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Introduction: The northern plains of Mars, topo-

graphically lower than the “cratered highlands” of the 

southern hemisphere, comprise several large overlap-

ping basins that are filled by sediments. Different ice-

related landforms demonstrated the presence of 

ground-ice even at mid-latitudes [e.g., 1-2]. However, 

there is no consensus about the nature of ground ice 

and formation of the planetary permafrost. The spatial 

distributions of ice-related landform at broad-scale 

and control by regional geology or climate is still not 

constrained. Improving the geological context of the 

northern plains will help constrain outstanding ques-

tions about martian geological evolution. 

An International Space Science Institute team pro-

ject has been convened to the distribution of ice-

related landforms in targeted areas in the northern 

plain of Mars: Acidalia Planitia, Arcadia Planitia, and 

Utopia Planitia [3-6]. 

In Utopia Planitia, we used the distribution and 

morphotypes of these landforms along a strip from 

30°N to 80°N to understand the permafrost cryolithol-

ogy and its past evolution in relation to climate [3]. 

Two ice-rich deposits were distinguished over the lati-

tude of the region : 

- Between 47°N and 78°N, the assemblage is com-

posed of mantled deposits, textured terrains 30 m di-

ameter polygons [3]. This assemblage is related to 

the young (<10 Ma) ice-rich debris-covered latitude-

dependent mantle [2]. 

- From 38°N to 47°N, the assemblage is comprised of 

large scallops, 100 m diameter polygons, pits and 

mantled deposits [3]. This assemblage of landforms 

is related to with a deposit of 80 m in thickness con-

taining excess-ice. This high volume of ground ice 

was sublimated forming km-scale scalloped depres-

sions at the mid-latitude of Utopia. 

Here, we describe our study of the stratigraphy, 

crater counting and SHAllow RADar (SHARAD) de-

tections of the mid-latitude deposit in western Utopia 

Planitia. The goals are to: (i) constrain the ice-

content; (ii) crater retention age of the deposit. 

 

Methods: Following our mapping and distinction 

of the mid-latitude and high-latitude assemblages of 

landforms, identification of possible deposits that are 

associated with the assemblages of landforms were 

investigated to determine possible geomorphological 

units. Context Camera images (CTX; 6 m/pixel) and 

Mars Orbiter Laser Altimeter (MOLA) PEDRs laser 

shots analysis (vertical uncertainty of about ~1 m, 

horizontal precision ~100 m) were used for detailed 

local topographic analysis of stratigraphy. 

We performed a crater counting using CTX imag-

es to provide an age estimate for the different geomor-

phologic units in Utopia Planitia. All visible impact 

craters (>50 m in diameter) were measured except the 

aligned secondary clusters and rays within the CTX 

resolution limit. Relatively fresh craters (bowl-shaped 

with shallow interior) were selected and distinguished 

from sublimation pits 

We analyzed observations from the SHARAD in-

strument that cross the Utopia Planitia swath. The aim 

was to detect radar reflections that represent an inter-

face between contrasting materials: air-regolith; rego-

lith-ice; regolith-basement. 

 

 
Figure 1: Mid-latitude ice-rich deposit with a 

polygonized surface of 100 m polygons 

Stratigraphy: Over the area of the mid-latitude 

assemblage of landforms, the 100 m polygons are pre-

sent over the surface continuously until its southern 

limit at about 38°N (Fig. 1). The southern limit of the 

polygonized surface takes the form of a deposit with 

clear gently-sloping limits whithout scallops suggest-

ing no degradation (Fig. 1). The deposit covers a sur-

face that is lower in altitude. The deposit having 
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thermal-contraction polygons of 100 m, this deposit is 

a permafrost. The estimated thickness of the deposit is 

about 80-100 m based on different MOLA laser tracks 

along the limit. 

 

Ice-content: The widespread presence of numer-

ous scalloped depressions formed by sublimation over 

the mid-latitude of Utopia Planitia indicates a high 

ice-content of the deposit (excess-ice which is the 

amount of ice exceeding the natural pore water con-

tent in a non-frozen state) [6-9]. However, it is diffi-

cult to have a precise estimation of the volume of ice. 

This deposit is highly similar to ice-rich permafrost in 

the Arctic on Earth [6-9] 

However, SHARAD can help to constrain the ice-

content. On several radargram (39°–45°N), we found 

detection interfaces where we estimated the thickness 

of the deposit. These detections were compared with a 

simulated radargram to remove artefact. We found a 

thick deposit of material that corresponds to the ice-

rich zone highlighted by our mapping. By using the 

estimated thickness of 80–100 m, we determined that 

the material has a dielectric constant between 3.4 and 

5.3 [3]. These values are consistent with a material 

that is primarily ice (~50–85% by volume) with some 

lithic component. Previous SHARAD studies suggest-

ed the presence of an ice-rich layer of about 100 m in 

thickness (estimated to be 50–85% water ice by vol-

ume) in a zone (70°–90°E and 40°–48°N) at the 

southwest of our study area [10]. Here, we improve the 

confidence of the estimation of ice-content by select-

ing a zone where no extensive sublimation occurred 

and where there is a better estimation of the maximum 

thickness of the deposit. 

 
Figure 2: Crater size-frequency distributions of the 

mid-latitude deposit at 42°N 

 

Crater counting: For the mid-latitude 

polygonized surface, the crater count of relatively 

fresh impact craters shows a step between the 1 Ma 

and 10 Ma isochron (Fig. 2). The craters with diame-

ter >100 m are aligned along the 10 Ma isochron and 

give a best fit age of 11 ±1 Ma [3]. They correspond to 

the last major deposition in the zone. For craters 

smaller than 79 m (bin edge), a resurfacing event oc-

cur after 11 Ma partially removing them. 

 

Discussion: On Earth, the formation of arctic ice-

rich permafrost are related to the last glaciation. 

Therefoire, a formation related to the Late Amazonian 

extensive mid-latitudes glacial landsystems along 

Deuteronilus-Nilosyrtis Mensae [11] has been sug-

gested [9, 10, 12]. The crater retention ages of these 

glacial features ranges between ~60 Ma and 1 Ga [11, 

13, 14]. The difference in crater retention age between 

these features and the youngest last deposition in UP 

dismisses a related origin. With MOLA laser shot 

profile, the ice-rich mid-latitude deposit seems to cov-

er several Viscous Flow Features along Nilosyrtis 

Mensae. 

 

Conclusion: Our stratigraphic analysis, crater 

counting and SHARAD detections highlight a mid-

latitude ice-rich deposit similar to ice-rich permafrost 

in the Arctic. The deposit is of 80 m in thickness con-

taining excess-ice (~50–85% by volume) and of about 

11 Ma age. More crater countings and SHARAD de-

tections in different areas of the mid-latitudes are cur-

rently being done. 
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