings. If the error or the first order Taylor approximation is small, any physical quantity
Q(r0, t, p1, p2, . . . , pZ) can be decomposed with a similar interpretation. Here, pn (n =

1, . . . ,Z) are physical parameters which describe the quantity Q. Writing the first order Taylor
expansion at pn,min (n = 1, . . . ,Z) in matrix form, with the minimal values defined in the
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same way as in (3.20) to (3.22), we obtain:

Q(r0, t, p∗1, . . . , p∗Z)≃ Q(r0, t, p1,min, . . . , pZ,min)+
Z

∑
n=1

∂Q
∂ pn

∣∣∣∣
pn=pn,min

(p∗n− pn,min) = (3.23)

[
1 (p∗1− p1,min) . . . (p∗Z− pZ,min)

]
×



Q(r0, t, p1,min, . . . , pZ,min)

∂Q
∂ p1

∣∣∣∣
p1=p1,min

...
∂Q
∂ pZ

∣∣∣∣
pK=pZ,min


= (3.24)

W(p∗1, . . . , p∗Z)ΘΘΘ(p1,min, . . . , pZ,min) (3.25)

Expression (3.25) can be seen as the reconstruction of one single row in an NMF decom-
position with K = Z +1 components. Due to the construction of ΘΘΘ(p1,min, . . . , pK,min) with
p1,min, . . . , pZ,min, it is clear that the component processes are the same for all temperature
signals in one dataset. W(p∗1, . . . , p∗Z) will be different for every recorded sensor signal,
because it depends on the varying p∗1, . . . , p∗Z .
By the aid of the Taylor expansion, it is also possible to naturally describe the limitations of
the NMF-based approach. If the non-linear terms in the Taylor expansion have a significant
contribution, the linear NMF model will likely construct mixture components, which lack
interpretability.

3.2.3 A Physics Inspired Initialisation Strategy for NMF

The connection between NMF and underlying physical processes through the Taylor expan-
sion given in (3.25) can be used to design a new kind of initialisation strategy. From (3.25),
we expect NMF to estimate an approximation of the first order Taylor expansion, which shall
yield highly interpretable component processes. Since the NMF result strongly depends on
the algorithm’s initialisation, this motivates the following approach:

1. Let Q(t,r) be the physical quantity that is measured with a sensor during a manu-
facturing process over a fixed amount of time and with a fixed time step ∆t. The
manufacturing process is repeated N times and all recordings of Q are saved and
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ordered chronologically in a data matrix

Q = (Qnm), Qnm = Qn
(
tm = (m−1)∆t

)
(3.26)

with n = 1, . . . ,N and m = 1, . . . ,M. (3.27)

Here, Qn(t) is the sensor recording from the n-th manufacturing process performed.
Each signal starts at t = 0 and ends at (M−1)∆t = tend .

2. Estimate a physical model for Q(t,r) = Q(t,r, p1, . . . , pZ), with p1, . . . , pZ being phys-
ical parameters. The latter describe the physical mechanisms which generate the
measured quantity and can also vary during the consecutive production.

3. Derive or approximate the partial derivatives ∂Q(t,r,p1,...,pZ)
∂ pk

and construct the initial
matrix ΘΘΘinit in the following way:

ΘΘΘinit =


Q(0) Q(∆t) . . . Q((M−1)∆t)
∂Q(0)
∂ p1

∂Q(∆t)
∂ p1

. . .
∂Q

(
(M−1)∆t

)
∂ p1

...
... . . .

...
∂Q(0)
∂ pZ

∂Q(∆t)
∂ pZ

. . .
∂Q

(
(M−1)∆t

)
∂ pZ

 (3.28)

Here, Q(t) is defined as the mean of all the signals in the dataset Q, i.e.

Q(t) =
1
N

N

∑
n=1

Qn(t). (3.29)

Afterwards, the rows in ΘΘΘinit should be normalised. In the course of this thesis, the
rows were always scaled to have L1-norm length one, i.e. ∑

M
m=1 |(Θinit)im|1 = 1 for

i = 1, . . . ,(Z +1).

4. The initial weight matrix Winit is estimated with the Moore-Penrose pseudo-inverse
(see section 2.1.1.3):

Winit = ΘΘΘ
−1
init ·QQQ (3.30)

The idea behind this approach is to initialise the decomposition close to a highly interpretable
result. If an extracted component resembles one of the curves that we obtain from the partial
derivatives, this might indicate that it indeed yields information about a specific physical
quantity which varies during running production. The reason to use the mean of all recorded
sensor signals is based on the fact that in (3.25), the first row is given by the evaluation of
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Q(t,r) = Q(t,r, p1, . . . , pZ) at the minimum values of the parameters p1, . . . , pZ , which in
reality should not deviate significantly from the mean. This approach further tackles some of
the main inherent difficulties of any NMF implementation. First, the non-uniqueness problem
is relaxed by having a fixed initialisation. Second, there is the determination of the number
of components to extract. In the framework of this approach, the number of components is
estimated as the number of terms in the first order Taylor expansion, that are expected to
make a significant contribution to the overall signal, which at least sets an upper limit to the
number of components. An additional advantage is that this approach makes it possible to
use domain knowledge to guide the NMF decomposition to extract the desired solutions.

3.2.3.1 Initialisation for Temperature Time Curves

The outlined approach in this section is demonstrated with temperature recordings from
different casting processes. For this sake, two different initialisation matrices are mainly used
in the following chapters. The physical model used to construct the initialisation is the simple
heating process from (3.16). This process relates to the scenario of metal casting, where we
mainly have a strong heating-up process due to the heat flow from the liquid metal. This
model does not include the cooling phase during solidification, but, as it is going to be shown
in the experiments, using this simple model, it is already possible to extract interpretable
and usable decompositions from the temperature curves. Depending on the placement of the
specific sensor within the steel, the effect of the cooling phase might not be noticeable during
the time of one casting process. Let T̂ (t) be the equation which describes our process:

T̂ (t) = TS +(T0−TS)e−αt (3.31)

With this equation, we can define the row vector (T̂)m+1 = T̂ (m∆t) (m = 0,(M−1)) which
has M elements. T ∈ RN×M is the data matrix, which contains the recorded sensor signals
as defined before. Note that in the three-dimensional heat equation, the thermal diffusivity,
which describes a material property, is used, but in the real world process, the material
is not isotropic and we have to consider a heat transfer through a system made up of
different materials. This is why in this case α is the heat transfer coefficient. Following the
initialisation strategy outlined in section 3.2.3, we design two different initialisation matrices,



56 Practical Part

which are going to be used to initialise the decomposition of real-world data:

ΘΘΘinit,1 =


T

∂

∂T0
T̂

∂

∂α
T̂

 , ΘΘΘinit,2 =



T

∂

∂T0
T̂

∂

∂α
T̂

∂

∂TS
T̂


(3.32)

Here, T is calculated with T using the definition provided in (3.29). The parameter T0 can be
directly related to an important process quantity, which is the temperature of the steel cavity
at the sensor position. The effective thermal diffusivity α can be related to the heat transfer
between the alloy and the steel at the sensor position. The thermal conductivity between
alloy and steel can vary due to effects like a different layer of release agent or gap formation
between the solidifying part and the steel cavity. TS is defined as ambient temperature in the
simplified physical model in (3.31), which does not directly relate to any process parameter
in the real casting process, because the temperature of the liquid metal is not constant. One
can suspect, that it can be associated with the initial temperature of the liquid metal. In
the experiments section, Θinit,1 and Θinit,2 are used to initialise the decompositions and the
results are compared.

3.2.4 The NMF Model for Temperature Time Curves

To sum up, the here outlined approach yields a way to approximate the first order Taylor
expansion for a physical quantity which is measured during a manufacturing process over a
certain time period. The approach exploits the fact that we have a large number of sensor
recordings, which are typically generated during series production. With the multivariate
Taylor expansion, it is possible to connect the measured time curve to a matrix decomposition,
as is shown in (3.25). The Taylor expansion is estimated in such a way that the coefficients of
the expansion terms are all nonnegative. This then motivates the use of NMF to approximate
the decomposition (right-hand side of (3.25)) of the time curves. As NMF does not necessarily
have to estimate a solution which approximates the desired Taylor expansion terms, the
initialisation of NMF can be constructed using partial derivatives derived from a simplified
physical model of the process. This way, the optimisation procedure can be guided to estimate
solutions which lie close to the first order terms in (3.25) and as such are highly interpretable.
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Fig. 3.11 illustrates the NMF model for the decomposition of temperature datasets:

T = WΘΘΘ (3.33)

The data matrix T is constructed as explained in the previous chapters by stacking the
temperature curves in chronological order. This way the weights in W will also be ordered
chronologically, which will then help us in detecting time dependencies in the individual
contribution of the component processes.

M
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Fig. 3.11 Illustration of the matrix factorisation model T≃ (W,ΘΘΘ). T contains the recordings
of a specific sensor from consecutive production of parts. The rows of T are ordered
chronologically. ΘΘΘ contains the basis functions and W the activations of the corresponding
basis functions for a specific time series.

In fig. 3.11, the data matrix T is decomposed into K = 3 component processes, which
are contained in the rows of ΘΘΘ. If we initialise the NMF optimisation with Θinit,1 in (3.32),
we expect the extracted component processes to resemble the curves shown in fig. 3.13.
From this resemblance, it becomes possible to classify the origin of the extracted component
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processes. For example, ΘΘΘ3 in fig. 3.11 probably describes a process-related variation in
the thermal diffusivity of the heat flow towards the sensor. Of course, this classification by
resemblance always needs to be verified by expert knowledge or experiments, but in the
following chapters, it is going to be shown that this visual interpretation approach yields
practical results.

M

K
K

W

Θ

N

Fig. 3.12 Depiction of how the results of the matrix factorisation model T ≃ (W,ΘΘΘ) are
presented in this thesis.

In the following section, multiple decomposition results are going to be presented. Fig.
3.12 gives a description of how these results are going to be plotted. The extracted component
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processes are contained in the rows of matrix ΘΘΘ and are referred to as ΘΘΘi. They are plotted as
time curves. Below them, the corresponding weights are plotted, which are referred to as
Wi. The x-axis is the row number in W or the process number of the n-th process. In the
example in fig. 3.12, there would be N = 350 processes. M is the number of time steps of
the recordings, i.e. M = 155

∆t in fig. 3.12, where ∆t is the time step.

3.2.4.1 Decomposition of Toy Data

In order to demonstrate the ability of the approach outlined in this chapter and also to
investigate the problem of mixture components, the outlined approach is applied to toy
datasets obtained from simulations.
The data set contains 350 temperature time curves, which were generated by adding variation
terms in (3.16):

Tk(t) = TS +((T0 +Ti(k))−TS)e−(α+α(k))t , k = 1, . . . ,350 (3.34)

Ti(k) was varied with a triangle wave function and α(k) was varied with a sinusoidal wave
function with different amplitudes and both were shifted vertically to be strictly nonnegative.
For Ti(k), the amplitude of the triangle wave was set to 0.1, 1 and 10. The amplitude for
the sinusoidal wave α(k) was varied from 0.001, 0.1, 0.1. Fig. 3.13 shows Ti(k) and α(k)
with the amplitudes set T0,A = 0.1 and αA = 0.001. If the NMF decomposition is able to
model the variation within the dataset, it will yield component processes which resemble
the triangular and the sinusoidal shape. Since only the initial temperature and the thermal
diffusivity are varied, the first order Taylor expansion contains three different terms, so
a K = 3 NMF decomposition is calculated. The results for the three simulation runs are
shown in fig. 3.14. Fig. 3.14 (a)- (c) shows the result obtained from the low variation
dataset. Here, the extracted component processes almost exactly match the partial derivatives

Fig. 3.13 Illustration of the simulated toy data set. The left shows the artificial variation
of the initial temperature with a triangular wave function. The right-hand side shows the
sinusoidal variation of the thermal diffusivity.
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in (3.18) and (3.19). Also the weights W2 and W3 closely resemble the triangular and
sinusoidal wave in fig. 3.13. If the magnitude of the variation is increased, we can see
how NMF starts to extract mixture components (3.14 (d)-(f)). In (f), the weights W3 are
already distorted, although the triangular shape is still visible. The shape of the component
processes has slightly changed. The results of the simulation with the highest variation are
shown in (g)-(i). Here, the component process ΘΘΘ222 and its corresponding weights W2 (fig.
3.14 (h)) do not resemble (3.18) or the sinusoidal wave function. The simulated variation
is large enough for the linear approximation to not hold anymore and the output gets dis-
torted by non-linearities and mixture components. The same effect can be seen in fig. 3.14 (i).

Fig. 3.14 Results with simulated data. Each column shows the decomposition results,
obtained from a simulated dataset with different magnitude of inherent variations.
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From this toy data example, we can see that the NMF decomposition can indeed estimate
an approximation of the first order Taylor expansion, if the inherent variations in the dataset
are small enough. This sets an expected natural limit to the outlined NMF-based approach,
because NMF yields a linear decomposition into latent component processes and is unable
to model non-linearities. If there are strong non-linear variations present in the dataset,
the extracted component processes will lack the interpretability given by the connection
to the first order Taylor expansion shown in (3.25). Real-world manufacturing processes
are typically kept at a stable point and change only marginally, i.e. the assumptions about
non-linearities is valid in many cases.

3.3 Application to Real-World Datasets

In this section, the outlined approach from the sections before is applied to data collected
during the series production of a gravity casting process. The gravity casting process and the
data generation process are described in section 3.1. The NMF algorithm used is the HALS
algorithm, which is derived in section 2.1.6 in the theoretical part of this thesis. To initialise
NMF, two different procedures are used, one being the data-driven NNDSVD approach
explained in section 2.1.2.5 and the other being the physics motivated knowledge-based
approach explained in 3.2.3, which aims at the estimation of the first order Taylor expansion.
In the following, two different datasets are analysed, which stem from temperature mea-
surements at two different positions from the production of a cylinder head. The process
works almost exactly as the one shown in section 3.1. The actual casting machine cannot be
depicted here, because this is confidential information of the partner company.

3.3.1 Real-World Data from a Thermal Manufacturing Process

3.3.1.1 Dataset 1: A Simple Process

The first dataset is generated by a sensor that is positioned in such a way that it mainly records
the heat flow from the liquid metal and the cooling-down process during solidification. Fig.
3.15 (a) shows three example curves from the dataset. As can be seen, the temperature-time
curve seemingly reflects a rather simple heating-up and cooling-down process. The sensor is
positioned in such a way that it is affected by a cooling channel that is turned on at around
60 seconds and not turned off afterwards. Each curve records a time period of 155 seconds
with a five seconds time step, i.e. each curve consists of 32 time points. Until roughly 60
seconds, the temperature is rising. At around this time point, the filling process is finished.
Afterwards, the sensor measures a gradual decrease in temperature.This dataset is made up
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of temperature curves from 350 consecutive processes, i.e the dimension of the data matrix is
T1 ∈ R350×32.

Fig. 3.15 Examples of three different temperature recordings from the two datasets. (a)
A simple process with a heating and a cooling phase. (b) A more complex process with
additional cooling effects.

3.3.1.2 Dataset 2: A Complex Process

The second dataset stems from the same processes but from a sensor at a different position in
the cavity. The data matrix has the same dimensions and is referred to as T2 ∈ R350×32. In fig.
3.15 (b), three example curves from T2 are shown. As can bee seen, the time series is more
complex that the ones shown in (a) because there is an additional cooling process, which
starts at around 30 seconds. The reason for this is that the sensor position is close to a cooling
channel, which is switched on at this time point and is then switched off from around 70 to
110 seconds. At 140 seconds, it is switched off again, which is why the temperature starts to
rise again. Compared to the curves shown in (a), there are additional external contributions.
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This dataset is chosen, because there it is possible to show, how the NMF decomposition
deals with external sources acting on the temperature signal.

3.3.2 Results

3.3.2.1 Results for Dataset 1

T1 is decomposed with the knowledge-based initialisation using ΘΘΘinit,1 and ΘΘΘinit,2 from
(3.32) for a respective decomposition with K = 3 and K = 4. Since the NMF output is not
unique in terms of scaling, the rows of the resulting matrix ΘΘΘ are divided by their respective
L1-norm and the corresponding columns in W are multiplied by the same value. The goal
is to render the extracted weights comparable in their individual contribution to the signals.
The HALS algorithm, described in the theoretical part, was stopped after the change of
reconstruction error during iteration steps was below 10−8.
The resulting decomposition is shown in fig. 3.16 and an explanation on how to read the image
is given in fig. 3.12. The left-hand side (a)-(b) shows the K = 3 decomposition initialised
with ΘΘΘinit,1 and the right-hand side (d)-(g) the K = 4 decomposition initialised with ΘΘΘinit,2.
First thing to notice is that ΘΘΘ1 makes the strongest contribution in the reconstruction of the
original signal, as can be seen in W1 in fig. 3.16 (a) and (d) in both results. This goes along
with the interpretation of estimating a first order Taylor expansion. Due to the initialisation,
it can be expected that the first component process relates to the first term in (3.25) and the
corresponding coefficient is just 1, i.e. the coefficient is constant. The weights W1 appear to
be almost constant at a high value compared to the other Wk in both decomposition results.
This further indicates that the first order Taylor expansion is appropriate, because if the first
order term is already large compared to the linear terms, then the non-linearities should be
negligible. The component ΘΘΘ1 can also be seen as sort of "base line" to which all other
components are added up.

K=3 The K = 3 decomposition in fig. 3.16 (a)-(c) was initialised with the partial deriva-
tives ∂

∂T0
T and ∂

∂α
T and, indeed, ΘΘΘ2 in (b) and ΘΘΘ3 in (c) resemble the curves shown in fig.

3.10. This suggests that the components extracted by NMF contain information about the
physical quantities in their corresponding weights because of the connection between the
NMF weights and the physical parameters shown in (3.25).
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Fig. 3.16 Dataset 1: The NMF decomposition with knowledge-based initialisation with K = 3
and K = 4 components. The extracted component processes resemble the shape of the partial
derivatives we obtain from the Taylor expansion.

ΘΘΘ2 in fig. 3.16 (b) should yield information about the initial temperature of the steel
mould at the beginning of the casting process due to its initialisation with ∂

∂T0
T . This as-

sertion is strengthened by the two significant peaks in W2, which happen right after a long
interruption during the manufacturing process. In such cases, the cavity is be pre-heated with
flame burners to prepare the cavity for the casting process and to speed up the ramp-up time.
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This then results in a higher than usual temperature at the cavity’s surface.
The most interesting result in this decomposition is the obtained component process ΘΘΘ3 in
fig. 3.16 (c), which can be related to a changing heat transfer coefficient during the series
production. A variation in the heat transfer coefficient, i.e. a change in the rate of heat flow
and thus consequently a different solidification process, is a critical parameter for the final
product quality. Component ΘΘΘ3 is obtained by initialising with ∂

∂α
T and the corresponding

weights W3 are therefore interrelated with the heat transfer coefficient of the system alloy,
release agent and steel mould. This relationship is schematically illustrated in fig. 3.17.
Typically, the release agent layer decreases the heat transfer coefficient, i.e. it has an isolation
effect and lowers the rate of heat transfer. If the thickness d1 during one process is smaller
than during another process with d2, then the rate of heat flow Q̇1 > Q̇2 and consequently the
recorded sensor signals will differ in their shape. The difference in their curvature should be
approximately describable by the partial derivative ∂

∂α
T , if the change in the heat transfer

coefficient is small enough.
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Fig. 3.17 Schematic illustration of how a different layer of release agent influences the
temperature signal. A thin layer (left) causes a higher rate of heat flow than a thicker layer
(right). The shape of the recorded sensor signal changes in a specific way depending on the
layer thickness.
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Fig. 3.18 shows how the release agent is applied in between the casting processes. This
reapplication is done regularly, because the layer is gradually removed during consecutive
production, which will result in the production of defective parts if the layer becomes too
thin. The component process ΘΘΘ3 in 3.16 (c) captures these effects in its corresponding
weights W3. Fig. 3.19 shows the same ΘΘΘ3 (from Fig. 3.16) in a larger image. Here, the
additionally added black arrows mark the events at which a coating is manually reapplied in
a similar fashion as shown in fig. 3.18. These events result in a sudden drop in the weights,
i.e. a sudden decrease of the heat transfer coefficient due to the increased layer thickness.
Furthermore, in between these sudden drops, the weights ΘΘΘ3 gradually increase, which comes
from the gradual removal of the release agent layer and the consequent increase of the heat
transfer coefficient α . If we observe how ΘΘΘ3 affects the sensor signal, namely that a higher
contribution results in a faster rising temperature during the filling phase and also a faster
decrease during the solidification phase, the relation to the heat transfer coefficient becomes
clear. The ability to extract this information from temperature recordings offers a variety of
potential applications, which is going to be discussed at the end of the third chapter.

Fig. 3.18 The image shows how the release agent is applied to a casting cavity. During the
running production the layer has to be reapplied regularly (image is taken from [33]).

K=4 The K = 4 decomposition in fig. 3.16 (d)-(g) is obtained with ΘΘΘinit,2 from (3.32) and
thus has one more component which is initialised with ∂

∂TS
T . In comparison with the result

on the left-hand side in fig. 3.16, we can see that the first three components are similar in
their shape and that also the weights have a similar structure. W1 and W2 in (d) and (e)
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are comparable in their magnitude, but W3 in (f) has lower weights than W3 in (c). The
reason for this is that (c) was split into (f) and (g), which might indicate that with K = 3,
the decomposition estimates mixture components to some degree. Also ΘΘΘ1 and ΘΘΘ2 have
a slightly different curvature. ΘΘΘ4 resembles the function for ∂

∂TS
T in fig. 3.10, which is a

simple exponential function. W4 has sudden steps in its weights similar to W3. The steps
sometimes coincide with the steps in W3, which has process-related reasons. The oven,
from which the liquid metal is delivered to the machine, is refilled after a certain number of
production cycles. The time period of the oven refilling is often used to reapply the release
agent. The oven temperature is slightly lower than the temperature of the recently melted
metal which is delivered to the oven.

3

reapplication of
release agent

3

Fig. 3.19 The component process ΘΘΘ3. The arrows mark the event at which the release agent
is manually reapplied.

K=4 For comparison, the dataset from the simple process T1 is also decomposed with the
data-driven NNDSVD initialisation algorithm based on the SVD. The results are depicted
in the same format in fig. 3.20, with the K=3 decomposition shown in (a)-(c) and the K=4
decomposition shown in (d)-(g).
Similar to the knowledge-based initialisation, the first components ΘΘΘ1 resemble the mean
of all the curves in the dataset and also the corresponding weights are almost constant at
a large value compared to the other components. The reason is that the first eigenvector
estimated by the SVD is also the one with the largest eigenvalue and as such makes the highest
contribution in the reconstruction of the original dataset. Using the interpretation given by
the relation in (3.25), the highest contribution comes from the first term in the expansion. So
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this result stems from an inherent property of the SVD. The rest of the components lacks the
interpretable nature of the ones shown in fig. 3.16. While ΘΘΘ2 resembles the exponential decay
function, its weights W2 show stepwise jumps, which are also present in W3. ΘΘΘ3 appears
similar to ΘΘΘ2 in its curvature, yet the weights ΘΘΘ3 appear to be reversed. Since the steps in
these components seem to correlate and cannot be explained by process-related reasons, it is
likely that no specific physical quantities are captured in these component processes. In fig.
3.20 (d)-(g), the K=4 decomposition is shown. The component process ΘΘΘ2 remains almost
unchanged. ΘΘΘ3 in (c) is now split up into ΘΘΘ3 in (f) and ΘΘΘ4 in (g). The stepwise nature is now
more dominant in W3 and the curvature of ΘΘΘ3 seems to resemble an inverse form of the one
obtained with the knowledge-based initialisation in fig. 3.16 (c). However, it is not clear
how to interpret each individual component as mostly thy have similar curvatures and similar
features in their corresponding weights.
This result shows that the NNDSVD initialised result does not yield the same level of
interpretability as the knowledge-based initialised NMF decomposition. This is expected
as the NNDSVD is a purely data-driven technique derived from linear algebra and as such
no physical information can be incorporated in this initialisation strategy. Still, the inherent
feature of the SVD to place the dominant component in first position is a useful property,
which can be exploited in a situation where the physical model is more complicated to
discover than the inherent structures of the recorded dataset. Another useful property of this
approach is that the obtained components are ordered according to the magnitude of their
contribution, as can be seen in fig. 3.20. Here, the components are ordered in such a way that
mostly (Wi) j > (Wi+1) j, where (Wi) j is one entry in the weights Wi. With this property, it
can be possible to filter out very small contributions or discover strong inherent structures.
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Fig. 3.20 Dataset 1: The NMF decomposition with NNDSVD initialisation with K = 3 and
K = 4 components. The extracted component processes lack interpretability.



70 Practical Part

3.3.2.2 Results for Dataset 2

The knowledge-based decomposition using ΘΘΘinit,1 and ΘΘΘinit,2 from (3.32) is repeated in this
section for the more complex process shown in fig. 3.15 (b). T2 is decomposed respectively
with this initialisation in K = 3 and K = 4 components processes. The normalisation
procedure and the stopping criteria is the same as for the T1 decomposition. An NNDSVD-
based decomposition of T2 is shown and discussed in the appendix of this thesis (see fig. A.3
in the appendix).

Decomposing T2 with ΘΘΘinit,1 yields the component processes shown in fig. 3.21 (a)-(c)
and decomposing with ΘΘΘinit,1 yields the component processes shown in (d)-(g). As before,
the first component ΘΘΘ1 in (a) and (d) resembles the general curvature of the signals in T2 and
can be interpreted as the first constant term in the Taylor expansion. Also the corresponding
weights W1 are nearly constant at large values compared to the other components.

In the K = 3 decomposition in fig. 3.21 (a)-(c) the component processes ΘΘΘ2 and ΘΘΘ3

roughly resemble the functions for ∂

∂T0
T and ∂

∂α
T shown in fig. 3.10. In ΘΘΘ3, the second

peak at around 100 seconds is still present. The significant peaks in W2, which come
from the production interruptions and the step-wise curvature in W3 stemming from the
reapplication and gradual removal of the release agent, are also present. As already mentioned,
this dataset was recorded from the same processes but with a sensor at different position,
thus the interpretation and reasons for the features in W2 and W3 are the same as for the
decompositions in the previous section.

Studying the results of the decomposition initialised with ΘΘΘinit,2, in fig. 3.21 (d)-(g), it
can be seen that the component processes ΘΘΘ2 and ΘΘΘ3 resemble the partial derivatives ∂

∂T0
T

and ∂

∂α
T even more and they appear to be more smooth in their curvature. The second peak

in ΘΘΘ3 is only slightly present. The component process ΘΘΘ4 in (g) can be roughly approximated
with the exponential function shown in fig. 3.10 (d). Yet the weights are similar to ones
obtained in fig. 3.16 (g) and the interpretation is the same as these recordings were taken
during the same production cycle, i.e. the temperature of the same liquid metal was measured
with this sensor.

In summary, even for this more complex process with an additional cooling effect, which
is switched on and off during a production cycle, the proposed NMF-based approach can
extract physically interpretable results. The reason for this lies in the fact, that the first
NMF component apparently "absorbs" most of the additional cooling channels effect on the
temperature signal. Note that for the initialisation, the very simple physical model given
in (3.15) is still employed, which is a strong oversimplification of all the ongoing physical
mechanisms during a metal casting process.
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Fig. 3.21 Dataset 2: The NMF decomposition with knowledge-based initialisation with K = 3
and K = 4 components. With K = 4, the extracted component processes resemble the shape
of the partial derivatives one obtains from the Taylor expansion.
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Fig. 3.22 Comparison of convergence speed with different initialisation strategies. The recon-
struction error is the value of the cost function after each iteration step. Knowledge-based
initialised NMF and NNDSVD initialised NMF converge after a few iterations. Random
initialisation needs significantly more iteration steps to achieve a similar error.

3.3.2.3 Study on Convergence Speed

Algorithmic optimisations are not in the main focus of this thesis because the studies are
mainly about the applicability of the approach to real-world data and the potential uses of
the techniques. Yet a comparison of convergence speed of the NMF algorithm initialised
with different initialisation techniques is shown here as this is an area where future research
could be directed at. Fig. 3.22 shows the reconstruction error (the cost function in 2.12)
plotted over the number of iterations for NMF decompositions initialised with NNDSVD,
the proposed knowledge-based initialisation and a plain random initialisation. The dataset
used to generate this plot is the dataset from the simple process discussed in section 3.3.1.1.
First thing to notice is that, as expected, the randomly initialised NMF run is stuck searching
in solution space for roughly 3000 iterations until it starts to converge. Combined with
the fact that the results are different ever ytime, this approach is almost never advisable.
The NNDSVD and knowledge-based approach converge much faster in less than 1000
iterations. The NNDSVD converges slightly faster than the knowledge-based approach,
which is expected as the SVD is designed to yield the best low-rank approximation possible.
Both approaches have the advantage that the end result is fixed, so multiple runs of the
algorithm are not necessary. NNDSVD is purely data-driven, which has advantages in
situations where no prior knowledge about the data exists. Instead, the knowledge-based
approach allows for the incorporation of prior knowledge or expert domain knowledge.
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3.3.3 Remarks about the NMF-based Decomposition Approach

So far, it has been demonstrated that this NMF-based approach is useful in analysing temper-
ature profiles measured by a temperature sensor and generated by a thermal manufacturing
process. An arrangement of multiple time series in a data matrix can be decomposed into
physically meaningful features, which can be associated with physical thermal quantities that
vary during the production process. This could be proven by relating the extracted component
processes to specific process-related events in close collaboration with the process experts
from the manufacturing company. In the experiments performed for this thesis, the ability of
NMF to extract information about different physical quantities from a temperature time series
is shown, but with the generalisation of the approach given in (3.25), this methodology could
potentially be applicable to other kinds of time series. If the process-related variations are
small enough to approximate the signals with a linear Taylor expansion, the decomposition
into two matrices of the dataset can be possible. Furthermore, the connection between NMF
and physical quantities through the expansion in (3.25) has to the best of my knowledge not
been noticed yet by the research community and opens up the possibility for more extensive
research both in the algorithmic domain or the application domain. Further, it has been
shown that a simplified physical model as initialisation is enough to steer the optimisation
towards the desired solution.

The work in this thesis then joins in with recent studies presenting the promise in the
idea of combining machine learning techniques with physical knowledge [84, 113, 91]. The
general approach is to incorporate structured information into a learning algorithm, which
results in amplifying the information content of the data that the algorithm sees, enabling
it to quickly steer itself towards a physically meaningful and interpretable solution and to
generalise well even when only a few training examples are available.

The initialisation chosen in (3.10) is an empirical result obtained during the experiments.
Which partial derivatives and how many components to choose, remains a question of further
research. Also the parametrisation of the initialisation was found empirically, i.e. the scaling
and coefficients of the exponential functions. From the results shown so far, it appears like a
simple physical model can be enough to construct a suitable NMF initialisation, but this does
not necessarily have to be the case in other application domains. The process analysed in
this thesis allows the derivation of a simplified analytical solution from the heat equation. In
more complicated scenarios, one might have to use sophisticated simulation tools to derive
functions for the NMF initialisation. While this would definitely be more time-consuming,
this might be a potential route to connect the use of simulation tools with machine learning
methods.
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3.3.4 The Effect of Regularisation

In this section, I am going to study the effect of regularisation on the NMF result. I am
going to use the dataset described in section 3.3.1.1 to discuss the effect of L1- and L2-type
regularisation with different strengths in different combinations. If both regularisation types
are equally applied to both factorisation matrices the NMF cost function with regularisation
extension is as follows:

1
2
||T−ΘΘΘW||22 + γ1||W||1 + γ1||ΘΘΘ||1 + γ2||W||22 + γ2||ΘΘΘ||22 (3.35)

γ1 and γ2 respectively control the magnitude of L1- and L2-type regularisation. Here, the
values for γ1 and γ2 are set to 0,1,10 and 50 and the data matrix T is decomposed. Note that
for the experiments with L1-type regularisation, γ2 is set to zero for all values and vice versa
to observe the effect of each regularisation type individually. It is also possible to mix the
two types.

Fig. 3.23 L1-regularisation with γ1=0 and γ1=1 for both matrices.
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The main goal of regularisation is to reduce the solution space for an optimisation problem
to avoid too large values or to decrease the influence of outliers and random noise if the model
is well conditioned. In most publications about the application of NMF, regularisation is
recommended to obtain interpretable and stable solutions and to avoid overfitting the training
data. In the previous chapter I have already demonstrated that NMF with HALS optimisation
is able to extract interpretable and stable solutions from process data collected from a casting
process. In all of the experiments performed during the course of this thesis, regularisation
was not needed to achieve stable solutions, yet the effect of the most common regularisation
types L1- and L2-regularisation in this domain is of theoretical interest.

Fig. 3.23 shows the decomposition into K = 3 components without regularisation (γ1 =

0) on the left-hand side and a decomposition with γ1 = 1 on the right-hand side. A L1-
type regularisation with this magnitude does not seem to have any impact at all on the
decomposition result. The shape and ordering of the extracted component processes and the
weights in W are almost identical. Also the strong structure extracted in W3 is still present.

By increasing the magnitude of the γ1 to 10, the decomposition result changes. The
left-hand side of fig. 3.24 (a-c) shows the decomposition for γ1 = 10. First thing to notice is
that the order of the components has changed. ΘΘΘ333 from the γ1 = 1 decomposition is now ΘΘΘ222.
The component that resembled an exponential decay has vanished and ΘΘΘ333 instead shows a
component that resembles an exponential rise. ΘΘΘ222 still shows the periodic structure but in
a slightly attenuated form. As already mentioned, the introduction of a regularisation term
changes the solution space of the NMF model. With L1-type regularisation, the component
process, which resembled an exponential decay seems to be less dominant in the solution
space than in the unconstrained solution space. As the HALS algorithm tends to order the ex-
tracted components by their individual magnitude of contribution, the L1-type regularisation
also causes a reordering of the components.

In fig. 3.24 (d-f), the decomposition with γ1 = 50 is shown. It can be seen that the shape
of the component processes from γ1 = 10 to γ1 = 50 changed only slightly. The magnitude
of the coefficients W1 and W2 has not changed, but W3 shows a typical result obtained by
applying L1-type regularisation, called sparseness. As already explained in the theoretical
chapter of this thesis, sparseness is a property which describes a data vector or matrix, which
mostly contains entries with value zero. In many NMF applications, sparseness is a desired
property, because it can lead to highly interpretable components if it the unknown sources are
sparse in their activations. In our case, the emerging sparseness property might be artificial as
the same component process can already be extracted with a lower value for the regularisation
parameter γ1.
Compared to L1-type regularisation, the L2-norm constrained cost function should invoke
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smoothness and bounded solutions. Fig. 3.25 shows the decomposition into K = 3 compo-
nents without regularisation (γ2 = 0) on the left-hand side (a-c) and a decomposition with
γ2 = 1 and the right-hand side (d-f). As before with γ = 1, the resulting decomposition
extracts similar component processes ΘΘΘ and coefficients W.

Fig. 3.24 L1-regularisation with γ1=10 and γ1=50 for both matrices.

In fig. 3.26 (a-c), γ2 is set to 10 and the effects of the regularisation are now visible. ΘΘΘ222 has
changed its shape and now does not resemble the exponential decay function. Additionally,
the weights W2 have increased. Similarly, ΘΘΘ333 now appears lifted upwards at 125 to 155
seconds and also its corresponding weights W3 are increased compared to γ2 = 0 or γ2 = 1.
W1 now shows more structure and the scale of its corresponding weights has decreased
and is now closer to the scale of W2 and W3. This equalising property in scales is typical
for a L2-type regularisation. Fig. 3.25 (d-f) shows the decomposition with γ2 = 50. The
component processes ΘΘΘ222 and ΘΘΘ333 have only slightly changed, with ΘΘΘ222 being lifted up at
around 25 to 50 seconds and ΘΘΘ333 at around 125 to 155 seconds. It can be seen that the effect
of the L2-type regularisation does not differ in a significant way compared to γ2 = 10.
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One application domain of NMF is topic modelling [107]. The goal in topic modelling is
to retrieve a clustering of the input data by similarity. If a matrix factorisation technique is
used, the algorithm should retrieve components with sparse activations and the components
should be interpretable, i.e. the solution space should be bounded. The component processes
in our case are also time series and enforcing sparsity onto them via an L1-type regularisation
would reduce the interpretability, because they would be forced to be zero-valued if the
regularisation parameter is large enough. L2-type regularisation instead bounds the solution
and tends to result in smooth components, which is a desired property for time curves that
ought to describe a physical process.

Fig. 3.25 L2-regularisation with γ2=0 and γ2=1 for both matrices.

Combining L2-regularisation for ΘΘΘ and L1-regularisation for W, we change the notation
for the regularisation terms in the cost function like this:

1
2
||T−ΘΘΘW||22 + γW,1||W||1 + γΘ,2||ΘΘΘ||22 (3.36)
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As before, the regularisation parameters are are set to γW,1,γΘ,2 = 0,1,10 and 50 and the
results are respectively shown in fig. 3.27 and 3.28. In fig. 3.27 (a-c) the results without regu-
larisation can be compared with the results obtained by setting the regularisation parameters
to 1 and it can be seen that neither the extracted component processes nor the corresponding
weights have changed. This result strengthens the assertion that for this kind of data, a slight
regularisation constraint has no effect on the decomposition.

Fig. 3.26 L2-regularisation with γ2=10 and γ2=50 for both matrices.

Fig. 3.28 (a-c) shows the K = 3 decomposition with γW,1,γW,1 = 10. The obtained
component processes are similar to fig. 3.24 (a-c), where both matrices are subjected to
L1-regularisation. Again, the ordering of the components has changed according to their
magnitude of contribution and instead of the component process, which resembles an expo-
nential decay, we obtain the one in fig. 3.28 (c), which resembles a typical heating process.
Furthermore, it can be seen that W3 shows the expected sparsity property. By further increas-
ing the regularisation, the weights in W3 are even more sparse, as can be seen in fig. 3.28
(c). Comparing the results in fig. 3.24 with the ones shown in fig. 3.28, it appears as if it
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makes no difference to apply L1-regularisation onto both matrices or only on W because the
obtained results are almost similar, with the only difference being that the sparsity property
appears more distinct already with γW,1 = 10.

Fig. 3.27 L1-regularisation for the weights (γW,1 = 0,1) and L2-regularisation for the compo-
nent processes (γΘ,2 = 0,1).

In summary, it can be said that by adding regularisation terms to the cost function, the
resulting component processes obtained from the decomposition can significantly change.
One interesting takeaway from this study is that due to regularisation, the emerging compo-
nent processes can drift away from the knowledge-based initialisation towards unexpected
component processes. As can be seen in the case of L1-regularisation, those new com-
ponents appear to be also similar to functions emerging typically from thermal processes.
One problem that remains, is the fact that the regularisation parameter γ as to be chosen
manually. Usually one chooses the regularisation parameter by employing cross-validation
or checking the result for overfitting. Yet in our case the scenario is more complex, because
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Fig. 3.28 L1-regularisation for the weights (γW,1 = 10,50) and L2-regularisation for the
component processes γΘ,2 = 10,50).

we are explicitly looking for interpretable components, which is not possible to describe
in mathematical terms. Further, the properties obtained by regularisation (i.e. sparsity or
smoothness) might not relate to any real ongoing hidden mechanism in the process, and thus
by enforcing these properties we might produce artificial components without any physical
meaning. The possibility to include regularisation terms into the cost function makes the
NMF algorithms very flexible and adaptable to different problems, which is why further
experiments to study the effects of regularisation beyond the standard penalty terms (L1- and
L2-regularisation) can be a possible topic for further research.
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3.4 An Application in Process Monitoring

3.4.1 A Data-driven Soft Sensor

Soft sensors are systems that consist of a software part ("soft") and an information delivery
part (like hardware sensors). A soft sensor generates a new hardware-sensor-like signal,
which can be used for analysing or monitoring different processes and employed in many
application domains ( see [102] for a recent review paper). In literature, the same concept is
sometimes referred to as inferential sensor, virtual on-line analyser or observer-based sensor.
Basically, a soft sensor indirectly measures a desired quantity by employing one or more
other quantities. Such a system can be derived if the process is sufficiently described by a
first principle model (FPM), which is subject to process knowledge and the experience of
experts. This strategy has disadvantages as the acquisition of expert knowledge is difficult
or time-consuming, especially for modern complex manufacturing processes. Due to the
high amount of process data continuously generated during industrial manufacturing, the
rendering of a data-driven soft sensor becomes a viable option.

In this section, the design of such a soft sensor is shown, which uses the NMF model
from section 3.2.4. Component processes extracted by NMF allow for a representation of
process data, which can readily be combined with a desired output quantity. The output
quantity in this application is the amount of applied release agent on the steel cavities surface,
which has a large influence on the casting product quality (see fig. 3.1). This is motivated by
the fact that to this point there is no in-line measurement system for the release agent which
does not disturb the process or prolong the process cycle time. The approach employs the
combined NMF regression method described in section 2.2.1. The use of semi-supervised
regression for the design of soft sensors in this application domain is rather new and to the
best of my knowledge no related publications exist.

In other domains like chemical manufacturing, semi-supervised regression appears to be
a new trend as many recent publications can be found. In chemical engineering, it is relatively
easy to obtain input variables like temperature or pressure, but output variables might be
much more difficult to obtain. In literature, the most used methods to implement soft sensors
are principal component regression [59, 44, 56], partial least squares (PLS) [126, 123, 37, 82],
artificial neural networks [73, 48, 7], kernel-based methods [79, 43, 58, 122, 118] or Bayesian
methods [60, 57, 121, 61]. In this sense, NMF as basis for soft sensor design is also a new
application for this algorithm.
In the following, the approach outlined in section () is used and I will explain the data
generation process and the preprocessing of the input data for the model. Afterwards, I will
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explain the training procedure used to train the virtual sensor model and discuss the results
and show how the results can be implemented in running production.

3.4.2 Data Generation

3.4.2.1 Dependent Variable: Measurements of Layer Thickness

The dependent variable for the training are measurements y of the thickness of the release
agent’s layer (see fig. 3.18) taken during running production. For this sake, a magnetic
induction thickness measurement device was used to measure the release agent’s layer
thickness at different positions. The measurement device uses a low frequency magnetic
field generated by an excitation current. The strength of the magnetic field corresponds to
the distance between the probe and the base material. By measuring the magnetic field with
a measurement coil, the obtained measurement signal can be converted into a value for the
coating thickness via a characteristic output function (i.e. the functional correlation between
the probe signal and the coating thickness).
After one cylinder head is produced, there is a certain time period (roughly 30 seconds),
where the cavity is empty and measurements can be taken. It is important to mention that
these measurements are not taken in a controlled environment. Firstly, it is a highly dangerous
procedure because the surface is still at high temperatures (the cavity surface still reaches 300
◦C) while one is reaching out for the measurement points. Secondly, the measurements have
to be taken within a few seconds to not disturb the ongoing production. A picture showing
the measurement procedure can be seen in fig. 3.29. The person taking the measurements is
holding the magnetic induction probe in his left hand, while bending over the open cavity.
In the experiments done for this thesis, a certain measurement position was chosen and five
measurements were performed at the designated position during the ongoing production.
The positions were selected according to the expert knowledge of the responsible process
engineers. Due to the before mentioned circumstances present during production, thickness
measurements in this domain come along with multiple disruptive effects, which cause a
certain level of noise in the target variable:

• accidently tilting the measurement device;

• measurements not taken exactly at the designated measurement spot;

• measurements at the end of the time period become more difficult due to the heat;

• the magnetic measurement device heats up.
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measurement probe

measurement device

Fig. 3.29 Image taken during one measurement session. During a 30-second time window,
multiple measurements at different positions were taken. The image is blurred to hide any
confidential information.

Multiple measurements at different positions were taken to test the capability of the combined
NMF regression approach described in section 2.2.1. In this section, I focus on one measure-
ment dataset taken at a specific position, which lies close to its respective temperature sensor
position. As mentioned, thickness measurements are affected by multiple noise-adding ef-
fects. For this reason, the measurement was repeated five times at the same position and then
averaged. This way the effect of outliers to due incorrect measurements is less severe. par
Table 3.1 shows the 47 measurements taken at this specific position. In the right-most column,
the standard deviation is calculated for each measurement series. The maximum standard
deviation for measurement section is 12.57 µm (series 15). This is due to an outlier which
might be caused by accidentally tilting the probe. In series 19, one of the measurements is
missing and could not be repeated because the next casting process was about to start.
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Nr. m1 m2 m3 m4 m5 m σ

1 40.0 43.6 46.6 45.2 40.0 43.08 2.69
2 42.2 40.8 52.6 50.4 47.0 46.60 4.55
3 35.2 37.4 35.6 30.8 32.2 34.24 2.40
4 42.8 41.2 34.0 32.8 35.6 37.28 3.99
5 35.8 40.2 39.2 38.0 41.4 38.92 1.92
6 41.6 37.8 50.8 42.8 43.6 43.32 4.24
7 31.6 30.4 30.2 30.4 34.4 31.40 1.58
8 39.4 44.6 39.2 43.2 31.0 39.48 4.73
9 33.8 27.6 27.2 25.0 28.0 28.32 2.93
10 29.0 37.0 28.6 38.0 27.4 32.00 4.53
11 26.0 25.6 32.4 27.8 21.8 26.72 3.45
12 25.6 24.2 31.6 27.4 28.6 27.48 2.55
13 27.8 32.6 29.6 26.4 28.8 29.04 2.08
14 27.4 22.6 28.2 28.0 37.8 28.80 4.95
15 26.4 24.2 25.8 57.6 29.4 32.68 12.57
16 34.6 25.6 29.4 30.0 24.2 28.76 3.66
17 30.4 29.0 37.6 33.0 36.8 33.36 3.40
18 39.2 33.0 39.4 36.4 31.4 35.88 3.23
19 29.4 28.2 31.4 28.6 NaN 29.40 1.23
20 34.0 23.2 29.4 31.4 26.6 28.92 3.75
21 30.6 33.6 29.0 33.6 28.0 30.96 2.31
22 30.2 26.2 25.2 25.4 29.8 27.36 2.19
23 27.2 24.4 33.2 26.2 27.8 27.76 2.95
24 35.0 31.8 28.6 34.6 29.2 31.84 2.65
25 28.2 33.6 28.4 35.0 30.8 31.20 2.73
26 29.0 36.2 31.0 31.0 32.8 32.00 2.42
27 55.0 66.8 56.8 58.4 56.0 58.60 4.25
28 72.0 69.0 53.2 68.6 59.0 64.36 7.09
29 46.0 40.6 52.2 54.0 52.0 48.96 4.98
30 53.2 50.6 58.8 53.4 55.8 54.36 2.76
31 53.2 49.0 53.8 52.4 61.6 54.00 4.15
32 46.4 49.2 50.0 42.0 48.4 47.20 2.86
33 63.0 58.0 51.0 51.2 52.2 55.08 4.72
34 69.0 54.0 53.2 49.2 57.4 56.56 6.74
35 45.6 41.6 42.4 43.2 49.4 44.44 2.82
36 48.2 58.0 62.2 65.0 60.6 58.80 5.77
37 52.0 58.6 58.0 39.0 55.6 52.64 7.20
38 51.8 58.0 56.0 44.0 62.4 54.44 6.24
39 55.2 61.2 68.6 51.6 49.0 57.12 7.05
40 54.2 57.0 60.2 57.6 53.2 56.44 2.50
41 48.0 44.2 54.8 56.8 39.0 48.56 6.60
42 57.6 39.8 42.4 50.6 55.8 49.24 7.08
43 56.2 63.0 54.8 76.8 65.0 63.16 7.85
44 65.8 48.0 52.8 53.0 56.0 55.12 5.92
45 62.6 70.8 79.6 70.8 65.2 69.80 5.85
46 78.4 70.0 59.4 63.8 63.0 66.92 6.68
47 66.0 57.0 73.0 58.8 58.2 62.60 6.08

Table 3.1 The measurement data taken during running production. The right columns show
the respective mean and standard deviation.
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3.4.2.2 Independent Variables: NMF Component Processes

To each thickness measurement, we assign the temperature recording that was generated
during the casting process before the thickness measurement was taken. In fig. 3.30, this
procedure is illustrated.

temperature sensor

cavity

release agent

measurement

device

Fig. 3.30 Illustration of the measurement procedure.

A sensor in the steel cavity records a temperature curve during filling and solidification.
When the process is done and the part is automatically removed from the cavity, the layer
thickness is measured on the cavity’s surface in an area close to the sensor position. This
temperature curve and consecutive thickness measurement form a pair, which is used to
train the model. For example, in fig. 3.30, the recordings 8, 9 and 10 are shown, which are
respectively assigned to the measurement series 8, 9 and 10 in table 3.1.

Overall, the full dataset for the regression model training consists of 47 time curves
with 32 time points, i.e. a matrix Tµ ∈ R47×32 and a target vector y ∈ R47×1 containing
the measured thickness values. Additionally, for the NMF model, another time series
matrix TNMF ∈ R500×32 with 500 time curves recorded with the same sensor during running
production is used. In fig. 3.31 on the left-hand side, these 500 temperature recordings are
plotted together. In summary, my approach relies on a data set, which consists of a large
number of unlabled time series and a smaller data set, which consists of time series with
assigned measurement values.
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NMF

Fig. 3.31 Left: The training set for the NMF model. Right: The extracted component
processes used for preprocessing.

3.4.3 Model Training

The model training employs the combined NMF and regression procedure described in
section 2.2.1. The NMF model needs to be pretrained with a dataset with a larger sample-size
than Tµ because the latent factors cannot be modelled with only 47 time curves. If the
sample-size is similar to the number of variables, the NMF decomposition will likely overfit
the dataset. The temperature recordings are taken during the ongoing production and are
readily available in the company’s process-data database. Due to the high number of casting
parts produced, the available number of temperature curves is more than 105, but the NMF
result with this data becomes already stable with only a subset of 500 curves.

For the NMF model, an initialisation approach has to be chosen. This choice can be
seen as another model parameter and any of the before mentioned initialisation techniques
can be tried. Also the number of components K needs to be chosen. In this example, the
knowledge-based initialisation strategy is used and the number of components is set to K = 3
components.

The right-hand side of fig. 3.31 shows the extracted latent component processes obtained
from the NMF decomposition. With the NMF model trained with TNMF the transformation
functions Θ̂ΘΘ defined in (2.70) are constructed and the time series matrix Tµ is transformed
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into the reduced dimension space

Θ̂ΘΘ(Tµ) = Wµ , (3.37)

where Wµ ∈ R47×3 contains the corresponding loadings for each time series in the rows of
Tµ . These loadings are now used as independent variables for the regression model and the
regression model coefficients b1,b2, b3 and b0 are estimated by the optimisation procedure
described in section 2.2.1.

training

validation

test

10 10 10 17

fold 1 fold 2 fold 3

10 10 10

10 10 10

Fig. 3.32 Illustration of the training process with 3-fold cross-validation and the split into
training, validation and test set. The sample number in each set is written in the boxes.

To evaluate the model error and performance, the whole dataset is split into two parts, one
training set and one test set. The training data set contains 30 randomly sampled rows from
the matrix Tµ and their corresponding measured thickness value. The remaining 17 rows are
used as test set, i.e. the regression equation is applied to their respective NMF coefficients
and the output compared to their assigned measurement value.

b1 b2 b3

1 -0.03 0.01 -0.13
2 -0.02 0.01 -0.11
3 -0.02 0.03 -0.14
4 -0.03 0.15 -0.15
5 -0.03 0.00 -0.12
6 -0.01 -0.01 -0.09

b0

1 295.88
2 298.62
3 404.70
4 241.96
5 214.02
6 273.87

MSE

1 49.68
2 49.29
2 52.77
4 50.63
5 43.50
6 46.23

Table 3.2 The regression equation coefficients, the bias variable and the mean squared error
for six different training sessions.

This way, the model performance on new unseen data can be estimated. Furthermore,
this split into training and test set is performed six times, with randomly sampled training and
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test data sets. The reason for this is the small number of measurements, which might lead to
unfavourable splits by random chance and thus to an overestimation or underestimation of
the models performance.

In order to estimate the regularisation parameter λ , a procedure called n-fold cross-
validation is employed. There, the training set is split in n subsets (folds) and the model is
trained with changing λ with (n−1) folds and is tested against the remaining fold (validation
fold). This procedure is repeated n times, whereby each one of the n folds acts as a validation
fold once. At the end, the model with λ value which has performed best on average on all
n folds is chosen. In this case, a 3-fold cross-validation was used. Fig. 3.32 illustrates the
training process and the split into training, validation and test set.

As an evaluation metric for the model performance, the mean squared error between the
model output on the test data set and the corresponding measurement value is used. The
mean squared error (MSE) is defined as

MSE =
1
Z

n

∑
i=1

(
ypred,i− yreal,i

)2
, (3.38)

where Z is the number of samples in the test set or the validation set. Here ypred,i is the
predicted value of the model for the i-th entry in the test set and yreal,i is its actual measured
value.

Fig. 3.33 Performance of the regression model.
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The results are shown in fig. 3.33. There, the predicted thickness (x-axis) is plotted
against the measured value (y-axis). The dotted line is the diagonal, i.e. the closer the points
are to the dotted line, the smaller the prediction error is. Since the sample size is rather small,
the here outlined training procedure was repeated multiple times and the results are plotted
in the same fashion in fig. 3.34. The reason for this is that in the case of a small sample size
a random test and training split can result in random effects that look like dependencies or
correlations, which are not actually there. By repeating the procedure, we are making sure
that the obtained result is not just occurring by chance. In the figure, both the predictions on
the training set (blue squares) and the predictions on the test set (red triangles) are shown for
six different runs with randomly sampled training and test sets. Corresponding regression
coefficients, bias parameter and MSE are summarised in table 3.2.
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Fig. 3.34 Performance of the regression model. Six different training sessions.
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3.4.4 Discussion and Interpretation

From table 3.2, we can see that the regression mainly focuses on the third component to
make its predictions, which goes along with the hypothesis from the section before and
proves that NMF can indeed extract physically meaningful sources from the process data.
The coefficients b1,b2 and b3 have a straight forward interpretation, because they can be
directly related to one of the components from the NMF model (i.e. ΘΘΘ1, ΘΘΘ2 and ΘΘΘ3). This
way the magnitude of the coefficient tells us how strongly a specific NMF component effects
the output of the regression model. Since we can also physically interpret the individual
components, this results helps us in understanding and evaluating the regression equation. In
this case the most important factor used to predict the layer thickness is ΘΘΘ3, which can be
associated with the heat transfer coefficient of the system, and thus makes physical sense.

In fig. 3.34, we can see that a linear model is able to generate predictions close to the real
measurements. It seems that there are two clusters one for higher values and one for lower
measured values. The reason for this is based on the fact, that the measurements were mainly
taken within two measurement sessions on different days. The workers operating the casting
machine regularly switch and each one might have a different judgement about how to apply
the release agent. The error for the predictions in the range around 60 µm is overall larger in
all six runs. This might be due to the fact that the calibration of the measurement device was
not adjusted in an optimal way for this range. For the calibration, reference plates are used,
which are coated with a fixed layer thickness. For our measurements, only a 25 µm, a 110
µm and a 200 µm reference plate were available.
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Fig. 3.35 The output of the virtual sensor model during running series production. The red
dots mark control measurements. It is important to note, that this illustration is not to be
taken as a representation of the real thermal processes.

Evaluating the results, we can see that the prediction error is close to the uncertainty of
the measurements. In this sense, the soft sensor designed with NMF preprocessing is a viable
substitute for the magnetic induction measurement device. Furthermore, the requirements
for measurement precision are not high, as due to process related reasons it is not possible
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to control the amount of applied release agent with a sub ±10µm precision, as the release
agent is applied in a manual process based on an employees’ visual judgement. Therefore,
useful information for process experts in most situations is the knowledge about the time
of reapplication of the release agent and if the layer is thinner or thicker than a comparative
condition at a different time during the production.

3.4.4.1 Application as a Monitoring System

The results reported so far already offer the possibility to be used in real-world applications.
In the course of my thesis, I implemented an in-line measurement system to monitor the
release agent applied to the casting cavity’s surface.

Fig. 3.36 Image of the alerting system implemented on top of the control panel of the casting
machine. The monitor shows the status of the cavity’s surface. The status is estimated using
a software which employs the results from the NMF-based approach outlined in this chapter.

The output of this system can be seen in fig. 3.35. There, the sudden jumps can be
identified as the moments when an employee applied a new layer of release agent and the
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gradual decrease in-between shows the gradual removal of the layer. The red dots mark
test measurements, which were performed to test the validity of the system. This behaviour
of the release agent layer during the continuous production is known, but up until now it
could not be monitored as an additional process parameter. With this approach, many new
process optimisations become possible. For example, as can be seen in fig. 3.35, the layer
thickness varies significantly during on-going production (the time period in fig. 3.35 shows
roughly two and a half days of continuous production). One scenario is that, until a major
cleaning procedure, the reapplication of the release agents leads to a stepwise increase in layer
thickness. If the layer is too thick, i.e. the heat transfer coefficient is too small, the possibility
of casting defects might increase. Similarly, if the layer is too thin, the solidification process
might be too fast, which also might favour certain defect types (e.g. porosities).

Fig. 3.37 The plot shows the scrap rate per week over a period of multiple weeks. The black
line marks the time, when the monitoring system was implemented at the production site.
The scrap rate is given as relative to the scrap rate in week 10 (week 10 is 100), because the
actual scrap rate numbers are confidential information.

Due to this high potential of cost saving, an alert system was implemented in the BMW
plant in Landshut (Germany) and tested during production. In this experiment, a significant
reduction of certain defect types could be achieved, which lead to the management’s decision
of a full implementation for all related processes. This highlights the practical applicability
of the results reported in this thesis. Fig. 3.36 shows the alert system on site attached to
the control panel of a casting machine. The monitor shows the actual status of the cavity’s
surface, which is calculated by using the NMF-based approach outlined in this chapter. If the
quality of the release agent layer is insufficient, the alert system presents a warning message
and the machine operator can immediately react. This way, the production of scrap parts
could be significantly reduced because up until now the quality of the release agent has
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only been checked visually with human experience, which carries the risk of misjudgements.
Fig. 3.37 shows how the scrap rate changed after the alerting system was implemented. At
the beginning of week 14, the system was ready and the scrap rate was significantly lower.
On average, the scrap rate could be reduced by roughly 63%, which shows the significant
potential for cost saving. The results from this chapter, which are used in the software of the
alerting system, lead to a patent application [116].

The proposed approach exploits the fact that in industrial manufacturing, standard process
data like temperature recordings are generated in a large amount and can be analysed with
pattern extraction algorithms like NMF, which rely on a certain amount of data to perform
properly. Repeating patterns can only be extracted if there is a large enough sample size
available. After the component processes have been identified, they can be used in conjunction
with a limited amount of measurements (in the range of ∼ 101). The same approach might
be applicable to other industrial processes.

3.4.4.2 Limitations of the Approach

Data-driven soft sensors are, due to the fact that they are based on measurements from the real
processing plant, closer to the actual process conditions than first-principle models, which
are commonly based on ideal descriptions of steady-state processes. Yet there can also be
drawbacks if one tries to model processes solely based on data. One problem is that in reality,
processes gradually develop during their operation time and sometimes sudden or abrupt
changes occur. In our case, the casting machine has a certain life time due to wear down
effects. Additionally, there are wear down effects in some components like cooling channels
or heatings. Effects like these will gradually result in a deterioration of prediction accuracy,
because the generated process data will also gradually change, while the NMF model is
based on the distribution of an earlier generated dataset. In such cases, a common counter
measure is to regularly re-train the model to adjust the coefficients to the new conditions.

A second problem is the fact that the approaches for the design of data-driven soft sensors
are usually based on algorithms which model the steady-state conditions of a continuous
process. This means that the model is not able to deal with transient states like start-up
processes or process interruptions. In metal casting, during the start-up phase, the machine
and the steel of the cavity are usually much colder and the temperature distribution is different,
i.e. the NMF reconstruction has a larger error on data from these time periods. After a metal
part has been produced, some part of the thermal energy dissipates into the casting machine
and some part of this energy will is then lost during the time until a new casting process
starts. At some point after a few castings, the casting machine will reach an equilibrium state
and in this steady-state process, the casting quality is the best. Since most of our process data
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is generated while the machine is operating in this equilibrium state, NMF also models the
main variations that are present during these process states.

α𝐝𝟏 𝐝𝟐

sensor

release agent layer

Fig. 3.38 Schematic illustrations of the designed sensor limitations. Here, the layer has a
higher thickness on the left-hand side. The orange arrows represent the magnitude of the
heat flow, which will be larger if the layer is thinner.

Another event during the process, which the model cannot account for, is when the sensor
position changes due to maintenance work or other reasons. In such a scenario, the model has
to be retrained with data collected after the change in sensor position. The layer of release
agent also is not uniform. Due to the manual application process, in some areas, the layer
thickness is larger than in other areas. Furthermore, the layer is removed non-uniformly after
multiple processes. One reason for this is that the casting part shrinks during solidification
and might shrink on certain areas of the cavity. In these areas, the layer is worn down faster
than in others. As the sensor is placed within the steel of the cavity (0.5 cm to 3 cm from the
surface), the measurement is affected by the heat flow coming from an area of the surface.
If the layer thickness is not distributed equally in this area, the NMF-based model cannot
capture such effects. In fig. 3.38, this is illustrated schematically. Here, the layer thickness is
larger on the left-hand side (d1) than the right-hand side (d2) because the layer is titled by an
angle α . We would expect the heat flow to be lower on the left-hand side due to the isolation
effect of the layer. As the sensor is placed in the middle, it is going to record a temperature
signal which is influenced by the heat flow from these different areas. Our model is based
on the recordings of a single sensor and cannot recognize different non-uniform thickness
distributions.





Chapter 4

Conclusion

4.1 Discussion and Interpretation

In this section, I am going to discuss the results that have been reported so far in this thesis. I
also intend to give comments on additional methods and algorithms that could either have
been also studied in the course of this thesis or share similarities with the chosen methods.
Afterwards, I am going to discuss limitations of the approaches outlined in the previous
chapter and then end the thesis with a summary of the main findings of the thesis and an
outlook on possible next steps.

4.1.1 Comments on the NMF-based Approach

The NMF-based approach outlined in section 3.2 shows that the idea of analysing temperature
profiles (measured during a manufacturing process) with matrix decomposition techniques,
is a practical and viable way to extract additional knowledge from sensor signals. This
is demonstrated in the application to real-world data in section 3.3. More precisely, the
application shows that it is possible to extract features that can be associated with physical
thermal quantities that vary during the manufacturing process and the feature extraction is
based on a linear decomposition of the form T = WΘΘΘ. The NMF decomposition is known
for its ability to extract interpretable results and there are many reports in literature from
various application domains (see section 2.1.2), but this specific application area and also the
decomposition of temperature time series in this form has not been reported yet in literature.

The combination of multivariate Taylor expansion and matrix decomposition techniques
discussed in section 3.2.2 allows for a natural interpretation of the decomposition results
obtained from any time series dataset and to the best of my knowledge have not yet been
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reported in literature. Most NMF applications base the interpretabilty on the nonnegativity
quantity that typically directly relates to the measured quantity (like spectral or image data).

In contrast to this, temperature is a quantity that is not additive and therefore this straight
forward interpretation is not possible. However, if we consider the component processes
extracted with NMF to relate to the first order terms in a multivariate Taylor expansion, this
directly gives an interpretation to each component, because each Taylor term is obtained
by a specific partial derivative. By enforcing nonnegativity on the weight matrix W, the
decomposition is guided towards a solution which describes the processes with components
that are derived from the lowest hidden parameter values that are present in the dataset
(see section 3.2.2 and equation (3.20)-(3.22)). However, the nonnegativity property does
not have to hold for the component matrix ΘΘΘ. In the application shown in this thesis, the
physical model used for the initialisation is strictly based on nonnegative functions, so the
nonnegativity constrain does not disturb the space of possible solutions in an unwanted way.
For other processes and other quantities, this might not be the case. The partial derivatives
used to initialise the component matrix can also be negative and then one should relax the
nonnegativity constraint and only enforce it for the coefficient matrix W:

T≃WΘΘΘ with Wi j ≥ 0 and ΘΘΘi j ∈ R. (4.1)

This relaxation is called semi-NMF and implementations of algorithms that solve (4.1) can
be found in [45]. Also the HALS algorithm outlined in section 2.1.6 can easily be extended
to solve the semi-NMF problem by removing the positive projection in the update rule for W
in (2.60). With this relaxation, the approach outlined in this thesis offers the potential to be
applicable in many other application domains.

4.1.1.1 Comparison with other Matrix Decomposition Techniques

The other mentioned well-known matrix decomposition techniques like PCA and ICA cannot
be used in a similar fashion because both impose mathematical constraints that have no
physical meaning. PCA is purely data-driven and has an algebraic foundation that does
not require any initialisation, i.e. there is no way to incorporate prior knowledge into the
algorithm. ICA typically has to be initialised, but most algorithms require the input data to
be whitened, i.e. transformed to uncorrelated coordinates with unit variance, which acts as
an additional mathematical constraint because there is the possibility of information loss
during this process. PCA enforces the extracted projections to be uncorrelated and ICA
enforces statistically independent projections. Both constrains do not have a direct physical



4.1 Discussion and Interpretation 99

interpretation and, indeed, if the component processes that occur during the manufacturing
process do not follow these specific properties, then both techniques will fail to capture these
components. In the appendix, I have included a decomposition of the dataset from section
3.3, both with PCA and ICA. There is a variant of ICA called "nonnegative ICA," which
imposes nonnegativity constrains similar to NMF [88, 87], but the algorithm still optimises
the projections to be statistically independent and as such is still not applicable in the same
way as NMF. There is a similar variant of PCA called "nonnegative PCA" [124].

There is a variety of techniques that have a mathematical connection to NMF or are under
certain conditions equivalent to NMF. Although in this thesis, I have not performed any
comparison with these techniques, because this is not the primary goal of this work, they
potentially might yield similar results as NMF. Some types of NMF implementations are an
instance of a general probabilistic model called "multinomial PCA." If the cost function is
the Kullback-Leibler divergence (see (2.13)), then NMF becomes equivalent to a technique
called "probabilistic latent semantic analysis" (PLSA) [41]. So we could consider to use the
implementations of these algorithms instead. The already mentioned semi-NMF can also be
seen as a clustering algorithm, namely a relaxed form of the well known "k-means" algorithm,
which could also act as an alternative to NMF in this application domain. Another clustering
algorithm with strong mathematical connections to NMF is "spectral clustering" [29]. So
investigating clustering algorithms to decompose datasets similar to the ones analysed in this
thesis might be an interesting route for further research.
The k-means algorithm can be formulated as an expectation maximization (EM) algorithm
that solves the problem of estimating a gaussian mixture model [108]. Also the before
mentioned PLSA is formulated as an EM algorithm [41]. This strong connection of the
NMF problem with the problem of estimating mixture models with EM algorithms offers
the possibility to replace the problem of solving the NMF problem with the estimation
of probabilistic mixture models. This could be advantageous because there are various
extensions and techniques for the design of EM algorithms. In the course of this thesis, I did
no further investigations on this connection because algorithmic improvements were not my
main focus.

4.1.1.2 Physically Inspired Machine Learning

The work in this thesis joins in with recent studies presenting the promise in the idea of
combining machine learning techniques with physical knowledge [84, 113, 91]. The general
approach is to incorporate structured information into a learning algorithm, which results
in amplifying the information content of the data that the algorithm extracts, enabling it to
quickly steer itself towards a physically meaningful and interpretable solution. Furthermore,
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the obtained models generalise well even when only a few training examples are available.
Since the proposed initialisation technique is based on modelling a signal from underlying
differential equations, there are some similarities with recent approaches to "learn" solutions
to nonlinear partial differential equations with deep learning techniques [90]. Another
approach based on neural networks called "precision learning" has been reported in the
last years [81]. In this publication, the author incorporates physical dependencies into the
learning procedure of the network. In general, one main problem with approaches based on
neural networks is that they lack the interpretability that comes with NMF.

4.1.1.3 Initialisation Strategies

As already mentioned, the question of how to initialise NMF is still an open question and
up until now an, optimal strategy that is viable in every application area does not exist
[68, 53, 95]. In section 2.1.2.5, I introduced an initialisation strategy based on the singular
value decomposition and, as was demonstrated in section 3.3.2, it is possible to extract to
some degree similar component processes as with NMF. So the suggestion here would be to
use this data-driven initialisation strategy as a head-start if no prior knowledge is available
and if there is no physical model of the process at hand. The idea is to initialise NMF with
any strong inherent structure that is present in the dataset. Another data-driven approach
would be to initialise NMF with k-means clustering. Here, the initial component vectors are
chosen to be the cluster centroids and the initial weights are the corresponding cluster indices.
NMF can be seen as a general version of k-means clustering with orthogonality constraints
[29].

Typically, any NMF initialisation strategy aims at providing a starting point for the
optimisation that lies close to the global optimum of the solution space of the optimisation
problem. In this sense, the goal for which the approach outlined in section 3.2 was designed
differs from typical NMF applications. Instead of looking for the global optimum of the
cost function, the interesting point is rather a local minimum, which approximates the time
series in a physically interpretable way (i.e. as a Taylor expansion). So the results reported
in this thesis can be seen as a side effect of the inherent property of NMF implementations
to get stuck in local minima. Instead of exploiting this property of NMF algorithm, a more
sophisticated approach might be to incorporate the underlying physical model into the NMF
cost function as a constraint or as multiple constraints. This way, it might be possible to
enforce the convergence towards the desired solution. How such constraint terms have to be
designed is a question for further research and has not been studied in this thesis.
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4.1.2 Comments on the NMF-based Virtual Sensor

The outlined method to extract component processes with NMF in combination with a linear
regression to predict a target variable shown in section 3.4.1 has a huge practical applicability.
This is demonstrated by the fact that an implementation of the results has already been tested
in the series production of the partner company and significant results could be achieved
(scrap rate reduction of a specific defect by roughly 63%). The main advantage is that there
are no additional requirements for this application except standard temperature sensors that
are already typically embedded into the cavity. If the production starts and the sensory data
is recorded and saved in a database, then after one week there will be enough data to train
the NMF model. Overall, the amount of expenditure to set up the monitoring system is rather
low. The highest expenditure is the acquisition of the measurements of the release agent
layer thickness.

4.1.2.1 Comparison to other Approaches

In general, the outlined approach follows the same principle as the already mentioned
application of virtual sensors in other industrial domains. First, the input dimension of the
independent data is reduced by a data-driven modelling technique and then a regression
model is trained with the features from the reduced space to predict the desired target
variable. These approaches are referred to as "black-box" models in literature because the
actual dependencies learned by the dimension reduction model are not of interest. There
are also the so-called "first principle models," which are based on hard-coded rules (no
learning algorithms). A general comparison of the approaches discussed in this thesis with
first principle models is not provided here, because, since the models are hard coded, one
would need to evaluate specific application areas, which is beyond the scope of this thesis.

Most applications use PCA as a dimension reduction technique [114, 50]. PCA can be
described as a matrix decomposition technique similar to NMF but with different constraints.
If the goal is solely a low regression error, then PCA is a viable alternative for NMF in
our setting. One advantage of NMF is that with the knowledge-based initialised NMF,
one captures information about hidden parameters in individual components, whereas with
PCA this information might be spread across multiple components. Furthermore, from
the regression coefficients it is possible to measure the individual contributions of the
input variables. The interpretability of the NMF components thus allows to interpret the
interdependencies of the whole regression model in physical terms. This can be advantageous
if the model quality deteriorates over time ( for example due to changing environmental
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conditions) and the reason for the deterioration needs to be found. A technique that shares
similarities with principal component regression is "partial least squares" (PLS), which is
based on calculating principal components from both dependent and independent variables.
PLS is also used for the design of indirect measurement devices [65, 80]. Similar to PCA,
the method is also purely data-driven and does not allow to incorporate knowledge about
underlying physical processes.

Artificial neural networks (ANN) have an incorporated dimension reduction which is
learned during an optimisation procedure of the networks weights and as such they have
found application in similar problem settings [47, 8]. Neural networks transform the input
data multiple times with nonlinear functions, depending on the network depth and archi-
tecture. This is why the actual physical dependencies are lost or hard to extract from the
network weights. In contrast to NMF, neural networks are able to learn complex nonlinear
interdependencies in the data, which theoretically makes them applicable to a wide range
of problems. The downside is that neural networks require a larger amount of data for
their training compared to other methods. In casting processes, there is only be a limited
number of measurements available due to the costly and dangerous measurement procedure.
This drawback makes ANNs impractical for monitoring the release agent layer in casting
processes.

4.1.3 Limitations

In section 3.4.4, I have already already discussed limitations of the use of NMF and linear
regression to design a virtual sensor for process monitoring. In this section, I am going to
extend this discussion with more general remarks about the limitations of NMF as an analysis
tool for temperature time curves.

The NMF-based analysis approach comes with the general limitations of any NMF
decomposition. The latter is limited to linear processes and will surely fail, if strong nonlin-
earities are involved in the underlying physical processes. In section 3.2.2, the connection
between NMF and the linear Taylor expansion is outlined and the Taylor expansion can also
only be viable if the higher order terms are assumed to be small compared to the linear terms.
Thermal processes are generally difficult to control and as thus non-linearities might occur
due to process related variations. In practical implementations, it would be helpful to have a
metric to test, if the NMF approximation of the time curves is a reasonable representation
of the data. Such a metric could be based on the approximation error or one could employ
simulated data of the process. As already mentioned, there are nonlinear dimension reduc-
tion techniques that can learn latent structure from datasets, but these techniques offer no



4.2 Summary of the Main Results 103

straightforward way to interpret the output. This is why such techniques are not used in a
similar fashion as NMF.

Additionally, any NMF has an inner degree of freedom, which needs to be determined
independently, either via some model order selection or simply by trial and error. The
initialisation strategy in section 3.2.3 offers a way to determine the number of components
K by considering a simplified physical model of the underlying mechanisms. Yet also this
approach does not offer a way to determine a fixed amount of components beforehand
because each initialisation is at first just a guess about the expected component processes and
does not have to match the real case. An extension to the outlined approach in section 3.2.3
could be the inclusion of a model order selection step. A short discussion about model order
selection can be found in section 2.1.2.

Another limitation of the NMF-based approach is that each obtained model is applicable
only for data that stems from the specific sensor used to generate the training data. This means
that for a different sensor position, a new model needs to be trained. This is presented in the
appendix (see appendix A.2). Furthermore, the output of the model (i.e. the weight matrix W)
is not comparable between the different models because of the mentioned indeterminancies
of NMF (see section 2.1.2). If it is not possible to easily compare different model outputs and
to reuse the same model for a different sensor, then this will limit the use of the approach in
practical implementations because an individual NMF models needs to be trained for every
new sensor. If the underlying hidden parameters follow the same distribution for different
sensor positions, then one way to make the results more comparable can be to shift and scale
the Wi to align with a reference distribution.

In the theoretical part of this thesis, I mentioned that the NMF cost function is non-convex
in both arguments, which causes the tendency of the algorithm to get stuck in local minima.
With an intelligent initialisation, it is possible to guide the optimisation towards a desired
solution, as has been shown in the results section of this thesis. In general, this approach can
still fail and there is no guarantee that NMF converges in a local minimum that reflects any
physically interpretable results, which is another limitation of the approach.

4.2 Summary of the Main Results

In this thesis, I demonstrated an NMF-based approach to analyse temperature profiles
generated by a thermal manufacturing process. An arrangement of multiple time series in a
data matrix can be decomposed into physically meaningful features, which can be associated
with ongoing physical phenomena during the production process. This decomposition can
be guided by a knowledge-based initialisation strategy, linking the NMF model to hidden
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physical parameters. The approach is motivated and demonstrated by its application to
real-world data sets. The extracted features can be used for process monitoring and defect
diagnosis and further analysis. The NMF-based feature extraction can also be used as a first
preprocessing step for the training of a regression model, which can be used as a virtual sensor
to measure important quantities during the ongoing production. Placing sensors to cover
all the different aspects and interactions during a manufacturing process is a challenging
task. Thus, the possibility to extract multiple sources from a single sensors signal is very
appealing.
The main findings and results of this thesis are:

• Combining the NMF decomposition with the multivariate Taylor expansion to inter-
pret the decomposition of time curves allows to extract information about otherwise
hidden physical parameters. One important parameter in casting processes is the heat
transfer coefficient and with the approach outlined in this thesis, it becomes possible to
extract information about this quantity from temperature measurements. This approach
exploits the fact that these hidden parameters are not constant during the ongoing
production and have a certain process related variation. To the best of my knowledge,
the connection between NMF and physical quantities via the Taylor expansion has not
yet been noticed in literature and offers the potential to transfer my approach to other
manufacturing processes and time series of other physical quantities (e.g. pressure).
These results are the basis of a patent application [115].

• The initialisation strategy based on physically motivated initial component processes
is similar to other applications where prior knowledge about the process is exploited.
Yet there is to the best of my knowledge no publication in which partial derivatives of
simplified physical models are used as initial guesses for NMF. The results reported in
this thesis motivate a further investigation of this approach.

• The potential of NMF as a preprocessing step to train regression models that can be
used as indirect measurement systems in manufacturing has not yet been recognized in
literature. Also the specific application presented in this thesis is completely new in
this domain and up to this date, no similar measurement system for the release agent
in casting processes exists. This indirect measurement system is described in another
submitted patent application [116].

• The results reported in chapter 3.2 have been submitted to "Journal of Manufacturing
Systems" and have been accepted for publication. A preprint can be found in [117].
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• The results reported in chapter 3 have been implemented in the form of a process
monitoring tool at production site of a casting process. With this tool, it was possible to
achieve a significant reduction of the scrap rate, i.e. an immediate financial benefit for
the company. This practical applicability led to the management decision to implement
this monitoring tool in other casting processes.

• The results in chapter 3.2 and 3.4 have been presented to process experts at "63.
Österreichische Gießereitagung."

4.3 Outlook and Further Research

In the course of this thesis, I have considered the signals of only one specific sensor embedded
in a casting machine, yet there actually are multiple temperature sensors at different positions
that record a time curve during a manufacturing process. A natural extension of the analysis
method outlined in this thesis would be the use of tensor factorisation techniques. Instead
of a two-dimensional matrix one could design a three dimensional data tensor that contains
signals from multiple sensors. There are different tensor factorisation algorithms available.
The most common types are PARAFAC [54] and the Tucker decomposition [111]. Tensor
decomposition can also be formulated with nonnegative constrains like NMF and an extensive
summary of available algorithms can be found in the book of Cicocki et al. [26]. A higher
order decomposition that includes different sensor positions into underlying components
might extract hidden information that cannot be extracted from data structured as two-
dimensional matrices.

As already mentioned, in the main part of this thesis, the results reported so far offer the
potential to be applicable for other manufacturing processes and time curves of different
physical quantities. In casting processes, typically also pressure is measured as a time curve
during the manufacturing process. In consecutive studies, the analysis of this kind of data
could be a possible first step. Furthermore, NMF can act as a preprocessing step to train a
regression model to act as an indirect sensor. Instead of the release agent, one could try to
predict other important quantities that are relevant for the product quality or the process in
general

Finally, an interesting topic for further research would be to investigate approaches to
incorporate known physical models about the process directly into the NMF algorithm. This
could either be done by incorporating the knowledge into the optimisation procedure or by
extending the NMF cost function with suitable designed constraints.
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Appendix A

Additional NMF Results

A.1 Initialisations

Fig. A.1 Dataset 1: The NMF decomposition with random initialisation with K = 3 compo-
nents. The extracted component processes lack interpretability.
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Fig. A.1 shows two NMF decompositions with K = 3 components. Both results were
obtained by randomly initialising the starting values Winit and ΘΘΘinit . As already mentioned,
the Frobenius norm cost function is non-convex and so the NMF optimisation procedure is
prone to get stuck in a local minima. If the algorithm is randomly initialised the results will
differ significantly between different runs. If one is looking for interpretable results, this is
a problem because there is no clear way to say which result is the one keep. The left-hand
side and the right-hand side in fig. A.1 both contain component processes which appear to
resemble exponential functions that might originate from underlying physical processes, but
there is no decision criteria to decide which one is the best representation of the data. If
one uses the knowledge-based initialisation the results are easier to relate to possible other
physical quantities.

Fig. A.2 Dataset 2: The NMF decomposition with random initialisation with K = 3 compo-
nents. The extracted component processes lack interpretability.
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Fig. A.3 Dataset 2: The NMF decomposition with NNDSVD initialisation with K = 3
components.

Still one decision criteria which is typically used if the NMF is randomly initialised, is
the final value of the cost function, i.e. the best fit is chosen to be the best solution. Yet
this method does not have any physical motivation and solely evaluates the result from an
optimisation point of view. Both solutions shown in fig. A.1 have a very low approximation
error below ±1.5. A "best fit" solution obtained after multiple runs of the NMF algorithm
can only slightly improve the approximation error and there is no reason for the solution
with the smallest cost function error to have any relation with the time series decomposition
in (3.25). Fig. A.2 also shows two NMF decompositions with random initialised factor
matrices, but for the dataset T2. Again the components obtained differ significantly if we
compare the left-hand and right-hand side of fig. A.2. Furthermore, the components lack any
kind of interpretability as they cannot be related to any of the partial derivatives discussed
in chapter 3. This shows how useful the outlined knowledge-based initialisation strategy is,
since only this way it is possible to extract interpretable components from dataset T2.
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A.2 Model Transfer

As already mentioned in section 4.1.3, the trained NMF models are not transferable if the
sensor position is different. This is demonstrated by using the model trained in section 3.3.1.1
with the data from the simple process (see fig. 3.15 (a)) to extract weights from a dataset
collected from a sensor at a different position. The new sensor is positioned in proximity
to the sensor discussed in section 3.3.1.1. In fig. A.4 three example curves from this sensor
are shown. Due to the proximity, the curves are similar to the ones shown in fig. 3.15 (a).
Fig. A.5 shows the resulting weights obtained by applying the model to the new data. Note
that the data was collected during the same manufacturing processes as the one discussed in
section 3.3.1.1, i.e. the same events as discussed in this section are affecting the data. ΘΘΘ1,ΘΘΘ2

and ΘΘΘ3 in fig. A.5 are the same as in fig. 3.16 (a)-(c), because only the weights are calculated.
As can be seen, W1 is still the dominant coefficient, which is to be expected because it as the
largest impact on the decrease of reconstruction error. The main difference is W3, which has
significantly lower values than the in fig. 3.3.1.1 and also goes to zero for some processes.
This means that the output of the coefficients cannot be compared by applying the same
model to the data generated from sensors at different positions. If NMF is to be used as a
preprocessing step in a data processing pipeline then this system is limited to data that stems
from a sensor at one specific position.

Fig. A.4 Example signals taken from a sensor positioned closely to the one discussed in
chapter 3.
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Fig. A.5 Results of the application of the model discussed in chapter 3 on data from a different
sensor.
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A.3 PCA and ICA Results

Fig. A.6 PCA decomposition with K = 3 components.



114 Additional NMF Results

Fig. A.7 ICA decomposition with K = 3 components.
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