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Abstract 26 

Arthropod pest outbreaks are unpredictable and not uniformly distributed within fields. Early 27 

outbreak detection and treatment application are inherent to effective pest management, allowing 28 

management decisions to be implemented before pests are well-established and crop losses 29 

accrue. Pest monitoring is time-consuming and may be hampered by lack of reliable or cost-30 

effective sampling techniques. Thus, we argue that an important research challenge associated 31 

with enhanced sustainability of pest management in modern agriculture is developing and 32 

promoting improved crop monitoring procedures. Biotic stress, such as herbivory by arthropod 33 

pests, elicits physiological defense responses in plants, leading to changes in leaf reflectance. 34 

Advanced imaging technologies can detect such changes, and can therefore be used as non-35 

invasive crop monitoring methods. Furthermore, novel methods of treatment precision 36 

application are required. Both sensing and actuation technologies can be mounted on equipment 37 

moving through fields (e.g. irrigation equipment), on (un)manned driving vehicles, and on small 38 

drones. In this review, we focus specifically on use of small unmanned aerial robots, or small 39 

drones, in agricultural systems. Acquired and processed canopy reflectance data obtained with 40 

sensing drones could potentially be transmitted as a digital map to guide a second type of drone, 41 

actuation drones, to deliver solutions to the identified pest hotspots, such as precision-releases of 42 

natural enemies and/or precision-sprays of pesticides. We emphasize how sustainable pest 43 
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management in 21
st
 century agriculture will depend heavily on novel technologies, and how this 44 

trend will lead to a growing need for multi-disciplinary research collaborations between 45 

agronomists, ecologists, software programmers, and engineers.  46 

 47 

Introduction 48 

Arthropod pest outbreaks in field crops and orchards often show non-uniform spatial 49 

distributions. For some pests, such as cabbage aphids [Brevicoryne brassicae L. (Hemiptera: 50 

Aphididae)] in canola fields (Brassica spp.), and Asian citrus psyllids [Diaphorina citri 51 

Kuwayama (Hemiptera: Liviidae)] in citrus orchards (Citrus spp.) there is evidence of highest 52 

population densities along field edges (Sétamou and Bartels 2015, Severtson et al. 2015, Nguyen 53 

and Nansen 2018). For other pests, such as soybean aphids [Aphis glycines Matsumura 54 

(Hemiptera: Aphididae)] in soybean (Glycine max (L.) Merrill), and two-spotted spider mites 55 

[Tetranychus urticae Koch (Acari: Tetranychidae)] in cowpea (Vigna unguiculata (L.) Walp.), 56 

parts of fields that are exposed to abiotic stress, such as drought or nutrient deficiencies, tend to 57 

be more susceptible (Mattson and Haack 1987, Abdel-Galil et al. 2007, Walter and DiFonzo 58 

2007, Amtmann et al. 2008, West and Nansen 2014). Thus, as pests are spatially aggregated, 59 

precision agriculture technologies can offer important opportunities for integrated pest 60 

management (IPM) (Lillesand et al. 2007).  61 

 Precision pest management is twofold: first, reflectance-based crop monitoring (using 62 

ground-based, airborne, or orbital remote sensing technologies) can be used to identify pest 63 

hotspots. Second, precision control systems, such as distributors of natural enemies and pesticide 64 

spray rigs, can provide localized solutions. Both technologies can be mounted on equipment 65 
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moving through fields (such as irrigation equipment), on manned or unmanned vehicles driving 66 

around in fields, or on aerial drones. 67 

In this review, we focus specifically on use of small drones in IPM. Small drones are here 68 

defined as remotely controlled, unmanned flying robots that weigh more than 250 g but less than 69 

25 kg, including payload (FAA 2018a). These types of drones typically have flight-times of a 70 

few minutes to hours and limited ranges (Hardin and Jensen 2011). We will also briefly discuss 71 

the larger drones that are typically used for pesticide sprays. Discussion of smaller and larger 72 

drones is beyond the scope of this review, but see Watts et al. (2012), and Anderson and Gaston 73 

(2013) for more information. Drones used for detection of pest hotspots are here referred to as 74 

sensing drones, while drones used for precision distribution of solutions are referred to as 75 

actuation drones. Both types of drones could communicate to establish a closed-loop IPM 76 

solution (Figure 1). Importantly, use of drones in precision pest management could be cost-77 

effective and reduce harm to the environment. Sensing drones could reduce the time required to 78 

scout for pests, while actuation drones could reduce the area where pesticide applications are 79 

necessary, and reduce the costs of dispensing natural enemies. 80 

Reports of drones in agriculture started appearing around 1998, and increased 81 

dramatically in the last decade (Figure 2). According to the abstract of a licensed report, the 82 

worldwide drone market value is currently estimated about $6.8 billion and is anticipated to 83 

reach $36.9 billion by 2022 (WinterGreen Research 2016b). Another paid report predicts that 84 

drones will reach a value of $14.3 billion by 2028 (Teal Group, 2019). Agricultural small drones 85 

currently account for about $500 million, and their value is expected to reach $3.7 billion by 86 

2022 (WinterGreen Research 2016a). A different paid report predicts similar values (ABI 87 

Research, 2018), while a freely available resource predicts the value of drone-based solutions for 88 
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agriculture at $32 billion (PwC 2016). Recently, the United Nations published a report on the use 89 

of drones for agriculture, stressing its potential benefits for food security (Sylvester, 2018). A 90 

text message poll among ca. 900 growers based in the United States of America (USA) showed 91 

that around 30% use drone-based technology for farming practices (Farm Journal Pulse, 2019). 92 

Thus, although there is a big margin among predictions of future drone use, an increasing 93 

number of growers is expected to use and/or own a drone within the next decade. 94 

There are various ways to classify drones (Watts et al. 2012). For our purpose, we 95 

currently distinguish two major types of small drones: rotary wing and fixed wing. Each of these 96 

has its own advantages and limitations (Hogan et al. 2017). Multi-rotor and single-rotor 97 

(helicopter) drones do not require specific structures for take-off and landing. Moreover, they 98 

can hover and perform agile maneuvering, making them suitable for applications (e.g., inspection 99 

near crops and orchards or pesticide applications) where precise maneuvering or the ability to 100 

maintain a visual of a target for an extended period of time is required. Especially multi-rotor 101 

drones tend to be easy to use, and relatively cheap to obtain. Fixed-wing systems are usually 102 

faster than rotor-based systems, and generally larger in size, allowing for higher payloads (Stark 103 

et al. 2013b, Dalamagkidis 2015). Both have been used for precision agriculture (Barbedo 2019). 104 

Since drone technology quickly improves, we will refrain from discussing drone types in further 105 

detail, but see Dalamagkidis (2015) and Stark et al. (2013b) for more information. 106 

A number of reviews discuss the use of drones in precision agriculture, focusing on 107 

airborne remote sensing for various applications, such as predicting yield and characterizing soil 108 

properties (Hardin and Jensen 2011, Prabhakar et al. 2012, Zhang and Kovacs 2012, Mulla 2013, 109 

Gago et al. 2015, Nansen and Elliott 2016, Pádua et al. 2017, Hunt and Daughtry 2018, Aasen et 110 

al. 2018, Gonzalez et al. 2018, Barbedo 2019, Maes and Steppe 2019). In this review, we focus 111 
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on precision management of arthropod pests, and describe the use of both sensing and actuation 112 

drones. First, we provide an update about airborne remote sensing-based detection of pest 113 

problems. Then, we evaluate the possibilities of actuation drones for precision distribution of 114 

pesticides and natural enemies. Also, we discuss the possibilities of sensing and actuation drones 115 

for novel functions in pest management. Lastly, we discuss challenges and opportunities in the 116 

adoption of drone technology in modern agriculture.  117 

 118 

Sensing Drones to Monitor Crop Health 119 

Traditional field scouting for pest infestations is often expensive and time consuming (Hodgson 120 

et al. 2004, Severtson et al. 2016b, Dara 2019). It may be practically challenging, such as when a 121 

large acreage is involved, when the arthropod pests are too small to see with the naked eye, or 122 

when they reside in the soil or in tall trees. In some cropping systems, effective scouting is 123 

hampered by lack of reliable pest sampling techniques. Hence, one of the main drivers for the 124 

implementation of drone-based remote sensing technologies into agriculture is the potential time 125 

saved by automatizing crop monitoring, making the technology cost-effective for growers 126 

(Carrière et al. 2006, Backoulou et al. 2011a, Dara 2019). 127 

Compared to conventional platforms for remote sensing, such as ground-based, aerial 128 

(with manned aircraft) and orbital [with satellites such as Landsat (30 m spatial resolution), 129 

Sentinel 2 (10 m) or RapidEye (5 m) (Mulla 2013)], sensing drones present several advantages 130 

that make them attractive for use in precision agriculture. Sensing drones potentially allow for 131 

coverage of larger areas than ground-based, handheld devices. They can fly at lower altitudes 132 

than manned aircraft and orbital systems, increasing images’ spatial resolution and reducing the 133 

number of mixed pixels (pixels representing reflectance of both plant and soil, discussed in more 134 
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detail below). Also, they cost less to obtain and deploy than manned aircraft and satellites, and 135 

don’t have long revisiting times like satellites, allowing for higher monitoring frequencies 136 

(Zhang and Kovacs 2012, Mulla 2013, Matese et al. 2015, Aasen and Bolten 2018, Barbedo 137 

2019, Maes and Steppe 2019).  138 

 139 

Remote Sensing in Precision Agriculture 140 

Remote sensing is the detection of energy emitted or reflected by various objects, either in the 141 

form of acoustical energy or in the form of electromagnetic energy (including ultraviolet (UV) 142 

light, visible light, and infrared light) (Usha and Singh 2013). It is a non-invasive, relatively 143 

labor-extensive method that could be used to detect plant stress before changes are visible by 144 

eye. For crops, remote sensing equipment generally assesses the spectral range of visible light or 145 

photosynthetically active radiation (PAR, 400-700 nm) and near-infrared light (NIR, 700-1400 146 

nm), with most studies referring to the 400-1000 nm range (Nansen 2016). Particular stressors, 147 

such as arthropod infestations, induce physiological plant responses, causing changes in the 148 

plants’ ability to perform photosynthesis, which leads to changes in leaf reflectance in parts of 149 

this spectral range. For aerial remote sensing, a drone can be equipped with an RGB (red green 150 

blue) sensor, a multispectral sensor with between 3 and 12 broad spectral bands, or a 151 

hyperspectral sensor with hundreds of narrow spectral bands. 152 

An RGB sensor is low-cost, but results in limited spectral information. A multispectral 153 

sensor results in more spectral information, but a hyperspectral sensor is generally much better at 154 

differentiating subtle differences in canopy reflectance than a multispectral sensor (Yang et al. 155 

2009a). However, since hyperspectral sensors are generally larger, they would require mounting 156 

on drones adapted for heavier payloads. Also, they are generally more expensive, and data 157 
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analysis requires more time and experience, limiting use for individual growers. A 158 

comprehensive review of the sensor types compatible with drones has been written by Aasen et 159 

al. (2018).  160 

 161 

Remote Sensing and Arthropod Pests 162 

Remote sensing technologies have been used in precision agriculture for the last few decades, 163 

with various applications, such as yield predictions and evaluation of crop phenology (Mulla 164 

2013). Also, these techniques are being used to monitor different abiotic plant stressors, such as 165 

drought (Gago et al. 2015, Katsoulas et al. 2016, Zhao et al. 2017, Jorge et al. 2019) and 166 

nutritional deficiencies (Quemada et al. 2014), and biotic plant stressors, such as pathogens 167 

(Calderón et al. 2013, Mahlein et al. 2013, Zarco-Tejada et al. 2018), nematodes (Nutter et al. 168 

2002), and weeds (Rasmussen et al. 2013, Peña et al. 2015). Likewise, remote sensing 169 

technologies have been successfully used to detect stress caused by various arthropod pests on a 170 

wide variety of field and orchard crops (Riley 1989, Nansen 2016, Nansen and Elliott 2016; 171 

Tables 1-4). A limited amount of studies concerning arthropod-induced stress detection used 172 

drone-based aerial remote sensing (Table 1), manned aircraft-based aerial remote sensing (Table 173 

2), or orbital remote sensing (Table 3), while most studies used ground-based remote sensing 174 

(Table 4).  175 

In these tables, optical sensors are grouped, in addition to the platform they are mounted 176 

on, into RGB, multispectral, and hyperspectral sensors. As stated above, generally, multispectral 177 

sensors have 3-12 broad spectral bands at selected wavelength ranges, whereas hyperspectral 178 

sensors have many (usually >20, but up to several hundreds) narrow, contiguous spectral bands, 179 

acquiring the spectrum within the selected spectral region with many measurement points. 180 
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However, there is no clear agreed on definition. Therefore, the tables include multispectral 181 

sensors acquiring more than 12 spectral bands. While grouping the sensors, we adhered to the 182 

authors’ classifications (Tables 1-4). 183 

Tables 1-4 focus on detection of arthropod pests; we did not address diseases caused by 184 

arthropod vectors (e.g. Garcia-Ruiz et al. 2013). Also, these tables only contain studies related to 185 

crops and orchards. We did not address forestry studies, as the body of literature on pest 186 

detection involves multi-species forests, adding an additional layer of complexity as opposed to 187 

crops and orchards in monoculture. More information about remote sensing in forestry settings 188 

can be found elsewhere (Dash et al. 2016, Pádua et al. 2017, Stone and Mohammed 2017, Dash 189 

et al. 2018).  190 

It is important to note that with remote sensing, not the pests themselves are detected, but 191 

patterns of canopy reflectance that are indicative of arthropod-induced plant stress. Field 192 

observations to confirm the presence of specific stressors remain necessary, but field scouting 193 

can be more efficiently focused with the a priori knowledge from remote sensing.  194 

 195 

Analysis of Reflectance Spectra 196 

For the detection of plant stress using remote sensing, the spectral reflectance (the spectral 197 

signature or spectrum) of the vegetation is analyzed. Figure 3 shows a spectrum of healthy 198 

soybean leaves as recorded by a hyperspectral field spectrometer, together with the same 199 

spectrum resampled to the spectral resolution of a hyperspectral imaging spectrometer, and a 200 

multispectral sensor for drones. The figure shows the large loss of information between a 201 

hyperspectral sensor and a multispectral sensor. With higher spectral resolutions (i.e., more 202 

spectral bands), detailed spectral characteristics become visible and can be used to analyze 203 
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vegetation spectra. This analysis can be done in various ways, e.g. by analyzing spectral 204 

reflectance features (e.g. absorption bands or reflectance peaks) that can be directly related to 205 

plant physiology, or indirectly by building vegetation indices (VIs). These two techniques are 206 

addressed below exemplarily. An overview of techniques to quantify vegetation biophysical 207 

variables using imaging spectroscopy is given in Verrelst et al. (2019).  208 

 209 

Spectral Features and Vegetation Indices (VIs) 210 

An important spectral feature light region is the red edge, i.e. the slope between the red and near 211 

infrared region of the spectrum, around 700 nm. This spectral region relates to the chlorophyll 212 

concentration (Horler et al. 1983, Delegido et al. 2011, Huang et al. 2015b) and the Leaf Area 213 

Index (LAI). The LAI is defined as the area of green leaves per unit of ground area (Delegido et 214 

al. 2013). The red edge position (REP), the point of maximum slope in the red edge region, is a 215 

valuable indicator of stress and senescence (Das et al. 2014, Verrelst et al. 2019), possibly 216 

because various stresses decrease leaf chlorophyll concentrations (Carter and Knapp 2001). For 217 

instance, an increased reflectance around 740 nm is associated with spider mite susceptibility in 218 

corn (Zea mays L.) (Nansen et al. 2013). Also, the overall reflection level of the spectrum might 219 

be characteristic.  220 

It should be noted that a spectrum of an imaging spectrometer, such as those mounted on 221 

drones, always describes an area, not a point. This area, or pixel size, depends on the flight 222 

height of the drone and can range from less than 1 cm
2
 to more than 10 cm

2
. With larger pixels, 223 

the recorded spectrum consists of reflectance of both the plant and the soil (mixed pixels). This 224 

should be considered when analyzing the spectrum. Wherever possible, pixels that represent soil 225 

or other types of non-canopy area are excluded from data analysis.  226 
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Various vegetation indices (VIs) assist in interpreting remote sensing data (Roberts et al. 227 

2011, Xue & Su 2017, Verrelst et al. 2019). These are mainly ratios between multiple spectral 228 

bands (Glenn et al. 2008). An often-used index is the Normalized Difference Vegetation Index 229 

(NDVI), which incorporates the ratio of NIR and visible red light. Compared to a healthy plant, 230 

an unhealthy plant will generally reflect more visible red(?) light and less NIR light. In farming, 231 

the NDVI can be used as a predictor of plant physiological status, as well as potential yield 232 

(Peñuelas and Filella 1998). NDVI has its limitations, for example when there is a lot of soil in 233 

the background. To solve that issue, other VIs have been developed, such as the Soil Adjusted 234 

Vegetation Index (SAVI) (Huete et al. 1988). Where these two indices are broad band indices 235 

(i.e., they can be calculated with multispectral data), hyperspectral data allows for narrow band 236 

VIs that can more precisely focus on a specific aspect. An example is the Modified Chlorophyll 237 

Absorption in Reflectance Index (MCARI), which is defined to be maximally sensitive to 238 

chlorophyll content (Daughtry et al. 2000). Xue and Su (2017) provide a review of over 100 VIs 239 

for vegetation analysis.  240 

 241 

Classification Accuracy 242 

Classification algorithms, which could be based on the red edge and/or VIs, can be developed to 243 

group plants based on spectral data by relating field observations to spectral measurements (e.g. 244 

“healthy” and “pest-infested” plants). The algorithms can be based on various statistical 245 

approaches (Lowe et al. 2017). Classification accuracy is high if data has high robustness or 246 

repeatability. Different remote sensing studies report different classification accuracies (Lowe et 247 

al. 2017). A recent study with drone-based remote sensing to detect susceptibility against green 248 

peach aphid [Myzus persicae Sulzer (Hemiptera: Aphididae)] in canola, using a multispectral 249 
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sensor mounted on an octocopter, a drone with eight rotors, reported a classification accuracy of 250 

69-100%. These values depended on experimental day, drone height above the canopy, and 251 

whether or not non-leaf pixels were removed. In this study, aphid infestations happened 252 

naturally, and aphids were counted on selected plants for ground verification of infestations 253 

(Severtson et al. 2016a). A study involving two-spotted spider mite-induced stress in cotton 254 

(Gossypium spp.), using a multispectral sensor mounted on a quadcopter, a drone with four 255 

rotors, reported a classification accuracy of 74-95%. These values depended on classification 256 

methods. Spider mite infestation levels were estimated based on plant damage (Huang et al. 257 

2018). As it is hard to reach 100% accuracy, especially when data are obtained on different days, 258 

in most studies, there are certain numbers of false positives (plants are classified as infested 259 

while they are healthy) and/or false negatives (plants are classified as healthy while they are 260 

infested) (Congalton 1991, Lowe et al. 2017). Nevertheless, multiple robust classifications have 261 

been developed to detect pest problems in different agro-ecosystems, which provide good 262 

indicators for field scouting (Tables 1-4). 263 

 264 

Drones, Remote Sensing, and Arthropod Pests  265 

Everitt and co-authors (2003) provided an overview of the potential use of remote sensing data 266 

collected in a manned aircraft for pest management. The authors mapped four different pest-host 267 

systems (citrus orchards, cotton crops, forests, and rangelands), and concluded that aerial 268 

photography and videography could be used to detect arthropod infestations in both agricultural 269 

and natural environments (Everitt et al. 1994, Everitt et al. 1996). With the development of 270 

unmanned aircrafts, it has become more affordable and practically feasible to collect aerial 271 

remote sensing data. A recent study with drone-based remote sensing to detect crop pests 272 
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includes stress induced by sugarcane aphid [Melanaphis sacchari Zehntner (Hemiptera: 273 

Aphididae)] in sorghum (Sorghum bicolor (L.) Moench), using a multispectral sensor mounted 274 

on a fixed-wing drone. Aphids were counted throughout the growing season for ground 275 

verification of infestations, and damage was assessed as coverage with sooty mold, a fungus not 276 

infesting the plant, but growing on the aphids’ sugary honeydew secretions (Stanton et al. 2017). 277 

Colorado potato beetle [Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae)] damage in 278 

potato (Solanum tuberosum L.) has been assessed using a multispectral sensor mounted on a 279 

hexacopter, a drone with six rotors. Plants were infested with different numbers of beetles, and 280 

insects were counted and plant damage was visually assessed for ground verification of pest 281 

infestations (Hunt and Rondon 2017, Hunt et al. 2016). A study by F. Iost Filho, MSc, Dr. P. 282 

Yamamoto, and collaborators at the University of São Paulo, Brazil, is analyzing the effects of 283 

stress induced by several arthropod pests in soybean fields, including silverleaf whitefly 284 

[Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae)], stink bugs (Hemiptera: Pentatomidae), 285 

and caterpillars (Lepidoptera: Noctuidae). The system is composed of a drone-based 286 

multispectral sensor and a ground-based hyperspectral sensor (Iost Filho 2019) (Table 1). 287 

Researchers at the University of Wisconsin, WI, USA are currently using a quadcopter equipped 288 

with a multispectral sensor to detect caterpillar damage in cranberry (Vaccinium macrocarpon 289 

Aiton) (Seely 2018). An ongoing study by Dr. E. de Lange, Dr. C. Nansen and collaborators at 290 

the University of California Davis, CA, USA involves detection of stress induced by two-spotted 291 

spider mite in strawberry (Fragaria × ananassa Duchesne), using an octocopter equipped with a 292 

hyperspectral sensor (Figure 4). Furthermore, aerial remote sensing can help distinguish between 293 

different non-crop plant species. If these plant species were differentially preferred as alternate 294 



 

14 

 

hosts by important pests, remote sensing could contribute to vegetation management decisions 295 

(Sudbrink et al. 2015).  296 

Barbedo (2019) compiled a list of drone-based remote sensing studies for various 297 

applications, including detection of pests, pathogens, drought, and nutrient deficiencies. Drones 298 

are increasingly used for remote sensing studies, and are particularly cost efficient for 299 

inspections of smaller fields (Matese et al. 2015). As technology improves and costs decrease, 300 

they may also become more competitive for use in larger fields. Ultimately, usefulness of drone-301 

based remote sensing for detection of pest problems will depend on individual grower needs.  302 

 303 

Distinguishing Multiple Stressors with Remote Sensing 304 

Most of the above-mentioned studies are based on a system composed of one arthropod pest 305 

species and one specific crop. However, when multiple arthropod pests are present, more 306 

advanced methods of data calibration and analysis are necessary. Prabakhar and co-authors 307 

(2012) inferred that damage by different pests on the same host plant requires a combination of 308 

multiple spectral bands for accurate detection. Indeed, a greenhouse study in wheat (Triticum 309 

aestivum L.) showed that reflectance data could be used to differentiate between two different 310 

pests. Plants were experimentally infested with greenbugs [Schizaphis graminum Rondani 311 

(Hemiptera: Aphididae)] or Russian wheat aphids [Diuraphis noxia Kurdjumov (Hemiptera: 312 

Aphididae)], and insects were counted on a regular basis. The authors did mention that additional 313 

field studies would be needed, as other stresses could result in similar symptoms as aphid 314 

infestations (Yang et al. 2009b). A field study in wheat used reflectance data to differentiate 315 

between arthropod [wheat aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae)] and 316 

pathogen (yellow rust and powdery mildew) infestations. Aphids occurred naturally in the field, 317 
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and pathogens were inoculated; for all three stressors, damage levels were estimated. Overall 318 

classification accuracy was 76% (Yuan et al. 2014). Another field study in wheat used 319 

reflectance data to distinguish between arthropod infestations (Russian wheat aphid) and abiotic 320 

stresses (drought and agronomic conditions, possibly poor tillage, germination, or fertilization). 321 

The different stresses were verified onsite (Backoulou et al. 2011b).  322 

However, laboratory and field studies on cotton plants exposed difficulties distinguishing 323 

two arthropod pests, cotton aphid [Aphis gossypii Glover (Hemiptera: Aphididae)] and two-324 

spotted spider mite, based on spectral signatures. In these studies, plants were experimentally 325 

infested, and insects were counted, or their presence or absence was assessed, over time (Reisig 326 

and Godfrey 2007). It also proved difficult to separate nitrogen deficiencies and aphid 327 

infestations in cotton field studies. In these studies, aphids were naturally present, and plots were 328 

treated with pesticides to increase aphid populations, presumably by killing natural enemies. 329 

Aphids were counted throughout the experimental period. Different amounts of nitrogen were 330 

applied, which was verified with soil samples and analysis of plant nitrogen uptake (Reisig and 331 

Godfrey 2010).  332 

An overview of the few studies on hyperspectral and multispectral sensors to distinguish 333 

various biotic and abiotic stressors can be found in Table 5. Spectral indices that accurately 334 

predict the presence of various arthropod pests, as well as distinguish arthropod-induced stress 335 

from other sources of stress, are required for a large number of crops in order to be widely used 336 

in precision agriculture (Mulla 2013).  337 

 338 

Actuation Drones for Precision Application of Pesticides 339 
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While sensing drones could help detect pest hotspots, actuation drones could help control the 340 

pests at these hotspots. Pest hotspots could potentially be managed through variable rate 341 

application of pesticides. Aircrafts have been used for decades for pesticide sprays, but products 342 

are deposited over large areas, and a large amount is lost to drift (Pimentel 1995, Bird et al. 343 

1996). This is a concern for neighboring terrestrial and aquatic ecosystems, as well as for human 344 

health (Damalas 2015). Major factors determining spray drift are droplet size (influenced by 345 

nozzle type and product formulation), weather conditions (e.g. wind speed and direction), and 346 

application method (e.g. spray height above the canopy) (Hofman and Solseng 2001, Heidary et 347 

al. 2014). Empirical and modeling studies showed that spray drift into non-target areas can be 348 

considerable (Woods et al. 2001, Sánchez-Bayo et al. 2002, Teske et al. 2002, Tsai et al. 2005, 349 

Heidary et al. 2014). Therefore, improved methods of pesticide application are highly needed 350 

(Lan et al. 2010), and there is potential for the use of drones in precision application of 351 

insecticides and miticides (Costa et al. 2012, Faiçal et al. 2014a, Faiçal et al. 2014b, Faiçal et al. 352 

2016, Faiçal et al. 2017, Brown and Giles 2018). Some of the aspects that give drones a 353 

competitive edge over manned crop dusters are their relative ease of deployment, reduction in 354 

operator exposure to pesticides, and potential reduction of spray drift (Faiçal et al. 2014b).  355 

Indeed, in Japan, where drones have been used in agriculture since the 1980s, drones are 356 

widely used to spray pesticides on rice, Oryza sativa L., crops. These drones are mostly heavier 357 

than 25 kg, but we discuss them here, as they are among the most widely used drones in pest 358 

management. Development of unmanned aerial vehicles for crop dusting started at the Japanese 359 

Agriculture, Forestry and Fishery Aviation Association, an external organization of the Japanese 360 

Ministry of Agriculture, Forestry and Fisheries. A prototype was completed in 1986 by Yamaha, 361 

a Japanese multinational corporation with a wide range of products and services, and the R-50 362 
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appeared on the market in 1987: the world’s first practical-use unmanned helicopter for pesticide 363 

applications, with a payload of 20 kg (Miyahara 1993, Sato 2003, Yamaha 2014a, Xiongkui et al. 364 

2017). A few successors have launched since, with greater payload capacities and simplicity of 365 

use (Yamaha 2014b, 2016). In Japan alone, as of March 2016, about 2,800 unmanned helicopters 366 

are registered for operation, spraying more than a third of the country’s rice fields. The use of 367 

unmanned crop dusters has also spread to other crops, such as wheat, oats, and soybean, and the 368 

number of crops continues to expand (Yamaha 2016). Japanese unmanned crop dusters are also 369 

employed in South Korea (Xiongkui et al. 2017) and are currently being tested for spraying of 370 

pesticides in California vineyards (Bloss 2014, Giles and Billing 2015, Gillespie 2015). On a 371 

small but increasing scale, unmanned crop dusters are used in China, for crops such as rice, 372 

mango, and plantain (Zhou et al. 2013, Tang et al. 2016, Xiongkui et al. 2017, Lan and Cheng 373 

2018, Yang et al. 2018, Zhang et al. 2019). Novel types of unmanned crop dusters and/or novel 374 

spray rigs fitting commercially available drones are currently being developed in China (Ru et al. 375 

2011, Xue et al. 2016, Xiongkui et al. 2017), South Korea (Shim et al. 2009), the USA (Huang et 376 

al. 2009), Ukraine (Pederi and Cheporniuk 2015, Yun et al. 2017), and Spain (Martinez-Guanter 377 

et al. 2019), among other places.  378 

Recently, smaller drone-based crop dusters appeared on the market, such as the DJI 379 

AGRAS MG-1S with a 10 kg payload (DJI 2019). A collaboration between Japan’s Saga 380 

University, Saga Prefectural Government Department of Agriculture, Forestry, and Fisheries, 381 

and OPTiM Corporation resulted in AgriDrone, a small drone that can pinpoint pesticide 382 

application. Interestingly, AgriDrone is also equipped with an UV bug zapper, recognizing and 383 

killing over 50 varieties of nocturnal agricultural pests at nighttime (OPTiM 2016). However, no 384 

peer-reviewed literature on this system has appeared since its announcement.  385 
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Current research focuses on improved spray coverage, to enable large-scale adoption of 386 

drones for application of pesticides (Qin et al. 2016, Wang et al. 2019a, Wang et al. 2019b). In 387 

combination with precision monitoring, precision application of pesticides could reduce the 388 

overall number of sprays, contributing to reduced pesticide use and decreased development of 389 

resistance, as well as increased presence of natural enemies (Midgarden et al. 1997). 390 

 391 

Actuation Drones for Precision Releases of Natural Enemies  392 

Biological control is a potential sustainable alternative to pesticide use. It is the use of a 393 

population of one organism to decrease the population of another, unwanted, organism (Van 394 

Lenteren et al. 2018). Biological control organisms include, but are not limited to, parasitoids, 395 

predators, entomopathogenic nematodes, fungi, bacteria, and viruses. A large variety is 396 

commercially available. Drones may be a particularly useful tool for augmentative biological 397 

control, which relies on the large-scale release of natural enemies for immediate control of pests 398 

(Van Lenteren et al. 2018). They could distribute the natural enemies in the exact locations 399 

where they are needed, which may increase biocontrol agent efficacy and reduce distribution 400 

costs.  401 

 Some natural enemies, such as insect-killing fungi and nematodes, can conveniently be 402 

applied with conventional spray application equipment (Shah and Pell 2003, Shapiro-Ilan et al. 403 

2012). Therefore, these biocontrol agents could potentially be applied by drones as described 404 

above for pesticides (Berner and Chojnacki 2017).  405 

However, application of other natural enemies is often costly and time-consuming. For 406 

example, the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), an 407 

important natural enemy of the worldwide pest two-spotted spider mite, is available in bottles 408 
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mixed with the mineral substrate vermiculite, and the recommended way of dispersal is by 409 

sprinkling contents onto individual plants (e.g. Koppert 2017a, Biobest 2018). P. persimilis has 410 

such a high level of specialization that populations succumb when no prey is present (McMurtry 411 

and Croft 1997, Çakmak et al. 2006, Gerson and Weintraub 2007, Dara 2014). Various 412 

mechanical distribution systems have been developed to facilitate predator dispersal, such as the 413 

Mini-Airbug, a hand-held appliance with a fan (Koppert 2017b), as well as other devices (Giles 414 

et al. 1995, Casey and Parrella 2005, Opit et al. 2005), but adoption has not been widespread. 415 

Growers in Brazil are known to use dispensers attached to motorbikes (Parra 2014, Agronomic 416 

Nordeste 2015), but this could potentially damage the crop. Release of natural enemies by 417 

aircraft was proposed in the 1980s (Herren et al. 1987, Pickett et al. 1987), but small drones 418 

would offer myriad possibilities. Coverage of larger areas compared to manual distribution, 419 

reducing application costs per acre, potentially increases the use of natural enemies in favor of 420 

pesticide sprays. Development of drone-mounted dispensers has mainly focused on two types of 421 

natural enemies: predatory mites such as the above-mentioned P. persimilis, and parasitoid 422 

wasps such as the egg-parasitoid Trichogramma spp. (Hymenoptera: Trichogrammatidae).  423 

 To combat two-spotted spider mite, an important pest of a large number of crops 424 

worldwide, a California-based company is offering services to distribute predatory mites using 425 

drones, on crops such as strawberry (Parabug 2019). An Australia-based company also uses 426 

drones to distribute predatory mites on strawberry crops (Drone Agriculture 2018). At the 427 

University of Queensland in Australia, a drone-mounted device is being developed to distribute 428 

predatory mites in corn (Pearl 2015). At the University of California Davis, Dr. Z. Kong and Dr. 429 

C. Nansen, in collaboration with aerospace engineering students, have developed a platform for 430 

drone-based distribution of predatory mites, BugBot (Figure 5). They are currently testing the 431 
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prototype and accompanying software, to optimize natural enemy releases. We propose that 432 

collaboration between growers, agricultural scientists, aerospace engineers, and software 433 

programmers is key in developing a product that is effective and user-friendly. 434 

Trichogramma spp. parasitoids are important biocontrol agents of European corn borer 435 

[Ostrinia nubilalis Hübner (Lepidoptera: Crambidae)], a major pest of sweet corn in the USA 436 

and Europe (Smith 1996). Various companies and research institutes all over the world have 437 

started Trichogramma drone applications, including Austria, Germany, France, Italy, and Canada 438 

(e.g. Chaussé et al. 2017, Airborne Robotics 2018). Drone-released Trichogramma parasitoids 439 

are also deployed in China for control of pests in sugarcane (Saccharum spp.) (Li et al. 2013, 440 

Yang et al. 2018). In Brazil, drone applications of Trichogramma spp., as well as the parasitoid 441 

Cotesia flavipes Cameron (Hymenoptera: Braconidae), are employed to combat the sugarcane 442 

borer [Diatraea saccharalis Fabricius (Lepidoptera: Crambidae)] in sugarcane. Trichogramma 443 

spp. are also employed against various other lepidopteran pests in other crops (Parra 2014, 444 

Rangel 2016, Xfly Brasil 2017).  445 

While we did not address pest management in forestry settings in this review, a recent 446 

report by Martel et al. (2018) deserves to be mentioned, as it is the first to compare drone release 447 

and ground release of natural enemies. The report evaluated the efficacy of Trichogramma spp. 448 

to combat spruce budworm [Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae)], an 449 

important pest of fir and spruce trees in Canada and the USA. Drone releases, using 450 

Trichogramma-parasitized host eggs mixed with vermiculite, were compared to ground releases, 451 

using commercially available cards containing parasitized eggs of Mediterranean flour moth 452 

[Ephestia kuehniella Zeller (Lepidoptera: Pyralidae)]. Data were collected in two locations in 453 

Quebec, Canada. In one of these locations, drone release resulted in similar spruce budworm egg 454 
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parasitism rates as ground release of natural enemies. Results for the other location were 455 

inconclusive, as egg parasitism rates were negligible. Drone releases were reportedly faster than 456 

ground releases of natural enemies. Although more studies are necessary, these preliminary 457 

results show the high potential of drone-based Trichogramma distribution in forests, especially 458 

on small scales, and in conditions under which insecticide applications are not appropriate 459 

(Martel et al. 2018). It is important to perform similar studies in field crops and orchards, to 460 

evaluate the efficacy of drone-released natural enemies.  461 

Other types of natural enemies can be drone-applied as well, such as green lacewing, 462 

[Chrysoperla spp. (Neuroptera: Chrysopidae)] and minute pirate bug [Orius insidiosus Say 463 

(Hemiptera: Anthocoridae)] to control aphids and thrips, and mealybug destroyer [Cryptolaemus 464 

montrouzieri Mulsant (Coleoptera: Coccinellidae)] to control mealybugs (Parabug 2019). 465 

Researchers at the University of Southern Denmark, in collaboration with Aarhus University, are 466 

currently developing a dispensing mechanism for ladybirds and other important natural enemies 467 

of aphids (SDU 2018). EWH BioProduction, a producer of beneficial organisms (EWH 468 

BioProduction 2019), is also involved in this EcoDrone project, as well as Ecobotix, a company 469 

offering drone-based services, which is developing a separate solution for dispensing natural 470 

enemies (Ecobotix 2018). Drone-based dispensers could be adapted or newly developed for other 471 

types of beneficial arthropods as well. 472 

Thus far, little to no peer-reviewed research exists on the efficacy of these operations. 473 

Therefore, this is a call for additional research. It is of utmost importance to verify that natural 474 

enemies distributed by drones are not damaged during transport and distribution and are still 475 

effective as biological control agents. Also, it is necessary to develop hardware and software 476 

mechanisms that can precisely distribute the natural enemies in different weather conditions, 477 
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particularly considering that wind is a crucial factor for the distribution. Individual drone-478 

mounted dispensers all use different technologies, which could be compared to optimize natural 479 

enemy distribution. This could pave the way for larger-scale operations of this promising 480 

resource.  481 

 482 

Novel Uses for Drones in Precision Pest Management 483 

Pest Outbreak Prevention 484 

Sensing and actuation drones could potentially contribute to the prevention of pest outbreaks. 485 

Plants exposed to abiotic stresses, such as drought and nutrient deficiencies, are often more 486 

susceptible to biotic stressors. This holds true for a large variety of arthropod pests, such as 487 

spider mites (Garman and Kennedy 1949, Rodriguez and Neiswander 1949, Rodriguez 1951, 488 

Perring et al. 1986, Stiefel et al. 1992, Machado et al. 2000, Abdel-Galil et al. 2007, Chen et al. 489 

2007, Nansen et al. 2013, Ximénez-Embún et al. 2017), aphids (Myers and Gratton 2006, Walter 490 

and Difonzo 2007, Lacoste et al. 2015), and lepidopteran larvae (Gutbrodt et al. 2011, Gutbrodt 491 

et al. 2012, Grinnan et al. 2013, Weldegergis et al. 2015). Due to this well-established 492 

association between abiotic stressors and risk of arthropod pest outbreaks, it may be argued that 493 

precision application of abiotic stress relief, such as application of water and fertilizer, represents 494 

a meaningful approach to reducing the risk of outbreaks by some arthropod pests (Nansen et al. 495 

2013, West and Nansen 2014). Indeed, pest management focus could shift from being based 496 

mainly on responsive insecticide applications to a more preventative approach in which 497 

maintaining crop health is the main focus (Culliney and Pimentel 1986, Altieri and Nicholls 498 

2003, Zehnder et al. 2007, Amtmann et al. 2008, West and Nansen 2014). Use of sensing and 499 

actuation drones could contribute to this shift, by assessing plant stress status, and preventative 500 
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applications of water and fertilizers. To the best of our knowledge, drones have thus far not been 501 

deployed for precision irrigation purposes, and although drones are on the market that advertise 502 

the capacity to apply liquid or granular fertilizers, there is no peer-reviewed literature on their 503 

use. Many current spray tractors contain options for variable rate applications of nutrients, for an 504 

adequate response to deficiencies detected with remote sensing (Raun et al. 2002). However, 505 

there would be myriad opportunities for use of drones in this respect, due to their 506 

maneuverability and capacity to treat small areas. 507 

 508 

Reducing Pest Populations: Sterile Insect Technique (SIT) and Mating Disruption 509 

A potential new area for use of drones in pest management is the release of sterile insects. 510 

Codling moth [Cydia pomonella L. (Lepidoptera: Tortricidae)] is a major problem in apple 511 

orchards (Malus domestica Borkh.) (Judd and Gardiner 2005), and pilot programs to release 512 

sterile insects with drones have been successful in controlling codling moth populations in New 513 

Zealand, Canada, and the USA (DuPont 2018, M3 Consulting Group 2018, Seymour 2018, 514 

Timewell 2018). Furthermore, pilot programs for control of pink bollworm [Pectinophora 515 

gossypiella Saunders (Lepidoptera: Gelechiidae)] in cotton, and Mexican fruit fly [Anastrepha 516 

ludens Loew (Diptera: Tephritidae)] in citrus, with drone-released sterile insects proved effective 517 

for control of these pests in the USA (Rosenthal 2017). Similarly, false codling moth 518 

[Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae)] could successfully be controlled 519 

in citrus orchards in South Africa (FlyH2 Aerospace 2018, Greenfly 2018). The sterile insect 520 

technique (SIT) produces sterile or partially sterile insects through irradiation. After mating with 521 

wild insects, there is either no offspring, or the resulting offspring is sterile, resulting in reduced 522 

pest populations. SIT is environmentally friendly, species specific, and compatible with other 523 
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management methods such as biological control, making it an important IPM tool (Simmons et 524 

al. 2010). Drone release of the sterile insects may be cheaper and faster than ground release, 525 

which occurs for instance by means of all-terrain vehicles (ATVs), or release by manned aircraft 526 

(Tan and Tan 2013). For sterile codling moth, drone-dispersal may also improve moth 527 

performance. Drones release the moths above the canopy whereas ATVs release them on the 528 

orchard floor. Codling moth prefer to mate in the upper one-third of the canopy, thus drone 529 

release may facilitate the moths reaching their preferred habitat, while minimizing biotic and 530 

abiotic mortality factors. Irradiated moths must be kept chilled during transportation prior to 531 

orchard dispersal to prevent damage and scale loss. An optimized delivery system from the 532 

rearing facility to the orchard may increase the sterile moths’ effectiveness in mating with wild 533 

moths (DuPont 2018, Dr. E. Beers, personal communication). Therefore, drone releases may 534 

make SIT more widely available.  535 

Drones could also be deployed to place mating disruptors such as SPLAT (specialized 536 

pheromone & lure application technology) in commercial fields (Greenfly 2018). SPLAT is an 537 

inert matrix which can be infused with pheromones and/or pesticides and is applied as dollops 538 

(ISCA 2019a, ISCA 2019b). Mating disruption relies on the release of pheromones, which 539 

interferes with mate finding (Miller and Gut 2015), while attract-and-kill involves an attractant 540 

and a killing agent (Gregg et al. 2018). A combination of these methods effectively control 541 

various pests in a number of cropping systems, including blueberry (Vaccinium corymbosum L.) 542 

and cranberry (Rodriguez-Saona et al. 2010, Steffan et al. 2017). Researchers from the 543 

University of Wisconsin are currently developing a drone release mechanism for SPLAT, to 544 

improve IPM practices in cranberry (Chasen and Steffan 2017, Seely 2018).  545 

 546 
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Pest Population Monitoring 547 

Drones could also be used to track populations of mobile insects that can be equipped with 548 

transponders, such as locusts (Tahir and Brooker 2009). A recent paper by Stumph et al. (2019) 549 

described the use of drones equipped with a UV light source and a video camera to detect 550 

fluorescent-marked insects. Brown marmorated stink bugs [Halyomorpha halys Stål (Hemiptera: 551 

Pentatomidae)], 13-16 mm long, were coated in red fluorescent powder, and placed in a grass 552 

field. Drone data were obtained at night, and specific software was developed to visualize 553 

individual insects. This system provides a relatively fast alternative for manual, time-consuming, 554 

mark-release-recapture studies. Although insects still need to be coated initially, the method 555 

eliminates the need to physically recapture the insects. Also, it removes the need for destructive 556 

sampling, so that insects could potentially be sampled over a longer time period. Thus, use of 557 

this novel, drone-based system could improve efficiency and cost-effectiveness of mark-release-558 

recapture studies of insect migration (Stumph et al. 2019).  559 

Furthermore, drones could be used to collect pest specimens for monitoring (Shields and 560 

Testa 1999, Kim et al. 2018), or to survey for pests, such as Asian longhorned beetles 561 

[Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae)], in tall trees, assisting tree 562 

climbers (Rosenthal, 2017). A recent review has even suggested the use of drones for collection 563 

of plant volatiles (Gonzalez et al. 2018). Indeed, plant volatiles induced in response to herbivory 564 

could indicate the presence of specific pests (Turlings and Erb 2018, De Lange et al. 2019), and 565 

drone-based volatile collections have been deployed for air quality measurements (Villa et al. 566 

2016). Development of novel sensors and technology will undoubtedly open the door to various 567 

other uses of drones in agricultural pest management. 568 

 569 
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Technical and Cultural Challenges and Opportunities  570 

Major challenges for the use of drones in precision agriculture are the costs of drones and 571 

associated sensors and material, limited flight time and payload, and continuously changing 572 

regulations. For a more comprehensive review of challenges and opportunities of drones in 573 

precision agriculture and environmental studies, two fields that share similar uses of drones, see 574 

Hardin and Jensen (2011), Zhang and Kovacs (2012), Whitehead and Hugenholtz (2014), and 575 

Whitehead et al. (2014). We here focus specifically on the technical challenges for use of drones 576 

in precision pest management, and highlight recent changes in regulations.  577 

 578 

Costs 579 

A major challenge for the use of drones in precision pest management is the initial steep costs of 580 

the material: the drone itself, the various sensors or application technologies, mounting 581 

equipment, and analysis software. Although costs are decreasing with improving technology, 582 

sums are still relatively high. In 2017, costs of a fixed-wing drone with hyperspectral sensor 583 

were estimated at €120,000 ($144,000), while costs of a multi-rotor drone with a multispectral 584 

sensor were estimated at €10,000 ($12,000) (Pádua et al. 2017). Therefore, various companies 585 

are offering drone-related services, such as renting out drones with remote sensing equipment 586 

(e.g. Blue Skies 2018) or offering predator dispersal services (e.g. Parabug 2019). Also, 587 

consulting companies offer remote sensing and data analysis services for a reasonable fee, even 588 

combined with other agriculture-related services, to provide one platform for efficient record 589 

keeping and planning (e.g. UAV-IQ 2018). 590 

 591 

Data Collection, Analysis, and Interpretation 592 
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Concerning sensing drones, repeatability of remote sensing data is a recurring issue. Canopy 593 

reflectance varies depending on solar angle, cloud coverage, and various other factors. Therefore, 594 

it is difficult to compare data obtained on a specific day with data obtained the next day, even the 595 

next hour. Novel methods for calibration and processing of drone-based remote sensing data are 596 

continuously being developed (Singh and Nansen 2017, Aasen et al. 2018). Improved 597 

repeatability will render these data more useful for precision detection of pest problems.  598 

Data analysis is also an important challenge. Each mission with a hyperspectral sensor 599 

typically results in multiple terabytes of data, which must be properly stored, processed with 600 

specific software, and analyzed by experts with years of experience. As a result, there is an 601 

important time lag between data collection and the visibility of results. Processing of 602 

multispectral data is currently much faster than processing of hyperspectral data, but the results 603 

are less precise in terms of detection of pest problems (Yang et al. 2009a). Ultimately, 604 

automation of data analysis will improve the usability of detailed hyperspectral datasets by 605 

growers directly, leading to a timelier detection and possible response to the discovery of pest 606 

hotspots. Also, automated data analysis will facilitate communication between sensing and 607 

actuation drones, so that an actuation drone can immediately be deployed to provide solutions. 608 

Or, a single drone could function simultaneously as sensor and actuator, and directly apply 609 

solutions where necessary (Figure 1). 610 

 Concerning actuation drones, peer-reviewed research has just started to emerge, with 611 

many challenges to be overcome. One major challenge is that, in order to develop an effective 612 

actuation drone system, knowledge and expertise from multiple fields must be integrated. First, 613 

knowledge from agricultural scientists will be needed to answer research questions such as 614 

where, when, and how much of the solutions (e.g. pesticides and natural enemies) should be 615 
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applied in an agricultural field. Second, engineers and software developers will need to convert 616 

such knowledge into the design of hardware and software components for the effective and 617 

efficient distribution of the solutions. Another technical challenge is the automation of the 618 

distribution of solutions. Considering the complicated and varied field and weather conditions, 619 

preferentially, users shouldn’t be asked to set up all the software parameters by themselves. 620 

Instead, the drone should be able to compute and implement the optimal distribution strategy 621 

automatically (potentially being given a digital map built by sensing drones).  622 

 623 

Flight Time and Payload 624 

Concerning both sensing and actuation drones, flight time and payload are among the most 625 

limiting factors for use of drones in agriculture. Although individual drones can have payloads of 626 

24 kg and up (Yamaha 2016), it would be challenging, though not impossible to develop a drone 627 

that can both detect pest hotspots and apply solutions. Indeed, the above-mentioned AgriDrone 628 

can both detect pest hot spots and apply localized solutions (OPTiM 2016). However, to cover 629 

large areas, using a network of communicating drones, or swarm, may eventually be most 630 

efficient (Stark et al. 2013a, Faiçal et al. 2014a, Gonzalez-de-Santos et al. 2017). Ultimately, one 631 

or multiple sensing drones detecting pest hotspots will communicate with one or multiple 632 

actuation drones dispensing biological control organisms or agrochemicals exactly where 633 

needed; they can also autonomously fly back to their base stations to recharge, without further 634 

human intervention. Establishing drone swarms is an active research area in the drone 635 

community (Bertuccelli et al. 2009, Alejo et al. 2014, Ponda et al. 2015). However, how to 636 

translate these techniques into the pest management application domain is still an open question. 637 

 638 
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Adverse Weather Conditions and Other Environmental Factors 639 

Adverse weather conditions could limit sensing and actuation drone activity. Most drones have 640 

an optimal operating temperature range. Strong wind could interfere with obtaining aerial remote 641 

sensing data, as well as with pesticide or biocontrol dispersal. Ideally, remote sensing 642 

measurements should be taken all under the same solar and sensor angle geometry, to avoid 643 

differences due to the effect that natural surfaces scatter radiation unequally into all directions 644 

(Weyermann et al. 2014). Data acquisition with a clear, cloudless sky, at solar noon reduces 645 

shadow influences as well as variations between measurements due to changing light intensity 646 

resulting from cloud cover (Souza et al. 2010). However, these conditions cannot be easily 647 

obtained in farms all over the world. Clouds and fog limit drone flights, and it is not 648 

recommended to fly a drone in rain or snow conditions, or during thunderstorms. Other 649 

environmental factors limiting drone activity are differences in elevation within fields or 650 

orchards, and presence of wildlife, such as birds (Park et al. 2012).  651 

 652 

Rules and Regulations 653 

In the USA, Federal Aviation Regulations (FARs) are in place for the commercial and research 654 

use of drones, prescribed by the FAA. Until 2016, a manned aircraft pilot license was necessary 655 

to fly a drone, which is costly to obtain and maintain. As of August 2016, a less stringent remote 656 

pilot license became available to operate small drones, which made commercial drone use much 657 

more readily available (FAA 2016). However, the regulations are regularly updated, which 658 

requires that pilots keep continuous track of current regulations.  659 

A few basic rules in the USA include that the pilot in command must keep a visual line of 660 

sight (VLOS) on the drone at all times. Consequently, flying is only allowed at daylight hours. 661 
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Drones must fly at an altitude at or below 400 feet (122 m), at a speed at or below 100 mph (161 662 

km/h). They are not allowed to fly over people that are not involved in the specific drone 663 

operation, and must always yield right of way to larger aircraft, including manned aircraft. 664 

Waivers from these regulations, for instance to fly at nighttime, can be requested through the 665 

FAA. Importantly, the pilot in command must perform a pre-flight check before each flight, to 666 

ascertain that the drone is in good condition for safe operation (FAA 2018b). In the USA, drones 667 

for both commercial and private use must be registered through the FAA. Regulations for 668 

operating and registering a drone may vary in different countries, so international collaborators 669 

must make sure to follow the proper rules (Cracknell 2017, Stöcker et al. 2017). In Brazil, where 670 

drones are regularly used in precision agriculture (Jorge et al. 2014, Parra 2014), the use of 671 

drones for civil and agricultural means was regulated as recently as May 2017 by the National 672 

Agency of Civil Aviation (ANAC) (Agência Nacional de Aviação Civil 2017). Ultimately, when 673 

drones become more mainstream, general rules may become more standardized. 674 

 675 

Communication with Growers 676 

Importantly, increased use of drones in commercial agricultural operations will not happen 677 

without adoption of the technology by growers, and they will only adopt technology that is 678 

proven to work, cost-effective, and compatible with established practices (Aubert et al. 2012, 679 

Pierpaoli et al. 2013). Extensive communication and collaboration between scientists, industry 680 

professionals, and commercial growers is needed to provide the best performing technology that 681 

tailors to growers’ needs (Larson et al. 2008, Lindblom et al. 2017). Extension agents, dedicated 682 

to the translation of scientific research to practical applications, may facilitate these connections, 683 

through training and dialogue. 684 
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 685 

Conclusion 686 

Drones are becoming increasingly adopted as part of precision agriculture and IPM. Drones with 687 

remote sensing equipment (sensors) are deployed to monitor crop health, map out variability in 688 

crop performance, and detect outbreaks of pests. They could serve as decision support tools, as 689 

early detection and response to suboptimal abiotic conditions may prevent large pest outbreaks. 690 

When outbreaks do occur, different drones (actuators) could be deployed to deliver swift 691 

solutions to identified pest hotspots. Automating pesticide applications and/or release of 692 

biological control organisms, through communication between sensing and actuation drones, is 693 

the future. This approach requires multi-disciplinary research in which engineers, ecologists, and 694 

agronomists are converging, with enormous commercial potential.  695 

 696 

Acknowledgements 697 

We thank April Van Hise and Kevin Goding for critical comments on an earlier version of this 698 

manuscript. Thanks to Eli Borrego for help creating Figure 2. We thank the commercial growers 699 

who made their fields available for research activities. FHIF is supported by the Coordenação de 700 

Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. ZK is 701 

supported by the California Department of Pesticide Regulation (project 18-PML-R004). ESdL 702 

is supported by Western Sustainable Agriculture Research and Education (project SW17-060, 703 

http://www.westernsare.org/). This study was also supported by the American Floral 704 

Endowment, the Gloeckner Foundation, and USDA/ARS Floriculture and Nursery Research 705 

Initiative.  706 

 707 

http://www.westernsare.org/


 

32 

 

References 708 

Aasen, H., and A. Bolten. 2018. Multi-temporal high-resolution imaging spectroscopy with 709 

hyperspectral 2D imagers – From theory to applicaton. Remote Sens. Environ. 205: 374–710 

389. 711 

Aasen, H., E. Honkavaara, A. Lucieer, and P. Zarco-Tejada. 2018. Quantitative remote 712 

sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, 713 

measurement procedures, and data correction workflows. Remote Sens. 10: 1091.  714 

Abdel-Galil, F. A., M. A. M. Amro, and A. S. H. Abdel-Moniem. 2007. Effect of drought 715 

stress on the incidence of certain arthropod pests and predators inhabiting cowpea 716 

plantations. Arch. Phytopathology Plant. Protect. 40: 207–214. 717 

Abdel-Rahman, E. M., F. B. Ahmed, M. van den Berg, and M. J. Way. 2010. Potential of 718 

spectroscopic data sets for sugarcane thrips (Fulmekiola serrata Kobus) damage 719 

detection. Int. J. Remote Sens. 31: 4199–4216. 720 

Abdel-Rahman, E. M., T. Landmann, R. Kyalo, G. Ong’amo, S. Mwalusepo, S. Sulieman, 721 

and B. Le Ru. 2017. Predicting stem borer density in maize using RapidEye data and 722 

generalized linear models. Int. J. Appl. Earth Obs. Geoinf. 57: 61–74. 723 

Abdel-Rahman, E. M., M. Van den Berg, M. J. Way, and F. B. Ahmed. 2009. Hand-held 724 

spectrometry for estimating thrips (Fulmekiola serrata) incidence in sugarcane, pp. 268–725 

271. In IEEE International Geoscience and Remote Sensing Symposium, 12-17 July 726 

2009, Cape Town, South Africa. 727 

Abdel-Rahman, E. M., M. Way, F. Ahmed, R. Ismail, and E. Adam. 2013. Estimation of 728 

thrips (Fulmekiola serrata Kobus) density in sugarcane using leaf-level hyperspectral 729 

data. S. Afr. J. Plant & Soil 30: 91–96. 730 



 

33 

 

ABI Research. 2018. Drones in agriculture: undeniable value and plenty of growth, but not the 731 

explosion others predict. https://www.abiresearch.com/press/drones-agriculture-732 

undeniable-value-and-plenty-gro/ (accessed 18 June 2019).  733 

Agência Nacional de Aviação Civil. 2017. Regas da ANAC para uso de drones entram em 734 

vigor. http://www.anac.gov.br/noticias/2017/regras-da-anac-para-uso-de-drones-entram-735 

em-vigor/release_drone.pdf (accessed 7 January 2019).  736 

Agronomic Nordeste. 2015. Trichobug (Trichogramma). 737 

http://agromicnordeste.com.br/produtos (accessed 7 January 2019).  738 

Airborne Robotics. 2018. Agriculture & Forestry. 739 

https://www.air6systems.com/portfolio/agriculture-forestry/ (accessed 8 January 2019). 740 

Alejo, D., J. Cobano, G. Heredia, and A. Ollero. 2014. Optimal reciprocal collision avoidance 741 

with mobile and static obstacles for multi-UAV systems, pp. 1259–1266. In IEEE 742 

International Conference on Unmanned Aircraft Systems (ICUAS), 27-30 May 2014, 743 

Orlando, FL.  744 

Al Heidary, M., J. P. Douzals, C. Sinfort, and A. Vallet. 2014. Influence of spray 745 

characteristics on potential spray drift of field crop sprayers: a literature review. Crop 746 

Prot. 63: 120–130. 747 

Altieri, M. A., and C. I. Nicholls. 2003. Soil fertility management and insect pests: harmonizing 748 

soil and plant health in agroecosystems. Soil Tillage Res. 72: 203–211. 749 

Alves, T. M., I. V. Macrae, and R. L. Koch. 2015. Soybean aphid (Hemiptera: Aphididae) 750 

affects soybean spectral reflectance. J. Econ. Entomol. 108: 2655–2664. 751 

https://www.abiresearch.com/press/drones-agriculture-undeniable-value-and-plenty-gro/
https://www.abiresearch.com/press/drones-agriculture-undeniable-value-and-plenty-gro/
http://www.anac.gov.br/noticias/2017/regras-da-anac-para-uso-de-drones-entram-em-vigor/release_drone.pdf
http://www.anac.gov.br/noticias/2017/regras-da-anac-para-uso-de-drones-entram-em-vigor/release_drone.pdf
http://agromicnordeste.com.br/produtos
https://www.air6systems.com/portfolio/agriculture-forestry/


 

34 

 

Alves, T. M., R. D. Moon, I. V. MacRae, and R. L. Koch. 2019. Optimizing band selection for 752 

spectral detection of Aphis glycines Matsumura in soybean. Pest Manag. Sci. 75: 942–753 

949. 754 

Amtmann, A., S. Troufflard, and P. Armengaud. 2008. The effect of potassium nutrition on 755 

pest and disease resistance in plants. Physiol. Plant. 133: 682–691. 756 

Anderson, K., and K. J. Gaston. 2013. Lightweight unmanned aerial vehicles will 757 

revolutionize spatial ecology. Front. Ecol. Environ. 11: 138–146. 758 

Aubert, B. A., A. Schroeder, and J. Grimaudo. 2012. IT as enabler of sustainable farming: an 759 

empirical analysis of farmers' adoption decision of precision agriculture technology. 760 

Decis. Support Syst. 54: 510–520. 761 

Backoulou, G. F., N. C. Elliott, and K. L. Giles. 2016. Using multispectral imagery to compare 762 

the spatial pattern of injury to wheat caused by Russian wheat aphid and greenbug. 763 

Southwest. Entomol. 41: 1–8. 764 

Backoulou, G., N. Elliott, K. Giles, T. Alves, M. Brewer, and M. Starek. 2018a. Using 765 

multispectral imagery to map spatially variable sugarcane aphid infestations in sorghum. 766 

Southwest. Entomol. 43: 37–44. 767 

Backoulou, G. F., N. C. Elliott, K. L. Giles, M. J. Brewer, and M. Starek. 2018b. Detecting 768 

change in a sorghum field infested by sugarcane aphid. Southwest. Entomol. 43: 823–769 

832. 770 

Backoulou, G. F., N. C. Elliott, K. L. Giles, and M. Mirik. 2015. Processed multispectral 771 

imagery differentiates wheat crop stress caused by greenbug from other causes. Comput. 772 

Electron. Agric. 115: 34–39. 773 



 

35 

 

Backoulou, G. F., N. C. Elliott, K. Giles, M. Phoofolo, and V. Catana. 2011a. Development 774 

of a method using multispectral imagery and spatial pattern metrics to quantify stress to 775 

wheat fields caused by Diuraphis noxia. Comput. Electron. Agric. 75: 64–70. 776 

Backoulou, G. F., N. C. Elliott, K. Giles, M. Phoofolo, V. Catana, M. Mirik, and J. Michels. 777 

2011b. Spatially discriminating Russian wheat aphid induced plant stress from other 778 

wheat stressing factors. Comput. Electron. Agric. 78: 123–129. 779 

Backoulou, G. F., N. C. Elliott, K. L. Giles, and M. N. Rao. 2013. Differentiating stress to 780 

wheat fields induced by Diuraphis noxia from other stress causing factors. Comput. 781 

Electron. Agric. 90: 47–53. 782 

Barbedo, J. G. A. 2019. A review on the use of unmanned aerial vehicles and imaging sensors 783 

for monitoring and assessing plant stresses. Drones 3: 40. 784 

Berner, B., and J. Chojnacki. 2017. Influence of the air stream produced by the drone on the 785 

sedimentation of the sprayed liquid that contains entomopathogenic nematodes. J. Res. 786 

Appl. Agric. Eng. 62: 26–29. 787 

Bertuccelli, L., H.-L. Choi, P. Cho, and J. How. 2009. Real-time multi-UAV task assignment 788 

in dynamic and uncertain environments, p. 1–16. In AIAA Guidance, Navigation, and 789 

Control Conference, 10-13 August 2009, Chicago, IL.  790 

Bhattarai, G. P., R. B. Schmidt, and B. P. McCornack. 2019. Remote sensing data to detect 791 

hessian fly infestation in commercial wheat fields. Sci. Rep. 9: 6109.  792 

Biobest. 2018. Phytoseiulus-System. 793 

https://www.biobestgroup.com/en/biobest/products/biological-pest-control-794 

4463/beneficial-insects-and-mites-4479/phytoseiulus-system-4668/ (accessed 8 January 795 

2019). 796 

https://www.biobestgroup.com/en/biobest/products/biological-pest-control-4463/beneficial-insects-and-mites-4479/phytoseiulus-system-4668/
https://www.biobestgroup.com/en/biobest/products/biological-pest-control-4463/beneficial-insects-and-mites-4479/phytoseiulus-system-4668/


 

36 

 

Bird, S. L., D. M. Esterly, and S. G. Perry. 1996. Off-target deposition of pesticides from 797 

agricultural aerial spray applications. J. Environ. Qual. 25: 1095–1104. 798 

Bloss, R. 2014. Robot innovation brings to agriculture efficiency, safety, labor savings and 799 

accurary by plowing, milking, harvesting, crop tending/picking and monitoring. Ind. Rob. 800 

41: 493–499. 801 

Blue Skies. 2018. Parrot Sequoia and Phantom 3 integrated kit - rental. 802 

https://www.blueskiesdronerental.com/product/parrot-sequoia-phantom-3-integrated-kit/ 803 

(accessed 7 January 2019). 804 

Bourgeon, M.-A., J.-N. Paoli, G. Jones, S. Villette, and C. Gée. 2016. Field radiometric 805 

calibration of a multispectral on-the-go sensor dedicated to the characterization of 806 

vineyard foliage. Comput. Electron. Agric. 123: 184–194. 807 

Brown, C. R., and D. K. Giles. 2018. Measurement of pesticide drift from unmanned aerial 808 

vehicle application to a vineyard. Trans. ASABE 61: 1539–1546. 809 

Çakmak, I., A. Janssen, and M. W. Sabelis. 2006. Intraguild interactions between the 810 

predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Exp. Appl. Acarol. 811 

38: 33–46. 812 

Calderón, R., J. A. Navas-Cortés, C. Lucena, and P. J. Zarco-Tejada. 2013. High-resolution 813 

airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of 814 

olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. 815 

Environ. 139: 231–245. 816 

Carrière, Y., P. C. Ellsworth, P. Dutilleul, C. Ellers-Kirk, V. Barkley, and A. L. 2006. A 817 

GIS-based approach for areawide pest management: the scales of Lygus hesperus 818 

movements to cotton from alfalfa, weeds, and cotton. Entomol. Exp. Appl. 118: 203–210. 819 

https://www.blueskiesdronerental.com/product/parrot-sequoia-phantom-3-integrated-kit/


 

37 

 

Carroll, M. W., J. A. Glaser, R. L. Hellmich, T. E. Hunt, T. W. Sappington, D. Calvin, K. 820 

Copenhaver, and J. Fridgen. 2008. Use of spectral vegetation indices derived from 821 

airborne hyperspectral imagery for detection of European corn borer infestation in Iowa 822 

corn plots. J. Econ. Entomol. 101: 1614–1623. 823 

Carter, G. A., and A. K. Knapp. 2001. Leaf optical properties in higher plants: linking spectral 824 

characteristics to stress and chlorophyll concentration. Am. J. Bot. 88: 677–684. 825 

Casey, C. A., and M. P. Parrella. 2005. Evaluation of a mechanical dispenser and interplant 826 

bridges on the dispersal and efficacy of the predator, Phytoseiulus persimilis (Acari: 827 

Phytoseiidae) in greenhouse cut roses. Biol. Control 32: 130–136. 828 

Chasen, E., and S. Steffan. 2017. Update on mating disruption in cranberries: the story of 829 

SPLAT®. Proceedings of the Wisconsin Cranberry School 25: 23–25. 830 

https://fruit.wisc.edu/wp-content/uploads/sites/36/2017/03/2017-Cranberry-School-831 

Proceedings-Final.pdf (accessed January 29, 2019).  832 

Chaussé, S., L. Jochems-Tanguay, T. Boislard, D. Cormier, and J. Boisclair. 2017. Lâchers 833 

de trichogrammes par drones, une nouvelle approche pour lutter contre la pyralide du 834 

maïs dans le maïs sucré de transformation. Poster presented at Congrès Annuel de la 835 

Société d’Entomologie du Québec, 23-24 November 2017, Longueuil, Canada. 836 

https://www.irda.qc.ca/assets/documents/Publications/documents/simon_chausse_seq201837 

7.pdf (accessed 23 January 2019). 838 

Chen, Y., G. P. Opit, V. M. Jonas, K. A. Williams, J. R. Nechols, and D. C. Margolies. 2007. 839 

Twospotted spider mite population level, distribution, and damage on ivy geranium in 840 

response to different nitrogen and phosphorus fertilization regimes. J. Econ. Entomol. 841 

100: 1821–1830. 842 

https://fruit.wisc.edu/wp-content/uploads/sites/36/2017/03/2017-Cranberry-School-Proceedings-Final.pdf
https://fruit.wisc.edu/wp-content/uploads/sites/36/2017/03/2017-Cranberry-School-Proceedings-Final.pdf
https://www.irda.qc.ca/assets/documents/Publications/documents/simon_chausse_seq2017.pdf
https://www.irda.qc.ca/assets/documents/Publications/documents/simon_chausse_seq2017.pdf


 

38 

 

Chen, T., R. Zeng, W. Guo, X. Hou, Y. Lan, and L. Zhang. 2018. Detection of stress in cotton 843 

(Gossypium hirsutum L.) caused by aphids using leaf level hyperspectral measurements. 844 

Sensors 18: 2798. 845 

Congalton, R. G. 1991. A review of assessing the accuracy of classifications of remotely sensed 846 

data. Remote Sens. Environ. 37: 35–46. 847 

Costa, F. G., J. Ueyama, T. Braun, G. Pessin, F. S. Osório, and P. A. Vargas. 2012. The use 848 

of unmanned aerial vehicles and wireless sensor network in agricultural applications, pp. 849 

5045–5048. In IEEE International Geoscience and Remote Sensing Symposium, 22-27 850 

July 2012, Munich, Germany.  851 

Cracknell, A. P. 2017. UAVs: regulations and law enforcement. Int. J. Remote Sens. 38: 3054–852 

3067. 853 

Culliney, T. W., and D. Pimentel. 1986. Ecological effects of organic agricultural practices on 854 

insect populations. Agric. Ecosyst. Environ. 15: 253–266. 855 

Dalamagkidis, K. 2015. Classification of UAVs, pp. 83–91. In K. P Valavanis, G. J. 856 

Vachtsevanos (eds.), Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht, 857 

Netherlands. 858 

Damalas, C. A. 2015. Pesticide drift: seeking reliable environmental indicators of exposure 859 

assessment. In R. H. Armon, O. Hönninen (eds.), Environmental Indicators. Springer, 860 

Dordrecht, Netherlands. 861 

Dara, S. K. 2014. Predatory mites for managing spider mites on strawberries. UC ANR eJournal 862 

of Entomology and Biologicals. 863 

https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=14065 (accessed 7 January 864 

2019).  865 

https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=14065


 

39 

 

Dara, S. K. 2019. The new integrated pest management paradigm for the modern age. J. Int. Pest 866 

Manag. 10: 12. 867 

Das, P. K., K. K. Choudhary, B. Laxman, S. V. C. K. Rao, and M. V. R. Seshasai. 2014. A 868 

modified linear extrapolation approach towards red edge position detection and stress 869 

monitoring of wheat crop using hyperspectral data. Int. J. Remote Sens. 35: 1432–1449. 870 

Dash, J. P., G. D. Pearse, and M. S. Watt. 2018. UAV multispectral imagery can complement 871 

satellite data for monitoring forest health. Remote Sens. 10: 1216. 872 

Dash, J. P., D. Pont, R. Brownlie, A. Dunningham, M. Watt, and G. Pearse. 2016. Remote 873 

sensing for precision forestry. NZ J. Forestry 60: 15–24. 874 

Daughtry, C. S. T., C. L. Walthall, M. S. Kim, E. Brown de Colstoun, J. E. McMurtrey III. 875 

2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. 876 

Remote Sens. Environ. 74: 229–239. 877 

De Lange, E. S., J. Salamanca, J. Polashock, and C. Rodriguez-Saona. 2019. Genotypic 878 

variation and phenotypic plasticity in gene expression and emissions of herbivore-879 

induced volatiles, and their potential tritrophic implications, in cranberries. J. Chem. 880 

Ecol. 45: 298–312. 881 

Del-Campo-Sanchez, A., R. Ballesteros, D. Hernandez-Lopez, J. F. Ortega, and M. A. 882 

Moreno. 2019. Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs 883 

by combining geometric and computer vision techniques. PLoS One 14: e0215521. 884 

Delegido, J., J. Verrelst, L. Alonso, and J. Moreno. 2011. Evaluation of Sentinel-2 red-edge 885 

bands for empirical estimation of green LAI and chlorophyll content. Sensors 11: 7063–886 

7081. 887 



 

40 

 

Delegido, J., J. Verrelst, C. M. Meza, J. P. Rivera, L. Alonso, and J. Moreno. 2013. A red-888 

edge spectral index for remote sensing estimation of green LAI over agroecosystems. 889 

Europ. J. Agronomy 46: 42–52. 890 

DJI. 2019. AGRAS MG-1S. https://www.dji.com/mg-1s (accessed 22 January 2019). 891 

Do Prado Ribeiro, L., A. L. S. Klock, J. A. Wordell Filho, M. A. Tramontin, M. A. Trapp, 892 

A. Mithöfer, and C. Nansen. 2018. Hyperspectral imaging to characterize plant-plant 893 

communication in response to insect herbivory. Plant Methods 14: 54. 894 

Drone Agriculture. 2018. Formerly Aerobugs. https://www.droneagriculture.com.au/ (accessed 895 

23 January 2019). 896 

DuPont, T. 2018. Adding to the codling moth IPM tool box. WSU Tree Fruit. 897 

http://treefruit.wsu.edu/article/adding-to-the-codling-moth-ipm-tool-box/ (accessed 7 898 

January 2019). 899 

Ecobotix. 2018. https://www.ecobotix.com/ (accessed 25 January 2019). In Danish. 900 

Elliott, N., G. Backoulou, M. Brewer, and K. Giles. 2015. NDVI to detect sugarcane aphid 901 

injury to grain sorghum. J. Econ. Entomol. 108: 1452–1455. 902 

Elliott, N. C., M. Mirik, Z. Yang, T. Dvorak, M. Rao, J. Michels, T. Walker, V. Catana, M. 903 

Phoofolo, K. L. Giles, and T. Royer. 2007. Airborne multi-spectral remote sensing of 904 

Russian wheat aphid injury to wheat. Southwest. Entomol. 32: 213–219. 905 

Elliott, N., M. Mirik, Z. Yang, D. Jones, M. Phoofolo, V. Catana, K. Giles, and G. J. 906 

Michels. 2009. Airborne remote sensing to detect greenbug stress to wheat. Southwest. 907 

Entomol. 34: 205–211. 908 

https://www.dji.com/mg-1s
https://www.droneagriculture.com.au/
http://treefruit.wsu.edu/article/adding-to-the-codling-moth-ipm-tool-box/
https://www.ecobotix.com/


 

41 

 

Everitt, J., D. Escobar, K. Summy, M. Alaniz, and M. Davis. 1996. Using spatial information 909 

technologies for detecting and mapping whitefly and harvester ant infestations in south 910 

Texas. Southwest. Entomol. 21: 421–432. 911 

Everitt, J., D. Escobar, K. Summy, and M. Davis. 1994. Using airborne video, global 912 

positioning system, and geographical information system technologies for detecting and 913 

mapping citrus blackfly infestations. Southwest. Entomol. 19: 129–138. 914 

Everitt, J. H., K. R. Summy, D. E. Escobar, and M. R. Davis. 2003. An overview of aircraft 915 

remote sensing in integrated pest management. Subtrop. Plant Sci. 55: 59–67. 916 

EWH BioProduction. 2019. https://bioproduction.dk/?lang=en (accessed 25 January 2019). 917 

FAA. 2016. Press release - New FAA rules for small unmanned aircraft systems go into effect. 918 

https://www.faa.gov/news/press_releases/news_story.cfm?newsId=20734 (accessed 7 919 

January 2019). 920 

FAA. 2018a. Unmanned Aircraft Systems frequently asked questions. 921 

https://www.faa.gov/uas/resources/faqs/ (accessed 7 January 2019). 922 

FAA. 2018b. Unmanned Aircraft Systems getting started. 923 

https://www.faa.gov/uas/getting_started/ (accessed 7 January 2019). 924 

Faiçal, B. S., F. G. Costa, G. Pessin, J. Ueyama, H. Freitas, A. Colombo, P. H. Fini, L. 925 

Villas, F. S. Osório, P. A. Vargas, and T. Braun. 2014a. The use of unmanned aerial 926 

vehicles and wireless sensor networks for spraying pesticides. J. Syst. Architect. 60: 393–927 

404. 928 

Faiçal, B. S., H. Freitas, P. H. Gomes, L. Y. Mano, G. Pessin, A. C. P. L. F. de Carvalho, B. 929 

Krishnamachari, and J. Ueyama. 2017. An adaptive approach for UAV-based pesticide 930 

spraying in dynamic environments. Comput. Electron. Agric. 138: 210–223. 931 

https://bioproduction.dk/?lang=en
https://www.faa.gov/news/press_releases/news_story.cfm?newsId=20734
https://www.faa.gov/uas/resources/faqs/
https://www.faa.gov/uas/getting_started/


 

42 

 

Faiçal, B. S., G. Pessin, G. P. R. Filho, A. C. P. L. F. Carvalho, G. Furquim, and J. Ueyama. 932 

2014b. Fine-tuning of UAV control rules for spraying pesticides on crop fields, pp. 527–933 

533. In IEEE International Conference on Tools with Artificial Intelligence (ICTAI), 934 

Limassol, Cyprus. 935 

Faiçal, B. S., G. Pessin, G. P. R. Filho, A. C. P. L. F. Carvalho, P. H. Gomes, and J. 936 

Ueyama. 2016. Fine-tuning of UAV control rules for spraying pesticides on crop fields: 937 

an approach for dynamic environments. Int. J. Artif. Intell. Tools 25: 1660003. 938 

Fan, Y., T. Wang, Z. Qiu, J. Peng, C. Zhang, and Y. He. 2017. Fast detection of striped stem-939 

borer (Chilo suppressalis Walker) infested rice seedling based on visible/near-infrared 940 

hyperspectral imaging system. Sensors 17: 2470. 941 

Farm Journal Pulse. 2019. Results: Will you use a drone on your farm this year? 942 

http://pulse.farmjournalmobile.com/index.php?campaign_id=476 (accessed 18 June 943 

2019). 944 

Fitzgerald, G. J., S. J. Maas, and W. R. Detar. 2004. Spider mite detection and canopy 945 

component mapping in cotton using hyperspectral imagery and spectral mixture analysis. 946 

Precis. Agric. 5: 275–289. 947 

FlyH2 Aerospace. 2018. Agriculture - Greenfly Aviation. https://flyh2.com/agriculture-948 

greenfly-aviation/ (accessed 7 January 2019). 949 

Fraulo, A. B., M. Cohen, and O. E. Liburd. 2009. Visible/near infrared reflectance (Vnir) 950 

spectroscopy for detecting twospotted spider mite (Acari: Tetranychidae) damage in 951 

strawberries. Environ. Entomol. 38: 137–142. 952 

http://pulse.farmjournalmobile.com/index.php?campaign_id=476
https://flyh2.com/agriculture-greenfly-aviation/
https://flyh2.com/agriculture-greenfly-aviation/


 

43 

 

Gago, J., C. Douthe, R. Coopman, P. Gallego, M. Ribas-Carbo, J. Flexas, J. Escalona, and 953 

H. Medrano. 2015. UAVs challenge to assess water stress for sustainable agriculture. 954 

Agric. Water Manag. 153: 9–19. 955 

Garcia-Ruiz, F., S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen, and R. Ehsani. 2013. 956 

Comparison of two aerial imaging platforms for identification of Huanglongbing-infected 957 

citrus trees. Comput. Electron. Agric. 91: 106–115. 958 

Garman, P., and B. H. Kennedy. 1949. Effect of soil fertilization on the rate of reproduction of 959 

the two-spotted spider mite. J. Econ. Entomol. 42: 157–158. 960 

Genc, H., L. Genc, H. Turhan, S. Smith, and J. Nation. 2008. Vegetation indices as indicators 961 

of damage by the sunn pest (Hemiptera: Scutelleridae) to field grown wheat. Afr. J. 962 

Biotechnol. 7: 173–180. 963 

Gerson, U., and P. G. Weintraub. 2007. Mites for the control of pests in protected cultivation. 964 

Pest Manag. Sci. 63: 658–676. 965 

Giles, D. K., and R. C. Billing. 2015. Deployment and performance of a UAV for crop 966 

spraying. Chem. Eng. Trans. 44: 307–312. 967 

Giles, D. K., J. Gardner, and H. Studer. 1995. Mechanical release of predacious mites for 968 

biological pest control in strawberries. Trans. Am. Soc. Agric. Eng. 38: 1289–1296. 969 

Gillespie, A. 2015. Dispatches - FAA gives approval to pesticide-spraying drone. Front. Ecol. 970 

Environ. 13: 236–240. 971 

Glenn, E. P., A. R. Huete, P. L. Nagler, and S. G. Nelson. 2008. Relationship between 972 

remotely-sensed vegetation indices, canopy attributes and plant physiological processes: 973 

what vegetation indices can and cannot tell us about the landscape. Sensors 8: 2136–974 

2160. 975 



 

44 

 

Gonzalez, F., A. Mcfadyen, and E. Puig. 2018. Advances in unmanned aerial systems and 976 

payload technologies for precision agriculture, pp. 133–155. In G. Chen (ed.), Advances 977 

in Agricultural Machinery and Technologies. CRC Press, Boca Raton, FL. 978 

Gonzalez-de-Santos, P., A. Ribeiro, C. Fernandez-Quintanilla, F. Lopez-Granados, M. 979 

Brandstoetter, S. Tomic, S. Pedrazzi, A. Peruzzi, G. Pajares, G. Kaplanis, M. Perez-980 

Ruiz, C. Valero, J. del Cerro, M. Vieri, G. Rabatel, and B. Debilde. 2017. Fleets of 981 

robots for environmentally-safe pest control in agriculture. Precis. Agric. 18: 574–614. 982 

Greenfly. 2018. Aerial sterile insect technique. https://greenflyaviation.com/ (accessed 7 January 983 

2019). 984 

Gregg, P. C., A. P Del Socorro, and P. J. Landolt. 2018. Advances in attract-and-kill for 985 

agricultural pests: beyond pheromones. Annu. Rev. Entomol. 63: 453–470. 986 

Grinnan, R., T. E. Carter, and M. T. J. Johnson. 2013. Effects of drought, temperature, 987 

herbivory, and genotype on plant-insect interactions in soybean (Glycine max). Arthropod 988 

Plant Interact. 7: 201–215. 989 

Gutbrodt, B., S. Dorn, S. B. Unsicker, and K. Mody. 2012. Species-specific responses of 990 

herbivores to within-plant and environmentally mediated between-plant variability in 991 

plant chemistry. Chemoecology 22: 101–111. 992 

Gutbrodt, B., K. Mody, and S. Dorn. 2011. Drought changes plant chemistry and causes 993 

contrasting responses in lepidopteran herbivores. Oikos 120: 1732–1740. 994 

Hardin, P. J., and R. R. Jensen. 2011. Small-scale unmanned aerial vehicles in environmental 995 

remote sensing: challenges and opportunities. GISci. Remote Sens. 48: 99–111. 996 

https://greenflyaviation.com/


 

45 

 

Hart, W. G., S. J. Ingle, M. R. Davis, and C. Mangum. 1973. Aerial photography with 997 

infrared color film as a method of surveying for citrus blackfly. J. Econ. Entomol. 66: 998 

190–194. 999 

Hart, W. G., and V. I. Meyers. 1968. Infrared aerial color photography for detection of 1000 

populations of brown soft scale in citrus groves. J. Econ. Entomol. 61: 617–624. 1001 

Herren, H. R., T. J. Bird, and D. J. Nadel. 1987. Technology for automated aerial release of 1002 

natural enemies of the cassava mealybug and cassava green mite. Int. J. Trop. Insect Sci. 1003 

8: 883–885. 1004 

Herrmann, I., M. Berenstein, T. Paz-Kagan, A. Sade, and A. Karnieli. 2015. Early detection 1005 

of two-spotted spider mite damage to pepper leaves by spectral means, pp. 661–666. In 1006 

European Conference on Precision Agriculture, 12-16 July 2015, Volcani Center, Israel.  1007 

Herrmann, I., M. Berenstein, T. Paz-Kagan, A. Sade, and A. Karnieli. 2017. Spectral 1008 

assessment of two-spotted spider mite damage levels in the leaves of greenhouse-grown 1009 

pepper and bean. Biosyst. Eng. 157: 72–85. 1010 

Herrmann, I., M. Berenstein, A. Sade, A. Karnieli, D. J. Bonfil, and P. G. Weintraub. 2012. 1011 

Spectral monitoring of two-spotted spider mite damage to pepper leaves. Remote Sens. 1012 

Lett. 3: 277–283. 1013 

Hodgson, E. W., E. C. Burkness, W. D. Hutchison, and D. W. Ragsdale. 2004. Enumerative 1014 

and binomial sequential sampling plans for soybean aphid (Homoptera: Aphididae) in 1015 

soybean. J. Econ. Entomol. 97: 2127–2136. 1016 

Hofman, V., and E. Solseng. 2001. Reducing spray drift. AE-1210. North Dakota State 1017 

University Extension Service, Fargo, ND, USA. 1018 



 

46 

 

https://library.ndsu.edu/ir/bitstream/handle/10365/5111/ae1210.pdf?sequence=1 1019 

(accessed 19 June 2019). 1020 

Hogan, S. D., M. Kelly, B. Stark, and Y. Chen. 2017. Unmanned aerial systems for agriculture 1021 

and natural resources. Calif. Agric. 71: 5–14. 1022 

Horler, D. N. H., M. Dockray, and J. Barber. 1983. The red edge of plant leaf reflectance. Int. 1023 

J. Remote Sens. 4: 273–288. 1024 

Huang, H., J. Deng, Y. Lan, A. Yang, X. Deng, L. Zhang, S. Wen, Y. Jiang, G. Suo, and P. 1025 

Chen. 2018. A two-stage classification approach for the detection of spider mite-infested 1026 

cotton using UAV multispectral imagery. Remote Sens. Lett. 9: 933–941. 1027 

Huang, W., Q. Guan, J. Luo, J. Zhang, J. Zhao, D. Liang, L. Huang, and D. Zhang. 2014. 1028 

New optimized spectral indices for identifying and monitoring winter wheat diseases. 1029 

IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7: 2516–2524. 1030 

Huang, Y., W. C. Hoffmann, Y. Lan, W. Wu, and B. K. Fritz. 2009. Development of a spray 1031 

system for an unmanned aerial vehicle platform. Appl. Eng. Agric. 25: 803–809. 1032 

Huang, J., H. Liao, Y. Zhu, J. Sun, Q. Sun, and X. Liu. 2012a. Hyperspectral detection of rice 1033 

damaged by rice leaf folder (Cnaphalocrocis medinalis). Comput. Electron. Agric. 82: 1034 

100–107. 1035 

Huang, W., J. Luo, Q. Gong, J. Zhao, and J. Zhang. 2013. Discriminating wheat aphid 1036 

damage level using spectral correlation simulating analysis, pp. 3722–3725. In IEEE 1037 

International Geoscience and Remote Sensing Symposium, 21-26 July 2013, Melbourne, 1038 

VIC, Australia. 1039 

https://library.ndsu.edu/ir/bitstream/handle/10365/5111/ae1210.pdf?sequence=1


 

47 

 

Huang, W., J. Luo, J. Zhang, J. Zhao, C. Zhao, J. Wang, G. Yang, M. Huang, L. Huang, 1040 

and S. Du. 2012b. Crop disease and pest monitoring by remote sensing. In B. Escalante 1041 

(ed.) Remote Sensing – Applications. InTech, Rijeka, Croatia.  1042 

Huang, W., J. Luo, J. Zhao, J. Zhang, and Z. Ma. 2011. Predicting wheat aphid using 2-1043 

dimensional feature space based on multi-temporal Landsat TM, pp. 1830–1833. In IEEE 1044 

International Geoscience and Remote Sensing Symposium, 24-19 July 2011, Vancouver, 1045 

BC, Canada.  1046 

Huang, J.-R., J.-Y. Sun, H.-J. Liao, and X.-D. Liu. 2015a. Detection of brown planthopper 1047 

infestation based on SPAD and spectral data from rice under different rates of nitrogen 1048 

fertilizer. Precis. Agric. 16: 148–163. 1049 

Huang, J., C. Wei, Y. Zhang, G. A. Blackburn, X. Wang, C. Wei, and J. Wang. 2015b. 1050 

Meta-analysis of the detection of plant pigment concentrations using hyperspectral 1051 

remotely sensed data. PLoS One 10: e0137029. 1052 

Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25: 295–1053 

309. 1054 

Hunt, E. R., and C. S. T. Daughtry. 2018. What good are unmanned aircraft systems for 1055 

agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 39: 5345–1056 

5376. 1057 

Hunt, J. E. R., and S. I. Rondon. 2017. Detection of potato beetle damage using remote sensing 1058 

from small unmanned aircraft systems. J. Appl. Remote Sens. 11: 026013. 1059 

Hunt, J. E. R., S. I. Rondon, P. B. Hamm, R. W. Turner, A. E. Bruce, and J. J. Brungardt. 1060 

2016. Insect detection and nitrogen management for irrigated potatoes using remote 1061 



 

48 

 

sensing from small unmanned aircraft systems, p. 98660N. In SPIE Commercial + 1062 

Scientific Sensing and Imaging, 17-21 April 2016, Baltimore, MD.  1063 

Iost Filho, F. H. 2019. Remote sensing for monitoring whitefly, Bemisia tabaci biotype B 1064 

(Hemiptera: Aleyrodidae) in soybean. Master’s thesis. University of São Paulo, 1065 

Piracicaba, São Paulo, Brazil (in Portuguese with English abstract). 1066 

ISCA. 2019a. Mating disruption. https://www.iscatech.com/solutions/mating-disruption/ 1067 

(accessed 29 January 2019). 1068 

ISCA. 2019b. Attract & kill: the hybrid IPM solution. 1069 

https://www.iscatech.com/solutions/attract-kill/ (accessed 29 January 2019). 1070 

Jorge, L. A. C., Z. N. Brandão, and R. Y. Inamasu. 2014. Insights and recommendations of 1071 

use of UAV platforms in precision agriculture in Brazil, p. 18. In SPIE Remote Sensing, 1072 

22-25 September 2014, Amsterdam, Netherlands.  1073 

Jorge, J., M. Vallbé, and J. A. Soler. 2019. Detection of irrigation inhomogeneities in an olive 1074 

grove using the NDRE vegetation index obtained from UAV images. Eur. J. Remote 1075 

Sens. 52: 169–177. 1076 

Judd, G. J. R., and M. G. T. Gardiner. 2005. Towards eradication of codling moth in British 1077 

Columbia by complimentary actions of mating disruption, tree banding and sterile insect 1078 

technique: five-year study in organic orchards. Crop Prot. 24: 718–733. 1079 

Katsoulas, N., A. Elvanidi, K. Ferentinos, T. Bartzanas, and C. Kittas. 2016. Calibration 1080 

methodology of a hyperspectral imaging system for greenhouse plant water stress 1081 

estimation. Acta Hortic. 1142: 119–126. 1082 

Kim, H. G., J.-S. Park, and D.-H. Lee. 2018. Potential of unmanned aerial sampling for 1083 

monitoring insect populations in rice fields. Fla. Entomol. 101: 330–334. 1084 

https://www.iscatech.com/solutions/mating-disruption/
https://www.iscatech.com/solutions/attract-kill/


 

49 

 

Koppert. 2017a. Spidex - Phytoseiulus persimilis. https://www.koppert.com/products/products-1085 

pests-diseases/spidex/ (accessed 7 January 2019). 1086 

Koppert. 2017b. Mini-Airbug. https://www.koppert.com/products/distribution-appliances/mini-1087 

airbug/ (accessed 7 January 2019). 1088 

Lacoste, C., C. Nansen, S. Thompson, L. Moir-Barnetson, A. Mian, M. McNee, and K. C. 1089 

Flower. 2015. Increased susceptibility to aphids of flowering wheat plants exposed to 1090 

low temperatures. Environ. Entomol. 44: 610–618. 1091 

Lan, Y., and S. Chen. 2018. Current status and trends of plant protection UAV and its spraying 1092 

technology in China. Int. J. Precis. Agric. Aviat. 1: 1–9. 1093 

Lan, Y., S J. Thomson, Y. Huang, W. C. Hoffmann, and H. Zhang. 2010. Current status and 1094 

future directions of precision aerial application for site-specific crop management in the 1095 

USA. Comput. Electron. Agric. 74: 34–38. 1096 

Lan, Y., H. Zhang, J. W. Hoffmann, and J. D. Lopez. 2013. Spectral response of spider mite 1097 

infested cotton: mite density and miticide rate study. Int. J. Agric. Biol. Eng. 6: 48–52. 1098 

Larson, J. A., R. K. Roberts, B. C. English, S. L. Larkin, M. C; Marra, S. W. Martin, K. W. 1099 

Paxton, and J. M. Reeves. 2008. Factors affecting farmer adoption of remotely sensed 1100 

imagery for precision management in cotton production. Precis. Agric. 9: 195–208. 1101 

Lestina, J., M. Cook, S. Kumar, J. Morisette, P. J. Ode, and F. Peairs. 2016. MODIS 1102 

imagery improves pest risk assessment: a case study of wheat stem sawfly (Cephus 1103 

cinctus, Hymenoptera: Cephidae) in Colorado, USA. Environ. Entomol. 45: 1343–1351. 1104 

Li, H., W. A. Payne, G. J. Michels, and C. M. Rush. 2008. Reducing plant abiotic and biotic 1105 

stress: drought and attacks of greenbugs, corn leaf aphids and virus disease in dryland 1106 

sorghum. Environ. Exp. Bot. 63: 305–316. 1107 

https://www.koppert.com/products/products-pests-diseases/spidex/
https://www.koppert.com/products/products-pests-diseases/spidex/
https://www.koppert.com/products/distribution-appliances/mini-airbug/
https://www.koppert.com/products/distribution-appliances/mini-airbug/


 

50 

 

Li, D., X. Yuan, B. Zhang, Y. Zhao, Z. Song, and C. Zuo. 2013. Report of using unmanned 1108 

aerial vehicle to release Trichogramma. Chin. J. Biol. Control 29: 455–458 (in Chinese 1109 

with English abstract). 1110 

Lillesand, T. M., R. W. Kiefer, and J. W. Chipman. 2007. Remote sensing and image 1111 

interpretation, p. 736. Wiley, Hoboken, NJ. 1112 

Lindblom, J., C. Lundström, M. Ljung, and A. Jonsson. 2017. Promoting sustainable 1113 

intensification in precision agriculture: review of decision support systems development 1114 

and strategies. Precis. Agric. 18: 309–331. 1115 

Liu, Z., J.-A. Cheng, W. Huang, C. Li, X. Xu, X. Ding, J. Shi, and B. Zhou. 2012. 1116 

Hyperspectral discrimination and response characteristics of stressed rice leaves caused 1117 

by rice leaf folder, pp. 528–537. In D. Li, Y. Chen (eds.), Computer and Computing 1118 

Technologies in Agriculture V. CCTA 2011. IFIP Advances in Information and 1119 

Communication Technology, vol. 369. Springer, Berlin/Heidelberg, Germany. 1120 

Liu, Z.-Y., J.-G. Qi, N.-N. Wang, Z.-R. Zhu, J. Luo, L.-J. Liu, J. Tang, and J.-A. Cheng. 1121 

2018. Hyperspectral discrimination of foliar biotic damages in rice using principal 1122 

component analysis and probabilistic neural network. Precision Agric. 19: 973–991. 1123 

Liu, X.-D., and Q.-H. Sun. 2016. Early assessment of the yield loss in rice due to the brown 1124 

planthopper using a hyperspectral remote sensing method. Int. J. Pest Manag. 62: 205–1125 

213. 1126 

Lobits, B., L. Johnson, C. Hlavka, R. Armstrong, and C. Bell. 1997. Grapevine remote 1127 

sensing analysis of phylloxera early stress (GRAPES): remote sensing analysis summary. 1128 

NASA Tech. Memo. 112218. 1129 



 

51 

 

Lowe, A., N. Harrison, and A. P. French. 2017. Hyperspectral image analysis techniques for 1130 

the detection and classification of the early onset of plant disease and stress. Plant 1131 

Methods 13: 80. 1132 

Luedeling, E., A. Hale, M. Zhang, W. J. Bentley, and L. C. Dharmasri. 2009. Remote 1133 

sensing of spider mite damage in California peach orchards. Int. J. Appl. Earth Obs. 1134 

Geoinf. 11: 244–255. 1135 

Luo, J., W. Huang, Q. Guan, J. Zhao, and J. Zhang. 2013a. Hyperspectral image for 1136 

discriminating aphid and aphid damage region of winter wheat leaf, pp. 3726–3729. In 1137 

IEEE International Geoscience and Remote Sensing Symposium, 21-26 July 2013, 1138 

Melbourne, VIC, Australia. 1139 

Luo, J., W. Huang, L. Yuan, C. Zhao, S. Du, J. Zhang, and J. Zhao. 2013b. Evaluation of 1140 

spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. 1141 

Precis. Agric. 14: 151–161. 1142 

Luo, J., W. Huang, J. Zhao, J. Zhang, R. Ma, and M. Huang. 2014. Predicting the probability 1143 

of wheat aphid occurrence using satellite remote sensing and meteorological data. Optik 1144 

125: 5660–5665. 1145 

Luo, J., W. Huang, J. Zhao, J. Zhang, C. Zhao, and R. Ma. 2013c. Detecting aphid density of 1146 

winter wheat leaf using hyperspectral measurements. IEEE J. Sel. Top. Appl. Earth Obs. 1147 

Remote Sens. 6: 690–698. 1148 

Luo, J., D. Wang, Y. Dong, W. Huang, and J. Wang. Year. 2011. Developing an aphid 1149 

damage hyperspectral index for detecting aphid (Hemiptera: Aphididae) damage levels in 1150 

winter wheat, pp. 1744–1747. In IEEE International Geoscience and Remote Sensing 1151 

Symposium (IGARSS), 2-29 July 2011, Vancouver, BC, Canada.  1152 



 

52 

 

M3 Consulting Group. 2018. Codling moth sterile insect release. https://www.m3cg.us/sir/ 1153 

(accessed 7 January 2019). 1154 

Ma, H., W. Huang, Y. Jing, C. Yang, L. Han, Y. Dong, H. Ye, Y. Shi, Q. Zheng, L. Liu, and 1155 

C. Ruan. 2019. Integrating growth and environmental parameters to discriminate 1156 

powdery mildew and aphid of winter wheat using bi-temporal Landsat-8 imagery. 1157 

Remote Sens. 11: 846. 1158 

Machado, S., E. D. Bynum, T. L. Archer, R. J. Lascano, L. T. Wilson, J. Bordovsky, E. 1159 

Segarra, K. Bronson, D. M. Nesmith, and W. Xu. 2000. Spatial and temporal 1160 

variability of corn grain yield: site-specific relationships of biotic and abiotic factors. 1161 

Precis. Agric. 2: 359–376. 1162 

Maes, W. H., and K. Steppe. 2019. Perspectives for remote sensing with unmanned aerial 1163 

vehicles in preciison agriculture. Trends Plant Sci. 24: 152–164. 1164 

Mahlein, A. K., T. Rumpf, P. Welke, H. W. Dehne, L. Plümer, U. Steiner, and E. C. Oerke. 1165 

2013. Development of spectral indices for detecting and identifying plant diseases. 1166 

Remote Sens. Environ. 128: 21–30. 1167 

Martel, V., S. Trudeau, R. Johns, E. Owens, S. M. Smith, and G. Bovin. 2018. Testing the 1168 

efficacy of Trichogramma minutum in the context of an 'Early Intervention Strategy' 1169 

against the spruce budworm using different release methods. SERG-i Annual Reports, pp. 1170 

276–283. 1171 

Martin, D. E., and M. A. Latheef. 2017. Remote sensing evaluation of two-spotted spider mite 1172 

damage on greenhouse cotton. J. Vis. Exp. 122: 54314. 1173 

Martin, D. E., and M. A. Latheef. 2018. Active optical sensor assessment of spider mite 1174 

damage on greenhouse beans and cotton. Exp. Appl. Acarol. 74: 147–158. 1175 

https://www.m3cg.us/sir/


 

53 

 

Martin, D. E., and M. A. Latheef. 2019. Aerial application methods control spider mites on 1176 

corn in Kansas, USA. Exp. Appl. Acarol. 77: 571–582. 1177 

Martin, D. E., M. A. Latheef, and J. D. López. 2015. Evaluation of selected acaricides against 1178 

twospotted spider mite (Acari: Tetranychidae) on greenhoues cotton using multispectrla 1179 

data. Exp. Appl. Acarol. 66: 227–245. 1180 

Martinez-Guanter, J., P. Agüera, J. Agüera, and M. Pérez-Ruiz. 2019. Spray and economics 1181 

assessment of a UAV-based ultra-low-volume application in olive and citrus orchards. 1182 

Precision Agric. https://doi.org/10.1007/s11119-019-09665-7 1183 

Matese, A., P. Toscano, S. F. Di Gennaro, L. Genesio, F. P. Vaccari, J. Primicerio, C. Belli, 1184 

A. Zaldei, R. Bianconi, and B. Gioli. 2015. Intercomparison of UAV, aircraft and 1185 

satellite remote sensing platforms for precision viticulture. Remote Sens. 7: 2971–2990. 1186 

Mattson, W. J., and R. A. Haack. 1987. The role of drought in outbreaks of plant-eating 1187 

insects. BioScience 37: 110–118. 1188 

McMurtry, J., and B. Croft. 1997. Life-styles of phytoseiid mites and their roles in biological 1189 

control. Annu. Rev. Entomol. 42: 291–321. 1190 

Miller, N. 2015. CALS researchers deploy insect ‘birth control’ to protect cranerries. University 1191 

of Wisconsin-Madison News. https://news.wisc.edu/cals-researchers-deploy-insect-birth-1192 

control-to-protect-cranberries/ (accessed 22 January 2019). 1193 

Midgarden, D., S. J. Fleischer, R. Weisz, and Z. Smilowitz. 1997. Site-specific integrated pest 1194 

management impact on development of Esfenvalerate resistance in Colorado potato 1195 

beetle (Coleoptera: Chrysomelidae) and on densities of natural enemies. J. Econ. 1196 

Entomol. 90: 855–867. 1197 

https://doi.org/10.1007/s11119-019-09665-7
https://news.wisc.edu/cals-researchers-deploy-insect-birth-control-to-protect-cranberries/
https://news.wisc.edu/cals-researchers-deploy-insect-birth-control-to-protect-cranberries/


 

54 

 

Miller, J. R., and L. J. Gut. 2015. Mating disruption for the 21
st
 century: matching technology 1198 

with mechanism. Environ. Entomol. 44: 427–453. 1199 

Mirik, M., R. Ansley, G. Michels, and N. Elliott. 2012. Spectral vegetation indices selected for 1200 

quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat (Triticum 1201 

aestivum L.). Precis. Agric. 13: 501–516. 1202 

Mirik, M., R. J. Ansley, K. Steddom, C. M. Rush, G. J. Michels, F. Workneh, S. Cui, and N. 1203 

C. Elliott. 2014. High spectral and spatial resolution hyperspectral imagery for 1204 

quantifying Russian wheat aphid infestation in wheat using the constrained energy 1205 

minimization classifier. J. Appl. Remote Sens. 8: 083661. 1206 

Mirik, M., G. Michels, S. Kassymzhanova-Mirik, and N. Elliott. 2007. Reflectance 1207 

characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in 1208 

winter wheat. Comput. Electron. Agric. 57: 123–134. 1209 

Mirik, M., G. J. Michels, S. Kassymzhanova-Mirik, N. C. Elliott, and R. Bowling. 2006a. 1210 

Hyperspectral spectrometry as a means to differentiate uninfested and infested winter 1211 

wheat by greenbug (Hemiptera: Aphididae). J. Econ. Entomol. 99: 1682–1690. 1212 

Mirik, M., G. J. Michels, S. Kassymzhanova-Mirik, N. C Elliott, V. Catana, D. B. Jones, 1213 

and R. Bowling. 2006b. Using digital image analysis and spectral reflectance data to 1214 

quantify damage by greenbug (Hemiptera: Aphididae) in winter wheat. Comput. 1215 

Electron. Agric. 51: 86–98. 1216 

Miyahara, M. 1993. Utilization of helicopter for agriculture in Japan. Korean J. Weed Sci. 13: 1217 

185–194. 1218 

Mohite, J., A. Gauns, N. Twarakavi and S. Pappula. 2018. Evaluating the capabilities of 1219 

Sentinel-2 and Tetracam RGB+ 3 for multi-temporal detection of thrips on capsicum. In: 1220 



 

55 

 

Autonomous Air and Ground Sensing Systems for Agricultural Optimization and 1221 

Phenotyping III (Vol. 10664, p. 106640U). International Society for Optics and 1222 

Photonics. 1223 

Mulla, D. J. 2013. Twenty five years of remote sensing in precision agriculture: key advances 1224 

and remaining knowledge gaps. Biosyst. Eng. 114: 358–371. 1225 

Myers, S. W., and C. Gratton. 2006. Influence of potassium fertility on soybean aphid, Aphis 1226 

glycines Matsumura (Hemiptera: Aphididae), population dynamics at a field and regional 1227 

scale. Environ. Entomol. 35: 219–227. 1228 

Nansen, C. 2012. Use of variogram parameters in analysis of hyperspectral imaging data 1229 

acquired from dual-stressed crop leaves. Remote Sens. 4: 180–193. 1230 

Nansen, C. 2016. The potential and prospects of proximal remote sensing of arthropod pests. 1231 

Pest Manag. Sci. 72: 653–659. 1232 

Nansen, C., and N. Elliott. 2016. Remote sensing and reflectance profiling in entomology. 1233 

Annu. Rev. Entomol. 61: 139–158. 1234 

Nansen, C., T. Macedo, R. Swanson, and D. K. Weaver. 2009. Use of spatial structure 1235 

analysis of hyperspectral data cubes for detection of insect‐induced stress in wheat plants. 1236 

Int. J. Remote Sens. 30: 2447–2464. 1237 

Nansen, C., A. J. Sidumo, and S. Capareda. 2010. Variogram analysis of hyperspectral data to 1238 

characterize the impact of biotic and abiotic stress of maize plants and to estimate biofuel 1239 

potential. Appl. Spectrosc. 64: 627–636. 1240 

Nansen, C., A. J. Sidumo, X. Martini, K. Stefanova, and J. D. Roberts. 2013. Reflectance-1241 

based assessment of spider mite “bio-response” to maize leaves and plant potassium 1242 

content in different irrigation regimes. Comput. Electron. Agric. 97: 21–26. 1243 



 

56 

 

Nebiker, S., N. Lack, M. Abächerli, and S. Läderach. 2016. Light-weight multispectral UAV 1244 

sensors and their capabilities for predicting grain yield and detecting plant diseases. 1245 

ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B1: 963–970. 1246 

Nguyen, H. D. D., and C. Nansen. 2018. Edge-biased distributions of insects. A review. Agron 1247 

Sustain. Dev. 38: 11. 1248 

Nigam, R., R. Kot, S. S. Sandhu, B. K. Bhattacharya, R. S. Chandi, M. Singh, J. Singh, and 1249 

K. Manjunath. 2016. Ground-based hyperspectral remote sensing to discriminate biotic 1250 

stress in cotton crop, p. 98800H. In Multispectral, Hyperspectral, and Ultraspectral 1251 

Remote Sensing Technology, Techniques and Applications VI. SPIE Asia-Pacific 1252 

Remote Sensing Symposium, 4-7 April 2016, New Delhi, India.  1253 

Nutter, F. W., G. L. Tylka, J. Guan, A. J. D. Moreira, C. C. Marett, T. R. Rosburg, J. P. 1254 

Basart, and C. S. Chong. 2002. Use of remote sensing to detect soybean cyst nematode-1255 

induced plant stress. J. Nematol. 34: 222–231. 1256 

Opit, G. P., J. R. Nechols, D. C. Margolies, and K. A. Williams. 2005. Survival, horizontal 1257 

distribution, and economics of releasing predatory mites (Acari: Phytoseiidae) using 1258 

mechanical blowers. Biol. Control 33: 344–351. 1259 

OPTiM. 2016. OPTiM's AgriDrone undergoes the world's first successful trials for insect 1260 

extermination by drone. https://en.optim.co.jp/news-detail/11172 (accessed 7 January 1261 

2019). 1262 

Pádua, L., J. Vanko, J. Hruška, T. Adão, J. J. Sousa, E. Peres, and R. Morais. 2017. UAS, 1263 

sensors, and data processing in agroforestry: a review towards practical applications. Int. 1264 

J. Remote Sens. 38: 2349–2391. 1265 

Parabug. 2019. Parabug. https://www.parabug.solutions/ (accessed 22 January 2019). 1266 

https://en.optim.co.jp/news-detail/11172
https://www.parabug.solutions/


 

57 

 

Park, C. Y., B.-W. Jang, J. H. Kim, C.-G. Kim, S.-M. Jun. 2012. Bird strike event monitoring 1267 

in a composite UAV wing using high speed optical fiber sensing system. Compos. Sci. 1268 

Technol. 72: 498–505. 1269 

Parra, J. R. P. 2014. Biological control in Brazil: an overview. Sci. Agric. 71: 420–429. 1270 

Pearl, E. 2015. Drone used to drop beneficial bugs on corn crop. The University of Queensland, 1271 

Australia, News (UQ News). https://www.uq.edu.au/news/article/2015/04/drone-used-1272 

drop-beneficial-bugs-corn-crop (accessed 7 January 2019). 1273 

Pederi, Y. A., and H. S. Cheporniuk. 2015. Unmanned aerial vehicles and new technological 1274 

methods of monitoring and crop protection in precision agriculture, pp. 298–301. In IEEE 1275 

International Conference Actual Problems of Unmanned Aerial Vehicles Developments, 1276 

13-15 October 2015, Kiev, Ukraine.  1277 

Peña, J. M., J. Torres-Sánchez, A. Serrano-Pérez, A. I. de Castro, and F. López-Granados. 1278 

2015. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for 1279 

weed seedling detection as affected by sensor resolution. Sensors 15: 5609–5626. 1280 

Peñuelas, J., and I. Filella. 1998. Visible and near-infrared reflectance techniques for 1281 

diagnosing plant physiological status. Trends Plant Sci. 3: 151–156. 1282 

Peñuelas, J., I. Filella, P. Lloret, F. Mun Oz, and M. Vilajeliu. 1995. Reflectance assessment 1283 

of mite effects on apple trees. Int. J. Remote Sens. 16: 2727–2733. 1284 

Perring, T. M., T. O. Holtzer, J. L. Toole, and J. M. Norman. 1986. Relationships between 1285 

corn-canopy microenvironments and banks grass mite (Acari: Tetranychidae) abundance. 1286 

Environ. Entomol. 15: 79–83. 1287 

https://www.uq.edu.au/news/article/2015/04/drone-used-drop-beneficial-bugs-corn-crop
https://www.uq.edu.au/news/article/2015/04/drone-used-drop-beneficial-bugs-corn-crop


 

58 

 

Pickett, C. H., F. E. Gilstrap, R. K. Morrison, and L. F. Bouse. 1987. Release of predatory 1288 

mites (Acari: Phytoseiidae) by aircraft for the biological control of spider mites (Acari: 1289 

Tetranychidae) infesting corn. J. Econ. Entomol. 80: 906–910. 1290 

Pierpaoli, E., G. Carli, E. Pignatti, and M. Canavari. 2013. Drivers of precision agriculture 1291 

technologies adoption: a literature review. Proc. Technol. 8: 61–69. 1292 

Pimentel, D. 1995. Amounts of pesticides reaching target pests: environmental impacts and 1293 

ethics. J. Agric. Environ. Ethics 8: 17–29. 1294 

Ponda, S. S., L. B. Johnson, A. Geramifard, and J. P. How. 2015. Cooperative mission 1295 

planning for multi-UAV teams, pp. 1447–1490. In K. P. Valavanis, G. J. Vachtsevanos 1296 

(eds.), Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht, Netherlands. 1297 

Prabhakar, M., Y. G. Prasad, and M. N. Rao. 2012. Remote sensing of biotic stress in crop 1298 

plants and its applications for pest management, pp. 517–545. In B. Venkateswarlu, A. K. 1299 

Shanker, C. Shanker, M. Maheswari (eds.), Crop Stress and its Management: 1300 

Perspectives and Strategies. Springer, Dordrecht, Netherlands. 1301 

Prabhakar, M., Y. Prasad, M. Thirupathi, G. Sreedevi, B. Dharajothi, and B. 1302 

Venkateswarlu. 2011. Use of ground based hyperspectral remote sensing for detection 1303 

of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Comput. Electron. 1304 

Agric. 79: 189–198. 1305 

Prabhakar, M., Y. G. Prasad, S. Vennila, M. Thirupathi, G. Sreedevi, G. R. Rao, and B. 1306 

Venkateswarlu. 2013. Hyperspectral indices for assessing damage by the solenopsis 1307 

mealybug (Hemiptera: Pseudococcidae) in cotton. Comput. Electron. Agric. 97: 61–70. 1308 



 

59 

 

Prasannakumar, N., S. Chander, and R. Sahoo. 2014. Characterization of brown planthopper 1309 

damage on rice crops through hyperspectral remote sensing under field conditions. 1310 

Phytoparasitica 42: 387–395. 1311 

Prasannakumar, N., S. Chander, R. Sahoo, and V. Gupta. 2013. Assessment of brown 1312 

planthopper, (Nilaparvata lugens)[Stål], damage in rice using hyperspectral remote 1313 

sensing. Int. J. Pest Manag. 59: 180–188. 1314 

PwC. 2016. Clarity from above. PwC global report on the commercial applications of drone 1315 

technology. https://www.pwc.pl/pl/pdf/clarity-from-above-pwc.pdf (accessed 18 June 1316 

2019). 1317 

Qin, W.-C., B.-J. Qiu, X.-Y. Xue, C. Chen, Z.-F. Xu, and Q.-Q. Zhou. 2016. Droplet 1318 

deposition and control effect of insecticides sprayed with an unmanned aerial vehicle 1319 

against plant hoppers. Crop Prot. 85: 79–88. 1320 

Quemada, M., J. Gabriel, and P. Zarco-Tejada. 2014. Airborne hyperspectral images and 1321 

ground-level optical sensors as assessment tools for maize nitrogen fertilization. Remote 1322 

Sens. 6: 2940–2962. 1323 

Rangel, R. K. 2016. Development of an UAVS distribution tools for pest's biological control 1324 

"Bug Bombs!", pp. 1–8. In IEEE Aerospace Conference, 5-12 March 2016, Big Sky, MT. 1325 

Rasmussen, J., J. Nielsen, F. Garcia‐Ruiz, S. Christensen, J. C. Streibig, and B. Lotz. 2013. 1326 

Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Res. 1327 

53: 242–248. 1328 

Raun, W. R., J. B. Solie, G. V. Johnson, M. L. Stone, R. W. Mullen, K. W. Freeman, W. E. 1329 

Thomason, and E. V. Lukina. 2002. Improving nitrogen use efficiency in cereal grain 1330 

production with optical sensing and variable rate application. Agron. J. 94: 815–820. 1331 

https://www.pwc.pl/pl/pdf/clarity-from-above-pwc.pdf


 

60 

 

Reisig, D., and L. Godfrey. 2006. Remote sensing for detection of cotton aphid- (Homoptera: 1332 

Aphididae) and spider mite- (Acari: Tetranychidae) infested cotton in the San Joaquin 1333 

Valley. Environ. Entomol. 35: 1635–1646. 1334 

Reisig, D., and L. Godfrey. 2007. Spectral response of cotton aphid- (Homoptera: Aphididae) 1335 

and spider mite- (Acari: Tetranychidae) infested cotton: controlled studies. Environ. 1336 

Entomol. 36: 1466–1474. 1337 

Reisig, D. D., and L. D. Godfrey. 2010. Remotely sensing arthropod and nutrient stressed 1338 

plants: a case study with nitrogen and cotton aphid (Hemiptera: Aphididae). Environ. 1339 

Entomol. 39: 1255–1263. 1340 

Riedell, W. E., and T. M. Blackmer. 1999. Leaf reflectance spectra of cereal aphid-damaged 1341 

wheat. Crop Sci. 39: 1835–1840. 1342 

Riley, J. R. 1989. Remote sensing in entomology. Ann. Rev. Entomol. 43: 247–271. 1343 

Roberts, D. A., K. L. Roth, and R. L Perroy. 2001. Hyperspectral vegetation indices, pp 309–1344 

327. In P. S. Thenkabail, J. G. Lyon, A. Huete (eds.), Hyperspectral Remote Sensing of 1345 

Vegetation. CRC Press, Boca Raton, FL.  1346 

Rodriguez, J. G. 1951. Mineral nutrition of the two-spotted spider mite, Tetranychus 1347 

bimaculatus Harvey. Ann. Entomol. Soc. Am. 44: 511–526. 1348 

Rodriguez, J. G., and R. B. Neiswander. 1949. The effect of soil soluble salts and cultural 1349 

practices on mite populations on hothouse tomatoes. J. Econ. Entomol. 42: 56–59. 1350 

Rodriguez-Saona, C., D. Polk, R. Holdcraft, D. Chinnasamy, and A. Mafra-Neto. 2010. 1351 

SPLAT-OrB reveals competitive attraction as a mechanism of mating disruption in 1352 

oriental beetle (Coleoptera: Scarabaeidae). Environ. Entomol. 39: 1980–1989. 1353 



 

61 

 

Rosenthal, G. 2017. PPQ explores the tantalizing promise of unmanned aircraft systems. USDA 1354 

APHIS. https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-1355 

overview/plant-protection-today/articles/unmanned-aircraft-systems (accessed 7 January 1356 

2019). 1357 

Ru, Y., H. Zhou, Q. Fan, and X. Wu. 2011. Design and investigation of ultra-low volume 1358 

centrifugal spraying system on aerial plant protection, no. 1110663. In ASABE Annual 1359 

International Meeting, 7-10 August 2011, Louisville, KY.  1360 

Sánchez-Bayo, F., S. Baskaran, and I. R. Kennedy. 2002. Ecological relative risk (EcoRR): 1361 

another approach for risk assessment of pesticides in agriculture. Agric. Ecosyst. 1362 

Environ. 91: 37–57. 1363 

Sato, A. 2003. The RMAX helicopter UAV. Yamaha Moter Co., LTD., Shizuoka, Japan. 1364 

https://pdfs.semanticscholar.org/5d80/faae7d1ffd27422df3ad6e3d08dc6bdb1920.pdf 1365 

(accessed 8 January 2019). 1366 

SDU. 2018. EcoDrone. University of Southern Denmark (SDU). 1367 

https://www.sdu.dk/en/om_sdu/institutter_centre/sduuascenter/researchprojects (accessed 1368 

7 January 2019). 1369 

Seely, R. 2018. Drones, joysticks, and data-driven farming. Grow 3: 16–21. University of 1370 

Wisconsin-Madison College of Agricultural and Life Sciences. 1371 

https://grow.cals.wisc.edu/wp-content/uploads/sites/14/2018/06/Grow-Summer2018-1372 

web.pdf (accessed 30 January 2019). 1373 

Sétamou, M., and D. W. Bartels. 2015. Living on the edges: spatial niche occupation of Asian 1374 

citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), in citrus groves. PLoS 1375 

One 10: e0131917. 1376 

https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/unmanned-aircraft-systems
https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/unmanned-aircraft-systems
https://pdfs.semanticscholar.org/5d80/faae7d1ffd27422df3ad6e3d08dc6bdb1920.pdf
https://www.sdu.dk/en/om_sdu/institutter_centre/sduuascenter/researchprojects
https://grow.cals.wisc.edu/wp-content/uploads/sites/14/2018/06/Grow-Summer2018-web.pdf
https://grow.cals.wisc.edu/wp-content/uploads/sites/14/2018/06/Grow-Summer2018-web.pdf


 

62 

 

Severtson, D., N. Callow, K. Flower, A. Neuhaus, M. Olejnik, and C. Nansen. 2016a. 1377 

Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green 1378 

peach aphid susceptibility in canola. Precis. Agric. 17: 659–677. 1379 

Severtson, D., K. Flower, and C. Nansen. 2015. Nonrandom distribution of cabbage aphids 1380 

(Hemiptera: Aphididae) in dryland canola (Brassicales: Brassicaceae). Environ. Entomol. 1381 

44: 767–779. 1382 

Severtson, D., K. Flower, and C. Nansen. 2016b. Spatially-optimized sequential sampling plan 1383 

for cabbage aphids Brevicoryne brassicae L. (Hemiptera: Aphididae) in canola fields. J. 1384 

Econ. Entomol. 109: 1929–1935. 1385 

Seymour, R. 2018. Drones tested for moth drops in Okanagan orchards. Kelowna Daily Courier. 1386 

http://www.kelownadailycourier.ca/news/article_abc959f2-3376-11e8-8de7-1387 

efac785fe8d1.html (accessed 7 January 2019). 1388 

Shah, P., and J. Pell. 2003. Entomopathogenic fungi as biological control agents. Appl. 1389 

Microbiol. Biotechnol. 61: 413–423. 1390 

Shapiro-Ilan, D. I., R. Han, and C. Dolinksi. 2012. Entomopathogenic nematode production 1391 

and application technology. J. Nematol. 44: 206–217. 1392 

Shi, Y., W. Huang, J. Luo, L. Huang, and X. Zhou. 2017. Detection and discrimination of 1393 

pests and diseases in winter wheat based on spectral indices and kernel discriminant 1394 

analysis. Comput. Electron. Agric. 141: 171–180. 1395 

Shi, Y., J. A. Thomasson, S. C. Murray, N. A. Pugh, W. L. Rooney, S. Shafian, N. Rajan, G. 1396 

Rouze, C. L. S. Morgan, H. L. Neely, A. Rana, M. V. Bagavathiannan, J. 1397 

Henrickson, E. Bowden, J. Valasek, J. Olsenholler, M. P. Bishop, R. Sheridan, E. B. 1398 

Putman, S. Popescu, T. Burks, D. Cope, A. Ibrahim, B. F. McCutchen, D. D. 1399 

http://www.kelownadailycourier.ca/news/article_abc959f2-3376-11e8-8de7-efac785fe8d1.html
http://www.kelownadailycourier.ca/news/article_abc959f2-3376-11e8-8de7-efac785fe8d1.html


 

63 

 

Baltensperger, R. V. Avant, M. Vidrine, and C. Yang. 2016. Unmanned aerial 1400 

vehicles for high-throughput phenotyping and agronomic research. PLoS One 11: 1401 

e0159781. 1402 

Shields, E. J., and A. M. Testa. 1999. Fall migratory flight initiation of the potato leafhopper, 1403 

Empoasca fabae (Homoptera: Cicadelliade): observations in the lower atmosphere using 1404 

remote piloted vehicles. Agric. For. Meteorol. 97: 317–330. 1405 

Shim, D. H., J.-S. Han, and H.-T. Yeo. 2009. A development of unmanned helicopters for 1406 

industrial applications. J. Intell. Robot. Syst. 54: 407–421. 1407 

Simmons, G. S., D. M. Suckling, J. E. Carpenter, M. F. Addison, V. A. Dyck, and M. J. B. 1408 

Vreysen. 2010. Improved quality management to enhance the efficacy of the sterile 1409 

insect technique for lepidopteran pests. J. Appl. Entomol. 134: 261–273. 1410 

Singh, K., and C. Nansen. 2017. Advanced calibration to improve robustness of drone-acquired 1411 

hyperspectral remote sensing data, pp. 1–6. In IEEE International Conference on Agro-1412 

Geoinformatics, 7-10 August 2017, Fairfax, VA.  1413 

Smith, S. 1996. Biological control with Trichogramma: advances, successes, and potential of 1414 

their use. Annu. Rev. Entomol. 41: 375–406. 1415 

Souza, E. G., P. C. Scharf, and K. A. Sudduth. 2010. Sun position and cloud effects on 1416 

reflectance and vegetation indices of corn. Agron. J. 102: 734–744. 1417 

Stanton, C., M. J. Starek, N. Elliott, M. Brewer, M. M. Maeda, and T. Chu. 2017. 1418 

Unmanned aircraft system-derived crop height and normalized difference vegetation 1419 

index metrics for sorghum yield and aphid stress assessment. J. Appl. Remote Sens. 11: 1420 

026035. 1421 



 

64 

 

Stark, B., S. Rider, and Y. Chen. 2013a. Optimal pest management by networked unmanned 1422 

cropdusters in precision agriculture: a cyber-physical system approach. IFAC 1423 

Proceedings 46: 296–302. IFAC Workshop on Research, Education and Development of 1424 

Unmanned Aerial Systems, 20-22 November 2013, Compiegne, France.  1425 

Stark, B., B. Smith, and Y. Chen. 2013b. A guide for selecting small unmanned aerial systems 1426 

for research-centric applications. IFAC Proceedings 46: 38–45. IFAC Workshop on 1427 

Research, Education and Development of Unmanned Aerial Systems, 20-22 November 1428 

2013, Compiegne, France.  1429 

Steffan, S. A., E. M. Chasen, A. E. Deutsch, and A. Mafram-Neto. 2017. Multi-species 1430 

mating disruption in cranberries (Ericales: Ericaceae): early evidence using a flowable 1431 

emulsion. J. Insect Sci. 17: 54. 1432 

Stiefel, V. L., D. C. Margolies, and P. J. Bramel-Cox. 1992. Leaf temperature affects 1433 

resistance to the banks grass mite (Acari: Tetranychidae) on drought-resistant grain 1434 

sorghum. J. Econ. Entomol. 85: 2170–2184. 1435 

Stöcker, C., R. Bennett, F. Nex, M. Gerke, and J. Zevenbergen. 2017. Review of the current 1436 

state of UAV regulations. Remote Sens. 9: 459. 1437 

Stumph, B., M. Hernandez Virto, H. Medeiros, A. Tabb, S. Wolford, K. Rice, and T. 1438 

Leskey. 2019. Detecting invasive insects with unmanned aerial vehicles. In IEEE 1439 

International Conference on Robotics and Automation (ICRA), 20-24 May 2019, 1440 

Montreal, Canada.  1441 

Stone, C., and C. Mohammed. 2017. Application of remote sensing technologies for assessing 1442 

planted forests damaged by insect pests and fungal pathogens: a review. Curr. For. Rep. 1443 

3: 75–92. 1444 



 

65 

 

Sudbrink, D., F. Harris, J. Robbins, P. English, and J. Willers. 2003. Evaluation of remote 1445 

sensing to identify variability in cotton plant growth and correlation with larval densities 1446 

of beet armyworm and cabbage looper (Lepidoptera: Noctuidae). Fla. Entomol. 86: 290–1447 

294. 1448 

Sudbrink, D. L., S. J. Thomson, R. S. Fletcher, F. A. Harris, P. J. English, and J. T. 1449 

Robbins. 2015. Remote sensing of selected winter and spring host plants of tarnished 1450 

plant bug (Heteroptera: Miridae) and herbicide use strategies as a management tactic. 1451 

Am. J. Plant Sci. 6: 1313–1327. 1452 

Sylvester, G. 2018. E-agriculture in action: drones for agriculture. Food and Agriculture 1453 

Organization of the United Nations and International Telecommunication Union, 1454 

Bangkok, Thailand. http://www.fao.org/3/i8494en/i8494en.pdf (accessed 18 June 2019). 1455 

Tahir, N., and G. Brooker. 2009. Feasibility of UAV based optical tracker for tracking 1456 

Australian plague locust, pp. 1–10. In Australasian Conference on Robotics and 1457 

Automation, 2-4 December 2009, Sydney, Australia. 1458 

Tan, Y, J.-Y. Sun, B. Zhang, M. Chen, Y. Liu, and X.-D. Liu. 2019. Sensitivity of a ratio 1459 

vegetation index derived from hyperspectral remote sensing to the brown planthopper 1460 

stress on rice plants. Sensors 19: 375. 1461 

Tan, L. T., and K. H. Tan. 2013. Alternative air vehicles for sterile insect technique aerial 1462 

release. J. Appl. Entomol. 137: 126–141. 1463 

Tang, Z., Y. Li, J. Zhao, and D. Hu. 2016. Research on trajectory planning algorithm of plant-1464 

protective UAV, pp. 110–113. In IEEE International Conference on Aircraft Utility 1465 

Systems, 10-12 October 2016, Beijing, China.  1466 

http://www.fao.org/3/i8494en/i8494en.pdf


 

66 

 

Teal Group. 2019. Teal Group predicts worldwide civil drone production will almost triple over 1467 

the next decade. https://www.tealgroup.com/index.php/pages/press-releases/60-teal-1468 

group-predicts-worldwide-civil-drone-production-will-almost-triple-over-the-next-decade 1469 

(accessed 18 June 2019). 1470 

Teske, M. E., S. L. Bird, D. M. Esterly, T. B. Curbishley, S. L. Ray, and S. G. Perry. 2002. 1471 

AgDRIFT®: a model for estimating near-field spray drift from aerial applications. 1472 

Environ. Toxicol. Chem. 21: 659–671. 1473 

Timewell, E. 2018. Dropped in for fruitless sex. The New Zealand Institute for Plant and Food 1474 

Research. https://www.plantandfood.co.nz/page/news/media-release/story/dropped-in-1475 

for-fruitless-sex/ (accessed 8 January 2019). 1476 

Tsai, M.-Y., K. Elgethun, J. Ramaprasad, M. G. Yost, A. S. Felsot, V. R. Hebert, and R. A. 1477 

Fenske. 2005. The Washington aerial spray drift study: modeling pesticide spray drift 1478 

deposition from an aerial application. Atmos. Environ. 39: 6194–6203. 1479 

Turlings, T. C. J., and M. Erb. 2018. Tritrophic interactions mediated by herbivore-induced 1480 

plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. 1481 

Entomol. 63: 433–452. 1482 

UAV-IQ. 2018. An efficient approach to sustainable farming. http://www.uaviq.farm/en/home/ 1483 

(accessed 7 January 2019). 1484 

Usha, K., and B. Singh. 2013. Potential applications of remote sensing in horticulture - a 1485 

review. Sci. Hort. 153: 71–83. 1486 

Van Lenteren, J. C., K. Bolckmans, J. Köhl, W. J. Ravensberg, and A. Urbaneja. 2018. 1487 

Biological control using invertebrates and microorganisms: plenty of new opportunities. 1488 

BioControl 63: 39–59. 1489 

https://www.tealgroup.com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-civil-drone-production-will-almost-triple-over-the-next-decade
https://www.tealgroup.com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-civil-drone-production-will-almost-triple-over-the-next-decade
https://www.plantandfood.co.nz/page/news/media-release/story/dropped-in-for-fruitless-sex/
https://www.plantandfood.co.nz/page/news/media-release/story/dropped-in-for-fruitless-sex/
http://www.uaviq.farm/en/home/


 

67 

 

Vanegas, F., D. Bratanov, K. Powell, J. Weiss, and F. Gonzalez. 2018a. A novel methodology 1490 

for improving plant pest surveillance in vineyards and crops using UAV-based 1491 

hyperspectral and spatial data. Sensors 18: 260. 1492 

Vanegas, F., D. Bratanov, J. Weiss, K. Powell, and F. Gonzalez. 2018b. Multi and 1493 

hyperspectral UAV remote sensing: grapevine phylloxera detection in vineyards, pp. 1–9. 1494 

In IEEE Aerospace Conference, 3-10 March 2018, Big Sky, MT. 1495 

Verrelst, J., Z. Malenovský, C. Van der Tol, G. Camps-Valls, J.-P. Gastellu-Etchegorry, P. 1496 

Lewis, P. North, and J. Moreno. 2019. Quantifying vegetation biophyscal variables 1497 

from imaging spectroscopy data: a review on retrieval methods. Surv. Geophys. 40: 589–1498 

629. 1499 

Villa, T., F. Gonzalez, B. Miljievic, Z. Ristovski, and L. Morawska. 2016. An overview of 1500 

small unmanned aerial vehicles for air quality measurements: present applications and 1501 

future prospectives. Sensors 16: 1072. 1502 

Walter, A. J., and C. D. Difonzo. 2007. Soil potassium deficiency affects soybean phloem 1503 

nitrogen and soybean aphid populations. Environ. Entomol. 36: 2–33. 1504 

Wang, G., Y. Lan, H. Qi, P. Chen, A. Hewitt, and Y. Han. 2019a. Field evaluation of an 1505 

unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the 1506 

control of pests and disease in wheat. Pest Manag. Sci 75: 1546–1555. 1507 

Wang, G., Y. Lan, H. Yuan, H. Qi, P. Chen, F. Ouyang, and Y. Han. 2019b. Comparison of 1508 

spray deposition, control efficacy on wheat aphids and working efficiency in the wheat 1509 

field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack 1510 

sprayers. Appl. Sci. 9: 218. 1511 



 

68 

 

Watts, A. C., V. G. Ambrosia, and E. A. Hinkley. 2012. Unmanned aircraft systems in remote 1512 

sensing and scientific research: classification and considerations of use. Remote Sens. 4: 1513 

1671. 1514 

Weldegergis, B. T., F. Zhu, E. H. Poelman, and M. Dicke. 2015. Drought stress affects plant 1515 

metabolites and herbivore preference but not host location by its parasitoids. Oecologia 1516 

177: 701–713. 1517 

West, K., and C. Nansen. 2014. Smart-use of fertilizers to manage spider mites (Acari: 1518 

Tetrachynidae) and other arthropod pests. Plant Sci. Today 1: 161–164. 1519 

Weyermann, J., A. Damm, M. Kneubühler, and M. E. Schaepman. 2014. Correction of 1520 

reflectance anisotropy effects of vegetation on airborne spectroscopy data and derived 1521 

products. IEEE Trans. Geosci. Remote Sens. 52: 616–627.  1522 

Whitehead, K., and C. H. Hugenholtz. 2014. Remote sensing of the environment with small 1523 

unmanned aircraft systems (UASs), part 1: a review of progress and challenges. J. 1524 

Unmanned Veh. Syst. 2: 69–85. 1525 

Whitehead, K., C. H. Hugenholtz, S. Myshak, O. Brown, A. LeClair, A. Tamminga, T. E. 1526 

Barchyn, B. Moorman, and B. Eaton. 2014. Remote sensing of the environment with 1527 

small unmanned aircraft systems (UASs), part 2: scientific and commercial applications. 1528 

J. Unmanned Veh. Syst. 2: 86–102. 1529 

Willers, J. L., J. N. Jenkins, W. L. Ladner, P. D. Gerard, D. L. Boykin, K. B. Hood, P. L. 1530 

McKibben, S. A. Samson, and M. M. Bethel. 2005. Site-specific approaches to cotton 1531 

insect control. Sampling and remote sensing analysis techniques. Precis. Agric. 6: 431–1532 

452. 1533 



 

69 

 

Willers, J. L., M. R. Seal, and R. G. Luttrell. 1999. Remote sensing, line-intercept sampling 1534 

for tarnished plant bugs (Heteroptera: Miridae) in mid-south cotton. J. Cotton Sci. 3: 1535 

160–170. 1536 

WinterGreen Research. 2016a. Agricultural drones market shares, strategies, and forecasts, 1537 

worldwide, 2016 to 2022. 1538 

WinterGreen Research. 2016b. Drones market shares, strategies, and forecasts, worldwide, 1539 

2016 to 2022. 1540 

Woods, N., I. P. Craig, G. Dorr, and B. Young. 2001. Spray drift of pesticides arising from 1541 

aerial application in cotton. Journal of Environmental Quality 30: 697–701. 1542 

Xfly Brasil. 2017. Lançador de Trichogramma Granel. 1543 

https://www.xflybrasil.com/trichogramma (accessed 7 January 2019). 1544 

Ximénez-Embún, M. G., P. Castañera, and F. Ortego. 2017. Drought stress in tomato 1545 

increases the performance of adapted and non-adapted strains of Tetranychus urticae. J. 1546 

Insect Physiol. 96: 73–81. 1547 

Xiongkui, H., J. Bonds, A. Herbst, and J. Langenakens. 2017. Recent development of 1548 

unmanned aerial vehicle for plant protection in East Asia. Int. J. Agric. Biol. Eng. 10: 18–1549 

30. 1550 

Xu, H., Y. Ying, X. Fu, and S. Zhu. 2007. Near-infrared spectroscopy in detecting leaf miner 1551 

damage on tomato leaf. Biosyst. Eng. 96: 447–454. 1552 

Xue, X., Y. Lan, Z. Sun, C. Chang, and W. C. Hoffmann. 2016. Develop an unmanned aerial 1553 

vehicle based automatic aerial spraying system. Comput. Electron. Agric. 128: 58–66. 1554 

Xue, J., and B. Su. 2017. Significant remote sensing vegetation indices: a review of 1555 

developements and applications. J. Sensors 1353691. 1556 

https://www.xflybrasil.com/trichogramma


 

70 

 

Yamaha. 2014a. Development of the R-50 industrial-use unmanned helicopters. 1557 

https://global.yamaha-motor.com/about/history/stories/0028.html (accessed 7 January 1558 

2019). 1559 

Yamaha. 2014b. Industrial-use unmanned helicopters draw attention as solutions. 1560 

https://global.yamaha-motor.com/about/history/stories/0044.html (accessed 7 January 1561 

2019). 1562 

Yamaha. 2016. Evolution from the RCASS - The original model that led to multipurpose 1563 

capability. https://global.yamaha-motor.com/about/technology/electronic/010/ (accessed 1564 

7 January 2019). 1565 

Yang, C.-M., C.-H. Cheng, and R.-K. Chen. 2007. Changes in spectral characteristics of rice 1566 

canopy infested with brown planthopper and leaffolder. Crop Sci. 47: 329–335. 1567 

Yang, C., J. H. Everitt, J. M. Bradford, and D. Murden. 2009a. Comparison of airborne 1568 

multispectral and hyperspectral imagery for estimating grain sorghum yield. Trans. Am. 1569 

Soc. Agric. Eng. 52: 641–649. 1570 

Yang, Z., M. N. Rao, N. C. Elliott, S. D. Kindler, and T. W. Popham. 2005. Using ground-1571 

based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: 1572 

Aphididae) infestation. Comput. Electron. Agric. 47: 121–135. 1573 

Yang, Z., M. N. Rao, N. C. Elliott, S. D. Kindler, and T. W. Popham. 2009b. Differentiating 1574 

stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing. 1575 

Comput. Electron. Agric. 67: 64–70. 1576 

Yang, S., X. Yang, and J. Mo. 2018. The application of unmanned aircraft systems to plant 1577 

protection in China. Precis. Agric. 19: 278–292. 1578 

https://global.yamaha-motor.com/about/history/stories/0028.html
https://global.yamaha-motor.com/about/history/stories/0044.html
https://global.yamaha-motor.com/about/technology/electronic/010/


 

71 

 

Yuan, L., Y. Huang, R. W. Loraamm, C. Nie, J. Wang, and J. Zhang. 2014. Spectral analysis 1579 

of winter wheat leaves for detection and differentiation of diseases and insects. Field 1580 

Crops Res. 156: 199–207. 1581 

Yuan, L., H. Zhang, Y. Zhang, C. Xing, and Z. Bao. 2017. Feasibility assessment of multi-1582 

spectral satellite sensors in monitoring and discriminating wheat diseases and insects. 1583 

Optik 131: 598–608. 1584 

Yun, G., M. Mazur, and Y. Pederii. 2017. Role of unmanned aerial vehicles in precision 1585 

farming. Proc. Natl. Aviat. Univ. N1: 106–112. 1586 

Zarco-Tejada, P. J., C. Camino, P. S. A. Beck, R. Calderon, A. Hornero, R. Hernández-1587 

Clemente, T. Kattenborn, M. Montes-Borrego, L. Susca, M. Morelli, V. Gonzalez-1588 

Dugo, P. R. J. North, B. B. Landa, D. Boscia, M. Saponari, and J. A. Navas-Cortes. 1589 

2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait 1590 

alterations. Nat Plants 4: 432–439. 1591 

Zehnder, G., G. Gurr, S. Kühne, M. Wade, S. Wratten, and E. Wyss. 2007. Arthropod pest 1592 

management in organic crops. Annu. Rev. Entomol. 52: 57–80. 1593 

Zhang, M., A. Hale, and E. Luedeling. 2008. Feasibility of using remote sensing techniques to 1594 

detect spider mite damage in stone fruit orchards, pp. I323–I326. In IEEE International 1595 

Geoscience and Remote Sensing Symposium, 7-11 July 2008, Boston, MA.  1596 

Zhang, J., Y. Huang, L. Yuan, G. Yang, L. Chen, and C. Zhao. 2016. Using satellite 1597 

multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in 1598 

maize at a regional scale. Pest Manag. Sci. 72: 335–348. 1599 

Zhang, C., and J. M. Kovacs. 2012. The application of small unmanned aerial systems for 1600 

precision agriculture: a review. Precis. Agric. 13: 693–712. 1601 



 

72 

 

Zhang, X.-Q., Y.-J. Liang, Z.-Q. Qin, D.-W. Li, C.-Y. Wei, J.-J. Wei, Y.-R. Li, and X.-P. 1602 

Song. 2019. Application of multi-rotor unmanned aerial vehicle application in 1603 

management of stem borer (Lepidoptera) in sugarcane. Sugar Tech 1604 

https://doi.org/10.1007/s12355-018-0695-y 1605 

Zhang, C., D. Walters, and J. M. Kovacs. 2014. Applications of low altitude remote sensing in 1606 

agriculture upon farmers’ request – a case study in northeastern Ontario, Canada. PLoS 1607 

One 9: e112894. 1608 

Zhang, J., N. Wang, L. Yuan, F. Chen, and K. Wu. 2017. Discrimination of winter wheat 1609 

disease and insect stresses using continuous wavelet features extracted from foliar 1610 

spectral measurements. Biosyst. Eng. 162: 20–29. 1611 

Zhao, T., B. Stark, Y. Chen, A. L. Ray, and D. Doll. 2017. Challenges in water stress 1612 

quantification using small unmanned aerial system (sUAS): lessons from a growing 1613 

season of almond. J. Intell. Robot. Syst. 88: 721–735. 1614 

Zhao, J., D. Zhang, J. Luo, D. Wang, and W. Huang. 2012. Identifying leaf-scale wheat 1615 

aphids using the near-ground hyperspectral pushbroom imaging spectrometer, pp. 275–1616 

282. In International Conference on Computer and Computing Technologies in 1617 

Agriculture, 29-31 October 2011, Beijing, China.  1618 

Zhou, Z., Y. Zang, X. Luo, Y. Lan, and X. Xue. 2013. Technology innovation development 1619 

strategy on agricultural aviation industry for plant protection in China. Trans. Chin. Soc. 1620 

Agric. Eng. 29: 1–10 (in Chinese with English abstract). 1621 

Zhou, Z., Y. Zang, Z. Zhao, X. Luo, and X. Zhou. 2010. Canopy hyperspectral reflectance 1622 

feature of rice caused by brown plant-hopper (Nilaparvata lugens) infestation, no. 1623 

1009569. In ASABE Annual International Meeting, 20-23 June 2010, Pittsburgh, PA.   1624 

https://doi.org/10.1007/s12355-018-0695-y


 

73 

 

Tables 1625 

Table 1. Studies on drone-based hyperspectral, multispectral, and RGB (red green blue) remote 1626 

sensing to detect arthropod-induced stress in crops and orchards.  1627 

 1628 

Table 2. Studies on aerial (manned aircraft) hyperspectral and multispectral remote sensing to 1629 

detect arthropod-induced stress in crops and orchards.  1630 

 1631 

Table 3. Studies on orbital hyperspectral and multispectral remote sensing to detect arthropod-1632 

induced stress in crops and orchards.  1633 

 1634 

Table 4. Studies on ground-based hyperspectral and multispectral remote sensing to detect 1635 

arthropod-induced stress in crops and orchards.  1636 

 1637 

Table 5. Studies on hyperspectral and multispectral remote sensing to distinguish various biotic 1638 

and abiotic stressors in crops.  1639 

 1640 

Figures 1641 

Figure 1. (a) State-of-the-art open-loop remote sensing paradigm and (b) closed-loop integrated 1642 

pest management (IPM) paradigm envisioned in this paper. 1643 

 1644 

Figure 2. Number of articles published between 1998 and 2018 on the use of drones in 1645 

agriculture. Shown is the number of publications for each year mentioning “drone”, “UAV” 1646 

(Unmanned Aerial Vehicle), or “UAS” (Unmanned Aerial System) and “agriculture”. The words 1647 
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“bee”, “honeybee”, and “hive” were explicitly excluded from the search, to avoid including 1648 

publications on drones defined as male bees. Source: Web of Science.  1649 

 1650 

Figure 3. Spectra of soybean leaves at different spectral resolutions. (a) As recorded by a 1651 

handheld spectrometer with 1 nm spectral resolution (e.g. FieldSpec, ASD Inc., Boulder, CO). 1652 

(b) Resampled to the spectral resolution of a hyperspectral imaging spectrometer (3-4 nm 1653 

spectral resolution, e.g. OCI Imager, BaySpec, San Jose, CA). (c) Resampled to the spectral 1654 

resolution of a multispectral sensor (4 spectral bands, e.g. Parrot Sequoia, Parrot, Paris, France).  1655 

 1656 

Figure 4. Airborne remote sensing in California strawberry. Researchers from the University of 1657 

California Davis obtain canopy reflectance data of arthropod-infested plants with a drone-1658 

mounted hyperspectral sensor in a commercial strawberry field.  1659 

 1660 

Figure 5. Prototype of BugBot predatory mite dispenser. BugBot, developed by mechanical and 1661 

aerospace engineering students at the University of California Davis, is a drone-mounted 1662 

dispenser that can distribute predatory mites, important biological control agents of spider mites. 1663 

In the picture, the BugBot dispenses vermiculite, the mineral substrate the predators can be 1664 

obtained in. 1665 


