
AN OPTIMIZED, PARALLEL COMPUTATION OF THE1

GHOST LAYER FOR ADAPTIVE HYBRID FOREST MESHES2

JOHANNES HOLKE∗, DAVID KNAPP† , AND CARSTEN BURSTEDDE‡3

Abstract. We discuss parallel algorithms to gather topological information about off-process4
mesh neighbor elements. This information is commonly called the ghost layer, whose creation is a5
fundamental, necessary task in executing most parallel, element-based computer simulations. Ap-6
proaches differ in that the ghost layer may either be inherently part of the mesh data structure that7
is maintained and modified, or kept separate and constructed/deleted as needed.8

In this work, we present an updated design following the latter approach, which we favor for9
its modularity of algorithms and data structures. We target arbitrary adaptive, non-conforming10
forest-of-(oc)trees meshes of mixed element shapes, such as cubes, prisms, and tetrahedra, and11
restrict ourselves to face-ghosts. Our algorithm has low complexity and redundancy since we reduce12
it to generic codimension-1 subalgorithms that can be flexibly combined. We cover several existing13
solutions as special cases and optimize further using recursive, amortized tree searches and traversals.14

Key words. Adaptive mesh refinement, parallel algorithms, forest of octrees, ghost layer15

AMS subject classifications. 65M50, 68W10, 65Y05, 65D1816

1. Introduction. In the parallel mesh-based numerical solution of partial dif-17

ferential equations, the notion of a ghost or halo layer is ubiquitous. It refers to18

connectivity information about all elements owned by any remote process and di-19

rectly adjacent to at least one process-local element. As such, it is implemented in20

many general purpose software packages; see for example [1, 9, 10, 26]. In practice,21

its effect is to guarantee identical results up to roundoff, independent of the parallel22

partitioning of the mesh.23

If the numerical method only couples directly adjacent elements, which applies24

to most finite and spectral element methods, the combined set of variables on local25

and ghost elements suffices to complete a basic global step of the method, be it the26

assembly of a system matrix or an explicit or implicit solve. In particular with adaptive27

refinement, the ghost layer aides in globally numbering the degrees of freedom and in28

computing partition-independent refinement and coarsening indicators.29

The concept of the ghost layer is widely applied due to several benefits it provides,30

such as the locality of parallel communication, the transparency to the discretization31

code, and the overlap of communication and computation it encourages. If the mesh32

structure is replicated in parallel, information on the individual process partition and33

the ghost elements is replicated, too, providing a global view of the partition data for34

every process. If, on the other hand, the mesh is distributed in parallel, constructing35

the ghost layer becomes a parallel algorithm in its own right.36

When using unstructured meshes, the ghost layer is often part of the graph-37

based encoding of the mesh. Graph partitioners [8, 11, 18] can be executed and the38

result queried for both ghost and local elements, often encoded by lookup tables or39

other convenient data structures; see e.g. [21, 22, 25, 31, 32]. Tree-based meshes, on40

the other hand, often represent the ghost information implicitly using hierarchy and41

coordinates [27,33]. In some approaches, the ghost layer is inherently part of the mesh42

data structure, which removes the need for its explicit computation but requires to43

keep the ghost layer synchronized for consistency [1, 28,34].44

∗German Aerospace Center (DLR), Cologne, Germany (johannes.holke@dlr.de)
†Rheinische Friedrich-Wilhelms-Universität Bonn, Germany, and DLR, Cologne, Germany
‡Institut für Numerische Simulation (INS), Rheinische Friedrich-Wilhelms-Universität Bonn

1

This manuscript is for review purposes only.

mailto:johannes.holke@dlr.de


2 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

The present work focuses on the alternative that the ghost layer is not considered45

first-class mesh data, but may be constructed when needed by executing a suitable46

algorithm [7]. Using this extra algorithm adds a cost, but simplifies the core mesh data47

structure as a benefit. In addition, it improves modularity and permits to optimize the48

ghost layer computation independently of other meshing algorithms [15], and it allows49

to omit the ghost construction altogether when it is not required by the numerical50

method due to more general alternatives [4].51

The frame for our algorithm development is set by the forest-of-(oc-)trees ap-52

proach to meshing [2, 7, 29], and the implementation is provided within the t8code53

software library [5, 14]. The unique property of this set of algorithms is that it oper-54

ates on hybrid meshes, that is, one mesh may contain mixed shapes such as triangles55

and quadrilaterals in 2D or tetrahedra, prisms, and hexahedra in 3D. Refinement is56

tree-based and allows for hanging faces, which is unusual in a way but lends many of57

the benefits of hexahedral forest/tree-structures to the hybrid case.58

1.1. Contributions. In this paper we present two novel contributions. Firstly,59

we extend the computation of a (face-only) ghost layer for forest-based AMR to60

meshes with arbitrary element shapes, and in particular hybrid meshes. Secondly, we61

optimize the proposed algorithm to obtain optimal runtime.62

To achieve the first goal, the most important step is the construction of (same-63

level) face-neighbors across tree boundaries. This is of particular interest if the con-64

nected trees have different shapes. The challenging part here is to perform the nec-65

essary transformations to account for tree-to-tree coordinate changes. Since the un-66

derlying low-level implementations for the element shapes should be exchangeable, it67

is crucial to avoid dependencies between these implementations. Such dependencies68

would for example arise if we directly transformed the coordinates of one element69

(for example a hexahedron) into coordinates of the neighbor element (for example70

a prism). Instead, our proposed approach is to construct the (d − 1)-dimensional71

face element as an intermediate object. We then perform the necessary coordinate72

transformation in d−1 dimensions and extrude the resulting element into the desired73

d-dimensional face-neighbor.74

To achieve the second goal, the optimization of runtime, we utilize recent devel-75

opments of tree-based search routines [15] to exclude locally surrounded portions of76

the mesh and thus limit our computational effort to the partition boundary elements.77

For further technical details and background, as well as the in-depth discussion of78

triangular and tetrahedral space-filling curves, we refer to H.’s thesis [13].79

1.2. Fundamental concepts. Throughout this document, we assume a forest-80

of-trees mesh structure. The tree roots can be of any shape as long as their faces81

conform to all neighbor trees. For example, a hexahedron and a tetrahedron tree may82

both connect to a prism tree but not to each other. The trees are refined recursively,83

and the number of refinements from the root to an element is called its level. Thus,84

two elements may be a descendant or ancestor of each other (in fact both if they85

are equal) or unrelated. Given this generality, the number of child elements n may86

be a constant 4 (triangles/quadrilaterals) or 8 (tetrahedra/cubes/prisms), but also a87

different number, and even varying within the tree. For example, we might consider88

the one-dimensional line, n = 2, a Peano-style 1 : n = 3d refinement of cubes [24,35],89

or use a Peano refinement on even and Morton refinement on odd levels. Only the90

leaf elements of the forest are maintained in memory as true mesh elements, which91

is often described as linear tree storage [30]. The ghost layer will be assembled as a92

linear array as well, augmented with offset arrays to define ranges of ghost elements93

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 3

on the same process or in the same tree.94

For each element, we assume that sub-algorithms exist to count and index its95

faces, to construct its parent or any of its children, et cetera. We consider these sub-96

algorithms an opaque, low-level functionality: They will vary by implementation and97

by shape, and we do not wish to depend on their internal mechanisms. Instead we98

impose abstract consistency requirements between the refinements of volumes, faces,99

and edges, within and between trees. For example, if we consider the faces of a tree as100

separate (d− 1)-dimensional refinement trees, then the refinement of the volume cells101

restricted to a tree face must be a possible face refinement. This approach enables102

modularity and extensibility and keeps the technical complexity low [5].103

In the forest, the connectivity between trees across tree-faces is a mesh of its own.104

This “genesis mesh” [29] or coarse mesh [2] is conforming even though the elements105

may become arbitrarily non-conforming by adaptive refinement. Throughout this106

document, we assume that we can access the coarse mesh information of each neighbor107

tree of a local tree. This is ensured since the coarse mesh is either replicated on all108

processes [7] or stores a layer of ghost trees, where a ghost tree is understood as the109

topological shell without regarding the elements in it. We have previously proposed110

sharp parallel algorithms to gather the ghost trees [6].111

Definition 1. A ghost element (or just ghost for short) of a process p in a forest112

F is a leaf element G of a process q 6= p, such that there exists a face-neighbor E of113

G that is a local leaf element of p.114

Definition 2. We call a local leaf element E of a process p a partition boundary115

element if it has at least one face-neighbor that is a ghost element (the term “mirror116

element” has been used as well [12]). The remote processes to E are all processes117

q 6= p that own ghost elements of E. The union of all remote processes over all local118

elements of p are the remote processes of p.119

Definition 3. We say that an element is a locally surrounded element of process120

p if all of its leaf descendants and all of its leaf face-neighbors are owned by p.121

Definition 4. By Rqp we denote the set of partition boundary elements of process122

p that have process q as a remote process. The ghost layer for process p is thus123

(1) Gp = ∪qRqp.124

By construction, we have the following symmetry:125

(2) Rqp 6= ∅ ⇔ Rpq 6= ∅.126

Adaptation of the element mesh proceeds recursively from the root, which assigns127

a unique level ` ≥ 0 to each element. Note that for forests neither 2:1 balanced128

nor otherwise graded, the number of neighbors of an element E that are ghosts can129

be arbitrarily large. It is only bounded by the number of elements at maximum130

refinement level that can touch the faces of E. Therefore, the number of remote131

processes is not easily bounded from above.132

1.3. Technical procedure. We will describe two variants of constructing the133

ghost layer. The algorithm Ghost tentative is the first to create a ghost layer for134

arbitrary hybrid forests. Optimizations of its runtime lead to the final version Ghost-135

optimized.136

When referring to the shape of an element, we refer to the associated low-level137

operations at the same time. In our reference implementation t8code [14] we provide138

This manuscript is for review purposes only.



4 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

line, quadrilateral, and hexahedral elements ordered by the Morton index [23], as well139

as triangular and tetrahedral elements using the tetrahedral Morton (TM-)index [5].140

This also provides us with an implementation of prism elements, since we can model141

these as the cross product of a line and a triangle [19]. Additionally, in ongoing work142

we are developing and implementing pyramidal elements [20].143

The basic idea of Ghost tentative is to first identify all partition boundary144

elements and their remote processes, thus building the sets Rqp and identifying the145

non-empty ones. In a second step, each process p sends all elements in Rqp to q. The146

senders are known to the receivers due to the symmetry of the communication pattern147

(2). In the first step we iterate over all local leaves and for each over all of its faces.148

We then have to decide for each face F of a leaf E which processes own leaves that149

touch this face.150

In p4est, the runtime is optimized by performing a so called (3×3)-neighborhood151

check of an element [15] inspired by the “insulation layer” concept [30]. For a local152

hexahedral/quadrilateral element, it is tested whether all possible same-level face- (or153

edge-/vertex-) neighbors would also be process-local and if so, the element is excluded154

from further processing. Since this check makes explicit use of the classical Morton155

code and its properties, it is difficult to generalize to hybrid meshes.156

For Ghost optimized we replace the iteration over all leaves with a neighbor-157

aware top-down forest traversal. While traversing, we exclude locally surrounded158

elements from the iteration, which is equivalent to an early pruning of the search159

tree. This approach supersedes the (3× 3) test and improves the overall runtime over160

simpler, iterative algorithms.161

We design our algorithms shape-independent from the beginning. To this end,162

we require a minimal set of element sub-algorithms that we develop in Section 2. We163

discuss fast algorithms of finding the owner process of neighbor elements in Section 3164

and expose the high-level forest traversal algorithms to construct Gp beginning with165

Section 4.166

2. Low-level element functions. We will adhere throughout to the abstrac-167

tion of low-level, per-element algorithms on the one hand and high-level, global par-168

allel algorithms on the other. Introducing for example a new element shape like169

the pyramid, or an alternative space filling curve such as the Hilbert curve, will be170

implemented on the low-level side without requiring a change in the high-level algo-171

rithms. Conversely, improving the high-level algorithms further will be possible with172

or without defining new low-level interface functions, depending on the algorithmic173

idea.174

We will use this section to add several low-level functions that we require for the175

high-level algorithms formulated later in this document. They all deal with direct176

element face neighbors. We will motivate and discuss the abstract interface first and177

then propose additional specifics for the (T-)Morton curves currently available in178

p4est and t8code. In doing so, we introduce conventions necessary for the reader to179

substitute their favorite element implementation if so desired.180

An important part of any Ghost routine is to construct the same-level neighbor of181

a given element E across a face f . Here, to construct means to compute information182

defining this neighbor as a possible (hypothetical) element in a mesh, not necessarily183

as a leaf that exists on this or another process. The hypothetical element can than be184

compared with the existing local leaves (which may be descendants or ancestors) or the185

partition boundaries (which are encoded using deepest-level hypothetical elements).186

As long as such a face-neighbor remains inside the same tree as E, this prob-187

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 5

K

K ′

E E′

G G′

F F ′

Fig. 1: A tree K, element E, and a face F of E that is a subface of a tree face. The
task is to construct the face-neighbor element E′. A subtask is to identify the tree
faces G and G′, taking into account the coordinate systems of both trees.

lem is addressed by the corresponding low-level function t8 element face neigh-188

bor inside; see [7] for an implementation for the classical Morton index, [5, Algo-189

rithm 4.6] for the TM-index and [19] for prisms. It is more challenging to find element190

face-neighbors across tree boundaries. One reason is that neighbor trees may be ro-191

tated against each other. For hybrid meshes, a new challenge occurs in that multiple192

shapes of trees exist in the same forest.193

To note down our proposed solution, we use capital letters (K, E, F , G) for194

entities such as trees, elements, and faces, and use lower case for indices (see Fig-195

ure 1). Since the coordinate systems of neighbor trees may not be aligned, we must196

properly transform the (d− 1)-dimensional coordinates of the faces between the two.197

To decouple neighbor trees of different shapes, we consider the face G of the tree K198

as a (d − 1)-dimensional root element and explicitly construct the face F of E as a199

(d− 1)-dimensional element descendant of G. Thus, we identify four major substeps200

in the computation of face-neighbors across tree boundaries (see Figure 2):201

(i) From an element’s face F at a tree boundary, identify the corresponding tree202

face G.203

(ii) Construct the (d− 1)-dimensional face element F .204

(iii) Transform the coordinates of F to obtain the neighbor face element F ′.205

(iv) Extrude F ′ to the d-dimensional neighbor element E′.206

Rationale 5. We deliberately choose this method of using lower dimensional en-207

tities over directly transforming the tree coordinates from one tree to the other—as it208

is done for example in [7]—since our approach allows for maximum flexibility of the209

implementations of the different element shapes and SFC choices. This holds since all210

intermediate operations are either local to one element or change the dimension (i.e.211

hexahedra to quadrilaterals, tetrahedra to triangles, and back), but not both. There-212

fore, even if, for example, a hexahedron tree is neighbor to a prism tree, no function213

in the implementation of the hexahedral elements relies on knowledge about the im-214

plementation of the prism elements. Hence, it is possible to exchange the definition215

of the SFC for one element shape without changing the others.216

Remark 6. We define a (relative) orientation of two neighboring trees. This def-217

This manuscript is for review purposes only.



6 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

K K ′G G′

E E′

x

y

z

x
y

z

(starting point)

K G

F

x

y

z

x

y

(ii)

G G′

F F ′

x

y

x
y

(iii)

G′ K ′

F ′
x

y x
y

z

(iv)

Fig. 2: A hexahedron and a prism element that are face-neighbors across tree bound-
aries. Constructing the face-neighbor E′ of E across the face amounts to computing
its anchor node (black) from the anchor node of E and the coarse mesh connectivity
information about the two neighbor trees. Here, the coordinate systems of the two
trees are rotated against each other. In step (ii) we construct the face element F from
the element E. The coordinate system of the face root is inferred from that of the left
tree. In step (iii) we transform F to the neighbor face element F ′. In the last step
(iv) we extrude the face-neighbor E′ from the face element F ′.

inition is shape-independent, and all low-level implementations must adopt (or trans-218

late into) it. The particulars follow in Section 2.2.219

Remark 7. The theory of the TM-index for triangles and tetrahedra uses the type220

to classify distinct sorts of occuring elements; see Figure 3. For triangles there are the221

two types 0 and 1, while for tetrahedra there are the types 0 through 5. By definition222

of the TM-index, the type of the root simplex is always 0 and the other types emerge223

on finer refinement levels. For more details see [5].224

2.1. (i) Identifying the tree face. The first subproblem is to identify the tree225

face G and its face number g from E, f , and the tree K. For this task we introduce226

a new low-level function:227

g ← t8 element tree face (element E, face number f)
The element face number f designates a subface of a tree face. Return the face
number g of this tree face. Only valid if face f of E is on a tree boundary.

228

For lines, quadrilaterals, and hexahedra with the Morton index, the tree face229

indices are the same as the element’s face indices [7] and thus t8 element tree face230

always returns g = f .231

For simplices with the TM index [5], the enumeration of their faces depends on232

their simplex type. By convention, the face number i refers to the unique face that233

does not contain the vertex ~xi, and the vertex numbering relative to the surrounding234

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 7

X

Y

S1

S0

c3 =

(
1
1

)
c2

c1
(

0
0

)
= c0

S0

S1
S2

S3

S5

X

Y

Z

S4

c1

c2

c3

c4

c5

c6

c7

c0

Fig. 3: The basic types i for triangles (2D) and tetrahedra (3D) Si are obtained
by dividing [0, 1]d into simplices. Left: The unit square can be divided into two
triangles sharing the diagonal edge from (0, 0)T to (1, 1)T . The four corners of the
square are numbered c0, . . . , c3 in yx-order. Right (exploded view): The unit cube
can be divided into six tetrahedra, all sharing the diagonal edge from the origin to
(1, 1, 1)T . The eight corners of the cube are numbered c0, . . . , c7 in zyx-order. The
tetrahedral Morton (TM-)index is constructed by bitwise interleaving the type with
the coordinates of an element’s lower left corner (drawings adapted by permission [3]).

Fig. 4: First refinement level for triangles (left) and tetrahedra (right) with types
color-coded. The TM-curve assumes a type 0 root element, and during refinement
other types occur. For triangles the only other type is 1 (orange). For tetrahedra we
get the types 0 (white), 1 (orange), 2 (light blue), 4 (dark blue) and 5 (red) on level
1, while type 3 occurs first on level 2 and never on the tree’s boundary.

cube corners differs by type (Figure 3).235

Since the root simplex always has type 0, for triangles and tetrahedra of type 0236

the face number is the same as the face number of the root element. Triangles of type237

1 and tetrahedra of type 3 cannot lie on the boundary of the tree and thus we never238

call t8 element tree face for these elements (Figure 4).239

For each of the remaining four tetrahedron types there is exactly one face that240

can lie on the tree boundary. Face 0 of type 1 tetrahedra is a descendant of the root241

face 0; face 2 of type 2 tetrahedra is a descendant of the root face 1; face 1 of type 4242

tetrahedra is a descendant of the root face 2. Finally, face 3 of type 5 tetrahedra is a243

descendant of the root face 3.244

This manuscript is for review purposes only.



8 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

K G

E
F

Fig. 5: Constructing the face element F to an element E at a tree face G. We can
interpret the face of the 3D tree K as a 2D tree G. The face F of E is an element in
this tree.

Note that for face indices f of faces that cannot lie on the tree boundary, calling245

t8 element tree face is illegal. This behavior is well-defined, since we ensure that246

the function is only called if the face f lies on the tree boundary.247

2.2. (ii) Constructing the face element. As a next step, we build the face248

F as a (d− 1)-dimensional element. We do this via the low-level function:249

F ← t8 element boundary face (element E, face number f)
Return the (d− 1)-dimensional face element F of element E specified by the
face number f . Required for all elements of positive dimension.

250

In other words, the lower dimensional face element F is created from E. For251

the Morton index this is equivalent to computing the coordinates of its anchor node252

and additionally its type for the TM-index. Hereby we interpret the tree face G as a253

(d−1)-dimensional root element of which F is a descendant element; see also Figure 5.254

Remark 8. Since we construct a lower-dimensional element as the face of a255

higher-dimensional one, there are two conditions that need to be satisfied for the im-256

plementations of the two element shapes involved.257

1. The refinement pattern of a face of the higher dimensional elements must258

conform to the lower dimensional refinement pattern.259

2. The maximum possible refinement level of higher dimensional elements must260

not exceed the one of the lower dimensional elements.261

If one or both of these conditions are not fulfilled, then there exist faces of the higher262

dimensional elements for which an interpretation as a lower dimensional element is263

not possible. For Morton-type SFCs, these two conditions are naturally fulfilled.264

Remark 9. For the simplicial and hexahedral Morton SFC with maximum re-265

finement level L , the anchor node coordinates of an element of level ` are integer266

multiples of 2L−`. Suppose the maximum level of hexahedral elements is L1 and the267

maximum level of a face boundary quadrilateral element is L2 ≥ L1, then we will have268

to multiply a hexahedral coordinate with 2L2−L1 to transform it into a quadrilateral269

coordinate. For simplicity, we reduce our presentation to the case that all element270

shapes have the same maximum possible refinement level and omit the scaling factor.271

For simplices with the TM-index, we note that we shall restrict ourselves to272

those combinations of element and face number that occur on the tree boundary. In273

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 9

particular, all possible faces are subfaces of the faces of the root simplex S0.274

Triangles of type 1 never lie on the tree boundary, hence we only need to consider275

type 0 triangles. The result solely depends on the face number f .276

A tetrahedron that lies on the tree boundary has a type different from 3. In order277

to compute the boundary face, we distinguish two cases. Let g be the face of the root278

tetrahedron S0 corresponding to the boundary face f of T .279

1. g = 0 or g = 1. These faces of S0 lie in the (x = 0)-plane or the (x = z)-plane280

of the coordinate system, and (F.x, F.y) = (T.z, T.y).281

2. g = 2 and g = 3. These faces lie in the (y = 0)-plane or the (y = z)-plane,282

and the anchor node of F is given by (F.x, F.y) = (T.x, T.z).283

2.3. (iii) Constructing F ′ from F . If we know the tree face number g, we284

can look up the corresponding face number g′ of the face in K ′ from the coarse mesh285

connectivity [6].286

In order to transform the coordinates of F to obtain F ′ we need to understand287

how the vertices of the face g connect to the vertices of the face g′. Each face’s vertices288

form a subset of the vertices of the trees. Let { v0, . . . , vn−1 } and
{
v′0, . . . , v

′
n−1

}
be289

these vertices for g and g′ in ascending order, thus vi < vi+1 and v′i < v′i+1. The face-290

to-face connection of the two trees determines a permutation σ ∈ Sn such that vertex291

vi connects to vertex v′σ(i). In theory, there are n! possible permutations. However,292

not all of them occur.293

Definition 10. Since we exclude trees with negative volume, there is exactly one294

way to connect two trees across the faces g and g′ in such a way that the vertices v0295

and v′0 are connected. We call the corresponding permutation σ0.296

We obtain all other possible permutations σ by rotating the face g′. This rotation297

is encoded in the orientation information of the coarse mesh.298

Definition 11 (From [6, Definition 2.2]). The orientation of a face connection299

is the index j such that v0 connects with v′j. Thus,300

(3) orientation(g, g′, σ) = σ(0).301

Remark 12. If we look at the same face connection, but change the order of g302

and g′, the permutation σ becomes σ−1. In 3D σ(0) is in general not equal to σ−1(0)303

and thus the orientation depends on the order of the faces g and g′ (if unequal). In304

order to make the orientation unique, we use the following convention: If K and K ′305

have the same shape then the smaller face is considered as g. If K and K ′ have306

different shapes, we consider g as the face of the smaller shape, regarding the order:307

hexahedron < prism < pyramid; tetrahedron < prism < pyramid [6].308

From the initial permutation σ0 and the orientation we can reconstruct σ. σ0 is309

determined by the shapes of K and K ′ and the face indices g and g′. In fact, since310

the orientation encodes the possible rotations, the only data we need to know is the311

sign of σ0.312

Definition 13. Let K and K ′ be two trees of shapes t and t′, and let g, g′ faces313

of K and K ′ of the same element shape. We define the sign of g and g′ as the sign314

of the permutation σ0,315

(4) signt,t′(g, g
′) := sign(σ0).316

This manuscript is for review purposes only.



10 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

Remark 14. This definition does not depend on the order of the faces g and g′,317

since318

(5) signt′,t(g
′, g) = sign(σ−1

0 ) = sign(σ0) = signt,t′(g, g
′).319

Using the orientation, the sign, and the face number g′, we transform the coordi-320

nates of F to obtain the corresponding face F ′ as a subface of the face G′ of K ′. For321

this task we introduce the low-level function322

F ′ ← t8 element transform face

(face element F, orientation o, sign s).
323

Remark 15. The transformation o = i, s = −1 is the same as first using o = 0,324

s = −1 and then o = i, s = 1. Thus, we only need to implement all cases with s = 1325

and one additional case o = 0, s = −1.326

Remark 16. The sign is always 0 for the boundary of line elements. If the faces327

are lines there are two possible face-to-face connections and these are already uniquely328

determined by the orientation of the connection. Thus, for 1D and 2D trees (lines,329

quadrilaterals, and triangles) it is not necessary to use the sign.330

For hexahedra with the Morton index we compute the sign of two faces via the331

tables R,Q,P from [7, Table 3] as332

(6) signhex,hex(g, g′) = sign (i 7→ P (Q(R(g, g′), 0), i)) = ¬R(g, g′).333

The permutation in the middle is exactly the permutation σ0. The argument 0 of Q334

is the orientation of a face-to-face connection, but the result is independent of it, and335

we could have chosen any other value.336

For the classical and tetrahedral Morton indices we need to compute the anchor337

node of F ′ from the anchor node of the input face F . For triangle and quadri-338

lateral faces, we may do this explicitly for o = 0, s = −1 and then derive all339

other combinations by Remark 15. For the faces of quadrilaterals and hexahedra,340

t8 element transform face is equivalent to the internal coordinate transformation341

p4est transform face due to (6).342

2.4. (iv) Constructing E′ from F ′. We now have E, F , F ′, K and K ′ and343

can construct the neighbor element E′. For this we introduce the function344

E′ ← t8 element extrude face

(face element F ′, tree K ′, face number g′).
345

This function has as input a face element and a tree face number and as output the346

element within the tree that has as a boundary face the given face element. How to347

compute the element from this data depends on the element shape and the tree face.348

2.5. Supporting local surround. Our high-level ghost algorithm is an ex-349

tension of a top-down tree traversal. The extension lies in the fact that we may350

prune subtrees that are locally surrounded, that is, their direct face neighbors are all351

process-local. To this end, we require nearest-neighbor context, which is not ordinar-352

ily available in a top-down recursion. Thus, we recreate parallel neighbor context in353

an optimized way in the high-level algorithms of Section 4, which requires two more354

low-level functions that we describe in the following.355

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 11

C[]← t8 element children at face (element E, face number f)
Returns an array of children of E that share a face with f .

356

f ′ ← t8 element child face

(element E, child index i, face number f)
Given an element E, a child index i of E, and a face number f of some face
F of E, compute the number f ′ of the child’s face that is a subface of F .
It is required that the child lies on the face F .

357

A typical implementation of t8 element children at face would look up the358

child indices of these children in a table and then construct the children with these359

indices. The child indices can be obtained from the refinement pattern. For the360

quadrilateral Morton index, for example, the child indices at face f = 0 are 0 and 2.361

For a hexahedron the child indices at face f = 3 are 2, 3, 6, and 7. For the TM index362

these indices additionally depend on the type of the simplex.363

The low-level algorithm t8 element child face can also be described via lookup364

tables. Its input is a parent element E, a face number f and a child index i, such that365

the child Ei of E has a subface of the face f . In other words, Ei is part of the output366

of t8 element children at face. The return value of t8 element child face is367

the face number fi of the face of E[i] that is the subface of f .368

For the classical Morton index, the algorithm is the identity on f , since the faces of369

child quadrilaterals/hexahedra are labeled in the same manner as those of the parent370

element. For the TM index for triangles, the algorithm is also the identity, since only371

triangle children of the same type as the parent can touch a face of the parent and372

for same type triangles the faces are labeled in the same manner.373

For tetrahedra with the TM-index, the algorithm is the identity on those children374

that have the same type as the parent. However, for each face f of a tetrahedron T ,375

there exists a child of T that has the middle face child of f as a face. This child does376

not have the same type as T . For this child the corresponding face value is computed377

as 0 if f = 0, 2 if f = 1, 1 if f = 2, or 3 if f = 3.378

3. Owner processes of elements. For any ghost algorithm, after we have379

successfully constructed an element’s full-size or refined face-neighbor, we need to380

identify the owner process of this neighbor. We can use this information to shorten381

the list of potential neighbor processes, eventually arriving at the tightest possible set382

to communicate with.383

Definition 17. Let E be an element in a (partitioned) forest. A process p is an384

owner of E if there exists a leaf L in the forest such that385

1. L is in the partition of p, and386

2. L is an ancestor or a descendant of E.387

Unique ownership is thus guaranteed for leaf elements and their descendants, but not388

for every ancestor element of a tree. In any case, each element has at least one owner.389

Definition 18. The first/last descendant of an element E is the descendant of390

E of maximum refinement level with smallest/largest SFC index.391

Since first/last descendants cannot be refined further, they are either a leaf or392

descendants of a leaf. Hence, they have a unique owner process. (Note however393

that, depending on the chosen space filling curve, the first and last descendants of an394

element need not be placed at its corners.) Since a forest is always partitioned along395

This manuscript is for review purposes only.



12 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

the SFC in ascending order, it must hold for each owner process p of E that396

(7) pfirst(E) ≤ p ≤ plast(E).397

Conversely, if a process p fulfills inequality 7 and its partition is not empty, then it398

must be an owner of E. Furthermore, we conclude that an element has a unique399

owner if and only if pfirst(E) = plast(E).400

Each process can compute the SFC index of the first descendant of its first local401

element. From these SFC indices we build an array of size P , which is the same on402

each process. We can then determine the owner process of any first or last descendant403

by performing a binary search in this array if we combine it with the array of per-404

process tree offsets [7]. We call this functionality t8 forest owner, which in practice405

runs over a subwindow of the array narrowed down by the top-down tree traversal.406

Algorithm 3.1: t8 owners at face (forest F , element E, face number f)

Result: The set PE of all processes that own leaf elements that are
descendants of E and have a face that is a subface of f

1 PE ← ∅
2 fd← t8 element first desc face (E, f) /* First and last */

3 ld← t8 element last desc face (E, f) /* descendant of E at f */

4 pfirst ← t8 forest owner (F, fd) /* The owners of fd and ld */

5 plast ← t8 forest owner (F, ld)
6 if pfirst ∈ { plast, plast − 1 } then /* Only pfirst and plast are */

7 return { pfirst, plast } /* owners of leaves at f */

8 else /* There may be other owners. Enter the recursion */

9 Cf []← t8 element children at face (E, f)
10 for 0 ≤ i <t8 element num face children (E, f) do
11 j ← child index (Cf [i]) /* Child number relative to E */

12 f ′ ← t8 element child face (E, j, f)
13 PE ← PE ∪ t8 owners at face (F, Cf [i], f ′)

14 return PE

For the Ghost tentative algorithm—a generalization of [15] to hybrid shapes—407

we will have to identify all owners of leaves that are neighbors directly adjacent408

to a given element’s face. Since p4est’s algorithm find range boundaries [15] is409

highly efficient, but specific to the Morton SFC and hypercubes, we introduce the410

Algorithm 3.1 t8 owners at face. Given an element E and a face f , it determines411

the set PE of all processes that have leaf elements that are descendants of E and share412

a face with f .413

Definition 19. The first/last face descendant of an element E at a face f is the414

descendant of E of maximum refinement level that shares a subface with f and has415

smallest/largest SFC index.416

We denote the owner processes of an element’s first and last face descendants by417

pfirst(E, f) and plast(E, f). If these are equal to the same process q, then q must be418

the single owner at that face.419

As opposed to the owners of an element, not all nonempty processes in the range420

from pfirst(E, f) to plast(E, f) are necessarily owners of leaves at the face of E; see for421

example face f = 0 in Figure 6. It is thus not sufficient to determine all nonempty422

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 13

p = 0

p = 1

p = 2 f = 0f = 1

f = 2

0

2
f = 1

first face descendant

last face

0

0

1

2

descendant

Fig. 6: An example for Algorithm 3.1, t8 forest owners at face. Left: A trian-
gle element E with the TM-index as SFC whose descendants are owned by three
different processes: 0 (red), 1 (blue), and 2 (green). The owners at the faces are
{ 0, 2 } at face 0, { 0, 1, 2 } at face 1, and { 0 } at face 2. Right: The iterations of
t8 forest owners at face at face f = 1. At first the first and last descendant of
E at f are constructed. We compute their owner processes 0 and 2, and since their
difference is greater one, we continue the recursion. In the second iteration the algo-
rithm is called once for the lower left child and once for the upper child of E. We
determine their first and last descendants at the respective subface of f . For the lower
left child, the recursion stops since both face descendants are owned by process 0. For
the upper child the owner processes are 1 and 2 and since there are no other possible
owner processes in between, we stop the recursion as well.

processes between pfirst(E, f) and plast(E, f). Instead, if pfirst(E, f) < plast(E, f)− 1,423

we enter a recursion for each child of E that lies on the face f . We terminate early424

for elements whose descendants at the face f are all owned by a single process, or by425

two processes whose ranks differ by 1. In practice, this procedure prunes the search426

tree very quickly.427

We optimize our implementation of t8 owners at face by taking into account428

that the first and last owners pf and pl at the current recursion step form lower and429

upper bounds for the first and last owners in any upcoming recursion step. Thus, we430

restrict the binary searches in t8 forest owner to the interval [pfirst, plast] instead of431

[0, P − 1]. We also exploit that the first descendant of an element E at a face f is at432

the same time the first face descendant of E’s first child at f . The same holds for the433

last descendant and the last child at f . Thus, we reuse the first/last face descendants434

and owners of E when we enter the recursion with the first/last child at f .435

4. The ghost algorithms. In this section we propose updated ghost algorithms436

that are at least as scalable as their predecessors. On the one hand, they are currently437

more limited by being restricted to face neighbors. On the other, they are more general438

and extensible and applicable to fully hybrid adaptive meshes. In practice, we execute439

them on over 1e12 elements, which is a novel achievement for a hybrid AMR code.440

This manuscript is for review purposes only.



14 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

4.1. Initial design. Our basic design, Ghost tentative, follows the conception441

of [15] and operates on forests with arbitrary, non-graded refinements. In consequence,442

there are no assumptions on the relative sizes of neighbor leaves of element E across443

face F . Algorithmically, we begin by constructing the same-size face neighbor of E.444

We know that it is either a descendant of a forest leaf (including the case that it is a leaf445

itself), which then has a unique owner, or an ancestor of multiple forest leaves, which446

may all have different owners. Among those, we need to compute only the owners of447

descendant/ancestor forest leaves of E′ that touch the face F . To this end, we call448

Algorithm 3.1, t8 forest owners at face, that we describe above in Section 3. In449

addition, the Ghost tentative Algorithm 4.1 invokes the function dual face (not450

listed), which, given an element E and a face number f , returns the face number f ′451

seen from the neighboring element.

Algorithm 4.1: Ghost tentative (forest F )

1 for K ∈ F.trees do
2 for E ∈ K.elements do
3 for 0 ≤ f < t8 element num faces (E) do
4 E′ ← t8 forest face neighbor (F, E, f)
5 f ′ ← dual face(E, E′, f)
6 PE′ ← t8 forest owners at face (F, E′, f ′)
7 for q ∈ PE′ do
8 if q 6= p then
9 Rqp = Rqp ∪ {E }

452

4.2. Optimizing the runtime. The Ghost tentative Algorithm 4.1 iterates453

over all local leaf elements to identify the partition boundary leaves on the process.454

Thus, its runtime is proportional to the number of local leaves. However, for many455

meshes and partitions, only a small portion of the leaf elements are partition boundary456

elements, depending on the surface-to-volume ratio of the process’s partition. Since457

the surface of a volume grows by one power less than the volume itself, the number of458

partition boundary leaves can become arbitrarily small in comparison to the number459

of all leaves. Ideally, the runtime of Ghost should be proportional to the number of460

partition boundary elements.461

Our goal is therefore to improve the runtime of the algorithm by excluding non-462

boundary leaves from the iteration. In p4est, most locally surrounded leaves are463

excluded from the iteration by testing for each quadrilateral/hexahedron whether its464

3 × 3 neighborhood [7, 30], namely all same-level face-(edge-/vertex-)neighbors, are465

process-local. However, since this approach uses particular geometrical properties of466

the quadrilateral/hexahedral shapes and of the Morton index, it is not practical for467

our hybrid, element-shape independent approach.468

To exclude the locally surrounded leaves in t8code, we replace the leaf iteration469

with a top-town traversal, repurposing a recursive approach originally proposed for470

searches [15]. Starting with a tree’s root element, we test whether it may have parti-471

tion boundary leaf descendants, and if so, we create the children of the element and472

continue recursively. If we reach a leaf, we test whether it is a partition boundary473

element—and if so for which processes—in the way described in the previous section.474

This approach allows us to terminate the recursion as soon as we reach a locally475

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 15

surrounded element, thus saving the iteration over all descendant leaves of that ele-476

ment. Note, however, that each level of the recursion queries neighbors, thus it is not477

sufficient to rely on parent-child relations alone as in an ordinary top-down scheme.478

4.2.1. A recursive top-down scheme. In [15] the authors present the recur-479

sive Search algorithm for octree AMR, which identifies process-local elements or sub-480

trees and generalizes conceptually to hybrid-shape tree-based AMR. This mechanism481

is extended to identify remote process owners of abstract objects without further482

communication [4]. Semi-Lagrangian methods, for example, can effectively exploit483

both kinds of search to bound communication time and volume, in particular for484

arbitrary-CFL, ghost-free designs.485

We suggest applying Search to the problem of identifying all local leaf elements at486

a process’s partition boundary. The Search algorithm has been shown to be especially487

efficient when looking for multiple matching leaves at once [15], which is the case in488

our setting. The idea is starting with the root element of that tree and recursively489

creating its children until we identify a leaf element. On each intermediate element490

we call a user-provided callback function which returns true only if the search should491

continue with this element. Otherwise, the recursion for this element stops and all492

descendants are excluded from further processing.493

For our version of the ghost algorithm, one of two tasks of the callback is to return494

false for locally surrounded elements, thus excluding possibly large areas of the mesh495

from further search and hence accelerating the computation. Once we reach a leaf496

element, the callback performs its second function, namely to examine the leaf’s faces497

and to compute the leaf owners outside and adjacent to the respective neighbor faces.498

Effectively, we defer and reduce the inner for-loop of Algorithm 4.1, line 3, to the499

remaining cases visited by the search callback.500

We show our version of Search in Algorithm 4.2. It is a simplified version of501

Algorithm 3.1 in [15] without point queries, since we do not need these for Ghost-502

optimized. We also use the function split array from [15]. This function takes as503

input an element E and an array L of (process local) leaf elements in E, sorted in SFC504

order. It returns a set of arrays {M [i] } such that for the i-th child Ei of E the array505

M [i] contains exactly the leaves in L that are also leaves of Ei, thus L =
⋃̇
iM [i].506

To cover the whole forest, we iterate over only the trees containing process-local507

leaves, and for each compute the finest element E such that all local leaves are still508

descendants of E. This identifies E as the nearest common ancestor of the first and509

last leaf element of the tree. With E and the leaf elements of the tree, we call the510

element recursion; see Algorithm 4.3.511

Algorithm 4.2: element recursion (element E, leaves L, callback Match)

1 Require: The leaves in L must be descendants of E and ascending
2 isLeaf ← L = {E } /* Determine whether E is a leaf element */

3 if Match(E, isLeaf) and not isLeaf then
4 M []← split array (L, E) /* M [i] are no-copy views onto L */

5 C[]← t8 element children (E)
6 for 0 ≤ i < t8 element num children (E) do
7 if M [i] 6= ∅ then
8 element recursion (C[i], M [i], Match)

This manuscript is for review purposes only.



16 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

Algorithm 4.3: t8 forest search (forest F , callback Match)

1 for K ∈ F .trees, K contains local leaves do
2 E1 ← first tree element (F , K) /* First and last local */

3 E2 ← last tree element (F , K) /* leaf in the tree */

4 E ← t8 element nearest common ancestor (E1, E2)
5 L← tree leaves (F , K) /* No-copy view of tree leaves */

6 element recursion (E, L, Match) /* Top-down traversal */

Algorithm 4.4: ghost match (element E, bool isLeaf)

Result: If E is a leaf, compute the owners of the face-neighbors and add
to the sets Rqp. If not, then terminate if E is a locally surrounded element

1 if isLeaf then /* E is a leaf. Compute the owners at */

2 for 0 ≤ f < t8 element num faces (E) do /* its faces */

3 E′ ← t8 forest face neighbor (F, E, f)
4 f ′ ← dual face(E, E′, f)
5 PE′ ←t8 forest owners at face (F, E′, f ′)
6 for q ∈ PE′ do
7 if q 6= p then
8 Rqp = Rqp ∪ {E }

9 else /* E is not a leaf */

10 pfirst(E)← t8 element first owner (E)
11 plast(E)← t8 element last owner (E)
12 for 0 ≤ f < t8 element num faces (E) do
13 E′ ← t8 forest face neighbor (F, E, f)
14 f ′ ← dual face(E, E′, f)
15 pfirst(E

′, f ′)← t8 first owner at face (F, E′, f ′)
16 plast(E

′, f ′)← t8 last owner at face (F, E′, f ′)
17 if pfirst(E

′, f ′) 6= p or plast(E
′, f ′) 6= p then

18 return 1 /* Not all face-neighbor leaves owned by p */

19 if pfirst(E) = plast(E) = p then
20 return 0 /* Terminate recursion */

21 return 1 /* Continue recursion */

4.2.2. The optimized Ghost algorithm. The algorithm t8 forest search512

requires a callback function, in our case ghost match (Algorithm 4.4), motivated as513

follows. If the element E passed to ghost match is not a leaf, we must decide whether514

the element and all of its possible face-neighbors are owned by the current process.515

We opt not to call the function t8 forest owner on E since it might return a large516

number of processes. We save runtime instead by computing the first and last process517

that owns leaves of the element and testing whether they are equal. We proceed in518

analogy for the owners at the neighbor faces. If for E the first and last process is p519

and at each face-neighbor the first and last owner at the corresponding face is also p,520

E is a locally surrounded element and cannot have any partition boundary leaves as521

descendants. Thus, we return 0 and the search does not continue for E’s descendants.522

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 17

If E is a leaf element, then it may or may not be a partition boundary element.523

Thus, we compute the owner processes of all face-neighbors using t8 forest owners -524

at face and add E as a partition boundary element to all of those that are not p.525

Note that for each child C of an element E the ranks pfirst(E), plast(E), pfirst(E, f),526

and plast(E, f) serve as lower and upper bounds to the corresponding ranks for C.527

Hence in the t8code implementation of ghost match, we remember these ranks for528

each recursion level reducing the search range from [0, P − 1] to [pfirst(E), plast(E)]529

for C, and to [pfirst(E, f), plast(E, f)] for the faces. To track these bounds correctly530

in practice, we always enter the for-loop on Line 12.531

Algorithm 4.5: Ghost optimized (forest F )

1 t8 forest search (F , ghost match)

The final Ghost optimized Algorithm 4.5 is now expressed as a specialized search.532

5. Numerical results. In this section we present various runtime studies ob-533

tained using the Juqueen [16] and the Juwels [17] supercomputers at the FZ (Research534

Center) Jülich, Germany. Juqueen is an IBM BlueGene/Q system consisting of 28,675535

compute nodes, each with 16 IBM PowerPC-A2 cores at 1,6 GHz. Each compute node536

has 16GB RAM. Juqueen was in operation until May 2018. Juqueen’s successor Juwels537

is a Bull Sequana X1000 system, at the time consisting of 2,271 compute nodes, each538

node with 96 GB RAM and two 24-core Intel Xeon SC 8168 CPUs running at 2,7539

GHz. We use one MPI rank per core throughout.540

5.1. Comparing the different ghost versions. We begin by verifying that541

the additional complexity of implementing the top-down search that sets Ghost op-542

timized apart from Ghost tentative is worth the effort. To this end, we use two543

meshes on a unit cube geometry, where the first consists of a single hexahedron tree544

and the second of six tethrahedron trees with a common diagonal as shown in Figure 3.545

For each mesh we run two types of tests: In the first type we create a uniform level `546

mesh and compute the ghost layer for it. In the second type, we start with a uniform547

level ` mesh and refine recursively every third third element (in SFC order) up to548

level ` + k. After this refinement, we repartition the mesh and create a ghost layer;549

see Figure 7.550

We use 64 compute nodes of Juqueen and display our results in Table 1. As551

expected, the iterative version Ghost tentative scales linearly with the number of552

elements. In contrast, Ghost optimized scales with the number of ghost elements,553

which grows less quickly compared to the number of local elements. The improved554

version shows overall a significantly better performance and is up to a factor of 23.7555

faster (adaptive tetrahedra, level 8) than the iterative version. For smaller or degraded556

meshes where the number of ghosts is on the same order as the number of leaf elements,557

the improved version shows no disadvantage compared to the iterative version. This558

underlines that we do not lose runtime to the Search overhead, even when practically559

each element is a partition boundary element. For small meshes both algorithms show560

negligible runtimes (on the order of milliseconds).561

We conclude that our Ghost optimized algorithm based on the top-down search562

is the ideal choice and will further analyze it in the experiments presented in the563

following. We will just call it Ghost.564

This manuscript is for review purposes only.



18 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

Fig. 7: We compare the different implementations of Ghost by testing them on a
unit cube geometry with 1024 MPI ranks of Juqueen. Left: an adaptive mesh with
minimum level ` = 3 for one hexahedron tree. We refine every third element in SFC
order and repeat the process a second time with the refined elements to reach level 5
(color by level). Right: for an illustrative example on 4 MPI ranks, we show the local
leaf elements of the process with MPI rank 1 (red) and its ghost elements (blue).

tetrahedra

uniform adaptive

` 9 8 4 8–10 7–9 3–5

elements/proc 786,432 98,304 24 1,015,808 126,976 31
ghosts/proc 32,704 8,160 30 31,604 8,137 56

Ghost tentative [s] 129.6 16.19 5.93e-3 167.94 20.88 8.10e-3
Ghost optimized [s] 7.41 1.75 5.01e-3 7.08 1.69 8.12e-3

hexahedra

uniform adaptive

` 9 8 4 8–10 7–9 4–6

elements/proc 131,072 16,384 4 169,301 21,162 41
ghosts/proc 8,192 2,048 8 7,681 1,913 30

Ghost tentative [s] 18.25 2.302 2.32e-3 23.79 2.964 8.01e-3
Ghost optimized [s] 3.14 0.711 2.90e-3 2.81 0.649 8.12e-3

Table 1: Runtimes for the two different ghost algorithms on 1,024 MPI ranks of
Juqueen. For tetrahedra and hexahedra we test a uniform level ` mesh and a mesh
that adapts every third element of a uniform level ` mesh up to level `+2; cf. Figure 7.
We observe that Ghost optimized is superior to Ghost tentative by a factor of up
to 23 and scales with the number of ghost elements, not the number of leaves.

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 19

Fig. 8: On Juqueen, we test Ghost on a unit cube geometry consisting of six tetra-
hedral trees (left) or one hexahedral tree (right). Starting with a uniform level `,
we refine the forest in a band around a plane to level ` + k. We then 2:1 balance
the forest and create the ghost layer. In the next time step, the band moves in the
direction of the plane’s normal vector and we repeat the steps, coarsening previously
fine forest elements if they now reside outside of the band. We show the forest after
Balance and time step 2 for two different configurations. Left: tetrahedral elements
with ` = 3, k = 2. Right: hexahedral elements with ` = 4, k = 2. We color by level.

5.2. A single-shape test case. In this test we use a setting similar to the tests565

in [6] for coarse mesh partitioning. We start with a uniform forest of level ` and refine566

it in a band parallel to a hyperplane to level ` + k. We then establish a 2:1 balance567

among the elements (using a ripple propagation algorithm [34] not discussed here)568

and repartition the mesh using the Partition algorithm. Afterwards, we create a569

layer of ghost elements with Ghost. The interface moves through the domain in time570

in direction of the plane’s normal vector. In each time step we adapt the mesh such571

that we coarsen elements outside of the band to level ` and refine within the band to572

level ` + k. Then we repeat balance, partition, and Ghost. As opposed to the test573

in [6], we take the unit cube as our coarse mesh geometry. We run the test once with574

a hexahedral mesh consisting of one tree and once with a tetrahedral mesh of six trees575

forming a unit cube, similar to the previous section (see also Figure 8).576

We choose the normal vector 3
2

(
1, 1, 1

2

)t
and 1

4 for the width of our refinement577

band. We move the refinement band with speed v = 1
64 and scale the time step ∆t578

with the refinement level as579

(8) ∆t(`) =
0.8

2`v
.580

The constant 0.8 can be seen as width of the band of level ` elements that will be581

refined to level k in the next time step. We start the band at position x0(`) =582

0.56− 2.5∆t(`) and simulate up to 5 time steps. The strong and weak scaling results583

collected in the following are obtained with the t8 time forest partition example584

of t8code version 0.3 [14].585

This manuscript is for review purposes only.



20 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

Tetrahedral case with ` = 8, k = 2, C = 0.8 at t = 4∆t

P E/P G/P Time [s] Par. Eff. [%]

8,192 234,178 17,946 3.25 100.0
16,384 117,089 11,311 2.12 96.6
32,768 58,545 7,184 1.27 102.4
65,536 29,272 4,560 0.79 104.5

131,072 14,636 2,859 0.52 99.5

Table 2: The results for strong scaling of Ghost with tetrahedral elements, ` = 8, and
k = 2. We show the runtimes at time t = 4∆t. The mesh consists of approximately
1.91e9 tetrahedra. In addition to the runtimes, we show the number of elements per
process E/P , and ghosts per process G/P . The last column contains the parallel
efficiency according to (9) in reference to the smallest run with 8,192 processes.

0.01

0.1

1

10

8192 16384 32768 64536 131072

R
u
n
ti
m
e
[s
]

Number of MPI ranks

Ghost
C ·G/P
Partition

Fig. 9: Strong scaling with tetrahedral elements. We plot the runtimes of Ghost

and Partition for the test case from Section 5.2 with ` = 8, k = 2 at time step
t = 4∆t. Ideally, Ghost scales with the number of ghost elements per process, G/P .
This number is indicated by the black line.

5.2.1. Strong scaling. We run a strong scaling test with tetrahedral elements586

and refinement parameters ` = 8, k = 2 on 8,192 to 131,072 MPI ranks of Juqueen,587

increasing the process count by a factor of 2 in each step. We list the runtimes of588

Ghost at time t = 4∆t in Table 2 and plot them together with those of Partition in589

Figure 9.590

As we have already observed in Table 1, the runtime of Ghost depends linearly591

on the number of ghost elements per process. Consider two runs with P1 and P2592

processes, respectively, and let G1 and G2 denote the numbers of ghost elements per593

process, then the parallel efficiency of the second run in relation to the first run is594

(9) eGhost =
T1G2

T2G1
.595

Our results demonstrate that we achieve ideal strong scaling efficiency for Ghost.596

5.2.2. Weak scaling. For weak scaling we increase the global number of ele-597

ments in proportion to the process count, keeping the local number of elements nearly598

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 21

Tetrahedral case with k = 2, C = 0.8 at t = 4∆t

P ` E/P G/P Time [s] Par. Eff. [%]

8,192 8 234,178 17,946 3.25 100.0
65,536 9 233,512 18,282 3.76 88.2

458,752 10 266,494 20,252 3.79 96.8

2,048 7 117,630 10,999 1.99 100.0
16,384 8 117,089 11,311 2.12 96.5

131,072 9 116,756 11,478 2.18 95.2

Hexahedral case with k = 2, C = 0.8 at t = 2∆t

P ` E/P G/P Time [s] Par. Eff. [%]

8,192 9 309,877 34,600 6.79 100.0
65,536 10 310,163 35,136 6.85 100.7

458,752 11 354,746 38,833 7.86 96.9

2,048 8 156,178 21,536 4.18 100.0
16,384 9 155,702 22,036 4.25 100.6

131,072 10 155,460 22,284 4.36 98.9

Table 3: Weak scaling for Ghost with tetrahedral (top) and hexahedral elements
(bottom). We increase the base level by one, keeping k = 2, while multiplying the
process count by eight to maintain the same number of local elements per process. The
sole exception is the highest process count of 458,752, seven times 65,536, resulting in
≈ 14% more local elements. Similar to the strong scaling tests, the parallel efficiency
is nearly ideal (see also Figure 10).

constant. Since with each refinement level ` the number of global elements grows by599

a factor of 8, we multiply the process count with 8 as well. We test the following600

configurations on Juqueen, again with k = 2:601

• Tetrahedral elements with 8,192 processes, 65,536 processes, and 458,752 pro-602

cesses, with refinement levels ` = 8, ` = 9, ` = 10. This amounts to about603

235k elements per process. The largest run has about 108e9 elements.604

• Tetrahedral elements with 2,048 processes, 16,384 processes, and 131,072 pro-605

cesses, with refinement levels ` = 8, ` = 9, ` = 10. Here we have about 155k606

elements per process, summing up to 20.3e9 elements on 131,072 processes.607

• Hexahedral elements with the same process counts and levels ` = 9, ` = 10608

and ` = 11 (162e9 elements in total).609

Note that 458,752 is actually 7 times 65,536. We choose it since it is the maximum610

process count on Juqueen when assigning 16 processes per node, using all 28,672611

compute nodes. The number of elements per process is thus about 14% greater than612

on the other process counts in the configuration. (9) still applies.613

We show these results in Table 3 and Figure 10. We notice that Ghost for tetra-614

hedra is faster than Ghost for hexahedra. The reason is the smaller number of ghosts615

due to less faces per element. In all tests we observe excellent strong and weak scaling616

with efficiencies on the order of 95%.617

This manuscript is for review purposes only.



22 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

1

3

6

10

8192 65536 458752

R
u
n
ti
m
e
[s
]

Number of MPI ranks

Ghost (tet)
Ghost (hex)
ideal scaling

50

80

90

100

8192 65536 458752

E
ffi

ci
en

cy
[%

]

Number of MPI ranks

Ghost eff. (tet)
Ghost eff. (hex)

Fig. 10: Weak scaling results for tetrahedra with refinement levels 8, 9, and 10, and for
hexahedra with refinement levels 9, 10, and 11, k = 2, on Juqueen. This amounts to
233k elements per process for tetrahedra and 310k elements per process for hexahedra.
This number differs slightly for the 458,752 process runs, which is only seven times
65,536, while we increase the number of mesh elements by the factor 8. On the left-
hand side we plot the runtimes of Ghost with the ideal scaling in black. On the
right-hand side we plot the parallel efficiency in %. We list all values in Table 3.

Fig. 11: For tests on Juwels we choose a hybrid cube mesh. Left: This coarse mesh
consists of six tetrahedra, six prisms and four hexahedra. We rotate the trees such
that every element in any refined mesh aligns at least two of its faces parallel to a
coordinate plane. Right: We uniformly refine to a base level ` and then add k = 2
rounds of adaptive refinement near a spherical shell. The colors indicate different
refinement levels; purple for level `+ 2, green for level `+ 1 and gray for level `.

5.3. A hybrid test case. In our last test case we process hybrid meshes on the618

Juwels supercomputer. For the coarse mesh we model a cube with four hexahedra, six619

prisms and six tetrahedra (Figure 11). We refine this initial coarse mesh uniformly to620

level ` and then adaptively along a spherical shell to level `+ 2. In this test series we621

do not enforce a 2:1 balance condition in the mesh, demonstrating the capability of622

our algorithm to handle unbalanced forests; cf. [15]. The results for weak and strong623

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 23

P ` E/P G/P Time [s] Par. Eff. [%]

192 8 1,601,702 70,467 0.384 –
1,536 9 1,601,702 74,586 0.363 112

12,288 10 1,601,702 76,514 0.355 117
98,304 11 1,601,702 77,454 0.369 114

Table 4: Weak scaling for the hybrid mesh with hexahedra, prisms and tetrahedra
on Juwels; see also Figure 11. We increase the base level from ` = 8 to ` = 11 and
the process count from 192 to 98,304. The largest mesh has approximately 157.5e9
elements. As before with non-hybrid meshes we observe excellent parallel efficiency.

P ` E/P G/P Time [s] Par. Eff. [%]

12,288 11 12,813,617 305,290 1.428 –
24,576 11 6,406,808 194,919 0.912 99
49,152 11 3,203,404 121,987 0.550 103
98,304 11 1,601,702 77,454 0.369 97

Table 5: Strong scaling for the hybrid mesh with hexahedra, prisms and tetrahedra
on Juwels; see also Figure 11. We fix the base level to ` = 11 and increase the process
count from 12,288 to 98,304. The mesh size is fixed at 157.5e9 elements. Absolute
processing rates are above 200k ghost elements per second. We achieve nearly perfect
parallel efficiency at sub-second full-system runtimes.

scaling are listed in Tables 4 and 5, respectively. Note that due to the relatively624

large amount of memory per node on Juwels we are able to create higher numbers of625

elements per process than on Juqueen, while the run time per element and process is626

much less.627

As a final experiment we create a uniform level 12 mesh with more than 1e12628

elements. Even for this exceptionally large mesh the runtime of our optimized Ghost629

algorithm is only 2.08 seconds (Table 6).630

6. Conclusion. In this paper, we present a parallel ghost layer assembly for631

adaptive forest meshes. It is general with respect to the shape of the trees, which632

may be cuboidal, simplicial, or of any other shape that yields a conforming coarse633

mesh. Furthermore, it is general in terms of non-conforming adaptivity by recursive634

refinement and works with and without a 2:1 balance property. The runtimes we show635

are proportional to the number of local ghost elements, which is the optimal rate to636

be expected, and our algortihm scales to over 1e12 elements total. Absolute runtimes637

are less than 5 µs per ghost element on the Xeon-based Juwels supercomputer.638

We have limited the exposition to face-only connectivity, which suffices to im-639

plement flux- and mortar-based numerical methods, for example of finite volume,640

spectral element, or discontinuous Galerkin type. The extension of the algorithm to641

vertex and 3D edge connectivity is still open. Based on our experience with assem-642

bling the fully connected ghost layer for adaptive hexahedral meshes, we judge this643

extension to be feasible. In addition to implementing the necessary low-level func-644

tions to compute vertex and 3D edge neighbors within a tree, the major task will be645

This manuscript is for review purposes only.



24 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

P #Elements Ghost [s] Partition [s]

49,152 1,099,511,627,776 2.08 0.73

Table 6: The largest mesh that we create is uniform at level 12 and 1.1e12 elements.

to extend the tree-to-tree neighbor computation accordingly. To do so, the method646

that we describe in this paper, namely constructing the lower dimensional element,647

transforming it into its neighbor and then extruding it to the neighbor element, may648

be generalized to arbitrary codimension. The challenge compared to face-neighbors649

is that at a single inter-tree vertex/edge can connect to an arbitrary number of trees.650

Encoding and identifying these neighbor trees is a task that requires an appropriate651

extension of the coarse mesh connectivity data structure. Once this is accomplished,652

the neighbor elements can be constructed by following the techniques described in653

this paper.654

The primary use for the presented algorithm is the support of element-based655

numerical methods, which can be realized in multiple ways. Since the ghost layer656

is an ordered linear structure, it can be binary searched directly by an application,657

for example to count and allocate the communication buffers for flux-based methods.658

Alternatively, it can be used in a combined local-and-ghost top-down traversal of the659

mesh to collect globally consistent face and node numbers for element-based methods660

and store them in a lookup table, which then serves as the interface to the numerical661

application. Other uses include CFL-limited particle tracking and semi-Lagrangian662

methods, which require quick owner search of points that leave the local partition.663

In summary, we hope to have provided both an abstract technique and a usable664

software module that is indispensible to many numerical applications, and which hides665

the complexity of the algorithmic details behind a minimal interface.666

Acknowledgements. The authors gratefully acknowledge the Gauß Centre for667

Supercomputing for funding the project chbn26 by providing computing time through668

the John von Neumann Institute for Computing (NIC) on the GCS supercomputers669

Juwels and Juqueen at Jülich Supercomputing Centre (JSC).670

H. and B. gratefully acknowledge travel support by the Bonn Hausdorff Center for671

Mathematics (HCM) funded by the Deutsche Forschungsgemeinschaft (DFG, German672

Research Foundation) under Germany’s Excellence Strategy – GZ 2047/1, Project ID673

390685813.674

H. acknowledges additional financial support by the Bonn International Graduate675

School for Mathematics (BIGS) as part of HCM.676

REFERENCES677

[1] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data struc-678
tures for massively parallel generic adaptive finite element codes, ACM Transactions on679
Mathematical Software, 38 (2011), pp. 1–28, doi:10.1145/2049673.2049678.680

[2] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – a general-purpose object-oriented681
finite element library, ACM Transactions on Mathematical Software, 33 (2007), p. 24,682
doi:10.1145/1268776.1268779.683

[3] J. Bey, Der BPX-Vorkonditionierer in drei Dimensionen: Gitterverfeinerung, Parallelisierung684
und Simulation, Universität Heidelberg, (1992). Preprint.685

[4] C. Burstedde, Parallel tree algorithms for AMR and non-standard data access, ACM Trans-686
actions on Mathematical Software, 46 (2020), pp. 1–31, doi:10.1145/3401990.687

This manuscript is for review purposes only.

http://dx.doi.org/10.1145/2049673.2049678
http://dx.doi.org/10.1145/1268776.1268779
http://dx.doi.org/10.1145/3401990


OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 25

[5] C. Burstedde and J. Holke, A tetrahedral space-filling curve for nonconforming adap-688
tive meshes, SIAM Journal on Scientific Computing, 38 (2016), pp. C471–C503,689
doi:10.1137/15M1040049.690

[6] C. Burstedde and J. Holke, Coarse mesh partitioning for tree-based AMR, SIAM Journal691
on Scientific Computing, 39 (2017), pp. C364–C392, doi:10.1137/16M1103518.692

[7] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adap-693
tive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing, 33694
(2011), pp. 1103–1133, doi:10.1137/100791634.695

[8] C. Chevalier and F. Pellegrini, PT-Scotch: A tool for efficient parallel graph ordering,696
Parallel Computing, 34 (2008), pp. 318–331, doi:10.1016/j.parco.2007.12.001, http://dx.697
doi.org/10.1016/j.parco.2007.12.001.698

[9] T. Coupez, L. Silva, and H. Digonnet, A massively parallel multigrid solver using PETSc699
for unstructured meshes on a Tier-0 supercomputer. Presentation at the PETSc users700
meeting, 2016, https://www.mcs.anl.gov/petsc/meetings/2016/slides/digonnet.pdf.701

[10] A. Dedner, R. Klöfkorn, and M. Nolte, The DUNE-ALUGrid module, 2014,702
arXiv:1407.6954.703

[11] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, Zoltan data manage-704
ment services for parallel dynamic applications, Computing in Science and Engineering, 4705
(2002), pp. 90–97.706

[12] A. Guittet, T. Isaac, C. Burstedde, and F. Gibou, Direct numerical simulation of incom-707
pressible flows on parallel octree grids. Manuscript, 2016.708

[13] J. Holke, Scalable algorithms for parallel tree-based adaptive mesh refinement with general709
element types, PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2018, http:710
//d-nb.info/1173789790/34.711

[14] J. Holke and C. Burstedde, t8code: Parallel AMR on hybrid non-conforming meshes, 2015.712
http://github.com/holke/t8code, last accessed October 18th, 2019.713

[15] T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas, Recursive algorithms for dis-714
tributed forests of octrees, SIAM Journal on Scientific Computing, 37 (2015), pp. C497–715
C531, doi:10.1137/140970963, arXiv:1406.0089.716

[16] Jülich Supercomputing Centre, JUQUEEN: IBM Blue Gene/Q supercomputer system at717
the Jülich Supercomputing Centre, Journal of large-scale research facilities, 1 (2015), p. A1,718
doi:10.17815/jlsrf-1-18.719

[17] Jülich Supercomputing Centre, JUWELS: Modular tier-0/1 supercomputer at the Jülich720
Supercomputing Centre, Journal of large-scale research facilities, 5 (2019), p. A135,721
doi:10.17815/jlsrf-5-171.722

[18] G. Karypis and V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse723
matrix ordering, Journal of Parallel and Distributed Computing, 48 (1998), pp. 71–95.724

[19] D. Knapp, Adaptive Verfeinerung von Prismen, Bachelor’s thesis, Rheinische Friedrich-725
Wilhelms-Universität Bonn, 2017.726

[20] D. Knapp, A space-filling curve for pyramidal adaptive mesh refinement, Master’s thesis,727
Rheinische Friedrich-Wilhelms-Universität Bonn, 2020.728

[21] O. S. Lawlor, S. Chakravorty, T. L. Wilmarth, N. Choudhury, I. Dooley, G. Zheng,729
and L. V. Kalé, ParFUM: a parallel framework for unstructured meshes for scal-730
able dynamic physics applications, Engineering with Computers, 22 (2006), pp. 215–235,731
doi:10.1007/s00366-006-0039-5.732

[22] Q. Liu, W. Zhao, J. Cheng, Z. Mo, A. Zhang, and J. Liu, A programming framework733
for large scale numerical simulations on unstructured mesh, in 2016 IEEE 2nd Inter-734
national Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Interna-735
tional Conference on High Performance and Smart Computing (HPSC), and IEEE In-736
ternational Conference on Intelligent Data and Security (IDS), April 2016, pp. 310–315,737
doi:10.1109/BigDataSecurity-HPSC-IDS.2016.12.738

[23] G. M. Morton, A computer oriented geodetic data base; and a new technique in file sequencing,739
tech. report, IBM Ltd., 1966.740

[24] G. Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann., 36 (1890), pp. 157–741
160.742

[25] M. Rasquin, C. Smith, K. Chitale, E. S. Seol, B. A. Matthews, J. L. Martin, O. Sahni,743
R. M. Loy, M. S. Shephard, and K. E. Jansen, Scalable implicit flow solver for realistic744
wing simulations with flow control, Computing in Science Engineering, 16 (2014), pp. 13–745
21, doi:10.1109/MCSE.2014.75.746

[26] C. Richardson and G. Wells, High performance multi-physics simulations with FEn-747
iCS/DOLFIN, Tech. Report eCSE03-10, CSE programme of the ARCHER UK National748
Supercomputing Service, 2016, doi:10.6084/M9.FIGSHARE.3406582.749

This manuscript is for review purposes only.

http://dx.doi.org/10.1137/15M1040049
http://dx.doi.org/10.1137/16M1103518
http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://dx.doi.org/10.1016/j.parco.2007.12.001
https://www.mcs.anl.gov/petsc/meetings/2016/slides/digonnet.pdf
http://arxiv.org/abs/1407.6954
http://d-nb.info/1173789790/34
http://d-nb.info/1173789790/34
http://d-nb.info/1173789790/34
http://github.com/holke/t8code
http://dx.doi.org/10.1137/140970963
http://arxiv.org/abs/1406.0089
http://dx.doi.org/10.17815/jlsrf-1-18
http://dx.doi.org/10.17815/jlsrf-5-171
http://dx.doi.org/10.1007/s00366-006-0039-5
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.12
http://dx.doi.org/10.1109/MCSE.2014.75
http://dx.doi.org/10.6084/M9.FIGSHARE.3406582


26 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

[27] I. Sbalzarini, J. Walther, M. Bergdorf, S. Hieber, E. Kotsalis, and P. Koumout-750
sakos, PPM—a highly efficient parallel particle-mesh library for the simulation of751
continuum systems, Journal of Computational Physics, 215 (2006), pp. 566 – 588,752
doi:10.1016/j.jcp.2005.11.017.753

[28] F. Schornbaum and U. Rüde, Massively parallel algorithms for the lattice Boltzmann method754
on nonuniform grids, SIAM Journal on Scientific Computing, 38 (2016), pp. 96–126.755

[29] J. R. Stewart and H. C. Edwards, A framework approach for developing parallel adaptive756
multiphysics applications, Finite Elements in Analysis and Design, 40 (2004), pp. 1599–757
1617, doi:10.1016/j.finel.2003.10.006.758

[30] H. Sundar, R. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refinement of759
linear octrees in parallel, SIAM Journal on Scientific Computing, 30 (2008), pp. 2675–2708,760
doi:10.1137/070681727.761

[31] T. J. Tautges, J. A. Kraftcheck, N. Bertram, V. Sachdeva, and J. Magerlein, Mesh in-762
terface resolution and ghost exchange in a parallel mesh representation, in 2012 IEEE 26th763
International Parallel and Distributed Processing Symposium Workshops & PhD Forum,764
IEEE, 2012, pp. 1670–1679.765

[32] T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst, MOAB: A mesh-766
oriented database, SAND2004-1592, Sandia National Laboratories, Apr. 2004. Report.767

[33] J. Teunissen and R. Keppens, A geometric multigrid library for quadtree/octree AMR grids768
coupled to MPI-AMRVAC, Computer Physics Communications, 245 (2019), p. 106866,769
doi:10.1016/j.cpc.2019.106866.770

[34] T. Tu, D. R. O’Hallaron, and O. Ghattas, Scalable parallel octree meshing for teras-771
cale applications, in SC ’05: Proceedings of the International Conference for High Per-772
formance Computing, Networking, Storage, and Analysis, ACM/IEEE, 2005, pp. 4–4,773
doi:10.1109/SC.2005.61.774

[35] T. Weinzierl and M. Mehl, Peano—a traversal and storage scheme for octree-like adaptive775
Cartesian multiscale grids, SIAM Journal on Scientific Computing, 33 (2011), pp. 2732–776
2760.777

This manuscript is for review purposes only.

http://dx.doi.org/10.1016/j.jcp.2005.11.017
http://dx.doi.org/10.1016/j.finel.2003.10.006
http://dx.doi.org/10.1137/070681727
http://dx.doi.org/10.1016/j.cpc.2019.106866
http://dx.doi.org/10.1109/SC.2005.61


OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 27

SUPPLEMENTARY MATERIAL778

Appendix A. Low-level element functions in t8code. In this supplement779

we provide details for the implementation of the low-level algorithms needed for the780

face neighbor computation across tree boundaries that we discuss in Section 2 as781

well as the children-at-face computation that we need to identify owner processes.782

These are implementations for the classical Morton index for lines, quadrilaterals and783

hexahedra, and for the tetrahedral Morton index for triangles, tetrahedra and prisms.784

For reference, we display our numbering convention of tree vertices and faces in785

Figure 12.786

Algorithm A.2 defines our implementation of the face neighbor algorithm, which787

breaks the computation across tree boundaries into the following subalgorithms.788

t8 element tree face (Section 2.1) computes the face number of a face of the789

tree given an element that shares a face with this tree. We provide a lookup table for790

the tetrahedron version in Table 7. The implementations of the other element shapes791

follow from the discussion in Section 2.1.792

t8 element boundary face (Section 2.2) computes the (d − 1)-dimensional face793

element corresponding to a given face of a d-dimensional element. The computation794

breaks down into projecting the anchor node coordinates of the element onto the cor-795

rect (d−1)-dimensional plane. See Tables 8 and 9 for triangles, quads, hexahedra and796

tetrahedra. The implementation for lines is straightforward, and the implementation797

for prisms follows directly as a cross product of triangles and lines.798

t8 element transform face (Section 2.3) transforms the coordinates of a (d−1)-799

dimensional face element from one reference tree into another. As input it requires the800

face as well as the orientations and sign of the tree-to-tree connection. In Remark 15801

we argue that we only need to implement all cases with s = 1 and the additional case802

o = 0, s = −1. We display these implementations in Tables 10 and 11. The sign s can803

be determined by Table 12.804

t8 element extrude face (Section 2.4) builds the d-dimensional element in the805

neighbor tree from the transformed face element. To this end, the anchor node of the806

new element is computed from the anchor node of the face element and the information807

on which tree face this element lies. We provide the details in Table 13.808

Combining the above four subalgorithms, we may compute the face neighbor of an809

element across tree boundaries, which is a decisive element of the ghost layer assembly810

for multi-tree hybrid-shape meshes.811

As a final addition to this supplement, we show the lookup tables for the imple-812

mentation of the t8 element children at face algorithm in Table 14. This algo-813

rithm is needed to identify owner processes of neighbor elements (Section 2.5).814

Functional implementations of all proposed algorithms are available from the815

public t8code repository [14].816

This manuscript is for review purposes only.



28 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

Algorithm A.2: Computing the face neighbor of an element

Result: The same-level face-neighbor E′ of E across face f
1 if element neighbor inside root (E, f) then
2 E′ ← t8 element face neighbor inside (E, f)

3 else
4 g ← t8 element tree face (E, f) /* (i) Tree face no. and */

5 o← face orientation (F, K, g) /* relative orientation */

6 F ← t8 element boundary face (E, f) /* (ii) Face element */

7 F ′ ← t8 element transform face (F, o) /* (iii) Neighb. fc. */

8 g′ ← tree neighbor face (F, K, g) /* Neighbor tree face */

9 E′ ← t8 element extrude face (F ′, g′) /* (iv) and element */

f0f1

f2
0

2

1

0 1

2 3

f0 f1

f2

f3

4

10

32f0 f1f2

f3

f4f0

f1

f2

f3

0

1

2
3

0 1

2 3

4 5

6 7

f0 f1

f2

f3

f4

f5

f2

0 2

3 5

1

4

f0

f1f3

f4

Z

Y

X

Fig. 12: The vertex and face labels of the 2D (left) and 3D (right) tree shapes. While
the low-level functions for the pyramid are not yet released in t8code, this additional
element shape is covered by our new high-level algorithms exactly like all others.

Tetrahedron

type(T ) f g type(T ) f g

0 i i 3 − −
1 0 0 4 1 2
2 2 1 5 3 3

Table 7: g = t8 element tree face (T, f) for a tetrahedron T and a face f of T
that lies on a tree face. Depending on T ’s type, all, exactly one, or none of its faces
can be a subface of a face of the root tetrahedron. We show the tetrahedron’s face
number f and the corresponding face number g in the root tetrahedron.

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 29

Quadrilateral

f F.x

0, 1 Q.y
2, 3 Q.x

Hexahedron

f (F.x, F.y) f (F.x, F.y)

0 (Q.y,Q.z) 3 (Q.x,Q.z)
1 (Q.y,Q.z) 4 (Q.x,Q.y)
2 (Q.x,Q.z) 5 (Q.x,Q.y)

Table 8: t8 element boundary face for quadrilaterals and hexahedra. Left: For a
quadrilateral Q with anchor node (Q.x,Q.y) and a face f , the corresponding anchor
node coordinate F.x of the face line element. Right: For a hexahedron Q with an-
chor node (Q.x,Q.y,Q.z) and a face f , the corresponding anchor node coordinates
(F.x, F.y) of the face quadrilateral element. In either case, computing the coordinates
is equivalent to a projection.

Triangle

type (T ) f F.x

0 0 T.y
1 T.x
2 T.x

Tetrahedron

type (T ) f case type (F ) (F.x, F.y)

0 0 1 0 (T.z, T.y)
1 1 0 (T.z, T.y)
2 2 0 (T.x, T.z)
3 2 0 (T.x, T.z)

1 0 1 1 (T.z, T.y)
2 2 1 1 (T.z, T.y)
3 − − − −
4 1 2 1 (T.x, T.z)
5 3 2 1 (T.x, T.z)

Table 9: t8 element boundary face (T, f) for triangles and tetrahedra. Left: The
x coordinate of the anchor node of the boundary line F at face f of a triangle T in
terms of T ’s coordinates. Right: Two cases occur, which we list together with the
type of the boundary triangle F at a face f of tetrahedron T and the anchor node
coordinates (F.x, F.y).

This manuscript is for review purposes only.



30 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

Triangle

type(F )

(
F ′.x
F ′.y

)

0

(
F.x

F.x− F.y

)
1

(
F.x

F.x− F.y − h

)

Quadrilateral(
F ′.x
F ′.y

)
(
F.y
F.x

)

Table 10: Result of t8 transform face (F, o = 0, s = −1) for triangles (left) and
quadrilaterals (right). We compute any arbitrary combination of values for o with s =
−1 by first applying t8 transform face (F, 0, −1) and then t8 transform face

(F, o, 1) from Table 11.

Line

o
(
F ′.x

)
0

(
F.x
)

1
(
2L − F.x− h

)

Quadrilateral

o

(
F ′.x
F ′.y

)
o

(
F ′.x
F ′.y

)

0

(
F.x
F.y

)
2

(
F.y

2L − F.x− h

)
1

(
2L − F.y − h

F.x

)
3

(
2L − F.x− h
2L − F.y − h

)

Triangle

type(F ) o

(
F ′.x
F ′.y

)
type(F ) o

(
F ′.x
F ′.y

)

0 0

(
F.x
F.y

)
1 0

(
F.x
F.y

)
1

(
2L − F.y − h
F.x− F.y

)
1

(
2L − F.y − h
F.x− F.y − h

)
2

(
2L − F.x+ F.y − h

2L − F.x− h

)
2

(
2L − F.x+ F.y
2L − F.x− h

)
Table 11: Result of t8 transform face (F, o, s = 1) for lines (top left), quadri-
laterals (top right) and triangles (bottom) with sign 1. For values with s = −1 see
Table 10 and Remark 15.

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 31

K and K ′ tetrahedra

g

g′ 0 1 2 3

0 −1 1 −1 1
1 1 −1 1 −1
2 −1 1 −1 1
3 1 −1 1 −1

K hexahedron, K ′ prism

g

g′ 0 1 2 3 4 5

0 1 −1 −1 1 1 −1
1 −1 1 1 −1 −1 1
2 1 −1 −1 1 1 −1

K tetrahedron, K ′ prism

g

g′ 0 1 2 3

3 −1 1 −1 1
4 1 −1 1 −1

K and K ′ prisms

g

g′ 0 1 2 3 4

0 −1 1 −1 − −
1 1 −1 1 − −
2 −1 1 −1 − −
3 − − − −1 1
4 − − − 1 −1

Table 12: Value of signt,t′(g, g
′) from Definition 13 for four possible tree-to-tree con-

nections. We obtain these values from Figure 12. For two hexahedra, we refer to (6).

This manuscript is for review purposes only.



32 J. HOLKE AND D. KNAPP AND C. BURSTEDDE

2D – coordinates

g′
(
E′.x
E′.y

)
g′

(
E′.x
E′.y

)
Quadrilateral from line

0

(
0

F ′.x

)
2

(
F ′.x

0

)
1

(
2L − h
F ′.x

)
3

(
F ′.x

2L − h

)
Triangle from line

0

(
2L − h
F ′.x

)
2

(
F ′.x

0

)
1

(
F ′.x
F ′.x

)

3D – types

g′ type(F ′) type(E′)

Tetrahedron from triangle

0 0 0
1 1

1 0 0
1 2

2 0 0
1 4

3 0 0
1 5

Prism from triangle or quad

0 − 0

1 − 0

2 − 0

3 0 0
1 1

4 0 0
1 1

3D - coordinates

g′

E′.xE′.y
E′.z

 g′

E′.xE′.y
E′.z


Hexahedron from quad

0

 0
F ′.x
F ′.y

 3

 F ′.x
2L − h
F ′.y


1

2L − h
F ′.x
F ′.y

 4

F ′.xF ′.y
0


2

F ′.x0
F ′.y

 5

 F ′.x
F ′.y

2L − h


Tetrahedron from triangle

0

2L − h
F ′.y
F ′.x

 2

F ′.x0
F ′.y


1

F ′.xF ′.y
F ′.x

 3

F ′.x0
F ′.y


Prism from triangle or quad

0

2L − h
F ′.x
F ′.y

 3

F ′.xF ′.y
0


1

F ′.xF ′.x
F ′.y

 4

 F ′.x
F ′.y

2L − h


2

F ′.x0
F ′.y



Table 13: The computation of E′ = t8 element extrude face (F ′, T ′, g′). De-
pending on the anchor node coordinates of F ′ and the tree face number g′ we de-
termine the anchor node of the extruded element E′. For tetrahedra and prisms we
additionally need to compute the type of E′, which depends on g′ and the type of the
triangle F ′ (bottom left). In the case of a triangle the type of E′ is always 0, since
type 1 triangles cannot lie on a tree boundary. Hence, we do not show a table for this
case. h refers to the length of the element E′ (resp. F ′) and is computed as 2L−`,
where ` is the refinement level of E′ and F ′.

This manuscript is for review purposes only.



OPTIMIZED GHOST ALGORITHM FOR HYBRID FOREST AMR 33

Triangle

f

type(T ) 0 1 2

0 1,3 0,3 0,1
1 2,3 0,3 0,2

Tetrahedron

f

type(T ) 0 1 2 3

0 1, 4, 5, 7 0, 4, 6, 7 0, 1, 2, 7 0, 1, 3, 4
1 1, 4, 5, 7 0, 5, 6, 7 0, 1, 3, 7 0, 1, 2, 5
2 3, 4, 5, 7 0, 4, 6, 7 0, 1, 3, 7 0, 2, 3, 4
3 1, 5, 6, 7 0, 4, 6, 7 0, 1, 3, 7 0, 1, 2, 6
4 3, 5, 6, 7 0, 4, 5, 7 0, 1, 3, 7 0, 2, 3, 5
5 3, 5, 6, 7 0, 4, 6, 7 0, 2, 3, 7 0, 1, 3, 6

Prism

f

type(P ) 0 1 2 3 4

0 1, 3, 5, 7 0, 3, 4, 7 0, 1, 4, 5 0, 1, 2, 3 4, 5, 6, 7
1 2, 3, 6, 7 0, 3, 4, 7 0, 2, 4, 6 0, 1, 2, 3 4, 5, 6, 7

Table 14: The child indices of all children of an element touching a given
face for triangles, tetrahedra and prisms. These indices are needed for
t8 element children at face.

This manuscript is for review purposes only.


	Introduction
	Contributions
	Fundamental concepts
	Technical procedure

	Low-level element functions
	(i) Identifying the tree face
	(ii) Constructing the face element
	(iii) Constructing F' from F
	(iv) Constructing E' from F'
	Supporting local surround

	Owner processes of elements
	The ghost algorithms
	Initial design
	Optimizing the runtime
	A recursive top-down scheme
	The optimized Ghost algorithm


	Numerical results
	Comparing the different ghost versions
	A single-shape test case
	Strong scaling
	Weak scaling

	A hybrid test case

	Conclusion
	References
	Appendix A. Low-level element functions in t8code

