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Masterthesis for Florian Lehmann 

Change detection using models derived from point clouds 

A digital replica of the real world is demanded in a wide variety of industries – from construction to 

quality assurance and autonomous driving. The increasing number of low-cost sensors for 3D 

measurements supports the emergence of new applications and research in this field. 

The department for real-time data processing (EDP) at the institute for optical sensor systems of the 

German Aerospace Center in Berlin-Adlershof is developing a multi-sensor approach for 3D 

measurements called Integrated Positioning System (IPS). The IPS is a system for ego motion 

estimation without any prior knowledge of the environment. It is capable to operate in buildings, 

tunnels, etc. as well as outdoor spaces. In its basic configuration, the system combines a low-cost 

inertial measurement unit with a stereo camera system and can be extended by various sensors such as 

GPS or a thermal imaging camera. This combination of sensors allows the local referencing of the 

measurement data and the derivation of a dense point cloud from the captured images. 

Various applications require capturing the same scene at different times. Meanwhile, the scene is 

subject to minor changes while the rough structure remains the same (e.g. moving objects in a room, 

parking cars on streets). These changes have to be tracked. For an efficient monitoring it is necessary 

to abstract the point cloud and to transform it into a simpler representation. 

 

 

 

 
 

(a) Handheld setup of IPS  (b) Point cloud captured by the IPS 

 

In this master thesis an approach for the derivation of a model from a point cloud will be developed. 

Based on the derived model, changes in the environment are to be detected. 

For this goal the following tasks are to be carried out: 

 Study of model derivation and simplification methods from point clouds 

 Getting familiar with the IPS for 3D Reconstruction 

 Implementation of a model derivation from point clouds 

 Implementation of  an algorithm for change detection in the derived model 

 Evaluation of both approaches 
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Abstract

Change Detection using Models derived from Point Clouds

This thesis examines the detection of geometric changes in 3D data based on models

derived from the point clouds. The process chain consists of the registration of point

clouds, the derivation of a model and the detection of changes in these models.

For the registration AprilTags are used, which, in combination with the trajectories of

the respective measuring runs, allow the estimation of a transformation between two local

coordinate systems without a preceding assessment of the tag position.

The point cloud is sampled down to a uniform distribution for faster processing and

the normals and curvatures are calculated for the remaining points. A region growing

process uses this additional information to divide the point clouds into planar and non-

planar areas. The former are modeled as planes through simplification and meshing using

a modified quadtree structure. The non-planar points are clustered by supervoxels and

the extracted clusters are approximated by Axis Aligned Bounding Boxes. Both planar

and non-planar modeling is performed for all datasets which are to be compared. The

bounding boxes are used for the detection of changes. The box model of a dataset can

easily be examined for intersections with a second dataset, due to the axis alignment. The

intersections allow the detection of changed areas in the derived models.

The methods proposed are suitable for both indoor and outdoor applications, provided

that the changed objects are well separated and the compared datasets cover overlapping

areas. The accuracy depends on the chosen size of the bounding boxes as well as the size

of the changed objects. The evaluation has also shown that the proposed method can be

integrated into a realtime-capable system.

Keywords: perception, registration, model derivation, change detection, point cloud



Zusammenfassung

Change Detection using Models derived from Point Clouds

Diese Arbeit beleuchtet die Erkennung von geometrischen Veränderungen in 3D Punkt-

wolken auf Basis einer vorhergehenden Modellableitung. Die dafür aufgebaute Prozess-

kette besteht aus der Registrierung von Punktwolken, der Ableitung eines Modells sowie

der Erkennung von Änderungen in diesen Modellen.

Für die Registrierung werden AprilTags als künstliche Marker verwendet, die in Kom-

bination mit den Trajektorien der jeweiligen Messläufe die Berechnung einer Transforma-

tion zwischen zwei lokalen Koordinatensystemen ohne vorherige Vermessung ermöglichen.

Die Punktwolke wird zur schnelleren Verarbeitung auf eine gleichmäßige Verteilung

heruntergerechnet und die Normalen und die Krümmung für die restlichen Punkte be-

rechnet. Ein Region Growing-Verfahren nutzt diese Zusatzinformationen, um die Punkt-

wolken in planare und nicht-planare Bereiche zu unterteilen. Erstere werden durch Ver-

einfachung mit einer modifizierten Quadtree-Struktur als Ebenen modelliert. Die nicht-

planaren Punkte werden durch Supervoxel in gleichmäßige Abschnitte unterteilt. Die so

extrahierten Cluster lassen sich durch achsparallele Boxmodelle approximieren. Die pla-

nare und nicht-planare Modellierung wird für alle zu vergleichenden Datensätze durch-

geführt. Die nicht-planaren Bereiche werden für die Detektion von Veränderungen ge-

nutzt. Das Box-Modell eines Datensatzes kann aufgrund der Achsausrichtung leicht auf

Schnittmengen mit einem zweiten Datensatz untersucht werden. Die Schnittmengen er-

lauben die Erkennung von veränderten Bereichen im Modell.

Die vorgestellten Verfahren eignen sich sowohl für Innen- als auch für Außenanwen-

dungen, unter der Voraussetzung, dass die geänderten Objekte gut separierbar sind und die

verglichenen Datensätze überlappende Bereiche abdecken. Die Genauigkeit hängt von der

gewählten Größe der Boxen im Modell sowie der Größe der geänderten Bereiche ab. Die

Auswertung hat gezeigt, dass sich die vorgestellte Methode in ein echtzeitfähiges System

integrieren lässt.

Keywords: Registrierung, Modellableitung, Veränderungserkennung, Punktwolke
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1 1 Introduction

1 Introduction

A recent trend in the area of measuring systems is the integration of position informa-

tion into measurement data. The three-dimensional localization of measurements allows

the interpretation of these data in a spatial context [1, p. 40]. While stationary sensors

can be surveyed once, mobile systems must be able to determine their position for each

measurement. This localization is not trivial and represents a dedicated research area.

The Institute for Optical Sensor Systems at the German Aerospace Center in Berlin-

Adlershof is developing a multi-sensor approach for 3D measurements called Integrated

Positioning System (IPS). The IPS is a system for ego localization without any prior

knowledge of the environment. It is capable to operate in buildings, tunnels, etc. as well

as outdoor spaces. By combining pose estimation with other sensors, their measurements

can be localized. An extensive field of application that benefits from the localization of

measurements is the regular monitoring of technical environments, also known as condi-

tion monitoring. A current approach is to combine a helmet-mounted version of the IPS

with an RGB inspection camera to take color images in environments difficult to reach

such as under ground, or as shown in Figure 1.1 (a) in a hull of a ship [2]. This allows

automated position tracking for each image captured by the system so that the image data

can be easily located in a reference model as shown in Figure 1.1 (b). This work is based

on the data acquisition of the IPS, whose general design and working principle is de-

scribed in Section 1.1. The functionality is extended in the area of condition monitoring.

The motivation and realized objectives are summarized in the Sections 1.2 and 1.3.

(a) Localization of images in 3D model. (b) Localization of images in 3D model.

Figure 1.1: Condition monitoring of a ship [2].
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1.1 Integrated Positioning System

In many use cases, an exact localization of the user within its surrounding is necessary.

This can be done for example by using an external reference system like Global Position-

ing System (GPS) that uses the signal send by satellites to triangulate the users position.

This has an accuracy of a few meters up to centimeters when using a differential GPS [3].

In any case, the use of this system is restricted to applications where the GPS signal can

be received. For cases in which visibility to the satellites cannot be guaranteed, or exter-

nal referencing is not possible from the outset, local navigation solutions are an option for

position determination.

The Integrated Positioning System (IPS) combines a stereo camera setup with an Inertial

Measurement Unit (IMU) to a multisensor solution for local pose estimation. The sys-

tem can be freely configured regarding the number and type of cameras and the IMU as

well as their geometrical relative orientation. By choosing the right hardware and setup

the system can easily be adapted to a wide variety of use cases from very small systems

mounted on robots, up to big setups measuring buildings. It can be extended by other

sensors such as, for example, thermal cameras, laser measuring sensors, etc. In the fol-

lowing Figure 1.2 shows one example of the IPS used for handheld indoor applications

and one for car mounted outdoor purposes. The configuration shown in the left Figure 1.2

(a) consists of an IMU inside the case, two infrared LED lights and two cameras, mounted

at a distance of 20 cm. The relative orientations that describe the structural arrangements

of the components, as well as their recording parameters, are known through calibration.

(a) Handheld version for indoor applications . (b) Car mounted IPS.

Figure 1.2: Two different IPS-setups (image ownership by DLR).
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The accelerometer and gyroscope of the IMU allow to estimate the path, went between

two points in time, by double integrating the measured acceleration and angular velocity

in three degrees of freedom each. The combination of time stamps and according poses

in 3D space is called trajectory. Each pose describes the position and orientation of the

system with combined six degrees of freedom in a coordinate system with its point of

origin at the starting point of the measurement. This estimation procedure is called inertial

odometry. No external signals are necessary to derive a trajectory but the poses are not

always certain since the sensors are noise sensitive and error prone. The position is for

example drifting over time and accumulates a scale error. To validate the measurements

a stereo camera system is capturing the scene continuously. The captured stereo images

are analyzed to derive a relative transformation between two time stamps in a so called

visual odometry. The combination of inertial and visual odometry results in a visual aided

inertial odometry where the measurements of both systems are taken into account. This

combination outperforms the single solutions.

Recent developments allow the derivation of a point cloud from the captured stereo

images and trajectory. Point clouds consist of punctual spatial measurements without vol-

ume. These can also be derived for example using a 3D laser scanner system. Due to the

high portability and low cost hardware the IPS represents a more mobile and affordable

alternative. The IPS additionally provides a radiometric measurement for each point, so

that the point cloud is colored based on the measured intensity values. An example can

be seen in Figure 1.3 where the IPS depicted in Figure 1.1 (a) has been carried through a

ships hull recording the trajectory and a point cloud.

Figure 1.3: Point cloud of a ships hull captured with the IPS. Trajectory indicated by

orange points (point cloud ownership by DLR).
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1.2 Motivation

Monitoring environments investigates changes that occur over time. For this reason, re-

peated measurements in the same environment at different times are necessary. The com-

parison of the measurements indicates the change and is referred to as Change Detection.

This is an important research area of remote sensing in which, among other things, the

change due to urbanization, deformation, land use, etc. is monitored in large scale cover-

ages and long-term intervals [4]. The monitoring of smaller spatial changes in shorter time

periods over hours, days or weeks is also worth considering. In various local application

areas, such as construction sites, it is important for the planning to include information

about changes to a previous state. One way to do this is using the IPS to capture point

clouds at different times in a to be monitored environment. The comparison of the gath-

ered three-dimensional data points allows to detect geometric changes over time as shown

in Figure 1.4.

(a) Monitored indoor environment. (b) Detected and modeled change.

Figure 1.4: Change detection in an indoor environment. Change indicated in red.

The point clouds of the IPS are dense due to the high resolution of the cameras and the

possibility to scan locations several times during a recording session. When comparing

two dense point clouds, many points have to be compared. In addition, point clouds

are difficult to visualize because no volumetric information is available. Also, not all

applications support the visualization of point clouds at all. With regard to the fields

of application of the IPS, a fast processing of the results is intended as well as a good

visualization. In many applications the surfaces of objects are reconstructed by a mesh

structure, as shown in Figure 1.5, using the respective point clouds. These structures can

be simplified with the help of known methods from the wide research area of computer

graphics [5]. In addition, almost all 3D visualization tools support 3D mesh formats. This

determination of a model from a point cloud is called Model Derivation.
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(a) Point cloud of a fire extinguisher.

(50000 Points)

(b) Mesh representation of the same object.

(1600 points and 2500 triangles)

Figure 1.5: Two 3-dimensional representations of a fire extinguisher (adapted from [6]).

The chosen representation can also affect the change detection, since not the entire

point cloud is used for comparison, but the simplified mesh structure. By deriving a

reasonable model, the change detection is simplified and accelerated. This thesis presents

an approach for change detection using a 3D model derived from point clouds. The main

focus is on applications in indoor environments with geometric changes between a few

decimeters and a few meters.

In order to compare or combine 3-dimensional entities spatially they must be within

the same frame of reference. Each point cloud captured by the IPS is defined in a par-

ticular coordinate system with its origin at the starting point of the measurement. When

the starting pose changes, the captured points appear at different positions. As seen in

Figure 1.6 the overlaid point clouds occupy different regions in the coordinate system

despite representing the same scene. The process of transforming the coordinate systems

into each other is called Registration.

Figure 1.6: Two not registered point clouds capturing one scene, differing by a rotation.
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1.3 Objectives

In the context of this work, two important areas in the development of the IPS have been

pursued. On the one hand, a method to derive 3D meshes from the captured point clouds

was implemented within the IPS-Framework for the first time. On the other hand, the

proposed comparison method can be used to analyze 3-dimensional scenes for spatial

changes on the basis of the derived models. Both approaches open up completely new

fields of applications. A registration method based on the IPS capabilities of detection

AprilTags is described, but alternatives are not investigated, as this is not the focus of this

work. In the following a summary of the contributions of this work to the development of

the IPS is stated:

• design and implementation of a dedicated local registration application based on

AprilTags

• implementation of a planar simplification and meshing algorithm

• design and implementation of a new change detection method

• four new datasets are recorded with different configurations

• evaluation of the stated approaches

These stated objectives are described in this thesis. For the fundamental understanding

Chapter 2 introduces and explains the theoretical principles and technical terms this work

depends on. In Chapter 3 other works are discussed which address the same topic and the

proposes methods are put into relation. Chapter 4 addresses the implemented methods

in detail, whereas Chapter 5 evaluates them based on different datasets regading their

accuracy and runtime. Finally, Chapter 6 draws a conclusion and gives an outlook to

possible future works.



7 2 Fundamentals

2 Fundamentals

The methods presented in this thesis are based on various methods from the research

areas of computer vision, computer graphics and data analysis. This chapter describes

these methods in detail. First, several data structures are explained in Section 2.1 that

enable efficient access to multidimensional data. This data can be available in many

different forms. Section 2.2 describes the 3D representations used in this work, such

as point clouds and mesh structures. Furthermore, procedures for processing these data

types are explained. The last Section 2.3 states the view geometry of monocular and stereo

cameras and the underlying mathematical model as well as procedures for reconstructing

depth information from the obtained image data.

2.1 Space Partitioning

In their simplest form, multidimensional data are sets of coordinates in a multidimensional

space. These data points can be annotated with information such as color information,

labels and measurements. A set of data points often consists of several hundred thousand

data points. Traversing an entire point set can easily become computationally intensive.

In particular, the pairwise comparison, for example when searching for nearest neighbors,

is very time-consuming. Spatial partitioning techniques provide efficient processing by

dividing the space into regions and testing if points are within the same region in this

space [7]. This reduces the number of pairwise comparisons drastically. This section

introduces efficient representations for multidimensional datasets that allow fast access

or include neighborhood information. The different spatial partitioning techniques Quad-

and Octree, as well as k-d tree and voxel grid are explained. The descriptions are based

on [7]. These techniques are not necessarily restricted to be used in processing visual data,

but can also be used in other fields that rely on data analysis. In the following section, the

description is limited to the use of 2- and 3-dimensional point sets, which are referred to

as point clouds.
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2.1.1 Voxel Grid

A dataset containing many points has no information on spatial relations, so that process-

ing points in a certain region requires iterating over all points in the set. A simple solution

is to precompute some spatial information in a appropriate data structure. An efficient

way to achieve a uniform resolution is to use voxel grids [7, p. 285]. A grid divides the

considered space into a number of regions or cells of equal size as shown in Figure 2.1

(a). These cells relate to volume elements and thus are called Voxels in 3D, in the same

manner as Pixels represent picture elements in 2D. The data structure of the voxel grid

contains information about the dimensions and position of the respective cell as well as

the points it contains. This uniformity allows fast access to point sets within a certain

region. Instead of iterating over all points, only the individual cells have to be checked..

The efficiency of a voxel grid is depending on its resolution, defining the cell size in

comparison to the overall point set size and its complexity. An incorrectly selected cell

size can cause performance issues. If the grid is to fine, many cells have to be updated

with the information on the contained points which will take more computation time and

space. In the worst case the voxel grid contains more cells than underlying points. A grid

being to coarse leads to over simplification so that still many points have to be accessed.

The point density in point clouds can vary within one dataset. This can be caused by

redundant measurements and can interfere with further processing. Another common ap-

plication of voxel grids is the filtering of point clouds to have a certain density. Therefore,

a voxel grid of the desired resolution is computed and the center of each non-empty cell

used as new point. This procedure is shown in Figure 2.1 (b). For higher accuracy the

mean position of points in the voxel can be used as shown in Figure 2.1 (c).

(a) Voxel grid representa-

tion.

(b) Filtered point cloud. (c) Center approximation.

Figure 2.1: Voxel grid representation of a 2D point cloud.
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2.1.2 Quad- and Octree

Uniform grids cannot properly handle point sets of different sizes and distributions due to

their fixed dimensions. Sparsely populated point clouds, for which the cell size is chosen

too small, require a lot of time for processing, since many empty cells have to be checked.

By computing a hierarchical grid with varying cell size in each level, this problem can be

addressed. One way to combine a hierarchical grid with a tree-like structure that is easy to

traverse is the Quadtree. The quadtree represents an axis-aligned hierarchical partitioning

of a 2-dimensional space as pictured in Figure 2.2. A tree consists of its Root representing

the starting point, Child nodes dividing the space into different parts and Leaves contain-

ing the data points. The root is located in the origin of the coordinate system of the point

cloud and has four children. Each child covers one quadrant of the space the local co-

ordinate system the parent node covers and has itself up to four children. Additionally,

each child contains it center point, respectively information on its dimensions and infor-

mation on the usage of its children (fully, partly, not used). A child being at the end of

the tree structure is called leaf and holds the points fed into the quadtree. When building

a quadtree, the extents of the depicted point cloud and the desired depth of the tree or a

minimum cell size has to be known. The depth describes the number of levels containing

children. At each level, the space is split in half along the x and y axis. The children

contain the resulting parts. This step is repeated for each child until the desired depth is

reached, as shown in Figure 2.2 (a) and 2.2 (b). The children of the last level then contain

the points of the point cloud. This principle is not limited to the 2-dimensional space and

can be used for any n-dimensional space. In the 3-dimensional case, it is called Octree

subdividing the space in eight octants along the x, y and z axis.

(a) First level of quadtree. (b) Second level of quadtree. (c) Resulting tree structure.

Figure 2.2: Quadtree build from a 2D point cloud.
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2.1.3 k-d Tree

A more general tree-based representation is the k-dimensional tree or k-d tree introduced

in [8]. While oc- and quadtrees divide the space in all dimensions at once, a k-d tree

divides along one dimension at a time. These splits do not necessarily have to be uniform.

The prefix k specifies the number of dimensions the tree subdivides. The tree dimension-

ality does not necessarily have to match the dimensionality of the divided space. This

can be useful if a dataset has only a very small spread in a certain dimension. One level

represented in an octree can be seen as three level kd-tree split along the x, y and z axis.

Splitting along one axis instead of two or three can be implemented more easily and is

numerically robust [7, p. 319].

The tree structure consists of nodes with two child nodes each, which contain the axis

and value dividing the point set. The leaf nodes contain the data points. In each division

step the point set is split in half along one particular axis. Often the division is in a round-

robin manner by switching between dimensions in a circular fashion. The resulting tree is

mostly not balanced. This subdivision scheme and parts of the corresponding tree based

on an example are depicted in Figure 2.3 (a) and 2.3 (b). Alternatively the order also can

be freely chosen for example by dividing the axis with the widest spread, to form more

balanced trees.

Nearest neighbor searches and range searches can easily be done with the help of k-d

trees. When searching for points within a certain range only those tree nodes have to be

queried that the search region overlaps as shown in Figure 2.3 (c). This reduces processing

time for common problems as for example normal estimation where neighbors of each

point in a point set are needed.

x1

y2

y3

x4

x5

x6

x7

y8
x9

(a) Subdividing scheme.

x1

y2 y3

x4 x6x5 x7

y8

x9

(b) Tree structure building. (c) Range query in a k-d tree.

Figure 2.3: k-d tree build from a 2D point cloud.
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2.2 Representations of 3D Data

The location of measurements in space and the processing and derivation of the resulting

data is a common problem in computer vision and computer graphics. In this thesis the

focus is on 3-dimensional data that can be represented, processed and stored in various

forms. In this scope, point clouds, one of the most simple representations, as well as tri-

angle meshes are introduced in Section 2.2.1 and 2.2.4. Furthermore, different processing

steps for point clouds are required in this work. Section 2.2.3 explains the concept of

alpha shapes for the extraction of concave hulls and Section 2.2.2 introduces methods for

normal estimation in point clouds.

2.2.1 Point Cloud

A large variety of sensors and sensor types provides the acquisition of spatial information.

Laser scanners use a beam of light to scan the surroundings for example point by point

using Light Detection and Ranging (LiDAR). This system is an active method in which

a single laser beam is directed at a point and the propagation time is measured. There

are many other methods for example RGBD cameras that capture color and depth infor-

mation using structured light for distance measurement or completely passive systems

such as the IPS utilizing multiple cameras and the underlying stereo geometry. All these

techniques allow the perception of the surrounding environment by creating point-wise

measurements defined by 3-dimensional coordinates as pictured in Figure 2.4 (a).

xz

y

(a) Point cloud from distance measurement. (b) Point cloud of a scanned figure [9].

Figure 2.4: Examples for point clouds.
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A point cloud is the spatial representation of these measurements in one coordinate

system. Depending on the sensor the data points in 3D can be augmented with further

information like illumination, color, roughness and other material properties. An exam-

ple can be seen in Figure 2.4 (b) that shows an image of the Stanford bunny figure [9]

combined with the respective point cloud.

Multiple point clouds can be combined in one frame of reference and for example

georeferenced by registering each point cloud in the respective coordinate system. By

combining different approaches like remote sensing based, UAV based and hand-held

systems large environments can be captured in detail [10]. These combined point clouds

are unorganized point sets with no knowledge about the capturing situation. Depth sensors

like Kinect and other RGBD sensors provide organized point clouds. The captured points

consists of the 3D information in both cases but in organized point clouds the memory

is organized in a 2D array. The processing of adjacent points can be simplified by these

additional information [11]. Algorithms that are designed for unorganized point clouds

usually work on organized but not the other way around. This thesis completely depends

on unorganized point clouds.

2.2.2 Surface Normal and Curvature Estimation

During the acquisition process of point clouds, the information about the surface structure

at the respective points is lost, since these are exclusively point measurements not taking

any spatial relations into account. The structure of the underlying surface can be described

by a normal vector and a curvature (see Figure 2.5 (a)). At each point in the point cloud

a tangential plane can be defined. The normal vector is a normalized vector standing

perpendicular to this plane. The curvature describes the surface shape at the respective

point. The analysis of adjacent points in a point cloud allows the approximation of this

information and thus the estimation of the real surface.

In the following a simple normal and curvature estimation method is described on the

basis of [12]. The proposed method is based on a first order 3-dimensional plane fitting

within a certain set of neighboring points Pk around each point of a point cloud. k indi-

cates the number of neighbors. This plane is defined by a point x and a normal vector n.

The distance from a point pi ∈ Pk to the plane is define as di = (pi − x) · n. The estima-

tion can be summarized in a least square problem within the neighborhood Pk. The point

x and the vector n are computed in a least square sense so that di = 0. The estimation of
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the centroid x of Pk is done by:

x = p̄ =
1

k
·

k
∑

i=1

pi (2.1)

Normal vector n can be estimated by analyzing the eigenvalues λj and eigenvectors vj of

the covariance matrix C ∈ R
3×3 of Pk. The covariance matrix is expressed as:

C =
1

k

k
∑

i=1

(pi − p̄) · (pi − p̄)T

C · vj = λj · vj, j ∈ {1, 2, 3}

(2.2)

The eigenvectors of this matrix span a vector space corresponding to the principal com-

ponents of Pk with its origin in the calculated centroid x. By ordering the eigenvalues

and eigenvectors according to their size so that λ1 < λ2 < λ3, the eigenvector v1, corre-

sponding to the smallest eigenvalue λ1, represents the approximation of the normal vector

n. The sign of the derived vector is unknown. By adding an additional viewpoint vp that

is given by the position of the capturing system this direction can be set. For this the

constraint ni · (vp−pi) > 0 must be fulfilled. When working with point clouds containing

different viewpoints this constraint is not applicable.

N

X2
X1

(a) Normal vector and curvature describing a

surface.

(b) Influence of the chosen neighborhood size.

Colors indicate curvature, lines normals.

left k = 5, right k = 50

Figure 2.5: Normals and curvature estimation.
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The computed eigenvalues derived in the normal estimation can also be used estimate

the curvature σpi of the neighborhood Pk [13]. If λ1 = minj(λj) the curvature can be

estimated as:

σpi =
λ1

λ1 + λ2 + λ3

(2.3)

The curvature as well as the normal vector highly depend on the chosen neighborhood

Pk. The neighborhood can be set on the one hand by defining a fixed k representing the

k nearest neighbors or on the other hand by defining a certain search radius where k is

changing dynamically depending on the number of points within the radius. In both cases,

a k-d tree as represented in 2.1.3 can be used to access the adjacent points efficiently.

Setting the used neighborhood too large in comparison to the point set leads to a loss

of details close to edges. In turn, a small neighborhood makes the approximation of the

normals susceptible to noise. An example can be seen in Figure 2.5 (b). In general, both

the method and the neighborhood size have to be chosen carefully.

2.2.3 Alpha Shapes

For point clouds, an interior and an exterior region can be defined. The transition between

the two regions is represented by the connected points of the boundary. There are different

ways to deduce the boundary. The convex hull encloses the entire point cloud like a rubber

band stretched around the points as seen in Figure 2.6 (a). This hull is unambiguous, but

indentations are not modeled. For a more detailed modeling of the boundary a concave

hull is required. However, this is not unambiguous since the level of detail can vary. [14]

describes a method to extract a concave hull called alpha shapes. Alpha defines the radius

(a) Convex Hull at α → ∞. (b) Alpha shape resulting in a

concave hull.

(c) Alpha shape resulting in

subdivided regions.

Figure 2.6: Different hulls of a point set (Inspired by [14]).
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of a circle. This circle is moved around the point set, approaching the points from each

side. If the circle is small enough a more detailed boundary is extracted. A too small α

leads to degenerated cases as exemplary depicted in Figure 2.6 (c). The method can be

extended to 3D space by using a sphere to distinguish interior and exterior regions.

2.2.4 Triangle Mesh

The points of a point cloud are measurements sampled from surfaces. Each point rep-

resents one particular position on this surface and an infinitely dense point cloud would

completely reconstruct this surface. By approximation similar patches on the surface as

closed 2-dimensional envelops, the surface can also be modeled. One well known way to

represent surfaces is the use of meshes build up from triangles. These so called Triangle

Meshes are a fundamental structure in computer graphics [15] and belong to the boundary

representations of different methods to describe geometric models. Boundary represen-

tations only describe the surfaces of objects and do not make any statements about the

enclosed volume. Most shapes can be represented with triangles, as pictured exemplarily

in 2.7 (b). More complex shapes can be approximated by subdividing them into smaller

triangles.

i

j

k
h

l

(h, i, j)

(j, l, h) (j, k, l)

Face

Vertice

Edge

(a) 2D mesh with normals (Inspired by [15]). (b) Boundary mesh of a scanned figure [9].

Figure 2.7: Examples for 2D and 3D triangle meshes.

Triangle meshes consist of many triangles that are joined along their edges to form

a surface. Each triangle is defined by three points, called Vertices. Theses points are
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connected by three edges spanning a surface. This surface lies in a plane and is referred

to as face (see Figure 2.7). Furthermore, the vertices, edges and faces can be annotated

with additional information that allow a realistic representation. Vertices can get color

information that can be interpolated to colorize the spanned face. If a higher resolution

without the creation of new triangles is necessary, texture coordinates can be appended

to enable the projection of images onto the face. For faces and vertices normals are used

to define the interior and the exterior. Different shading techniques utilize the normals to

create more realistic visualizations of models. Face normals can be implicitly defined by

the order of the spanning vertices. In case of Figure 2.7 the faces are defined counter-

clockwise.

In comparison to other polygons, like for example quads that consists of four points,

the face of a triangle is always well defined and thus unique. Triangle meshes are widely

used in computer graphics due to their uniformity. This uniformity allows various simple

operations that makes them particularly suitable for Single Instruction, Multiple Data

(SIMD) based graphic pipelines as implemented in modern graphic cards [16].

2.3 Data Acquisition

Point clouds can be obtained by different methods of depth estimation. Active methods

such as LiDAR measuring point by point or RGBD cameras that capture a 2D matrix at

one point in time benefit from controlled conditions by the emitted signal. These meth-

ods are usually very accurate, but active sensors also have their drawbacks in terms of

applicability. For example, infrared based methods are limited to applications that are not

exposed to the influence of external infrared light sources like the sun.

Another approach in depth estimation coming from the photogrammetry is structure

from stereo. In this field the images of two or more cameras are analyzed to derive spatial

information on the captured scene. The use of passive cameras does not require an active

system, but the system has to adapt more to the environment. The navigation system IPS

as described in 1.1 uses two cameras permanently mounted in one setup to obtain spatial

information over time.

In the following the theoretical background for point cloud acquisition from stereo

cameras is given. Starting with introduction to the camera model in Section 2.3.1, the

combination of cameras in a stereo setup in Section 2.3.2 and the final depth estimation in

Section 2.3.3 the point cloud derivation from one particular viewpoint is explained. The
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combination of point clouds from different viewpoints is summarized in Section 2.3.4.

Additionally, AprilTags, that are used to register multiple point clouds captured from one

scene, are introduced in Section 2.3.5.

2.3.1 Camera model

To extract information about the captured scene in an image, like detecting salient points

and estimating their distance to the camera, a mathematical model of the projection and

capturing process is necessary. The pinhole camera model is a widely used model to

describe a projective geometry and the capturing parameter of a camera. The working

principle of the Camera Obscura, called pinhole camera, gave the model its name. It

assumes a dot-sized aperture collimating the light rays coming from an illuminated object

as shown in Figure 2.8. It allows the mathematically correct projection of a point M in

3D space to a point m on a 2-dimensional image plane as the sensor of a camera is.

Image plane

M

m

Focal point

Focal plane

Figure 2.8: Projection with a pinhole camera by [17, p. 41].

All calculations required for the transformation of coordinates or the projection are

performed with the help of homogeneous coordinates. Therefore, all coordinates are ex-

tended by a scaling factor that is set to 1. The object coordinates are thus 4-dimensional

vectors and the resulting image coordinates 3-dimensional vectors. The results can be

easily retrieved by scaling the vectors so that the additional dimension is 1 again.

The 3D point M in 3D space is projected onto the image plane via the focal point C,

which represents the optical center of the system. The resulting point m in the image

plane is mirrored symmetrically to the focal point. For better illustration, the image plane
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can also be displayed unreflected in front of the focal point. This results in the following

schematic representation of a camera (see Figure 2.9).

A normal, spanned between focal point and image plane, has its point of intersection

with the image plane in point c. This point is called the principal point and is the origin

of the sensor coordinate system. To transform this coordinate system into the image

coordinate system, with the origin in one of the image corners, a translation has to be

applied.

Usually, the captured points are given in their own frame of reference O. The camera

is also set within this coordinate system. Its position and orientation is defined by a

3 × 3 rotation matrix R and a 3 × 1 translation vector t. Both combined create a 4 × 4-

Matrix representing the so called exterior orientation. The camera model assumes all

object points to be in the camera coordinate system with its origin in C, the X and Y axis

parallel to the corresponding image plane and the Z axis pointing towards c. To transform

all object coordinates into the camera coordinate system, the exterior orientation has to

be applied to all 3D points:

MC =

[

R3×3 t3×1

0T 1

]

MO (2.4)

C

YC

O

Yw

Zw

Xw

R,t

ZC

XC

Mc

m

I

c

Figure 2.9: Abstract representation of a camera by [17, p. 42].

Assuming all object points to be in the camera coordinate system the projection from

3D to 2D is modeled by the following matrix multiplication of the matrix P and the point

coordinate M :

λ ·m = P ·M (2.5)
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λ represents a scale factor and P a projection matrix. P can be denoted into a projective

part transforming object coordinates to the image plane and a part representing the interior

orientation of the camera. The interior orientation transforms the projected points into the

coordinate system of the image.

P = K · PN =









α 0 u0

0 α v0

0 0 1









·









1 0 0 0

0 1 0 0

0 0 1 0









, with α =
f

δ
(2.6)

f is the focal length of the optical system in meters. The factor δ is a scale factor,

denoting the pixel size in meter per pixel, that transforms the sensor coordinates in meters

into image coordinates in pixels. Finally, the projected image is translated by the value

of the principal point u0, v0. This information can be obtained by calibrating the camera

system. By applying the projection matrix to the object points in the 3D space, the Z-

dimension is not considered anymore, so the depth information gets lost. It is not possible

to retrieve this information directly from the image without additional information.

2.3.2 Stereo Vision

The usage of multiple cameras and the knowledge on their relative orientation allows the

estimation of spatial information. Camera systems consisting of two cameras that are

positioned relative to each other are called stereo systems [18]. Based on their arrange-

ment stereo systems are classified in two categories [17], as shown in Figure 2.10. The

most simple setup, regarding their mathematical properties, is the parallel arrangement as

shown in Figure 2.10 (a). This arrangement is called stereo normal case. The cameras are

positioned with the same orientation and only shifted along one axis. In most cases the

cameras are somehow tilted. If their the viewing direction is directed towards each other

as shown in Figure 2.10 (b) the setup is called convergent camera geometry. This is also

called the general stereo geometry.

In order to be able to derive statements about the structure of the captured scene, an

object point that is visible in one camera must also be visible in the other. Since the points

can lie anywhere in the image depending on their relative position, corresponding pairs

of points have to be found first. Regardless of their respective arrangement, the difficulty

with stereo systems lies in this assignment of corresponding pixels. An object point M

that is captured by both cameras is mapped to a pair of corresponding image points m1
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Baseline

Left Camera Right Camera

(a) Parallel stereo setup.

Left Camera Right Camera

Baseline

Point of 

Convergence

(b) Convergent stereo setup.

Figure 2.10: Relative camera geometries for stereo setups (Adapted from [17, p. 66]).

and m2. The projection is based on the projective geometry described in Section 2.3.1. In

the general case the capturing geometry can be pictured as in Figure 2.11.

C2
R,t

M

m2

I2

C1

m1

I1

l1

l2

e2e1 B

Figure 2.11: General stereo geometry including epipolar geometry [17, p. 67].

In the case of stereo vision the relative orientation of both cameras is fixed and thus can

be extracted beforehand. This can be done for example in a previous calibration. With

those information each camera can be described by its pose in 3D space consisting of the

focal point or camera center C, a view direction and the regarding focal length f , defining

the image plane I . The distance between both camera centers C1 and C2 is called baseline.

This line intersects both image planes I1 and I2 in the two points e1 and e2 called epipoles.

Due to the fixed arrangement and the geometry defined with it, so-called epipolar lines

can be defined. Each image point m1 in image I1 has a corresponding epipolar line l2 in

image I2. An object point M that is projected to the respective image points m1 is also
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projected to an image point m2 somewhere on the epipolar line l2. When searching for

corresponding image points only those lines have to be taken into account.

When using a parallel stereo system, without any distortions, the epipolar lines are on

the same horizontal line as the corresponding pixel. Finding corresponding point pairs

is thus reduced to scanning a line. To take advantage of this, convergent stereo systems

can be converted into parallel ones by rectification. Knowing the relative orientation be-

tween both cameras the rectification transforms both images I1 and I2 to a common image

plane parallel to the baseline. Rectified images do not only simplify the correspondence

problem, they also allow the calculation of depth information as shown in Figure 2.12.

Figure 2.12: Distance estimation in a stereo normal setup.

In a stereo normal setup the distance ρ of the object point M to the baseline can be

calculated by:

ρ =
f · B

δ · du
(2.7)

The disparity δ describes the distance between the pixel coordinate of the point in the left

image to the pixel coordinate of the corresponding point in the right image. It is calculated

by:

δ = |u1 − u2| (2.8)

f represents the focal length, B the length of the baseline and du pixel size of the used

camera. It is assumed that both cameras have an equal internal parameters.
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2.3.3 Semi-Global Matching

Stereo images allow the estimation of depth by finding corresponding pixel pairs in the

images of the left and right camera. The first step in depth estimation is the derivation

of disparity values for each image point, combined in a so called disparity map as seen

in 2.13 (c). Estimating a dense disparity map can be a challenging task due to the high

amount of pixels that have to be compared. Especially in real time systems like the IPS an

efficient processing is demanded. Semi Global Matching (SGM) introduced by [19] tack-

les this problem. It is a state of the art stereo matching algorithm which represents a good

trade-off between accuracy and computational complexity. SGM allows the pixel wise

disparity estimation based on mutual information while being robust against radiomet-

ric differences. The algorithm takes a rectified image pair, as described in Section 2.3.2,

as input so that the epipolar lines are parallel and only linewise comparisons have to be

done. The resulting disparity map follows semi global smoothness constraints that pre-

serve sharp boundaries. The matching costs of each pixel and possible disparity values

are computed from different directions to ensure the constraints. All costs combined for

each pixel form a matrix. By finding the optimal path through this matrix the real dispar-

ity is calculated (see Figure 2.13 (a)). By using dynamic programming to reuse already

calculated values the complexity can be decreased while increasing the memory demand.

In postprocessing outliers are removed and gaps to a certain size can be interpolated.

One major drawback of SGM in combination with a fully passive system like the IPS

is the inability to match pixels in homogeneous areas. Here the matching comes to no

result. One advantage of SGM however is the possibility of parallelization due to the use

of simple operations independent from neighboring pixels and the rare use of conditional

statements [20].

x

y p

(a) Directions for cost aggre-

gation [19].

(b) Exemplary image of the

left camera.

(c) Visualization of the dis-

parity map..

Figure 2.13: Illustrations of Semi Global Matching.
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2.3.4 Point Cloud from registered Depth Maps

To generate a point cloud out of images the 2-dimensional image points have to be trans-

ferred into the 3-dimensional space. By combining images taken from different positions,

large areas can be displayed in a point cloud. This requires estimating the 3D coordinate

for as many pixels as possible.

For each pair of rectified stereo images, SGM derives a disparity map for the pixels of

the left camera. Based on the stereo information each disparity value can be converted

into the distance between the left camera center and the depicted object point. The com-

bination of the x and y sensor coordinates with the calculated distances provides a 3D

coordinate for each point in the coordinate system of the left camera. By doing so, the

image points can be reprojected into 3D space as pictured in Figure 2.14 (a) creating a

local point cloud.

The information about the position of the camera in a local coordinate system allows

the unification of the retrieved point clouds. The IPS determines a trajectory as described

in Section 1.2. For each camera frame captured the relative pose to the starting point is

known. Every point cloud has to be transformed into this coordinate system of this point.

This is done by applying the respective transformation Ti derived at the capturing time ti

on each point in the point cloud. In postprocessing, the derived point cloud is filtered to

suppress noise and outliers and a voxel grid filter is applied to achieve a desired resolution.

(a) Reprojected image points into 3D. Colors

indicate distance from the camera.

T2

T1

t0

t1

t2

(b) Point cloud from multiple views. Points of

one color belong to one point cloud frame.

Figure 2.14: Point cloud derivation from depth maps and trajectory.
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2.3.5 AprilTags

AprilTags are fiducial visual markers that allow the creation of a controllable environ-

ment for pose estimation. They represent artificial visual features that can be robustly

detected in images. By being placed in the monitored environment, AprilTags serve as

distinguishable control points. They were introduced in 2011 by [21] and are widely used

in different applications especially in robotics and mapping applications. Each tag is a

square with 2D bar code like pattern consisting of black and white squares as seen in

Figure 2.15 (a). The arrangement of the squares represent a visual encoding that allows

the identification. It can be easily detected even under difficult lighting conditions. There

are different configurations depending on the usage. A fine subdivision allows the differ-

entiation of many tags, a coarse one of less. The latter is easier to detect from a greater

distance. [21] presents a system that provides a robust detection method. It is based on a

line detection approach and a recursive depth-first search considering the crossing points

of the four edges. By estimating a homography based on the detected squares the tags can

be localized in six degrees of freedom from one single image (see Figure 2.15).

Tag16 05. Tag36 11.

(a) Different AprilTag-Versions. (b) AprilTag detection in an image.

Figure 2.15: Examples for AprilTags (images from [21]).
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3 Related Work

Detecting changes is a common goal when data from a particular environment is col-

lected at different times, and therefore, methods for detecting changes in different appli-

cations have been developed for decades. A prominent example is the investigation of

satellite data [22]. The fixed orbits of satellites enable regular data acquisition over a de-

fined period of time. After successful registration, the data can be examined for example

for changes in land use, buildings or seasonal conditions. These data are often image

data, which makes the detection of changes a 2-dimensional problem. With the develop-

ment of capturing techniques using stereo vision or LiDAR sensors, height profiles can be

recorded. These represent a 2.5-dimensional data and can be used for example to check

building heights or land deformations [23].

With the rise of ground-based sensors such as laser scanners or mobile mapping sys-

tems using photogrammetric approaches, change detection in the 3-dimensional domain

became of interest. A wide variety of methods for detecting changes of any scale have

been developed in recent years. Some methods work directly on point cloud data, others

use simplified models of the captured environment.

This chapter introduces several methods addressing the problems of model derivation

and change detection. Therefore, Section 3.1 describes techniques to derive models of

different accuracy. Section 3.2 further describes different procedures in detecting change

with and without the usage of models. A dedicated consideration of different methods for

the registration of 3-dimensional data is not given, since the registration is not the main

focus of the work.

3.1 Model Derivation from Point Clouds

A wide variety of applications are dependent on specific models derived from point cloud

data. Instead of working directly on the raw data, these models, containing further infor-

mation of the captured environment, can be used. The model specifications in turn depend

on the requirements of the respective application. In some cases it is desirable to accu-

rately reproduce reality, in other cases to abstract and compress the data retaining spatial

information. In each case the underlying point cloud is a measurement representing only
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a small part of the real world that is additionally proned by noise during the capturing

process and often inconsistent. These influences determine the model creation and the

visualization directly. [11] refers to this as the modeling and visualization problem. In the

following different, representations and techniques for model derivation are described.

For simulation and visualization purposes, a high resolution model containing a high

level of detail is needed. A research group from Facebook Research introduces in [24] a

photo realistic 3D dataset of scanned indoor environments. Each scene contains a dense

mesh with high-dynamic-range textures and information about reflective surfaces. Addi-

tionally each primitive has semantic and instance information that can be used as ground

truth in machine learning based research. Further studies describe the used methods of

abstraction and surface reconstruction [25] [26]. The described model derivation is highly

dependent on a dense and low-noise point cloud which is captured with a hand held cam-

era based scanner similar to the IPS. This system also has an active infrared pattern

projector as well as two ultra wide angle cameras to enhance depth and positional in-

formation. The resulting models represent the underlying point cloud accurately, but do

not provide a significant simplification due to dense meshing. An example is given in

Figure 3.1 (a).

(a) Digital Replica Dataset Example [24]. (b) Model build from planar primitives [27].

Figure 3.1: Models representing exact replications.

Another approach to abstract and simplify 3D data is the fitting of geometric primitives

into the point cloud data. This approach assumes that all objects can be approximated

by combining many simple 3D objects, called primitives. Each of these primitives is

a certain instance of a parameterizable template or object type (e.g. planes, cylinders,

cones, etc.). An example can be seen in Figure 3.1 (b) where an indoor environment

gets coarsely modeled by fitted planes. [28] summarizes several different techniques
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to retrieve geometric primitives. As long as the fitting performs well, the results are

visually appealing. Previous knowledge of the scene to be recorded is necessary, as these

determine the parameterizable templates and only these are approximated.

The methods described so far derive a geometric model from the given point cloud.

These can also become extensive with large or very detailed scenes. Exact geometric

replicas are not always necessary. In some applications, strongly abstracted models are

advantageous. [29] determines a Gaussian Mixture model of a scene by analyzing the

point cloud. The clusters of points are described here by multidimensional Gaussian

functions, which most accurately reproduces the set of points considered. Each cluster

can then be represented by its mean and its standard deviation, significantly reducing the

amount of data. Gaussian Mixture Models allow simpler processing of large data sets in

exchange for realistic point cloud visualization.

A very simple approach in deriving a semantic model from point clouds is by segment-

ing the scene and classifying segments as interesting or ignorable parts, as for example

done in [30]. Especially in automotive application a fast processing of measurements

is necessary for security reasons. By considering the recording patterns of laser scan-

ners, which provide an ordered point cloud, a fast segmentation is possible. The scene

is divided in different classes. One class contains planar features including for exam-

ple the ground plane and buildings, another class contains movable objects. For efficient

processing only movable objects have to be processed.

3.2 Change Detection in Point Clouds

The detection of change is based on measurements taken at different points in time and

can be done at different scales. One intuitive approach for this is the direct point based

comparison of two point clouds. [31] provides a detailed description of change detection

in point clouds acquired with ground laser scanners (see Figure 3.2 (a)) at construction

sites. The first step before detecting change is the proper registration of both point clouds.

Working with laser scanners, this can be done by physical targets that are matched in

3D space and by manual point assignment. Iterative Closest Point (ICP) is a commonly

used method that iteratively approximates the transformation based on salient points in

the point cloud. In [31] ICP is discarded due to a lack of robustness. The registered

point clouds are represented in an octree data structure to speed up the comparison by

comparing only points that are within the same region. For the change detection, different
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metrics for direct cloud to cloud comparisons are evaluated and the Hausdorff distance

finally used. The Hausdorff distance between to point sets is computed for each point p

in a point cloud S and represents the distance to the closest point in point cloud S ′:

d(p, S ′) = min
p′∈S′

||p− p′||2 (3.1)

The distance is computed for all points and leads to a result as shown in the left image

of Figure 3.2 (b). After computing the distance for all points, points with a smaller dis-

tance than a certain threshold are removed. The remaining points represent the detected

change. For better scene understanding the changed points are clustered and outliers are

removed (see Figure 3.2 (b). An evaluation of different point cloud sizes for detecting

change showed that computing the Hausdorff distance is computationally expensive and

the calculation depends on the chosen octree depth. Similar approaches are implemented

by [32], detecting changes in nuclear power plants also in point clouds from ground laser

scanners, and by [33] detecting changed objects in urban environments with a mobile car

mounted laser scanner system. By using laser scanners these approaches profit from a

low noise level, allowing exact registration. This does not apply to the IPS. Furthermore,

the change detection should be real-time capable, which might be challenging to achieve

by calculating the Hausdorff distance for huge point sets.

(a) Example of a ground

laser scanner [34].

(b) From left to right: calculated Hausdorff distances, distance

thresholding and 3D connected components extraction.

Blue points indicate a distance smaller than a few millimeter,

green and red distances bigger than a meter (Image from [31]).

Figure 3.2: Change detection in point clouds from laser scanners.

In the construction of detailed models of large scale urban environments, elaborate

methods and sensors, as for example a combination of airborne and ground based scan-
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ning techniques, are used for 3D reconstruction. The acquisition of the model is accord-

ingly complex and cost-intensive. Therefore, the re-scanning of an area after structural

changes should be kept to a minimum. To achieve this, [35] and [36] suggest to detect

changes with the help of inexpensive sensors such as cameras and then carry out de-

tailed measurements only in the identified areas. Here a change is detected by comparing

images from different viewpoints with the previously captured extensive 3D model of the

analyzed scene. By doing so, no 3D model has to be derived from the images. The change

detection can directly be performed on the newly captured image data. Each viewpoint is

known relative to the given model. By projecting one image onto the model and reproject-

ing the colored points back to another image inconsistencies between the image and the

reprojection can be detected. This is also done vice versa. Those inconsistencies indicate

changes between the model and the image sequence. By comparing multiple viewpoints

the certainty of the detected changes increases as described in [37]. This method depends

on a detailed model and registered images.

The described techniques so far rely on a geometric model and are not real time ca-

pable due to the large amount of data points. An efficient representation is necessary to

compare large datasets. An abstraction of the sensed environment as described in [29] is

used in [38]. An autonomous mobile security robot detects changes automatically in an

unknown environment by analyzing the point clouds captured in regular patrols. All runs

are robustly registered by extracted visual features and for the reference run a Gaussian

mixture model is derived from the point cloud. The model divides the point cloud in mul-

tiple Gaussian distributions that represent regions with similar normal direction and color.

Each distribution is specified by a 3D mean value in euclidean space and the correspond-

ing covariances as well as a color mean value and its covariances. The change detection is

then carried out by comparing the point cloud of each run with the reference model. For

each point in the compared point set a probability, that the point is somehow changed, is

calculated based on the distributions of its corresponding region:

pdiff (p) = e−(p−µc)TC−1

C
(p−µC) (3.2)

This is done for the color value as well as for the position of the points. If multiple

distributions are in the region of the point, the probability in each distribution is calculated

and the smallest one taken. A low probability indicates that the point already exists in the

reference model, a high one indicates that a change in the position or color appeared.
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4 Method

Simplifying representations and efficient procedures enable the extraction of meaningful

information from the multitude of three-dimensional information as represented by a point

cloud. By comparing different datasets of a scene, additional temporal information can

be obtained. This chapter proposes a method that implements such a comparison.

The IPS is used to acquire a trajectory and a point cloud for each run as described in

Section 1.1 and 2.3.4. In this thesis, two point clouds are model-based compared against

each other and the detected changes are visualized. By doing so, no pointwise compari-

son is necessary anymore. The proposed method abstracts the point cloud to a simplified

model. This model is annotated with change information by comparing the model with

another abstracted point cloud acquired at a different point in time. In some scenarios,

the point clouds, and thus the models, are not superimposed. In this case, an additional

registration step transfers both models into the same coordinate system. In order to im-

plement this model-based change detection, the procedure is divided into the three parts

Registration, Model Derivation and Change Detection, as shown in Figure 4.1.

Registration Model Derivation

Change Detection

Point Cloud 

Pi

Point Cloud 

P0

Model Mi Model M0

AprilTags

in Γ0 & Γi

Trajectories

Γ0 & Γi

Annotated 

Model

Model Derivation

Figure 4.1: Overview of the method.
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For the ease of understanding, the used datasets are referred to as a reference dataset P0,

denoted with 0, and a comparison dataset Pi, denoted with i. The registration utilizes the

positional information derived from AprilTags detected in the stereo images. Combined

with the trajectory of each run corresponding point pairs are derived and a transformation

of the coordinate system of Pi into P0 is calculated. This procedure is explained in detail

in Section 4.1. In the next step, a simplified model is derived from each of the two point

clouds by segmenting distinct regions. Planar surfaces and non-planar areas are extracted

and processed independently of each other. In the application considered, planar surfaces

make up a large part of the point cloud, but are not affected by geometric changes. This

reduces the number of points in the analyzed point-sets. In order to retain the geometric

information in the model, each plane is simplified and planar triangle meshes are derived

from the points. The extraction and modeling of planes is described in Section 4.2. The

remaining non-planar objects are abstracted by Axis Aligned Bounding Boxes (AABBs),

which in turn are modeled as triangle meshes as shown in Section 4.3. The usage of

AABBs allows a fast approximation due to the simple definition of corner points. By

using bounding boxes that are axis aligned, the comparison of objects is reduced to the

comparison of the values on the respective coordinate axes. This is done for the reference

and the comparison dataset, resulting in the respective models M0 and Mi. The com-

parison of the bounding boxes of both models provides the annotation of model M0 by

changes with respect to model Mi. This procedure is realized by a crosswise comparison

as shown in Section 4.4.

4.1 Registration

When comparing two 3D scenes based on the direct comparison of three-dimensional

entities, both representations have to be in the same frame of reference. This process is

called registration and can be realized by transforming one coordinate system into the

other. Since the scenes differ only by translation and rotation, and a possible scaling error

is neglected, the coordinate systems can be transformed into each other by applying an

euclidean transformation T . This transformation has six degrees of freedom and is applied

as stated in Equation 2.4 to all points of the point cloud which are to be transformed.

T must be determined to successfully accomplish the registration. The estimation and

registration process as realized in this work is depicted in Figure 4.2.
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Figure 4.2: Data flow of the registration procedure.

With a minimum of six corresponding points, three in each system, the transformation

matrix T between the coordinate system of P0 and Pi can be retrieved [18]. In addition

to the point clouds P0 and Pi the IPS captures a trajectory Γ0, Γi and detects AprilTags in

the images. The underlying detection framework provides the 3D position and ID of each

detected AprilTag relative to the left camera at the time of acquisition. Theses information

are used to derive corresponding point pairs. As the tag positions are only relative to the

left camera at the time of acquisition, they have to be transformed into the same coordinate

system as the respective point cloud. This process is described in detail in Section 4.1.1.

The position estimation of the AprilTags has to be done for all datasets which are to be

registered. For each dataset the local pose and ID of all detected AprilTags are stored in

a list A. In order to avoid the usage of false detected AprilTags, only valid IDs are used.

Detected IDs that are not in a list of valid IDs are discarded. The registration process uses

only the most certain point pairs from A0 and Ai. The extraction of corresponding points

and the estimation of T is explained in Section 4.4. After successfully calculating T the

point cloud Pi is transformed and the coordinates updated.

4.1.1 Position Estimation of AprilTags

With the help of AprilTags as fiducial markers, known and assignable 3D positions can

be derived. The IPS framework provides a robust method to detect these markers in the

images and to calculate the corresponding 3D coordinate with the help of the stereo infor-

mation. To use all detected markers of an entire run for registration they must be located

in one coordinate system. The local transformations involved in the position estimation

of each tag are visualized in Figure 4.3.
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Figure 4.3: Position estimation of an AprilTag including the transformation into the local

coordinate system.

At the beginning of a run, a local coordinate system is spanned at the starting point. The

derived trajectory is defined within this system and describes the position of the IMU at a

point in time ti. Due to the previous calibration, the relative position of the left camera to

the IMU is known and thus also the transformation between the two associated coordinate

systems. These information combined allow the transformation of the detected tags into

the local coordinate system. Starting from the 3D position p of the AprilTag relative

to the left camera the position in the local coordinate system at time ti is calculated by

transforming p with the transformation matrix TCL,ti . The result is further transformed

into the coordinate system at time t0 with the use of the transformation T0,i.

p′ = T0,i · TCL,ti · p (4.1)

Additionally to the coordinates describing the position of the IPS, the framework pro-

vides a covariance matrix characterizing the certainty of each measurement. The covari-

ances are propagated through the transformations, whereas the uncertainty is also given

for each marker position. The local 3D positions and corresponding IDs as well as the co-

variances for each detected AprilTag are stored in a list and passed to the transformation

estimation.
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4.1.2 Transformation Estimation

To transform one known coordinate system into another, a minimum of three correspond-

ing point pairs is necessary. These points are represented by AprilTags that are distributed

in the observed scene. After successfully deriving the positions, their IDs and covari-

ances, a list of possibly matchable points is provided to derive the transformation. This

list contains only positions with valid IDs, but it is not guaranteed that all captured mark-

ers appear in both datasets. Furthermore, most IDs appear several times in the dataset.

The cameras acquire multiple images per second, so that a tag can be seen in a series of

images. Also, it is possible that an area is observed several times during longer sessions.

Multiple occurrences of a tag require the selection of a particular one.

As the length of the trajectory increases, so does the uncertainty of the current posi-

tion. Therefore, the position of markers detected later in the local coordinate system is

also less reliable (see Figure 4.4). Contradictory the uncertainty decreases if a marker is

better visible in one images than in another one. Since the uncertainty is known from the

covariances, it can be used as a measure to filter the captured markers.
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x
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z

t0
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t3

Figure 4.4: AprilTags selection based on uncertainty for the transformation estimation.

Gray spheres indicate increasing uncertainty of the respective pose.

A cross check first discards all IDs that do not appear in both point lists. For the

remaining points, the uncertainties are calculated from the standard deviation along each

axis derived from the covariance matrix of each point:

ui =
√

σ2
xi
+ σ2

yi
+ σ2

zi
(4.2)
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By doing so, the best visible marker with the lowest uncertainty is retrieved. All other

points with the same ID are discarded. This is done for all IDs and results in a list of

unique and distinguishable points that appear in both trajectories. Marker IDs that ap-

pear in both lists of the to be registered runs provide the point pairs necessary for the

transformation estimation.

These point pairs are order and placed in two matrices M0 and Mi which used to set up

a linear equation system satisfying:

M0 = T ·Mi (4.3)

By solving this equation system using a singular value decomposition T can be retrieved [18].

The resulting transformation matrix is finally applied to the points of the point cloud to

be registered Pi.

4.2 Model Derivation of Planar Surfaces

The model derivation starts with the processing of planar surfaces. These constitute large

parts of the point cloud in indoor environments and can be easily simplified due to their

uniform alignment. In this work a triangle mesh approximates the points within a plane

in order to achieve a high simplification rate with good representability at the same time.

The geometric information is represented by the triangles. Calculating as large triangles

as possible reduces the number of points to a smaller number of vertices. All points inside

a triangle are represented by the face. In the following, a method is proposed to derive

planar meshes from a given point cloud based on the work of [39]. This is composed of

four steps as shown in Figure 4.5. First, planar surfaces are extracted by a segmentation as

described in Section 4.3.1. The extracted points are processed further, while the remaining

points are handled separately. During the next step, the extracted planes are simplified.

The simplification is based on a quadtree structure in which the points and the boundary of

the plane are inserted. The boundary extraction and the subsequent simplification of the

point cloud is described in Section 4.2.2. A meshing process transforms the simplified

point cloud based on the quadtree into a triangle mesh. This process is explained in

Section 4.2.3. The resulting meshes are stored in the model structure.
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Figure 4.5: Process of the planar model derivation.

4.2.1 Plane Detection

The first step in the simplification of planar surfaces is the extraction of points repre-

senting individual planes in the point cloud. To identify planes, the points are analyzed

individually and classified based on their properties. Normals and curvatures are calcu-

lated for each point in the point cloud as described in Section 2.2.2. It has been observed

that a search radius of r = 3 · leafSize is suitable to calculate these values for point

clouds as provided by the IPS. The leaf size is determined in an earlier step of the point

cloud generation.

A region growing process evaluates the points regarding their curvature and normals

and iteratively assigns all points in a neighborhood to related areas. This approach ensures

that only contiguous regions are detected and the planes are well separated. The process is

parameterized by a smoothness threshold and a curvature threshold. The processing starts

at the point with the small curvature value in the point cloud. A small curvature indicates

a flat area and thus a possible plane. The normal and curvature of the starting point serves

as a reference value for all point comparisons with respect to this plane. This starting

point is called seed point. The seed point is compared against its k nearest neighbors in

terms of its normal direction and its curvature. All neighbors with normal directions that

are within the previously defined threshold are assigned to the same plane as the seed

point is. The number of neighbors k is a parameter that strongly influences the plane

detection. If k is too small the region growing stops easily, if k is too large neighbors too

far away are added to a plane. If they differ more than the threshold, the neighbor is not

taken into consideration for the particular plane but can be evaluated for another plane.

All points added to a region in turn serve as seed points again. In the next iteration this

process is repeated for all new seed points. Neighbors that have already been evaluated
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are now omitted. This process continues until no more points can be added to the current

plane. After finishing a plane extraction, again the point with the smallest curvature value

is searched and the procedure is repeated until there is no point with a curvature value

smaller than the curvature threshold value. This means that every point has been checked

at least once in the region growing process.

All points that have not been segmented are considered to be part of the non-planar

point set. In addition, planar segments that are too small are also added to this point set.

The minimum size of a plane is given as parameter. With the completion of the process,

the initial point cloud is divided into a set of points representing individual planes and a set

of points belonging to non-planar objects. An exemplary result can be seen in Figure 4.6.

The individual plane point sets are further processed within the plane modeling.

Figure 4.6: An exemplary result of the plane segmentation in an indoor scene. Different

colors indicate different segments.

4.2.2 Simplification of Planes

Each extracted plane consists of many points. If it is known that the points all lay in one

plane, each point of a dense point cloud contains little geometric information. There-

fore, it is reasonable to reduce the number of points to increase the information density

per point. With regard to the geometric information, the boundary of the plane would

be sufficient to interpolate all points within a plane. In the subsequent derivation of a

well-defined triangle mesh, however, the inner angles of the triangles used should be as

large as possible. Therefore, the simplification method presented in the following retains
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information on points within the plane boundaries. When deriving a well-defined triangle

mesh, however, it is important to ensure that the inner angles of the used triangles are as

large as possible. The following simplification procedure considers this requirement by

retaining enough points within the plane boundaries.

In order to process the planes as such, the dimensionality of the planar points is reduced

from 3D to 2D. The pose of the individual planes is arbitrary, whereby the coordinates of

the points correlate with each other. To be able to handle the coordinate axes individually,

each plane is transformed into the x-y plane. A Principal Component Analysis (PCA)

derives the transformation by analyzing the point set regarding their eigenvectors [40].

The transformation is applied to the points and later on inversely applied to the resulting

plane mesh to restore the previous pose. This way, the z axis can be neglected, resulting

in a 2-dimensional surface.

The interior and the boundary of the planar point cloud are considered separately. Using

the alpha shape as described in Section 2.2.3, the boundary of the plane is extracted. In

Figure 4.7 (a) an example of a 2-dimensional point cloud with its extracted boundary is

depicted.

(a) Planar point cloud with

detected boundary in blue.

(b) Initialized quadtree at

lowest level.

(c) Combined quadtree cells.

Figure 4.7: Simplification of an example point cloud (Adapted from [39]).

For the simplification, a modified quadtree structure as described in [39] is used. In ad-

dition to the points, this structure contains at the individual nodes information on whether

the respective node is inside, outside, or on the boundary of the represented point set.

The depth of the tree is defined in advance and influences the accuracy of the simplifi-

cation towards the boundary of the plane. In the first step all points are inserted into the

quadtree defining all used nodes as interior nodes. The extracted boundary points are

inserted afterwards, defining all touched nodes as boundary nodes. By doing so, each
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node, that contains nodes that belong to the boundary in a lower level, is therefore defined

as a boundary node. All nodes that are not reached are defined as exterior and thus not

considered. The example depicted in Figure 4.7 (a) results in a quadtree with a grid at the

lowest level as shown in Figure 4.7 (b).

The simplification is included in the structure of the quadtree. By creating the structure

in the described manner, all nodes that contain interior nodes but are no boundary nodes

are themself interior nodes. Each node that is defined as an interior node represents all

points below it sufficiently. The covered area of each node is as large as possible regarding

the quadtree, so that the following meshing will be successful. The grid of the point cloud

example thus can be simplified to be as depicted in Figure 4.7 (c). To retain a minimum

of color information for a better visualization each node gets the average color of the

underlying points assigned.

4.2.3 Mesh Derivation

After completing the simplification, the quadtree structure allows the derivation of a tri-

angle mesh based on the simplified grid. The remaining cells of the quadtree are used

to define the vertices and faces of the mesh representing the planar surface. Each node

contains the information about its position within the plane and, based on its level, infor-

mation on the size of the area it covers. These information allow the definition of four

points spanning a rectangle as seen in Figure 4.8 (b). A rectangle can be represented by

two triangles in a triangle mesh with these four points serving as vertices. By connecting

the top right, top left and bottom left as well as the top right, bottom left and bottom right

point two triangles are defined counterclockwise (see Figure 4.8 (a)). All points get the

color of the represented node to color the face. This is done for all interior nodes of the

quadtree resulting in a mesh as for example represented in Figure 4.8 (c). For simplifica-

tion the modeling of the interior nodes is sufficient, for a detailed model the boundary can

be triangulated additionally with a suitable method such as a constrained delaunay trian-

gulation [41]. After meshing all nodes the simplification is finalized by transforming the

planar mesh back into its original pose by applying the inverse transformation calculated

by the PCA as described in Section 4.2.2.
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Figure 4.8: Derivation of a triangle mesh from the quadtree structure (adapted from [39]).

4.3 Model Derivation of Non-Planar Objects

The extraction of planes removes a large set of points from the point cloud. All remaining

points represent areas with a coarse structure, such as objects of smaller scale, edge areas

around objects, and measurement inaccuracies. These point sets are simplified by approx-

imating bounding boxes that substitute areas with similar properties in a process as shown

in Figure 4.9. To retain enough spatial information, points that seem to belong to one ob-

ject are combined. However, this enforces a trade-off between accuracy and efficiency of

the simplification. The segmentation of related points is described in Section 4.3.1. The

resulting segments are further analyzed with respect to their spatial extent and bounding

boxes covering the respective points are derived. The boxes are to be represented in the

same way as the planes as triangle mesh. Therefore, a meshing of the bounding boxes is

necessary. This process is described more in detail in Section 4.3.2.
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Figure 4.9: Process of the model derivation of non-planar objects.
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4.3.1 Super Voxel Clustering

The segmentation of the point cloud containing all non planar objects utilizes a similar ap-

proach to the planar segmentation. A region growing process combines sets of points with

similar color, normal direction and position in groups by analyzing their neighborhood.

This is done by extracting so called Super Voxels in a super voxel clustering as introduced

by [42]. The algorithm is parameterized by weights that regulate the assignment of points

to clusters based on their color, normal direction and distance to the seed point. Addi-

tionally, a maximum cluster size is defined which prevents an undersegmentation of the

point cloud. This would otherwise result in large bounding boxes that do not represent the

underlying points properly. The segmentation starts with the uniform distribution of seed

points in the point cloud. Each seed represents a potential super voxel. Iteratively each

super voxel is extended by its k nearest neighbors when they are within a distance D. The

distance D is calculated by weighting the spatial distance Ds, the distance in color space

Dc and the angle between the normal vectors Dn based on the predefined weights ws, wc

and wn:

D =

√

wcD2
c +

wsD2
s

3R2
seed

+ wnD2
n (4.4)

This step is repeated with increasing distance D from the seed point until all points of the

point cloud are assigned. The distribution of seed point in the point cloud is parameterized

by the cluster resolution. It states the distance between the starting points for the region

growing process. In this work, the cluster resolution is set depending on the cluster size

by clusterResolution = 1/2 ∗ clusterSize. This experimentally derived dependency

leads to compact clusters with few outliers in most cases. The described segmentation

technique results in clusters of similar size. An example is shown in Figure 4.10.

4.3.2 Bounding Box Estimation

In the last step of the simplification, the extracted clusters are approximated by bounding

boxes. Bounding boxes represent the smallest cuboid that encloses all points of a point

set. In this thesis, AABBs are used to approximate the segments. With this type of

envelopes, the axes of the enclosing cuboid are parallel to the respective coordinate axis.

Thus, the enclosed volume is not as small as possible, as with an oriented bounding box,

but the generation and comparability is much simpler. To generate a triangle mesh that
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Figure 4.10: Example of super voxel clustering in a point cloud. Each color indicates one

cluster.

can be represented in the same model as the extracted planes, each cluster extracted in the

segmentation is processed separately as shown in Figure 4.11.

(a) Extracted cluster. (b) Minimum and maximum

determination.

(c) Bounding Box Meshing.

Figure 4.11: Process of bounding box estimation.

The bounding box is defined by 8 points representing the corners and 6 sides spanned

by 4 corner points each. For a triangle mesh, the sides are additionally divided into two

faces. The coordinates of the corner points of the enclosing box correspond directly to

the largest and smallest value of the considered point set along the respective coordinate

axis. By extracting these minimum and maximum values, the vertices for the bounding

box are defined. All vertices are extracted in the same order, so that the faces can be

derived directly without the need for an additional meshing process. The faces are defined

counterclockwise so that the normal faces point outwards.
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Figure 4.12: Exemplary results of the bounding box estimation.

4.4 Change Detection

The purpose of change detection is to recognize in which areas of the point cloud changes

have occurred. Objects can be added and removed. These possibilities are treated sepa-

rately as shown in Figure 4.13. The approach of detecting change is based on the extracted

AABBs of both compared models. The planes of both models are not taken into account

since the constraints assume that the changes are primarily caused by coarse structures

and are thus represented as bounding boxes. Both models are directly compared by

checking the bounding boxes of one model to the boxes of the second model in its re-

gion for intersection. By using AABBs, the evaluation of intersections is reduced to the

direct comparison of the coordinates in the respective axis of compared bounding boxes.

Bounding boxes of the compared model Mi that intersect with the bounding boxes of the

reference model M0 are considered as unchanged, non intersecting boxes as changed. By

comparing both models vice versa removed objects are classified.

Check for removed 

objects
Reference 
Model M0

Model Mi

Annotated 

Model

Check for added 

objects

Plane & Box Mesh 

Figure 4.13: Process of the change detection based on the non-planar objects.
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5 Evaluation

The proposed methods for registration, model derivation and change detection can be ad-

justed by different parameters and are subject to various influencing factors. Therefore,

they operate with different precision depending on the application area. This has to be

considered and quantified. In addition to the purely qualitative assessment of the results

with regard to meaningfulness and visual quality, it is also necessary to consider quanti-

tative metrics. These allow an objective and automated analysis of the processing results.

The evaluation is based on datasets, described in Section 5.1, that have been acquired

under consideration of different application and evaluation scenarios. The results of the

evaluation are structured according to the different proposed methods. A qualitative eval-

uation of the registration of multiple point clouds with AprilTags is presented in Sec-

tion 5.2. The model derivation is evaluated in Section 5.3. The quality of the change

detection depending on the simplification of the point cloud is explained in Section 5.4.

5.1 Datasets

In order to evaluate the proposed methods, four datasets were acquired with the IPS, each

representing a different use case and its requirements. Since the intended application

areas of the method are primarily indoor environments, three of the four datasets are

designed for this purpose. A dataset created with the help of a simulation tool allows the

evaluation of the change detection under controlled conditions. The simulation framework

and the aquired dataset is described in Section 5.1.1. This dataset is refered to as Indoor

- Simulation. The following datasets are recorded in a series of measurements with the

IPS and thus represent real data. They are summarized in Section 5.1.2. The dataset

Indoor - On a Vehicle resembles the simulated data and shows how the method behaves

when processing real data. In the simulation as well as in the real replica no automatic

registration is necessary. In order to investigate this, the dataset Indoor - Handheld is

added. Multiple handheld runs with the IPS are registered and combined using AprilTags

distributed in the changing scene. In order to open up further application possibilities,

the dataset Outdoor - Car mounted represents a street scene as an outdoor environment

examined for changes.
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5.1.1 Simulation

The recording of real data with the help of the IPS is subject to fluctuations with regard to

the areas observed in a scene. These fluctuations create measurements in non-overlapping

areas, which are detected as changes in the proposed method and thus make a quantitative

examination of the capabilities more difficult. In addition to capturing real measurements

with the IPS, the department also has a simulation environment for the entire data ac-

quisition chain of the system at its disposal. This simulation tool enables the dedicated

investigation of influencing factors on the visual and inertial odometry in the further de-

velopment of the IPS [43]. It allows the free definition of a measuring sequence in an

artificial 3D scene. By repeating the measuring sequence in the same scene with changes

introduced, the change detection can be observed independently of measurement fluctua-

tions. An introduction of the framework and its configuration as well as a description of

the featured scene is given in the following.

Simulation-Framework

The simulation framework allows the recording of realistic measurements by defining a

digital twin of the IPS in a simulated environment. It requires a definition of the IPS

consisting of the camera specification of the left and right camera, as well as the relative

positions of the cameras and the IMU. The produced artificial images are similar to real-

istic data due to the simulation of various camera effects [43]. The framework supports

common 3D formats and allows the creation of arbitrarily complex 3D scenes. This tra-

jectory can either created by defining artificial control points, reproducing a real run by

loading a previously recorded trajectory or by freely moving the simulated setup in the

virtual 3D scene. The output of the virtual IPS matches the format of a real one and can

be processed in the same way. By defining the trajectory, the same measurement can be

repeated as often as desired with different parameters.

Scene Data

An indoor scene is used for the evaluation of the method in the simulation. A digital

replica of the corridor used in the real datasets is available for this purpose. This replica

represents an approximation, since no exact measurements of all details of this scene

are given. However, the general dimensions are identical, so that trajectories recorded

in real measurements can be passed into the simulation without further processing. By
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Figure 5.1: Data acquisition pipeline of the simulation framework [43].

using a realistic trajectory and defining similar light sources an accurate simulation can

be achieved as depicted in Figure 5.2 (a) The same trajectory is used in two different runs

in the simulation. In the second run three office printers and two chairs are introduced

in the virtual 3D scene as changes. An example of the resulting point cloud is given in

Figure 5.2 (b).

(a) Example image Indoor - Simulation. (b) Point cloud Indoor - Simulation.

Figure 5.2: Exemplary data of the dataset Indoor - Simulation.

5.1.2 Real World

To evaluate the method on real data, three datasets were acquired under different con-

ditions with the aim of covering a variety of applications. The first two datasets are

captured in a corridor with a configuration of the IPS with a base length of 20 cm, which

is appropriate for indoor applications, while an outdoor scene is captured with another

configuration with a base length of 50 cm. In the following, these three different datasets

are described.
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Indoor - On a Vehicle

This dataset is intended to reproduce the scenario from the simulation by capturing a

similar measurement in the real world. An empty corridor is recorded in a first run.

In this corridor changes are introduced and a second measurement is carried out. The

modifications are boxes of different sizes and chairs.

While a defined trajectory can be specified in the simulation, an exactly identical path

in a real environment can not be guaranteed. In order to approach this, the IPS is placed on

a mobile pedestal and slowly pushed through the corridor that is shown in Figure 5.3 (a).

This fixated the measuring height to the height of the vehicle and prevents measurement

inaccuracies due to unsteady movements or fluctuating viewing directions. By defining a

fixed stop as a common starting point, the measurements ought not to require registration.

Since the length of the measurement was about 20 cm, orientation changes of half a

degree results in an offset of tan 0.5◦ · 20 m = 0.17 m. Therefore the registration of

the runs was corrected manually afterwards. In order to minimize lighting changes, the

measurement runs were carried out at night so that only artificial non changing lighting

illuminates the scene. In the selected configuration, this dataset can also be seen as the

exemplary measurements of a patrolling robot and thus represents a possible application

scenario. The resulting point cloud in which changed areas are highlighted in red is shown

in Figure 5.3 (b).

(a) Example image with placed objects.
(b) Point cloud (no wall for visualization).

Figure 5.3: Examplary data of the dataset Indoor - On a Vehicle.
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Indoor - Handheld

In many cases, the IPS is carried by hand through the environment to be inspected. These

runs often have unsteady paths and are influenced by the operator’s handling. In addition,

the starting pose changes in many cases even if this is not intended (see dataset Indoor

- On a Vehicle). If the resulting point clouds of two runs are to be evaluated and pro-

cessed, there is a risk that non-overlapping areas of the scene were observed in both runs.

This causes areas that cannot be compared. To counteract this, it is advisable to capture

point clouds that are as comprehensive as possible. The coverage can be increased by

combining individual point clouds from runs where different areas are captured.

This is demonstrated by this dataset, where a corridor was captured in varying constel-

lations. It consists of seven measurement runs, each with different start and end positions.

The real trajetories of the runs are visualized in an abstracted model of the corridor as seen

in Figure 5.4 (b). To demonstrate the registration, AprilTags were distributed in the scene.

They are placed in such a way that they can be seen from a similar direction early during

the runs, regardless of the starting position (see Figure 5.4 (a)). In addition, changes were

made in between the runs in order to also use the dataset for the evaluation of the change

detection. The first three runs capture the corridor without any modification. Run 4 and

5 capture one modified version of the corridor containing several changes varying from

boxes and bins, with a minimum extent of about 25 cm at the shortest side, up to a chair

and boxes similar the ones used in Indoor - On a Vehicle. In run 6 and 7 a small table that

was inserted as change, is removed.

(a) Example image Indoor - Handheld. (b) Four trajectories in the corridor. Red dots

indicate AprilTags.

Figure 5.4: Trajectories and placement of the AprilTags in the dataset Indoor - Handheld.
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Outdoor - Car mounted

In addition to the indoor scenarios, an outdoor scenario is also considered in order to

evaluate the proposed method in other application areas. In outdoor areas, the captured

point cloud is often more sparsely occupied than in indoor areas. Additionally, both

application areas differ with regard to the presence of planar surfaces. Usually, the ground

plane makes up large parts of the scene so in long runs the captured ground can become

very extensive.

In this dataset a wide baseline configuration of the IPS is mounted on a transporter

capturing the area in front. The car drives in an industrial area around the block so that

start and end position are close to each other. The scene consists of the street and trees

and parking cars on the left and right side of the street as seen in Figure 5.5 (a). This path

is repeated four times. Originally this dataset is captured to evaluate the performance of

the position estimation of the IPS. In between the respective rounds some cars left the

scene and some parking spots got occupied by new cars. For the evaluation of the change

detection one part of the street is separated and two runs selected. In this area one car

appears in the middle of the road and one parking car on the left. These two parts of

the scene are captured from similar points but the viewing direction is not equal resulting

in large non-overlapping areas. To minimize this error, the left part of the road that is

not seen in both rounds equally is removed. The resulting point cloud can be seen in

Figure 5.5 (b). Despite capturing the area in one run, a scaling error in the trajectory leads

to a drift in the point cloud. A minor manual registration was necessary

(a) Example image Outdoor - Car mounted. (b) Point cloud Outdoor - Car mounted.

Figure 5.5: Exemplary data of the dataset Outdoor - Car mounted.
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5.2 Performance of the Registration

In this section the registration of several point clouds in one coordinate system is quali-

tatively evaluated. A quantitative evaluation, for instance regarding the robustness of the

detection or the influence of the distribution of the markers, is not necessary, since the

registration itself is not the main focus of this work and merely serves the completion of

the processing chain. For this reason the registration is demonstrated exemplary by an

example similar to future applications and the results of this example are reviewed.

The evaluation is based on the dataset Indoor - Handheld. The presented seven different

runs in an environment with minor changes are to be registered. The first run is set as

reference independent of the quality of the marker detection in order to come as close as

possible to a realistic application where no selection is done. The following six runs are

registered towards this run. For this, the markers are detected in each run as described

in Section 4.1 and the best position estimate for each marker is selected based on the

accuracy of the detection. Figure 5.6 shows the six to be registered point clouds of the

respective runs including the trajectories in blue and the best detected position of the

markers in red. The image axes are parallel to the x and y axes of the respective coordinate

system. The start poses can be similar in places but have differing orientations.

Reference run Modified run 1 Modified run 2

Figure 5.6: Point clouds of the dataset Indoor - Handheld with visualized AprilTag posi-

tions and trajectories.
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Table 5.1 shows the accuracy for each run for each of the most certain and therefore

used AprilTag positions. The standard deviations of the respective positions allow the cal-

culation of the accuracy a =
√

σ2
x + σ2

y + σ2
z . It turns out that the accuracy is similar for

most AprilTags and around 0.13 m. AprilTags that are captured from a closer distance are

more certain. In the last row of the table the resulting standard deviations of the respective

transformation of the point cloud into the reference coordinate system is given. The left

column describes the position in meter and the right column the rotation uncertainty in

radian. It can be seen that the uncertainty of the translation is approximately 0.05 m and

the rotation uncertainty between 0.05 and 0.2rad. Figure 5.7 shows the point clouds of all

Table 5.1: Uncertainties of the AprilTag positions and the resulting transformation in m.

P1 P2 P3 P4 P5 P6 P7

AT22 0.147 0.139 0.146 0.130 0.028 0.132 0.129
AT25 0.140 0.127 0.139 0.130 0.066 0.124 0.122
AT35 0.099 0.087 0.088 0.087 0.120 0.068 0.061
AT36 0.146 0.136 0.146 0.136 0.076 0.133 0.130
AT38 0.108 0.089 0.108 0.163 0.132 0.074 0.090
σx σω

σy σφ

σz σκ

0.04 0.08
0.04 0.16
0.04 0.14

0.05 0.08
0.04 0.16
0.04 0.13

0.06 0.10
0.04 0.20
0.05 0.13

0.07 0.10
0.04 0.05
0.05 0.12

0.05 0.08
0.04 0.05
0.04 0.09

0.05 0.09
0.03 0.15
0.04 0.10

0.04 0.09
0.05 0.16
0.04 0.10

seven runs in one coordinate system. The first three runs are shown by their captured gray

values, while the runs 4 and 5 are shown in red and 6 and 7 in yellow. The colored display

shows that the transformation error affects the overlap of the point clouds. Especially in

the right area the corners are not clearly overlaid. This error can be traced back to the

error of the transformation as well as the scaling error of the IPS itself, which increases

in particular with faster movements, such as when scanning a corner more precisely.

Figure 5.7: The point clouds of all six runs combined in one frame of reference with

exemplarily highlighted inaccuracy. Colors indicate different runs.
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5.3 Performance of the Model Derivation

The quality of the model derivation depends on the detection and modeling of the planes

and the non-planar objects. Both procedures are examined in this section with regard to

their performance with respect to several different parameters. These parameters influence

both the visual quality of the results as well as the accuracy of the modeled parts. The

first are considered qualitatively, the latter quantitatively.

Alongside the quality of the measurement data, correctly selected thresholds for the

plane detection play an important role in modeling the planes in a point cloud. In the

following, the influence of the curvature threshold on the detection is examined based on

the dataset Indoor - Handheld downsampled to a resolution of 10 cm. Figure 5.8 (a) shows

the distribution of the curvature values of the points in this dataset. Since the curvature

calculation is based on the number of neighbors and not on a fixed search radius, it is

independent of the point cloud resolution. Based on the histogram, different thresholds

are applied and the results of two remarkable thresholds are depicted in Figure 5.8 (b). It

shows an example of the segmented planes and the resulting plane meshes. Points of one

plane are indicated by the same colors. While up to a threshold of 0.10 1
m

the planes are

well separated as shown in the top figure, it is not possible to differentiate the planes at a

threshold of 0.15 1
m

. Thus all points are combined and modeled as one plane. As can be

seen in the bottom figure, the position of the ground plane is shifted by the influence of the

falsely segmented points of the close wall. Experiments in other datasets have shown that

a threshold of 0.05 1
m

often leads to good results independent of the investigated scene.
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(a) Histogram of the curvature values in 1
m .

(b) Planes detected with a curvature thresh-

old of 0.10 1
m (top) and 0.15

1
m (bottom).

Figure 5.8: Exemplary plane detection in the dataset Indoor - Handheld.
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The next processing step approximates the extracted planes by triangle meshes. The

degree of abstraction as well as the visual quality depend mainly on the depth of the

respective quad tree. The following Figure 5.9 shows the ground plane of the dataset

Indoor - Handheld modeled with different Quad Tree Depths (QTDs) as an example.

QTD = 3 QTD = 5 QTD = 7

Figure 5.9: Ground Plane of dataset Indoor - Handheld modeled with different QTDs.

The greater the depth of the tree, the smaller rectangles at each level can be generated

and the more accurately the point cloud is approximated. This increases on the one hand

the accuracy and on the other hand the visual quality to a certain extent. In addition the

number of generated rectangles increases with the QTD quadratically. Figure 5.10 shows

the simplification rate for three datasets depending on the QTD. The simplification rate

represents the number of plane points per generated vertex as SimplificationRateP lanes =
|Points|
|V ertices|

. The graph shows that the simplification rate decreases with increasing QTD.
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Figure 5.10: Influence of the QTD on the simplification rate of the planes.

Depending on the application, a trade-off between simplification and visual quality of

the modeled planes must be found. However, the greatest usable QTD can be specified.
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Depending on the minimum extend along one axis and the known leaf size for downsam-

pling the maximum usefull depth can be calculated by:

QTD = log2
extent

leafSize
(5.1)

Greater QTDs are possible in principle, but are of no use, since the area per rectangle then

becomes smaller than the resolution of the point cloud and thus only individual points

would be added as rectangles with no extent.

Another parameter that influences the quality of the modeling is the selected alpha

value, parameterizing the accuracy of the concave hull around the respective plane. Fig-

ure 5.11 shows three different plane models from one planar point cloud with QTD = 5.

An alpha value of α = 0.1 leads to a visually pleasing result. The process is susceptible

to boundary detection that is too coarse. If points in the quad tree fall at the edge of the

plane, but are not detected as boundary points, the corresponding nodes can be mistakenly

marked as interior. This results in noisy plane modeling as shown with α = 0.01. If the

alpha value is very small as in the example at α = 0.001, no node of the quad tree is ex-

tracted as boundary, but classified as interior node. This results in the maximum possible

simplification whereby the plane is abstracted by its two dimensional AABB.

Plane Points α = 0.1

α = 0.01 α = 0.001

Figure 5.11: Influence of the alpha value on the plane modeling using the ground plane of

Indoor - Handheld. QTD = 5, LeafSize = 0.1m.
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After the extraction of the planes, all further points of the point cloud are clustered

and the clusters are approximated by AABBs. The maximum size of the clusters is the

decisive influencing factor. For the evaluation different cluster sizes are chosen and the

reduction of the data volume by the approximation with AABBs is considered. The in-

fluence of the cluster size on the amount of points modelled is negligible. In any case,

between 80 and 100 percent of all points are approximated. However, the cluster size

affects the simplification rate that is obtained from:

SimplificationRateBoxes =
|Points|

|Boxes| · 8
(5.2)

Each bounding box consists of eight vertices. Increasing the cluster size leads to larger

bounding boxes, modelling more points. Furthermore, the number of boxes decreases.

Fewer and larger AABBs lead to a higher simplification rate as can be seen in Figure 5.12

(a). If the cluster size is very small and reaches the resolution of the point cloud, degen-

erated bounding boxes are derived. Here the boxes are very small and consist of more

points than the number of underlying points.

Larger boxes, however, tend to include empty areas as well, since for example larger

clusters can also expand around corners. Figure 5.14 shows the summed up volume of

all AABBs at one cluster size per dataset. For a reasonable modeling a cluster size is

recommended, which allows a high simplification and at the same time encloses a small

volume.
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(a) Simplification rate of the AABBs depend-

ing on the cluster size.

0.2 0.4 0.6 0.8 1.0
Cluster Size in m

100

101

102

V
o
lu
m
e
in

m
3

Indoor-On a Vehicle

Indoor-Simulation

Indoor-Handheld

Outdoor-Car mounted

(b) Covered volume of all AABBs per cluster

size and dataset.

Figure 5.12: Influence of the cluster size on the modeling of non-planar objects.
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5.4 Performance of the Change Detection

In each of the presented datasets there is some kind of change introduced. The accuracy of

the change detection in these given point clouds is examined in this section. The datasets

each consist of one reference run and at least one modified run as described in Section 5.1.

The point clouds of the actually added objects are extracted from the modified runs and

stored individually for each object and dataset as ground truth.

In order to limit the scope of the evaluation, the parameters for the extraction of the

planes are fixed and only the non-planar objects are considered. Furthermore, the evalu-

ation is based on the down sampled point clouds of the datasets as extracted in the plane

detection and extraction. The down sampling is also applied to the ground truth point

clouds. This ensures a uniform ratio between the set of points in the extracted ground

truth and the modeled reference point cloud. In the evaluation, the points of the individual

areas are checked for their correct assignment. This is done by examining each point, if

and in which bounding box of the model or the annotation of changes the respective point

lies. Thus the evaluation of the detection can be considered as a classification problem

as shown in Figure 5.13 and the point cloud can be divided in several steps into different

subsets P . The points of the reference point cloud and those of the changed ground truth

objects as well as the change detection model consisting of the reference model and the

change annotation serve as input.
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Figure 5.13: Assignment of the points of the point cloud and the detected changes on the

basis of a classification problem.
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In the first step each point of the set Pall is examined whether it lies within one of the

bounding boxes of the model or not. The set is divided into the set of modeled points

Pm and the set of not modeled points Pm. All points in Pm are then categorized accord-

ing to their classification by the annotated model as modeled and detected as change or

modeled and not changed. This step results in the point sets Pm∩c and Pm∩c. Since the

points that actually belong to changes are given as ground truth, the classification of the

respective points can be checked for their correctness. All points in Pm∩c that are part of

the ground truth are correctly classified and thus called True Positives (TP). All others are

misclassified and thus False Positives (FP). The points in Pm∩c that are not in the ground

truth are modeled and correctly classified as unchanged and thus True Negatives (TN), all

others are False Negatives (FN). The latter would have to be marked as changed. In order

to prevent that no changes are modeled in case of bad modelling (e.g. one large cluster

containing all points), all points that are not modeled but have to be classified as changed

are additionally evaluated as Not modeled False Negatives (NMFN).

The numbers of TP, FP, TN, FN and NMFN are calculated for different cluster sizes

and for all four datasets. The comparison of these evaluated classifications allows the

quantitative interpretation of the change detection with regard to its quality. In the fol-

lowing, the sensitivity of the change detection is evaluated. The sensitivity results from

the True Positives and the False Negatives as well as the Not modeled False Negatives. It

describes the ratio of how many of the changed points were actually detected. A value of

1 corresponds to 100% meaning that all points were detected correctly.

Sensitivity =
TP

TP + FN +NMFN
(5.3)

In Figure 5.14 (a) the dependency of the sensitivity on the cluster size is plotted. The

maximum sensitivity for the three indoor datasets is in the range 20− 40cm. With larger

clusters the sensitivity decreases. This cluster size corresponds to about the half of the

size of the objects that were inserted as changes. In the dataset Outdoor - Car mounted

no decrease occurs. This is also not observed with larger cluster sizes > 1m and can be

justified by the sparse distribution of the objects in the scene. The AABBs never grow

larger than the actual object size due to the correctly detected and removed ground plane.

Since there are no other objects in the vicinity of each modeled object, the clustering

algorithm stops when an object is completely modeled.
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Another significant ratio is the False Alarm Ratio. It indicates how many of the detected

changes are false and is derived from the False Positives and the True Negatives:

FalseAlarmRatio =
FP

FP + TN
(5.4)

In Figure 5.14 (b) the False Alarm Ratio is plotted as a function of the cluster size. With

very small cluster sizes there are many false detections. The number of false detection

decreases with an increasing cluster size. This indicates that with large cluster sizes the

certainty of the detected changes is higher than with small clusters. The graphs show that

the change detection depends on the cluster size, which in turn depends on the size of the

changed objects and the structure of the observed scene.
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Figure 5.14: Influence of the cluster size on the modeling of non-planar objects.

5.5 Runtime

The runtime of the proposed method is an important aspect of the evaluation, since it is

a limiting factor in real-time systems. The quad tree depth and the cluster size directly

affect the runtime since they influence the amount of data points generated for the model.

This chapter provides a review of the runtime of the modeling and the change detection.

The initialization requires a significant part of the processing time. In this step, the al-

ready loaded point cloud is sampled down to the desired resolution (10 cm in the depicted

example) and the normals and curvatures are calculated. In Table 5.2, the time for initial-

ization and plane detection is given for the individual datasets. The initialization is not
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Table 5.2: Initialization and plane extraction including the boundary extraction.

Indoor Indoor Indoor Outdoor

Simulation On a Vehicle Handheld Car mounted

Nr. Points 287165 Points 1750024 Points 690727 Points 513420 Points

Subsampling to 10cm 161ms 171ms 75ms 302ms

and Normal Estimation

Nr. Remaining Points 27905 Points 14315 Points 5905 Points 113698 Points

Plane Extraction 154ms 89ms 31ms 887ms

Nr. Points in Planes 16335 Points 12065 Points 3509 Points 96466 Points

only dependent on the number of points, but also on the characteristics of the scene. The

scene in Indoor - Simulation contains large planar areas and consists of less noisy points

than the similarly arranged real Indoor - On a Vehicle scene, but more points. The plane

extraction in contrast, is linearly dependent on the number of plane points as indicated in

the line Plane extraction. Figure 5.15 (a) shows the influence of the quad tree depth on
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Figure 5.15: Influence of the QTD and cluster size on the runtime of the modeling.

the runtime of the plane modeling. The increasing depth obtains a higher runtime when

aiming for a higher resolution of the model. Both increase quadratically to the quad tree

depth. The modeling of the non planar objects, however, depends on the cluster size.

The more clusters that need to be modelled, the greater the time required. This is shown

in Figure 5.15 (b). A larger cluster size has an decreasing effect on the runtime. The

overall runtime of the modelling is comparatively short and for the indoor datasets in a

configuration with QTD = 5 and clusterSize = 0.3 m in any case less than 100ms.

The more clusters are extracted in the modeling, the more bounding boxes are com-

pared in the change detection. The implementation in this work compares all clusters with
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each other so the dependency between cluster number and execution time is quadratic and

thus decreases with increasing cluster size. This dependency can be seen in Figure 5.16.
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Figure 5.16: Influence of the cluster size on the runtime of the change detection.

To conclude, the runtime for a complete modeling of a reference dataset and a checked

dataset as well as their comparison is examined. Table 5.3 shows the accumulated runtime

of the whole change detection process in all four datasets. The runtime consists of the time

for initializion and modeling of two point clouds and the time for the comparison. It is

noticeable that the time for the change detection is very short compared to the time spent

on the modeling.

Table 5.3: Accumulatd runtime at ClusterSize = 0.3m.

Indoor Indoor Indoor Outdoor

Runtime Simulation On a Vehicle Handheld Car mounted

P0 (Init + Modeling) 155ms+ 195ms 170ms+ 124ms 92ms+ 49ms 335ms+ 1083ms

P1 (Init + Modeling) 138ms+ 189ms 197ms+ 124ms 61ms+ 43ms 304ms+ 952ms

Change detection 2ms 0.3ms 0.2ms 4ms

Accumulated runtime 679ms 615.3ms 245.2ms 2678ms
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6 Conclusion

In this thesis a method for the recognition of changes, based on the modeling of point

clouds, is investigated. For this purpose, a method for 3D modeling of point cloud data

was designed and implemented. This modeling enables a compact representation of the

data and a fast comparability based on it. In the following, Section 6.1 summarizes the

developed processing steps. Section 6.2 then takes a critical look at the procedures based

on the evaluation results. The results of this work show a potential way to further develop

the IPS framework. These and possible application scenarios are presented in Section 6.3.

6.1 Summary

Within the scope of this work, three consecutive steps are elaborated and implemented

with the aim of identifying and modeling geometric changes in 3D data. The processing

chain consists of the registration of point clouds, the derivation of a triangle mesh based

model as well as the recognition of changes in these models. For the registration AprilTags

are used. In combination with the trajectories of the respective runs, these markers allow

the calculation of a transformation between two local coordinate systems. By determining

the position of the markers in the respective coordinate systems of the trajectories, no

preceding assessment of the tag position is necessary. The functionality is summarized

in an independent implementation. The registration can be applied in a preprocessing

step if required or used independently from the change detection for other purposes as for

example combining point clouds covering only partly overlapping areas.

The point cloud is sampled down to a uniform distribution for faster processing and

the normals and curvatures are calculated for the remaining points. A region growing

process uses this additional information to divide the point clouds into planar and non-

planar areas. The former are modeled as planes through simplification and meshing using

a modified quadtree structure. The non-planar points are clustered by supervoxels and

the extracted clusters are approximated by Axis Aligned Bounding Boxes. Both planar

and non-planar modeling is performed for all datasets which are to be compared. The

bounding boxes of one dataset can be easily examined for their intersection with a second
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dataset, due to their axis alignment. An exemplary result of the model derivation and

change detection is shown in Figure 6.1.

Four different datasets are created for the evaluation of the methods. Each dataset

contains at least two measurements with changes and the corresponding ground truth.

The evaluation indicates that the maximum cluster size to be chosen should be based

on the size of the changes to be detected and the content of the scene. In indoor scenes,

the best detection rates are given at block sizes of half of the object size to be detected.

In scenes, where the objects are well separated as for example urban outdoor scenes, the

cluster size can also be larger to allow faster modeling and comparability.

Figure 6.1: Example of a full model-based change detection.

6.2 Discussion

The evaluation demonstrates that the individual processing steps work differently depend-

ing on the field of application and are affected by each other. One significant influence

on the detection of changes is the accuracy of the registration, as the 3D entities cannot

be compared correctly in case of insufficient superposition. This leads to incorrect de-

tections. The described method for registration based on AprilTags is suitable to transfer

local coordinate systems into each other, independently of the change detection as pre-

sented in 5.2. It is recommended to get as close as possible to the respective tags with

the IPS so that the tag can still be seen in both images. This allows a more accurate
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transformation estimation by minimizing the influence of detection errors caused by the

uncertainty of the pose. The examined application scenarios are measurements with tra-

jectories of less than 10 m length. Therefore, no general statement on the performance

can be made. An Euclidean transformation is calculated as approximation for the trans-

formation. Therefore, an accumulated scaling error between the approached tags is not

handled properly. A sectional improvement of the trajectories on the basis of redetected

AprilTags may be suitable here. In general, the method is suitable for deeper integration

into the processing chain of the IPS. In this case, however, a better evaluation is necessary

to consider previously unobserved influences, such as the distribution of tags.

The next point focuses on the results of the model derivation. The model derivation is

based on the separate consideration of planar and non-planar regions in the point cloud

and thus designed for urban environments. The point clouds of the IPS are suitable for rec-

ognizing planes and simplifying them by the presented method. The use of the quadtree

structure for simplification is advantageous for the modeling of rectangular surfaces. This

cannot always be guaranteed, since the ground plane in particular can become extensive

during longer runs. In this case, the definition of a maximum size of individual plane

sections would be advisable. In the indoor datasets the proportions of the planes are suffi-

ciently square. The evaluation shows that a QTD of 5 is adequate for a visually appealing

result.

All areas that are not modeled as planes are approximated by bounding boxes. The

results depend mainly on the selected cluster size and the structure of the input data. The

super voxel clustering used for segmentation creates equally distributed clusters of sim-

ilar size. However, this method does not completely avoid outliers, which can result in

overlapping clusters and therefore overlapping bounding boxes. For a low-cost approxi-

mation, the bounding boxes are axis-aligned. An elongated area in a point cloud, which

is not aligned, can cause artifacts in the shape of stairs. It is therefore important to ensure

that the structure of the scene is as far as possible adapted to the coordinate system during

processing. This can also be supported by aligning the IPS parallel to a wall during the

measurement. Structures that are at an angle of 90◦ are thus well modeled. This phe-

nomenon does not occur in plane modeling, since these are viewed independently of the

initial coordinate system by means of the PCA transformation. The approximation using

AABBs is not suitable for a pure optically appealing modeling, because the information

about the structure of objects is lost, especially with larger cluster sizes. However, this

design decision enables a fast change detection as presented in this work.
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Examining the bounding boxes from one dataset for overlapping with the boxes from

another dataset allows a fast classification. The mere occurrence of overlaps is sufficient

to classify boxes as unchanged areas. Since even small overlaps are sufficient, an incor-

rect assignment and thus more false negatives occur more easily. Here the consideration

of the volume or the intersection over union of the overlapping boxes may lead to an im-

provement. Exceeding a minimum volume as a threshold can reduce the number of false

negatives, but also increase the number of false positives.

The neglect of the planar surfaces leads to runtime savings in the change detection,

since in urban environments, indoor as well as outdoor, large parts do not have to be con-

sidered. This is based on the assumption that no large planar areas change. Application

scenarios in which such changes occur cannot be checked with the described approach.

Furthermore, measurements that differ spatially are not considered. If areas are scanned

in a run that are not present in the reference run, these areas are classified as changes. This

case is not under investigation. It is also possible that areas due to noisy measurements

are modeled as planes in one dataset and as non-planer objects in the next dataset. Using

the described method, change would be detected in this case. This can in principle be

corrected by checking the intersections of the objects with the planes, but this is not a

comprehensive solution either.

The evaluation of the execution time has shown that the approach is in principle real-

time capable regarding specifications of the IPS. However, the current implementation is

only applicable to the captured data at the end of a measurement run, since a complete

point cloud is expected as input. An incremental derivation of the model on the basis of the

measured points per time step or in a range is reasonable. Compared to the initialization

time and model derivation, the time for change detection is negligible. This section-wise

generated model can then be compared in real time with a previously loaded model.

The boxes are from a subjective perspective visually not appealing. The plane model-

ing is very promising and can be extended. Under certain circumstances, a separate use

is advisable. The plane modeling can still be used for a visual and geometric simplifica-

tion, while the boxes are only used for change detection. For a more visually appealing

modeling of non-planar objects other methods are preferable.
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6.3 Outlook

The developed methods show various possibilities for the further development of the IPS

framework and its application areas. In addition, further potential tasks have emerged

in the processing that could inspire future work. The plane modeling has turned out to

be very promising and may be integrated into the processing chain as an independent

implementation. Therefore, the approach described in [44] is an interesting starting point

to abstract the planes incrementally and in real time. The remaining non-planar objects

can be also added in sections. Points that are not modeled can be clustered and abstracted

as boxes, points that fall in already existing boxes can be discarded. This depends on a

negligibly small scaling error accumulated during the run.

The AprilTag detection and spatial localization can be used to correct the trajectory

section by section between the individual tag detections. This can be done by referenced

tags as well as by freely distributed tags. Another processing step to improve the model

derivation is the texturing of the planes by images or by the colors of the dense point cloud.

Moreover, for each plane the extent is known, therefore, as a next step in the work an

adaptive Quad Tree Depth can be specified for each extracted plane. Thus, the parameter

QTD can be replaced by the specification of a minimum resolution. This increases the

usability, since no abstract value has to be specified anymore.

In the area of change detection, it is previously assumed that the areas considered are

the same. However, this is not likely for hand-held scenarios. The implementation of a

visibility map as presented in [31] may be interesting. Due to the calibration of the IPS,

the acquisition frustum of the cameras is known for each image. From this, the areas

under consideration can be derived.

Currently, the segmentation is based on super voxels. The integration of semantic in-

formation derived from some kind of object detection can be used to cluster points that

belong to distinguishable objects. The extracted cluster can be approximated by bounding

boxes as described in this thesis and therefore used for change detection. This also allows

the detection of objects of certain types. Finally, the presented methods for registration,

model derivation and change detection open up new application areas for the IPS that have

not been considered yet. On the basis of this development, further work in these areas can

make an important contribution to the development of camera based scanning systems.
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