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A B S T R A C T   

Deep spherical shells are often used as pressure vessels in ocean and aerospace engineering. When subjected to 
external pressure, these thin-walled shells are prone to buckling. The corresponding critical buckling pressure 
heavily depends on deviations from the ideal shell shape. 

In general, these deviations are defined as geometric imperfections, and although imperfections exhibit 
comparatively low amplitudes, they can significantly reduce the critical load. Considering the influence of 
geometric imperfections adequately into the design process of thin-walled shells poses major challenges for 
structural design. 

The most common procedure to take into account the influence of imperfections is based on the classical 
buckling pressure obtained by a linear analysis which are then corrected by a knockdown factor. The knockdown 
factor represents a statistical lower-bound with respect to data obtained experimentally for different types of 
thin-walled shells. 

This article presents a versatile and simple numerical design approach for deep spherical shells under external 
pressure. The new design procedure leads to significantly improved critical load estimations in comparison to 
lower-bounds obtained empirically. Different design example are given and validated with experimental results.   

1. Introduction 

Zoelly [1] and later van der Neut [2] derived a relationship between 
the elasticity modulus E, the Poisson ratio ν, the wall thickness t and the 
radius R for the buckling pressure of a perfect, isotropic spherical shell, 
see equation (1). An illustration of all-important geometry parameters of 
a spherical shell is shown in Fig. 1. Note, that equation (1) is only valid 
for complete spherical shells with an undisturbed membrane stress state 
and linear elastic, isotropic material behavior. In the case of plastic 
buckling, the yield stress is relevant and an approximation for a plastic 
buckling pressure is given by equation (2). 

Pper ¼
2⋅E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 � ν2Þ

p ⋅
� t

R

�2
(1)  

Pyield ¼ 2 ⋅ Y⋅
� t

R

�
(2) 

Both equations are widely used in ocean and aerospace engineering 

in order to determine the reference buckling pressure of underwater 
pressure hulls like deep sea submersibles [3], underground pressure 
vessels and tanks [4]. Further applications for spherical shell like 
structures are lattice domes [5], actuators [6], carbon nanospheres [7], 
nanocomposite spherical caps [8], biopolymer spherical shells [9], 
plexiglass shields [10], underwater robots [11] and concave bottom 
closures of elevated shell-of-revolution liquid-containment tanks [12]. 

In general, spherical shells are classified as either complete, deep or 
shallow and the following equation (3) according to Eggwertz et al. [13] 
can be used to determine if a spherical cap is shallow (β < 7) or deep (β �
7): 

β¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2⋅φ⋅
�

R
t

�s

(3) 

Equation (3) depends on the radius R to thickness t ratio and the 
central angle φ in radians. 

Spherical shells buckle with a sudden drop in pressure and are highly 
imperfection sensitive [14,15]. The buckling behavior of these shells is 
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highly nonlinear [16,17] and multiple different test campaigns [18,19] 
were performed to study this collapse problem which may have cata
strophic consequences. 

There is a collection of experimental data for isotropic spherical 
shells under external pressure summarized from different sources in 
Fig. 2. The experimental buckling pressure values are represented by 
means of a knockdown factor (KDF) which is defined as the ratio of the 
buckling pressure Pexp of a real experimental test shell to the theoretical 
buckling pressure Pper of a perfect shell, see equation (4). Within this 
article, the analytical buckling pressure Pper according to equation (1) is 
used as a reference value for all KDFs. 

KDFexp ¼
Pexp

Pper
(4) 

These KDFs are plotted against the shell shape parameter λ which is 
defined according to equation (5). 

λ¼
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The results show that the experimental buckling pressures can be as 
low as 20% of the pressure of a perfect shell. Some of the illustrated tests 
are affected by plasticity, weld land failure, material failure, and poor 
boundary support [20]. In addition, most of the test data are poorly 
documented [21]. 

Note, that modern experimental campaigns are much better docu
mented [22] as shown by Zhang et al. for egg shaped shells [23–25] 
complete spherical shells in Refs. [26–29], bi-segment spheres in 
Ref. [30] and hemi-spheres [31,32]. 

Karman and Tsien [33] were among the first to investigate the 
catastrophic nature and the imperfection sensitivity of spherical shells 
under external pressure. First approaches to explain the significant dif
ferences between experimental and theoretical results are based on the 
energy in the post-buckling state [34,35] or the presence of geometric 
imperfections [36]. 

Geometric imperfections are defined as shape deviations from the 
ideal structure and have been identified by Koiter [37] as one of the 
main causes for low buckling loads of thin-walled shells like spheres, 
cylinders [38–43] and cones [44,45]. 

Depending on the shape and amplitude of the present geometric 
imperfections a single dimple [46] occurs under loading which initiates 
the buckling process which was shown by Berke and Carlson [35,47]. 
The influence of geometric imperfections on the buckling load has to be 
considered in the design process [48,49]. However, the process of 
implementing realistic geometric imperfections into the design process 
is expensive and time consuming. 

Therefore, the design of spherical shells relies on the application of 
empirical knockdown factors [50]. There are design criteria like the 
NASA SP-8032 [51] which represents a statistical lower bound of 
different empirical data from the beginning of the 20th century. 

A review by Singer et al. [52] shows that the NASA SP-8032 
recommendation is a very conservative estimation of the buckling 
pressure of spherical shells. Therefore, research efforts were focused on 
developing less conservative design factors for spherical shells under 
external pressure [53]. Recently, Evkin et al. [54] presented some new 
design KDF for low [55] and high [56] manufacturing quality spherical 
shells, composite spherical shells [57] as well as design KDF for the case 
of dynamic perturbations in spherical shell buckling [58]. 

This article covers the imperfection sensitivity and design of spher
ical domes under external pressure. In the second section of this article a 
numerical model and experimental results of a deep sphere are 

Abbreviations and glossary 

CR Cutout radius 
EBC Energy barrier criterion 
Exp. Experiment 
GNA Geometrically nonlinear analysis 
GNIA Geometrically nonlinear analysis with imperfections 
H Dome height 
KDF Knockdown factor 
LBA Linear bifurcation analysis 
Pper Buckling pressure of perfect spherical shell 
R Radius of spherical shells 
r Base radius 
LRSM Localized Reduced Stiffness Method 
t Wall thickness of a spherical shell  

Fig. 1. Geometry of a spherical shell with corresponding parameters.  

Fig. 2. Distribution of 867 experimental KDFs of spherical shells under external pressure all results are summarized in the Elsevier repository with the corre
sponding reference. 
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presented. The third section introduces a new design concept of spher
ical shells and presents new analytical lower-bounds for design pur
poses. In section four a stiffened sphere is analyzed. The last section 
summarized the main results of this article and gives an outlook for 
future research topics. 

2. Test specimens and numerical model 

2.1. Test specimen 

In this section a deep spherical shell is introduced, and the corre
sponding numerical model is presented. The geometry and material 
parameter for the shell are based on experiments published by Zhang 
et al. [31], see Table 1. Six nominal identical shells (SC shells) were 
manufactured and tested as shown in Fig. 3. 

The outer surface of each fabricated spherical shell consists of a cap, 
weld seam and a heavy plate. The average buckling pressure of the test 
shells is 5.44 MPa which means there is an about 77% reduction in 
comparison to the perfect buckling pressure according to equation (1) as 
shown in Table 2. 

2.2. Numerical model 

The spherical cap is modeled using S4R shell elements (with element 
size of 1.1 mm and a structured quad-dominated mesh), along with 4 
triangular S3 elements, in ABAQUS [59]. Clamped boundary conditions 
(see Fig. 4 - left) are applied in order to impose similar boundary con
straints on the shell as the weld seam and the heavy plate. However, 
both the heavy plate and the weld seam were removed from the CAD 
model in order to reduce computational effort. Geometrically nonlinear 
analyzes of the perfect elastic shell (GNA) are performed by using the 
Riks method (Static, Riks in ABAQUS). 

The GNA is based on linear elastic material law but including 
nonlinear large deflection theory. If nonlinear elastic-plastic material 
behavior is considered in addition the analysis is defined as geometri
cally and materially nonlinear analysis (GMNA). An analysis with 
explicitly includes imperfections (i.e. the geometry of the middle surface 
includes unintended deviation from the ideal shall shape) and treating 
the material as linear elastic is defined as geometrically nonlinear elastic 
analysis with imperfections (GNIA). A combination of GNIA and 
nonlinear elastic-plastic material law is defined as geometrically and 
materially nonlinear analysis with imperfections (GMNIA). 

The imperfection in this case are the measured geometric imperfec
tion (which were caused by the stamping, cutting and welding process) 
of the deep spherical caps as shown in Fig. 5. The geometrical shapes of 
the spherical caps were obtained by using optical scans and the resulting 
point cloud was transformed into a numerical model [31]. The largest 
deformations occur next to the weld seam at the base of the cap. 

The buckling pressure of this shell with MGI is on average about 
12.93 MPa which means there is a 45% reduction in comparison to the 
analytic buckling pressure. The test buckling pressures of the test shells 

ranges from 5.28 to 5.64 MPa which is due to plastic buckling. If MGI 
and perfect-plastic material are considered in the simulations, the test 
results can be approximated very well as shown in Fig. 6 (error < 1%). 

The real buckling pressures of the test shells can be approximated 
very well if measured geometric imperfection are considered in the 
numerical model. However, this methodology has some major issues. 
First, it depends on high-fidelity experimental results which are not 
available in the early design phase. Second, the optical measurements of 
the geometrical shapes are time consuming and expensive. 

Therefore, design methods which rely on imperfections measure
ments are not suitable for industrial purposes which require fast and 
simple design guidelines. A design methodology which is not dependent 
on imperfections measurements is therefore required for state-of-the-art 
shell design. Next, a design approach which is independent from 
imperfection measurements is presented and used to analyze the deep 
spherical dome. 

3. A new design concept for spherical shells under external 
pressure 

The influence of real measured geometric imperfections (MGI) on the 
buckling pressure of a spherical shells can be assessed very well nowa
days as shown for example in studies by Zhang et al. [26] or Lee at al. 
[60]. However, in order to study the influence of MGI, shell structures 
have to be built and the imperfections have to be measured using optical 
measurement systems. This process is not only time consuming but also 
expensive. 

An alternative approach to assess the imperfection sensitivity of 
complex shell structures is the application of perturbation or lower- 
bound methods like the reduced stiffness method (RSM). The RSM is 
applied in order to quantify the influence of so called “worst” imper
fections and should deliver a theoretical plateau for the buckling load 
which is equal or less to every buckling load caused by multiple or large- 
amplitude imperfections. Studies for the application of the RSM to 
spherical shells under external pressure are for example given in 
Ref. [61]. 

3.1. Reduced stiffness analysis 

The reduced stiffness method (RSM) was developed by Croll et al. 
[62] and its main purpose is to determine a lower-bound for the buckling 
load of thin-walled shells [63]. The physical background of the reduced 
stiffness analysis can be summarized according to Croll et al. [64] as 
follows:  

1. The membrane energy of a shell may be eroded due to the presence of 
imperfections.  

2. The loss of the initially stabilizing membrane energy in a prospective 
buckling mode is responsible for the buckling load reduction.  

3. The bending energy contribution to the imperfection sensitivity is 
negligible  

4. A lower-bound to the buckling load into a particular buckling mode 
will be provided by an analysis which excluded the membrane 
energy. 

In this section, a variant of the reduced stiffness method (RSM) is 
introduced. This variant is a further development of cutout approach 
from Ref. [65] and is defined as localized reduced stiffness method 
(LRSM) [66,67]. The LRSM is based on geometrically nonlinear analyses 
(GNA) which as opposed to the RSM does not require the use of the first 
buckling eigenmode. Similarly, to the RSM, the membrane stiffness 
components are eliminated from the shell, and only the bending stiffness 
remains. However, unlike the RSM, the membrane stiffness in the LRSM 
is reduced in a localized fashion rather than globally. 

A schematic representation of the region considered for reducing the 
membrane stiffness in a spherical shell is shown in Fig. 7. The spherical 

Table 1 
Geometry and material data (304 stainless steel) for the deep 
spherical shell after [31].   

SC - Shells 

Material parameter 
elasticity modulus E - [MPa] 159208 
Poisson’s ratio ν 0.291 
Yield Stress Y – [MPa] 335 
Geometry parameter 
Radius R - [mm] 90.51 
φ 53.75�

Wall thickness t - [mm] 1 
λ 15.7 
β 13.06  
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shell has two sections, the main shell surface (green in Fig. 7), and a 
reduced membrane stiffness surface (white in Fig. 7). On one side, the 
main shell stiffness is modeled in ABAQUS by using the general shell 
stiffness definition (homogenous shell thickness or composite stacking). 
On the other side, the reduced membrane stiffness surface is modeled 
using the ABD – general shell stiffness matrix and all 9 components of 
the A – membrane matrix are divided by the membrane stiffness 
reduction factor α. From studies in Ref. [68] it was concluded that α ¼ 10 
leads to conservative buckling pressure estimations for λ ¼ 3 … 30 
which covers the relevant design space for the elastic buckling of 
spherical shells under external pressure. All the components of the B – 
coupling matrix are for isotropic shells equal to 0. If a composite shell is 
analyzed with the LRSM, all the components of the B matrix should be 
set to 0 for the reduced membrane stiffness surface in order to prevent a 
singular stiffness matrix. 

Also, the area of the reduced membrane stiffness surface in incre
mentally increased by increasing the radius Rs so its influence on the 
buckling load can be studied. The KDF as a function of the size of the 
LRSM surface (represented by the LRSM radius to base radius ratio, Rs/ 
r) is shown in Fig. 8 (left). 

The LRSM curve for an asymmetric imperfection placement (halfway 
between shell apex and shell edge) is shown in Fig. 8 (left). This curve 
has basically 2 sections, in the first area the KDF for the buckling pres
sure reduces as the Rs/r ratio increases. In the second area, the KDF for 
the buckling pressure is constant although the size of the imperfection 

increases. The plateau buckling pressure of the LRSM corresponds to an 
average KDF of about 0.214. 

A more rigorous approach is the application of a cutout instead of a 
reduced membrane stiffness surface as shown in Fig. 8 (right). Cutouts 
remove the membrane and the bending stiffness of a spherical dome 
completely. The LRSM only reduces the membrane stiffness and doesn’t 
influence of the bending stiffness. However, the lower-bound curves for 
both methods are the very similar. 

The plateau buckling pressure vs the load increment is shown for the 
LRSM and the cutout approach in Fig. 9. The slope of the buckling 
pressure function is the same for both imperfection types. However, 
after the point of buckling, the pressure reduces for the LRSM analysis 
while the pressure for the cutout analysis approaches a plateau and even 
slightly increases. 

In the case of the LRSM, global buckling occurs (the reduced mem
brane stiffness surface buckles). For the cutout method, the first failure 
mode is local buckling along the cutout edges and the shell can still be 
slightly loaded with pressure. At load increment 1.5, a dimple forms 
near the cutout (at the apex of the shell) and global buckling occurs. 

Next, the cutout & the LRSM surface were positioned at the shell 
apex and the corresponding numerical results are shown in Fig. 10. The 
position of the cutout or the reduced membrane stiffness surface seems 

Fig. 3. Test shells SC1-SC6 after testing.  

Table 2 
Buckling pressure values for deep sphere.  

Method Buckling Pressure [MPa] Knockdown Factor 

Equation (1) - Pper 23.456 1.000 
Equation (2) - Pyield 7.401 0.315 
Test specimen 1 5.280 0.225 
Test specimen 2 5.553 0.236 
Test specimen 3 5.255 0.224 
Test specimen 4 5.580 0.237 
Test specimen 5 5.356 0.228 
Test specimen 6 5.647 0.240 
GNA 18.999 0.811 
GMNA 6.802 0.290 
GNIA - (average) 12.930 0.551 
GMNIA - (average) 5.270 0.224  

Fig. 4. Numerical model of the deep spherical shell with clamping, pressure loading (left) and mesh (right).  

Fig. 5. Geometric Imperfection of the sphere SC1 (left) shell SC1 after 
testing (right). 
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not to influence the lower-bound KDF significantly for this deep spher
ical shell because in both cases the minimum KDF ¼ 0.21. 

In this case, the LRSM curve has different nonlinear slope which 
consists of three different areas (compared to two areas in the asym
metric buckling example scenario above), see Fig. 10. In the first area 
the KDF for the buckling pressure reduces until it approaches the second 
area, a plateau where the KDF for the buckling pressure is constant 
although the size of the imperfection increases. The plateau buckling 
pressure of the LRSM corresponds to an average KDF of about 0.21. If the 
Rs/r ratio is further increased, the KDF for the buckling pressure 
increases. 

For small cutouts, there is a first plateau buckling pressure but as the 
size of the cutout increases the KDF for the buckling pressure decreases 

until it approaches a second plateau if the cutout-to-base radius ratio 
CR/r approaches 0.55 to 0.63. The resulting KDF in the plateau range 
equals to about 0.21 for this deep dome which is the same as the min
imum KDF for the buckling pressure of the LRSM. If the CR/r ratio in
creases further a higher “jump” buckling pressure similar to the LRSM 
can be determined. 

The plateau buckling pressure vs the load increment for axisym
metric buckling of the deep sphere is shown in Fig. 11. The results show 
that the structural behavior is similar to the asymmetric buckling event 
shown in Fig. 9. The shell in the LRSM analysis buckles globally and the 
shell in the cutout analysis buckles first locally along the cutout edge and 
then buckles globally. 

Next, the “jump” buckling pressure vs the load increment for 
axisymmetric buckling of the deep sphere is shown in Fig. 12. In the case 
of the LRSM, the edge of the reduced membrane stiffness surface buckles 
instead of the shell apex and the pressure load can be still slightly 
increased until global buckling occurs. A similar behavior occurs for the 
cutout analysis. 

Lastly, the LRSM is performed and the yield strength is considered by 
using perfect-plastic material behavior (that means only the yield stress 
is used and the plastic strain is set to 0). The corresponding results are 
shown for axis and non-axisymmetric buckling in Fig. 13. Both LRSM 
variants lead to the same KDF ¼ 0.19 which is conservative with 
respective to all experimental results of the testing series. 

3.2. Evaluation of experimental results from literature 

In this section buckling test results shown in Table 4 are further 

Fig. 6. Elastic and perfect-plastic buckling of a deep spherical shell under external pressure – simulation results with MGI of SC1.  

Fig. 7. Configuration of LRSM for spherical shells in the numerical analysis: 
asymmetric imperfection (left) axisymmetric imperfection (right). 

Fig. 8. KDF for asymmetric buckling pressure according to LRSM (left) and cutout (right).  
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Fig. 9. KDF for the plateau buckling pressure vs. load increment of numerical analysis: asymmetric buckling – LRSM (left) and cutout (right).  

Fig. 10. KDF for axisymmetric buckling pressure according to LRSM (left) and cutout (right).  

Fig. 11. KDF for the plateau buckling pressure vs. load increment of numerical analysis: axisymmetric buckling – LRSM (left) and cutout (right).  

Fig. 12. KDF for the “jump” buckling pressure vs. load increment of numerical analysis: asymmetric buckling – LRSM (left) and cutout (right).  

H.N.R. Wagner et al.                                                                                                                                                                                                                           



International Journal of Pressure Vessels and Piping 179 (2020) 104015

7

evaluated regarding their reliability for validation of design criteria. The 
following table has rows for the reference of the experimental study, the 
number of test specimen, the range for the R/t, H/r and λ parameters, 
the material, the ratio of yield stress to elasticity modulus and the range 
of the KDF values. It should be noted that a detailed overview for 
experimental studies is given in the excel sheet which is part of the 
Elsevier repository of this article. Some of the early studies on spherical 
shell buckling are not well described. Most of the time the material 
parameters (yield and elasticity modulus) are not given, there are no 
figures and description of the test setups or of the test specimen. Also, 
some references were not available to the authors (however we could 
extract the experimental KDFs from figures of other references). In order 
to be reliable for the validation purpose of this article an experimental 
study shall have all data which are required in Table 3. Based on the 
evaluation 277 (of 867) test results (32%) are sufficiently described for 
the validation purposes of this article. 

Fig. 13. KDF for the plastic plateau buckling pressure vs. load increment of numerical analysis: axisymmetric buckling – LRSM (left) and asymmetric buckling – 
LRSM (right). 

Table 3 
Summary of experimental buckling studies for spherical shells under external pressure.  

Nr. Reference n R/t H/r λ Material Y/E KDFs Reliable 

1 Bach [69] 10 n/a n/a 12.04–23.53 Steel n/a 0.11–0.24 no 
2 Tsien [34] 8 838–1955 0.2 15.99–24.42 n/a n/a 0.41–0.78 no 
3 Kl€oppel [18] 44 432–1860 0.2–0.5 14.83–70.13 Steel n/a 0.12–0.34 no 
4 Kaplan [70] 23 196–956 0.06–0.11 4.09–12.07 Mg-alloy 0.0046 0.33–0.77 yes 
5 G€orner [19] 26 301–762 0.47 14.96–23.79 n/a n/a 0.24–0.45 no 
6 Daco [19] 20 96–872 0.21–0.67 3.82–23.29 n/a n/a 0.22–0.64 no 
7 Homewood [71] 12 161–1114 0.11–0.24 6.1–20.5 Al-alloy, Steel 0.0011 0.17–0.54 yes 
8 Bellinfante [72] 18 n/a n/a 3.79–16.92 n/a n/a 0.31–0.60 no 
9 Seaman [73] 39 516–1740 0.03–0.18 4.67–25.6 PVC 0.0096 0.25–0.55 yes 
10 Radtke [74] 12 n/a n/a 4.4–11.38 n/a n/a 0.36–0.70 no 
11 Adam [19] 8 244–577 0.3–1 13.11–43.11 PVC 0.0171 0.54–0.89 yes 
12 Krenzke [75] 70 10–212 0.072–1 1.58–33.18 Aluminium 0.0074 0.11–0.90 yes 
13 Parmerter [76] 22 744–4262 0.04–0.10 4.67–11.8 Cooper n/a 0.63–0.90 no 
14 Little [77] 24 572–753 0.26 19.6–22.49 PVC 0.015 0.46–0.69 yes 
15 Thurston [68] 10 n/a n/a 3.88–5.43 n/a n/a 0.56–0.70 no 
16 Wang [78] 23 666 0.26 23.92 PVC n/a 0.26–0.63 no 
17 Carlson [47] 27 1328–2833 1 135–198 Steel n/a 0.17–0.86 no 
18 Evan [79] 50 n/a n/a 3.4–14.43 n/a n/a 0.55–0.94 no 
19 Tilman [80] 30 388–1557 0.04–0.08 3.89–6.32 PVC n/a 0.56–1.08 no 
20 Krüger [68] 7 n/a n/a 10.72–23.10 n/a n/a 0.54–0.83 no 
21 Sunakawa [81] 143 193–1442 0.03–0.15 3.12–9.44 PVC n/a 0.59–1.06 no 
22 Yamada [82] 79 259–2552 0.03–0.10 3.86–8.32 PVC n/a 0.37–0.81 no 
23 Blachut [83] 6 320–853 0.03–0.07 3.35–5.04 Steel 0.0015 0.48–0.62 yes 
24 Pan [84] 4 25–26 1 19.8 Titan 0.0084 0.29–0.30 yes 
25 Lee [60] 61 43–122 1 16–27 VPS n/a 0.17–0.89 no 
26 Kolodziey [85] 20 333–1000 0.126 8.29–14.36 Steel 0.0013 0.38–0.60 yes 
27 Zhang [26] 10 103–185 1 37–49 Steel 0.0012 0.19–0.24 yes 
28 Zhang [31] 6 90.5 0.5 15.7 Steel 0.0021 0.20–0.23 yes 
29 Zhang [32] 1 26 1 13.4 Steel 0.011 0.45 yes 
30 Wang [86] 6 45 0.54 11.85 SOMOS 8000 0.0104 0.30–0.57 yes 
31 Zhang [87] 38 45–75 0.54 11–15 SOMOS 8000 0.0104 0.31–0.82 yes 
32 Zhu [88] 5 136–144 1 30 Steel 0.0106 0.20–0.22 yes 
33 Zhang [89] 5 84–85 1 23.6 Steel 0.0055 0.29–0.32 yes  

Table 4 
Representative geometry and data for the inner dome of the LH2 tank after [94].  

Material parameter - Aluminum 
elasticity modulus E - [MPa]  80000 
Poisson’s ratio ν  0.3 
Yield stress Y - [MPa] 400 
Geometry parameter 
Radius R - [mm] 2000 
Skin thickness t - [mm] 3.04 
Stiffener thickness ts - [mm] 2.48 
Stiffener height hs - [mm] 23.48 
teff - [mm] 16.85 
R/teff ~118.67 
λ ~28  
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3.3. Design criterion and validation 

In this section the LRSM design curve is compared with experimental 
results from literature, see Fig. 14 (left). This diagram shows the ratio of 
experimental buckling stress to yield stress vs. the square root of yield 
stress to “perfect” buckling stress (also defined as slenderness λs). 
Spherical shells with large slenderness ratios (λs >

ffiffiffi
3
p
� 1:73), buckle 

elastically. Plastic buckling occurs when the “perfect” buckling stress 
approaches the yield stress (λs ~ 1). The structural behavior between 
elastic and plastic buckling can be characterized as elastic-plastic 
buckling. The analytical perfect solution is shown as a red line in 
Fig. 14. The LRSM lower-bound was determined for a hemi-sphere and is 
also shown in Fig. 14 and given by equation (6). Note that the goodness 
of fit parameter R-square ¼ 0.9986. If equation (6) is modified it can be 
used to determine a design KDF according to the LRSM which considers 
plastic buckling, see equation (7). The KDF according to equation (7) 
equals to about 0.2 for shells which buckle in the elastic region and 
seems to be independent of the R/t ratio. Similar findings were reported 
by Hutchinson [90]. 

FðλsÞ ¼
σexp

σyield
¼

p1⋅λ3
s þ p2⋅λ2

s þ p3⋅λs þ p4

λ3
s þ q1⋅λ2

s þ q2⋅λs þ q3

p1 ¼ � 0:008571; p2 ¼ 0:07207; p3 ¼ 0:03053; p4 ¼ 0:01944

q1 ¼ � 0:6903; q2 ¼ 0:2393; q3 ¼ 0:0002345

(6)  

KDFLRSM ¼FðλsÞ ⋅
σyield

σper
; for 0:2� λs � 6 (7) 

It should be noted that the values of the LRSM design curves depends 
in this illustration on the H/r ratio of the spherical cap. A conservative 
estimation for all kinds of spherical domes should be achievable with the 
LRSM lower-bound for hemi-spheres (because the imperfection sensi
tivity increases as the spherical cap becomes deeper). This design curve 
is the most relevant for deep-sea submersible shells which are rather 
deep. When compared with the relevant experimental results from 
section 3.2, it shows that the LRSM lower-bound (hemi-sphere) delivers 
for all shells a conservative buckling stress estimation except for two 
cases. An experimental result for a complete sphere by Zhang and a 
experimental result by Homewood which is considered as an outliner 
due to probable poor realized clamping conditions as discussed by for 
example Wang et al. [78] and Wagner et al. [65]. Also, for the purpose of 
comparison the results are compared with the PD 5500 in Fig. 14 (right). 
The LRSM delivers significantly higher design factors than the PD 5500 

and is still conservative with respect to the experimental results. 

3.4. Summary of results 

The results according to equations (6) and (7) are summarized in 
Fig. 15 along with the test results and are also compared with alternative 
design concepts according to the PD 5500 [91] and the reference 
resistance design (RRD) after [92]. The results show that the design 
curve according to the PD 5500 delivers to conservative estimations for 
the buckling pressure of this shell. The design according to Eurocode is 
not always conservative for the deep spherical caps. The LRSM is con
servative with respect to all experimental results and yet delivers 
significantly higher design factors than the PD 5500. 

4. Practical application 

Based on the results of section 3, it is concluded that the LRSM 
represents promising new design concept for spherical shells under 
external pressure. In this section, a shell buckling example is given 
which even today hard to analyze. In this section the LRSM is applied to 
the inner dome of the cryogenic upper stage ESC-A of the Ariane 5 
launch-vehicle, see Fig. 16. 

The inner dome of the LH2 tank is an orthogrid-stiffened spherical 
shell with a radius of 2000 mm and a non-stiffened pole cap. Studies for 
similar spherical shells are given by Wang in Ref. [95]. The geometry 
and material parameters of a representative inner dome model are given 
in Table 4. 

The analytical equation according to Zoelly cannot not be applied for 
this heavily stiffened sphere in order to calculate the reference buckling 
pressure. A series of complex analytical equations to calculate the 
buckling pressure of the “perfect” stiffened sphere are given in Ref. [93]. 

Within this article the finite element method is used to analyze this 
complex grid stiffened hemi-sphere. The numerical model consists of 
492266 linear shell elements (S4R in ABAQUS [59]) with clamped 
mechanical boundary conditions; see Fig. 17. This shell exhibits local 
skin buckling near the pole as a first failure mode at about 0.49 MPa and 
shortly afterwards global buckling (0.72 MPa) which is caused by a 
localized single dimple near the clamping edges, see Fig. 18 (left). 

In order to determine an equivalent knockdown factor, the effective 
thickness teff [96] of the stiffened sphere is required, see equation (11). 
The effective thickness teff of each section can be approximated based on 
the membrane (A11 & A22) and bending stiffness’s (D11 & D22). 

Fig. 14. Experimental to yield stress diagram vs. square root of yield to perfect stress diagram for different experimental results and lower-bound from the LRSM as 
well as analytical solution (left) comparison of PD 5500 with LRSM (right). 

H.N.R. Wagner et al.                                                                                                                                                                                                                           



International Journal of Pressure Vessels and Piping 179 (2020) 104015

9

teff ¼

�
144⋅D11⋅D22

A11⋅A22

�1
4

(8) 

The inner dome has five sections with different stiffener pattern and 
the pole cap, see Fig. 19. 

For conservative design the effective thickness of the first section teff 
¼ 16.85 mm is used (section 1 has largest share of the inner dome and is 
the most prone to buckling due to the large radius). 

The LRSM was performed for the inner dome (see Fig. 18 - right) and 
the LRSM surface was only applied to the skin of the stiffened shell and 
was positioned halfway between shell edge and dome cap. The stiffeners 
are not affected by the LRSM surface as they are not imperfection sen
sitive. The resulting knockdown factor for this stiffened hemi-sphere 

equals to 0.47 which is about 134% higher compared to the knock
down factor for a similar (R/t ~ 118) unstiffened hemi-sphere, see 
Table 5. 

5. Conclusion and outlook 

This article starts with a literature review regarding the buckling of 
spherical shells under external pressure. Based on the introduction the 
need for robust and reliable design methods for spherical shells is 
identified. Because existing design rules like NASA-SP 8032 give very 
conservative design loads for isotropic spherical shells. 

A series of 6 deep spherical shells is analyzed in this article, the shells 
have H/r ~0.5, R/t ~90 and λ ~15.7. Geometrically nonlinear analyses 
with measured geometric imperfections and perfect-plastic material 
behavior were performed to approximate the experimental knockdown 
factors which range from 0.22 … 0.24. 

Based on this design example for spherical shells, the need for robust 
and reliable design method (which is independent from expensive 
imperfection measurements) is identified. Also, existing design rules like 
NASA-SP 8032 give very conservative design loads for isotropic spher
ical shells. 

A variant of the reduced stiffness method is presented which elimi
nates locally the membrane stiffness of a spherical shell and leads to a 
lower-bound for the buckling pressure. This localized reduced stiffness 
method (LRSM) is applied to a set of deep spherical domes with clamped 
edge conditions. 

A series of numerical analysis is performed to understand to lower- 
bound behavior of spherical shells burdened by localized imperfection 
surfaces. The LRSM leads to a lower-bound KDF ¼ 0.21 in the case of 

Fig. 15. KDF of the spherical shells with λ ¼ 15.7 according to experimental results and different design concepts.  

Fig. 16. Cryogenic upper stage ESC-A of Ariane 5 [93] (left) Inner dome of the 
LH2-tank for the ESC-A [94] (right). 

Fig. 17. Numerical model of the inner dome: Mesh (left) LRSM surface position (right).  
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elastic buckling and a KDF ¼ 0.19 in the case of perfect-plastic buckling 
which is conservative for all experimental results. 

Compared to probabilistic methods [97], the measurement, sto
chastic analysis and storage of imperfection data from a large number of 
tests is not needed if the LRSM is applied which saves time and cost 
during the design process. 

The LRSM was applied to real sphere shell structures: an orthogrid 
stiffened hemi-sphere. The LRSM is simple to realize in FEA (even for 
complex sub- and full-scale shell structures) and delivers promising 
design loads. The new concept shall be further expanded to tori- 
spherical shells under external pressure [98] and internal pressure 
[99] as well as composite shells [100] which may suffer from delami
nation imperfections as recently shown be Wang et al. [101]. 
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