
Symbolic Task Compression in
Structured Task Learning

Matteo Saveriano
Institute of Robotics

and Mechatronics
German Aerospace

Center (DLR)
Weßling, Germany

matteo.saveriano@dlr.de

Michael Seegerer
Human-Centered

Assistive Robotics
Technical University
of Munich (TUM)
Munich, Germany

michael.seegerer@tum.de

Riccardo Caccavale
and Alberto Finzi

Dipartimento di Ingegneria
Elettrica e Tecnologie

dell’Informazione
Università di Napoli

Federico II
Naples, Italy

{name.surname}@unina.it

Dongheui Lee
Human-Centered

Assistive Robotics
Technical University

of Munich (TUM) and
Institute of Robotics

and Mechatronics
German Aerospace Center (DLR)

dhlee@tum.de

Abstract—Learning everyday tasks from human demonstra-
tions requires unsupervised segmentation of seamless demon-
strations, which may result in highly fragmented and widely
spread symbolic representations. Since the time needed to plan
the task depends on the amount of possible behaviors, it is
preferable to keep the number of behaviors as low as possible.
In this work, we present an approach to simplify the symbolic
representation of a learned task which leads to a reduction of the
number of possible behaviors. The simplification is achieved by
merging sequential behaviors, i.e. behaviors which are logically
sequential and act on the same object. Assuming that the task
at hand is encoded in a rooted tree, the approach traverses the
tree searching for sequential nodes (behaviors) to merge. Using
simple rules to assign pre- and post-conditions to each node,
our approach significantly reduces the number of nodes, while
keeping unaltered the task flexibility and avoiding perceptual
aliasing. Experiments on automatically generated and learned
tasks show a significant reduction of the planning time.

I. INTRODUCTION

Human activities can be hierarchically decomposed into a
set of behaviors starting from an abstract behavior, like prepare
a certain receipt, and adding incrementally more specific
behaviors until the atomic actions constituting the task are
reached. We refer to such hierarchical tasks as structured tasks.
In robotics and AI, structured tasks are often symbolically
represented using graph or tree structures with logical pre-
and post-conditions associated to each node. The symbolic
representation is exploited to plan the robotic task execution.

In order to simplify robot programming, researchers focused
on learning tasks from human demonstrations and contextual
information [1]–[9]. These approaches are effective in learning
symbolic and robot-independent task representations from
observation. Learned task structures allow a consistent task
execution, are able to generalize the task execution to different
contexts [8]–[10], and can be incrementally updated [4], [7].

A drawback of the aforementioned approaches for task
structure learning is that they rely on a set of pre-programmed
primitive movements for robot execution. The framework
presented in our previous works [11], [12], instead, enables

simultaneous segmentation and labeling of the human demon-
stration exploiting supervisory attention mechanisms [13]–
[16] to relate the labeled actions to a partially specified task
structure. Concurrently, segmented trajectories are encoded
into dynamical systems used to generate robot commands.

Regardless the approach used to learn a symbolic repre-
sentation of the robotic task, the time needed to execute the
task depends on the complexity of the associated hierarchical
structure, which is executed by a suitable behavior tree. In
this setting, the number of nodes/behaviors may easily grow
with the number of activities affecting the system performance.
For this purpose, this paper extends the framework by [11],
[12] to reduce the number of nodes in a learned structure,
while preserving a consistent execution. Our method explores
the task structure searching for sequential behaviors to merge,
while keeping task execution consistency. We show that our
approach improves the performance of the framework by [11],
[12] in terms of execution time and memory requirements.

II. STRUCTURED TASKS LEARNING AND EXECUTION

In this section, we describe the framework introduced in
[11], [12] to learn and execute structured tasks via human
demonstration and interaction. The system integrates an At-
tentional System, which monitors and orchestrates high-level
tasks, with a lower-level system (Robot Manager), which is
responsible of motion learning and execution. These modules
are better detailed below.

A. Robot Manager

The Robot Manager (RM) interfaces directly with the robot
controller and it is responsible for low-level aspects of the
task learning process. The RM smoothly switches between
gravity compensation and Cartesian impedance control to
allow kinesthetic teaching [17] during the demonstration phase
and an accurate task execution. During the human teaching,
the RM is capable of on-line segmenting the robot trajectories
into basic point-to-point motions assigning them a unique
label. The learned motions primitives, represented as stable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/275581387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


dynamical systems, are then used to generate motor commands
in the execution phase. The robot manager also performs
workspace monitoring activities, like objects classification and
tracking, and robot–object distance calculation.

B. Attentional System

Inspired by the way humans orchestrate their own activities
[14], [15], the attentional system (AS) exploits two mecha-
nisms to supervise robot actions during both teaching and
execution: i) contention scheduling manages the execution
of routinized activities and allows fast response to external
changes, and ii) the supervisory attentional system, which
regulates the execution of novel responses along with com-
plex and goal oriented behaviors. These two mechanisms are
managed, respectively, by the Attentional Executive System
and the Attentional Behavior-based System.

The Long Term Memory (LTM) of the Attentional Exec-
utive System stores hierarchical descriptions of tasks. These
are represented by predicates of the form schema(m, l, p),
where m is the name of the task, l is a list of mi sub-
tasks associated with enabling preconditions ri (releasers), i.e.
l=〈(m1, r1), . . . , (mn, rn)〉, while p is a post-condition used
to check the accomplishment of the task. These definitions are
used to allocate and instantiate tasks in the system Working
Memory (WM) in order to be executed. All the known tasks
are stored in the LTM and, at run-time, tasks to be executed
are loaded and maintained in the WM. These running tasks are
represented in the WM as rooted trees (see Fig. 1). Each node
in the tree is a behavior, i.e. a running process associated
with an activation value, as well as logical pre- and post-
conditions (green and blue ovals in Fig. 1). A customized
behavior, the so-called alive [13], periodically checks for ac-
tive behaviors (behaviors with true preconditions). In general,
multiple behaviors can be active at the same time, hence they
compete for the execution. In order to solve this ambiguity,
the WM exploits the activation value of each behavior eb to
select the most active behavior using a winner-take-all strategy.
As in [14], in our framework each node in the WM has an
activation value, which is regulated by top-down and bottom-
up mechanisms. The bottom-up regulation λb ∈ [0, 1] is a
function of behavior-specific stimuli and behavioral state. In
line with previous work [11]–[13], in this paper we assume λb
proportional to the robot–object distance, but more complex
regulations are possible [18]. The top-down regulation is
µb = µf + n, where µf is the activation of the parent node
and n is the number of accomplished sub-behaviors. The top-
down regulation facilitates the selection of active behaviors
representing the continuation of accomplished subtasks. The
overall activation value (emphasis) is computed as eb = µb/λb.

C. Motion Primitives Segmentation and Learning

Seamless demonstrations are segmented considering robot–
object distance and human commands (open/close the gripper).
As shown in Fig. 1, segmentation is triggered if the robot’s
end-effector enters or leaves the proximity region (a sphere
of radius 0.1m) of an object, or if the teacher commands

Figure 1. The process used to learn the structured task of pouring water in a
cup. (Bottom) The task demonstration is segmented into basic motions. (Top)
Symbolic actions are connected to a partially specified task structure.

to open/close the gripper. Segmented pose trajectories are
compactly represented as stable dynamical systems, the so-
called Dynamic Movement Primitives (DMP) [19], which
are used to generate the on-line motion. Dynamical systems
are effective in motion generation due to their convergence
properties and to their robustness to external perturbations like
unforeseen obstacles [20]–[22]. During the demonstration, the
RM assigns a unique label to each segment (the symbolic
actions a1 to a4 in Fig. 1), calculates the closest object,
and communicates the attentional system that a new symbolic
action has been performed on a certain (the closest) object.

D. Task Learning and Execution

The attentional system (AS) connects the generated sym-
bolic actions with a partially specified task structure. As shown
in Fig. 1, the abstract structure of the demonstrated task is
given and allocated in the WM. During the teaching phase,
the AS assigns the segmented symbolic action to the enabled
subtask (true pre-condition) with the higher activation value.
Moreover, the precondition of the new action is set to true
(action always enabled) if the subtask node has no children.
If at least one action is already attached to the subtask, the
new action is enabled after the execution of the previous one.
By defining the pre-condition in this way, actions are ordered
as they are demonstrated, but other choices are possible.
As for the execution phase, the AS exploits pre-conditions
and emphasis to determine the most emphasized action and
to command its execution. The AS periodically checks for
the most emphasized action, which allows the instantaneous
adaptation of the execution sequence to the operative context.

III. SYMBOLIC TASK COMPRESSION

A. Problem Description

The learning procedure described in. Sec. II-C and II-D
is effective for learning and reproducing structured tasks via
imitation learning. In Fig. 2 (left) we show an example of



Figure 2. The structure simplification approach applied to the task of mix the content of a cup with a spoon. Green (brown) text indicates a true (false) pre-
condition, while a green (brown) ellipse indicates an active (inactive) behavior. (Left) The symbolic representation learned using the approach by [12]. (Middle)
The merged symbolic representation with perceptual aliasing between a1 a2(spoon) and a3 a4 a5 a6 a7(cup) (both actions have a true pre-condition). (Right)
The propagation of the father’s (subtask) pre-condition to the child nodes (actions) prevents the perceptual aliasing.

learned task where the robot has to take the spoon and mix
the liquid into the cup. In this case, the proposed segmentation
mechanism produces three segments for the take-spoon task:
the robot has to reach the proximity region of the spoon firstly
(a1(spoon), equivalent to a pre-grasping pose), then the grasp-
ing pose (a2(spoon)), and to close the gripper. Although this
structure, along with the associated pre- and post-conditions,
allows to execute the demonstrated trajectories in the right
order1, it produces a large number of nodes that can be suitably
compressed without altering the task execution. This problem
is of particular interest in this context, because the attentional
system periodically checks the task execution state to com-
mand the most emphasized action, and the time needed to
compute the most emphasized action grows with the number of
nodes in the tree. It is worth noting that the learning framework
introduced in Sec. II exploits an already provided partially
specified task structure and connects the segmented actions to
this structure during the teaching. Hence, compression may
be limited to the low-level segmented activities (leaves of the
tree). Nevertheless, the compression algorithm proposed here
can merge behaviors at all levels of the tree, because abstract
specification of tasks may be provided by another learning
process [2], [8] or encoded in order to be human readable, but
not optimized for robot execution.

B. Merging Sequential Behaviours

Our merging approach aims at preserving task consistency,
while reducing the number of nodes in the tree. Specifically,
we merge two behavior nodes if they are sequential according
to the definition introduced below.

Definition 1: Two behaviors b1 and b2 of the WM tree are
sequential if the following conditions are contemporary met:

1) b1 and b2 are children of the same node.
2) b1 and b2 are performed by the same agent.
3) b1 and b2 act on the same objects (i.e. arguments repre-

senting target objects are equally instantiated).

1Note that the post-condition of an action ai is ai-1.done, the post-condition
of gripper(close) is not hand.free, the post-condition of subtask(take,obj) is
obj.taken. We omit the post-conditions in Fig. 2 for a better visualization.

Algorithm 1 Simplify the symbolic representation
1: beh list← loadTaskFromLTM(task label)
2: new beh list← {} // Empty behavior list
3: while beh list is not empty do
4: bi ← beh list.pop() // Get first behavior in the list
5: seq beh list← findSequentialBehaviors(beh list, bi)
6: for bj in seq beh list do
7: bm ← genNewNode // New behavior node

// Merge sequential behaviors
8: bm.label← createUniqueLabel(bi, bj)
9: bm.child← {bi.child, bj .child}

10: bm.pre cond← bi.pre cond OR bj .pre cond
11: bm.post cond← bj .post cond

// Avoid perceptual aliasing
12: for ci in bi.child do
13: ci.pre cond← ci.pre AND bi.pre cond
14: end for
15: for cj in bj .child do
16: cj .pre cond← cj .pre AND bj .pre cond
17: end for

// Update task structure
18: new beh list.push(bm)
19: beh list.push(bm) // Store new behavior to check for chains
20: end for
21: end while

4) The post-condition of b1 equals the pre-condition of b2
or the post-condition of b2 equals the pre-condition of b1.

The task compression method is summarized in Alg. 1.
The first step of our procedure is to instantiate a task given
its specification in LTM and collect all the nodes of the
hierarchical structure starting from the root node. Each node of
the tree is associated with a name (unique label) and a list of
directly associated sub-behaviors (child nodes) (see Sec. II-B).
The result of loadTaskFrom(Tasklabel) (line 1 in Alg. 1)
is a list of behaviors candidates for merging.

Starting from the root node, in the second step we explore
one by one the behaviors in beh list looking for sequential



behaviors (lines 3–5 in Alg. 1). The simplest case is when
only two sequential behaviors bi and bj are encountered, i.e.
the function “findSequentialBehaviors” in Alg. 1 returns a list
with one element bj . The two sequential behaviors are then
merged into one behavior bm and a unique label is assigned
to the merged behavior (e.g. subtask(take mix,spoon) in Fig.
2 (middle)). In general, a chain of more than two sequential
behaviors may exist, like the actions a3 to a7 in Fig. 2 (left)
where a4 has the post-condition of a3 as pre-condition, a5
has the post-condition of a4 as pre-condition and so on. In this
case, the merging is iteratively repeated until all the sequential
behaviors are merged into one—action a3 a4 a5 a6 a7(cup)
Fig. 2 (middle); that is, if we assume that bi and bj , as well
as bj and bk, are sequential behaviors, the algorithm will first
generate the merged behaviors bi bj and bj bk, which are
still sequential and are merged into one behavior bi bj bk.
Another possibility is that multiple behaviors share the same
pre-condition, for example bj and bk have the post-condition
of bi as a pre-condition, in this case, the algorithm produces
two merged behaviors, e.g. bi bj and bi bk. In general, if
N −1 behaviors have the post-condition bi.post cond as pre-
condition, the algorithm generates the N−1 merged behaviors
bi b2, . . . , bi bN . The described merging steps corresponds to
lines 6–11 in Alg. 1, while lines 18–19 enables the iterative
merging process.

In all the possible cases, the described procedure (repeat-
edly) merges two sequential behaviors. Once a merging occurs,
the generated sequence behavior (line 15) inherits the child
nodes of the two original behaviors; therefore, the children
lists of each behavior bi.child and bj .child are also merged
into a unique list and stored in bm.child (line 9). Note that, in
the example in Fig. 2, we are not considering gripper(close)
and gripper(open) sequential to other motion actions. This is
because we consider the robot arm and the gripper different
agents that perform different kind of actions, i.e. motion
actions for the arm and grasp actions for the gripper.

The next problem to consider is the allocation of pre- and
post-conditions to the new behavior. The new pre- and post-
conditions has to preserve both the flexibility of the symbolic
representation and the execution constraints. For instance,
looking at the mix with a spoon task in Fig. 2 (left), we
can merge the sequential behaviors subtask(take,spoon) and
subtask(mix,spoon), but we do not want to lose the possibility
of performing only the mix action if the spoon is already in the
robot gripper. To this end, the pre-condition of a new behavior
is a combination of the pre-conditions of the merged behav-
iors linked with a logical OR operator (line 10). As shown
in Fig. 2 (middle), the behaviors subtask(take,spoon) and
subtask(mix,spoon) are merged into subtask(take mix,spoon)
which is activated if one of hand.free and spoon.taken is true.
It is clear that if one of the pre-conditions is always true, as
for a1(spoon), the OR can be omitted and the pre-condition of
the merged behavior is directly true. Finally, the post-condition
of the new generated task is set to the post-condition of the
last merged task (line 11). As an example, the new behavior
a1 a2(spoon) in Fig. 2 (middle) has a2.done as post-condition

which enables the execution of gripper(close).

C. Avoid Perceptual Aliasing

In our setting, perceptual aliasing occurs when multiple
behaviors are enabled in the same state and no knowledge
is available to enable the correct execution of a task [23],
[24]. In the approach described in Sec. II, perceptual aliasing
is not an issue. Even if multiple behaviors can be active at the
same time, the winner-take-all approach allows the selection
of the most active behavior, in so resolving the impasse.
On the other hand, the pre-condition of the merged behavior
(line 10) enables behaviors execution in the wrong operative
context. For instance, in Fig. 2 (middle), a1 a2(spoon) and
a3 a4 a5 a6 a7(cup) are always active due to the true pre-
condition. In this case, the system will exploit the activation
values to select the most active among them, without consid-
ering if the spoon has been previously taken or not; here,
the execution of a3 a4 a5 a6 a7(cup), which corresponds
to mix in the cup and place the spoon, before grasping the
spoon causes a failure. However, in our framework, this issue
can be avoided by propagating the pre-condition of the father
node to the children before merging. The pre-condition of
the child node(s) inherits also the pre-condition of the father
node (lines 12–17 in Alg. 1) and the merging continues as
described in Sec. III-B. The results of this procedure are
illustrated in Fig. 2 (right). The actions a1 a2(spoon) and
a3 a4 a5 a6 a7(cup) have now hand.free and spoon.taken
as pre-conditions respectively and the attentional system will
properly sequence the execution of the task.

D. Top-down and Bottom-up Regulations

In the proposed approach, behavior merging also affects
the propagation of the system activation values. We assume
that bottom-up regulations are proportional to the robot-
object distance, therefore the merged behaviors share the same
regulation, i.e. λm = λi = λj , with bm merges bi and bj .
For top-down regulations, the regulation mechanism is slightly
changed, i.e. µbm = µf +m, where µf is the activation value
of the parent node, m represents the number of accomplished
sub-behaviors in the original tree. In order to update µf , in
the compressed tree, each behavior is associated with a value
k that represents the number of merged behaviors from the
original tree; when a sub-behavior is accomplished in the
compressed tree, µf is incremented by k.

IV. EVALUATION

A. Reduction Degree

The goal of the evaluation is to experimentally verify that
the proposed approach reduces the time needed to execute the
next action, which consists of traversing the tree to find active
leaves and selecting the most emphasized action (see Sec. II-B)
It is clear that the execution time depends on the number
of behaviors (nodes of the tree)2, hence the performance of
the simplification algorithm depends on the number of nodes

2In our implementation each node is instantiated as a separate thread and
periodically executed.



Figure 3. (Top) The task representation obtained with a depth of 4, 2 children
per node, and a desired RD = 0.5. (Bottom) The merged task tree.

in the merged tree. In order to quantitatively measure the
performance, we introduce the Reduction Degree (RD) which
indicates the percentage of sequential nodes in a tree, i.e. the
percentage of nodes that are going to be merged. The reduction
degree is computed as

RD = (Bi −Bm)/(Bi −D), (1)

where Bi ∈ N is the number of nodes (behaviors) in a tree
before merging, Bm ∈ N is the number of nodes after applying
Alg. 1, and D ∈ N is the depth of the tree. Note that, in
general, a tree with depth D has at least one node for each
level (Bi = D). In our case, it is reasonable to assume that
Bi > D, which means that, for some levels, there is more than
one possible behavior. If Bi > D the reduction degree in (1)
is positive definite (Bi ≥ Bm). It is zero only if Bi = Bm (no
behaviors are merged), and it saturates to one for Bm = D.

B. Artificially Created Tasks

In this setting, we randomly create tree structures with a
desired reduction degree. To automatically construct the trees,
we consider a depth of D = 4, 5, 6, which are reasonable
values to represent typical human tasks [12] assuming that
each node in the tree has 2, 3, or 4 children. Considering
these combinations of depths and child nodes, we obtain 9
tree structures with a different amount of behaviors (from 15
to 1365). As shown in Fig. 3 (top), a tree with D = 4 and
2 children has 15 nodes: 1 root node, 2 nodes at the second
level, 4 nodes (2 for each father) at the third level, and 8
leaves. Given a tree structure and a desired reduction degree,

(a) depth = 4 (b) depth = 5

(c) depth = 6

Figure 4. The execution time as a function of the reduction degree obtained
for automatically generated trees with different depth (D = 4, 5, 6) and
children per node (2, 3, or 4).

we assign pre- and post-conditions to each node in order to
have a desired number of sequential nodes. Specifically, given
a tree with Bi nodes and depth D, assuming a reduction degree
RD, we can invert (1) to get the number of nodes in the
merged structure Bm. Once we have the number of nodes to
merge (Bi → Bm) we can introduce the associated sequential
nodes by properly assigning pre- and post-conditions. More
specifically, the root has always one node. The second level
from the top has 2 to 4 nodes, depending on the desired
number of children. We assign a true pre-condition to these
nodes, i.e. we decided not to merge the second level since it
contains few nodes. In order to solve the conflicts generated by
the true pre-conditions, each node/behavior of the second level
acts on a different object (obji, i = 1, . . . , 4). From the third
level on, each node bi has two possible pre-conditions, namely
true (always active) or bj .done (active if another behavior bj
is executed), and one post-condition bi.done. The two pre-
conditions are assigned to create approximately 2(Bi − Bm)
sequential nodes and match the desired RD. Also in this
case, always active behaviors are assumed to act on different
objects to resolve the conflicts. For each tree, we performed
10 executions in order to evaluate the performance with and
without the compression.

The times observed with different depths (D = 4, 5, 6),
children per node (2, 3, and 4), and reduction degrees (RD =
0, 0.3, 0.5, 0.7) are shown in Fig. 4. As expected, the execution
time reduces with the reduction degree. As shown in Fig. 4(a),
the merging approach has no significant benefits up to 40
nodes. With 85 nodes and a reduction degree of 0.3, we
observe a reduction of the execution time of the 20% (from



1.4ms to 1.1ms). With the maximum number of nodes in
the considered scenario (Bi = 1365), the execution time
drops from 0.23 s with RD = 0 to 0.03 s with RD = 0.7
(Fig. 4(c)) without loosing any relevant information on the
task constraints. The highest reduction of the execution time
is the 93% observed in Fig. 4(b) (yellow line) and Fig. 4(c)
(brown line). Finally, results show that the influence of the
depth to the execution time is minimal.

C. Learned Tasks: Prepare Tea and Coffee

We now evaluate the effectiveness of our approach on a real
task of preparing a cup of tea and a cup of coffee. The task is
obtained by combining the separate tasks prepare cofee and
prepare tea learned by demonstration as in [12]. The root of
the tree is then the joined task prepare coffe and tea. Before
merging, the task structure has a depth of 5 and a total of 63
nodes. After merging, the task structure has the same depth
of 5 and a total of 33 nodes. Hence, the reduction degree of
the structure, calculated using (1), is about RD ≈ 0.5. By
merging sequential nodes, the execution time reduces hereby
from 1.5ms to 1.1ms (a reduction of 27%). In order to
simulate the task execution, we emulate the robot manager
by acknowledging the execution of the last commanded action,
and letting the attentional system plan the next action. The task
is executed 10 times with different object configurations. In
all the performed tests the task is successfully accomplished.
Hence, although the correctness of the merging algorithm has
not been theoretically proved, we experimentally find that the
represented task is correctly executed also with the merged
tree. Obtained results suggest that the proposed method is
effective and its efficacy increases with the amount of nodes
which can be merged.

V. CONCLUSION AND FUTURE WORK

In learning by demonstration, unsupervised activity segmen-
tation can produce fragmented representation of activities and
tasks, which can affect the performance of overall system.
In this work, we tackled this problem proposing an approach
that provides compact representations of the learned tasks at
different levels of abstraction. The presented method exploits
the precondition and effect constraints associated with the
tasks/activities in order to detect and merge sequential behav-
iors while preserving the flexibility of the original structure
and avoid perceptual aliasing. The conducted evaluation shows
that our approach significantly reduces the task planning time,
especially with large task structures.

A possible drawback of the proposed approach is that a
compressed tree cannot always be decompressed, which may
lead to failures if the correct execution of each merged action
is important to control the task execution. In other words, if
two actions are merged into one, the system cannot check
for the correct execution of both the actions and, in case of
failure, replan only the failed action. Moreover, in order to
execute merged tasks on a real robot, the originally learned
motion primitives have to be merged as well. Solving those
issues will be the topic of our future research.

ACKNOWLEDGMENT

This work has been supported by Helmholtz Association.

REFERENCES

[1] S. Calinon and D. Lee, “Learning control,” in Humanoid Robotics: a
Reference, P. Vadakkepat and A. Goswami, Eds. Springer, 2018.

[2] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Rob. Auton. Syst., vol. 47, no. 2, pp. 109–116,
2004.

[3] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learning
from demonstration by constructing skill trees,” IJRR, vol. 31, no. 3, pp.
360–375, Mar. 2012.

[4] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zöllner, “Incremental
learning of tasks from user demonstrations, past experiences, and vocal
comments,” Trans. Syst., Man, Cybern. B, Cybern., vol. 37, pp. 322–332,
2007.

[5] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching: ex-
tracting reusable task knowledge from visual observation of human
performance,” Trans. Robot. Autom., vol. 10, no. 6, pp. 799–822, 1994.

[6] R. Cubek, W. Ertel, and G. Palm, “High-level learning from demonstra-
tion with conceptual spaces and subspace clustering,” in ICRA, 2015,
pp. 2592–2597.

[7] I. Dianov, K. Ramı̀rez-Amaro, P. Lanillos, E. Dean-Leon, F. Bergner, and
G. Cheng, “Extracting general task structures to accelerate the learning
of new tasks,” in Humanoids, 2016, pp. 802–807.

[8] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot task
learning: Instructive demonstrations, generalization and practice,” in
AAMAS, 2003, pp. 241–248.

[9] T. Abbas and B. A. MacDonald, “Generalizing topological task graphs
from multiple symbolic demonstrations in programming by demonstra-
tion (pbd) processes,” in ICRA, 2011, pp. 3816–3821.

[10] G. Gemignani, S. D. Klee, M. Veloso, and D. Nardi, “On task recogni-
tion and generalization in long-term robot teaching,” in AAMAS, 2015,
pp. 1879–1880.

[11] R. Caccavale, M. Saveriano, G. A. Fontanelli, F. Ficuciello, D. Lee, and
A. Finzi, “Imitation learning and attentional supervision of dual-arm
structured tasks,” in ICDL-EPIROB, 2017, pp. 66–71.

[12] R. Caccavale, M. Saveriano, A. Finzi, and D. Lee, “Kinesthetic teaching
and attentional supervision of structured tasks in human–robot interac-
tion,” Autonomous Robots, 2018.

[13] R. Caccavale and A. Finzi, “Flexible task execution and attentional
regulations in human-robot interaction,” TCDS, vol. 9, no. 1, pp. 68–79,
2017.

[14] D. A. Norman and T. Shallice, “Attention to action: Willed and automatic
control of behavior,” in Consciousness and self-regulation: Advances in
research and theory, 1986, vol. 4, pp. 1–18.

[15] R. P. Cooper and T. Shallice, “Hierarchical schemas and goals in the
control of sequential behavior,” Psychological Review, vol. 113, no. 4,
pp. 887–916, 2006.

[16] R. Caccavale and A. Finzi, “Plan execution and attentional regulations
for flexible human-robot interaction,” in SMC, 2015, pp. 2453–2458.

[17] D. Lee and C. Ott, “Incremental kinesthetic teaching of motion prim-
itives using the motion refinement tube,” Autonomous Robots, vol. 31,
no. 2, pp. 115–131, 2011.

[18] X. Broquère, A. Finzi, J. Mainprice, S. Rossi, D. Sidobre, and M. Staffa,
“An attentional approach to human–robot interactive manipulation,” Int.
J. Soc. Robot., vol. 6, no. 4, pp. 533–553, 2014.

[19] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement repro-
duction and obstacle avoidance with dynamic movement primitives and
potential fields,” in Humanoids, 2008, pp. 91–98.

[20] M. Saveriano and D. Lee, “Point cloud based dynamical system modu-
lation for reactive avoidance of convex and concave obstacles,” in IROS,
2013, pp. 5380–5387.

[21] ——, “Distance based dynamical system modulation for reactive avoid-
ance of moving obstacles,” in ICRA, 2014, pp. 5618–5623.

[22] M. Saveriano, F. Hirt, and D. Lee, “Human-aware motion reshaping
using dynamical systems,” Pattern Recognition Letters, vol. 99, pp. 96–
104, 2017.

[23] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning movement
primitive attractor goals and sequential skills from kinesthetic demon-
strations,” Rob. Auton. Syst., vol. 74, pp. 97–107, 2015.

[24] S. D. Whitehead and D. H. Ballard, “Learning to perceive and act by
trial and error,” Machine Learning, vol. 7, no. 1, pp. 45–83, 1991.


